A radiation tolerant camera, including a camera module and having an electronic image sensor. The camera module is arranged in a radiation shielding enclosure, the enclosure having an opening for allowing passage of light into the image sensor. Furthermore, the camera module is connected to a heat absorbing cooling element dissipating heat from the camera module.
|
1. A method for operating a radiation tolerant camera for monitoring purposes in environments with strong ionizing radiation,
wherein said camera comprises an electronic image sensor; a neutron radiation shielding enclosure which encloses the electronic image sensor and which is provided with an opening allowing passage of light into the image sensor; and a neutron radiation shield,
wherein said camera is mounted on a motorized support which allows rotation about a first rotational axis to provide a view of the environment without hindrance by the radiation shield and rotation about a second axis disposed transversely to the first axis,
said method comprising:
pivoting the enclosure by means of said motorized support around the second axis in relation to the neutron radiation shield between a shielded resting position, in which the opening of the enclosure is directed towards the neutron radiation shield, to an operating position in which the opening is uncovered by the neutron radiation shield.
2. A method as claimed in
3. A method as claimed in
4. A method as claimed in
5. A method as claimed in
7. A method as claimed in
8. A method as claimed in
9. A method as claimed in
10. A method as claimed in
11. A method as claimed in
12. A method as claimed in
13. A method as claimed in
14. A method as claimed in
15. A method as claimed in
16. A method as claimed in
17. A method as claimed in
18. A method as claimed in
19. A method as claimed in
20. A method as claimed in
|
This application is a continuation of U.S. application Ser. No. 13/258,349, filed Sep. 21, 2011, which is the U.S. national phase of International Application No. PCT/SE2010/050349, filed Mar. 30, 2010, which claims priority to Swedish Application No. 0950199-0, filed Mar. 30, 2009, the disclosures of which are incorporated in their entireties by reference herein.
The invention relates to a radiation tolerant camera, comprising a camera module having an electronic image sensor and a radiation shielding enclosure, said enclosure having an opening for allowing passage of light into the image sensor. The camera is formed to be used mainly for monitoring purposes in environments with strong ionizing radiation, mainly neutron and gamma radiation. In the nuclear energy industry, it can be used in a reactor and containment surveillance system, fuel pool inspection, and inspection “missions” for decommissioning. It can also be used in the radiotherapy industry, for instance, for patient monitoring during radiotherapy. The invention is specifically directed to be operated in a neutron radiation environment.
In many applications today, tube cameras are used in the environments mentioned above because they are more radiation tolerant compared to cameras that are provided with CCD or CMOS image sensors. It is normally possible to separate any required electronic control units from the radioactive environment and thus avoid or limit some severe effects of the radiation. The conditions of using other types of cameras, and specifically digital cameras, however, are different.
Ionizing radiation affects and finally destroys electronic equipment, specifically low voltage and more compact circuits and circuits with high spatial resolution. The ionizing radiation mainly causes temporary damage, so-called soft errors or single-event damage, and permanent damage, so-called atomic displacement.
Commercially available devices of today suffer from these effects and produce images of continuously deteriorating quality. The cameras and associated control logic will be broken or have a decreased performance level only after a short period of use in the above-described harsh environment. There is still a need for better image quality that can be achieved with digital image sensors and also a need for cameras that will last longer in such environments.
In accordance with the invention, a digital camera module having an electronic image sensor is enclosed by a radiation shielding enclosure. An opening in the enclosure will allow passage of light into the image sensor. The enclosure is made from a material that has low-mass nuclei. In such a material, neutrons can transfer large amounts of their energy to the light nuclei through collisions. In numerous embodiments, boron is added to the enclosure material so as to capture thermal neutrons resulting from the collisions.
The complete enclosure in one embodiment can be pivoted or tilted between various operating positions in which the opening is uncovered and directed towards an observed object and a resting position in which the opening is directed towards a shield of radiation shielding material. A backside of the enclosure will be efficiently protected by the shield in the operating position.
The opening of the enclosure preferably is covered with a transparent front cover allowing transmission of light and allowing an image to be picked up by the image sensor. The size of the transparent front cover is sufficient for providing a desired viewing angle. Preferably, the front cover also is made from a material that has low-mass nuclei.
To improve further the shielding against effects of the radiation, the camera module is thermally connected to a heat absorbing cooling element that will facilitate and improve dissipation of heat from the camera module. The cooling element can include a thermoelectric cooling module, such as a module using the Peltier effect. The cooling capacity of the cooling module can be further improved by heat dissipating means extending exterior of the enclosure from the cooling element. In one embodiment, the heat dissipating means comprises heat pipes. By cooling the camera module to lower temperatures, such as a few degrees above zero, or about 2° C. to 5° C., the image quality from the camera module will be substantially improved.
The enclosure can have an average thickness of a few centimeters, such as about five centimeters. At such a thickness, the material will provide sufficient neutron radiation attenuation.
In various embodiments, the camera module comprises a standard camera, including a sensor and associated electronics, that is mounted in an insulated and sealed housing. In various embodiments, the housing comprises a moisture-proof layer, so as to ensure that the moisture content within the housing is maintained at a low level. A further radiation shielding layer made of lead, tungsten, or another material having similar shielding and constructional properties can be arranged to shield the camera module from other radiation, such as gamma radiation.
In order that the manner in which the above-recited and other advantages and objects of the invention are obtained will be readily understood, a more particular description of the invention briefly described above will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings.
Understanding that these drawings depict only typical embodiments of the invention and are not therefore to be considered to be limiting of its scope, the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
The embodiment shown in
The housing 14 is made of an airtight and neutron radiation shielding material, such as plastic or similar material, and is completely sealed. The radiation shielding layer 15 is provided mainly as a gamma or X-ray shielding means. A front side of the housing 14, as well as of the radiation shielding layer 15, forms an opening which is closed by a transparent front panel 16. The insulating body 12 is formed with an orifice 17 facing the transparent front panel 16. The orifice 17 of the insulating body 12 is beveled from the position of the lens package 13 to a wider open space adjacent to the front panel 16.
The housing 14 is enclosed in an enclosure 18 formed by a first box-like part and a second backside part, c.f. also
The image sensor 11 and also the camera module 10 as a whole are thermally connected to a heat absorbing cooling element 20. In the embodiment shown in
As shown in
A second part of the enclosure forms a backside 28 engaging in a tight manner the box-like part 24. To further seal the connection between the box-like part 24 and the backside 28, both parts can be formed with ribs 30 and corresponding recesses (not shown). The backside further comprises a support block 32 arranged for supporting the heat pipes. One side section of the box-like part 24 is formed with indentations 34 receiving the heat pipes.
The cooling device 36 further supports the heat pipes 22, extending through the enclosure and into a heat sink 40 provided on the outside of the enclosure. The heat sink 40 can comprise a finned element and, if required, a fan. The heat pipes 22 also are thermally connected to the cooling device 36. The heat pipes 22 extend during operating and resting conditions in a horizontal direction. The horizontal orientation of the heat pipes results in a constant heat transmission capacity during operation and in different tilting positions.
The enclosure 18 can be rotated around an axis 42 extending in a horizontal direction. In
As shown in
A fully equipped camera is shown in
The complete camera can be mounted at a fixed position on a wall bracket or a commercially available pan and tilt unit. In the embodiment shown in
Sensitive electronic devices used for controlling and steering the camera can be arranged in a remote position or within an extension 49 of the shield 44. In this embodiment, the radiation sensitive electronic devices, together with power regulating devices, are thermally connected to a cooling system formed by the heat pipes and the heat absorbing means. A microphone 48 is provided to obtain information about sound and noise appearing in the surrounding area. Preferably, the microphone is specifically designed and radiation hardened.
The embodiment of the heat absorbing cooling element 20 shown in
The body 21 has protrusions on two opposite sides. A first protrusion 25 abuts the camera module 10, and more specifically, a section of the camera module where a circuit board 27 supporting the digital image sensor 11 is situated. A second protrusion 29 is dimensioned to protrude through an opening of the housing 14 so as to ensure an efficient heat transfer out of the housing 14. The second protrusion 29 also will engage the cooling device 36 outside the housing 14 and inside the enclosure 18.
The material used for the radiation shielding enclosure and shield may include or be based on hydrocarbon plastics (such as polyethylene, polypropylene, and polystyrene); natural and synthetic rubber (such as silicone rubber); and other plastics or resins containing atoms in addition to hydrogen and carbon (such as acrylic, polyester, polyurethanes, and vinyl resins). These organic polymers show a high effectiveness of shielding against neutrons due to a large concentration of hydrogen atoms in these materials. The combination of a radiation shielding enclosure comprising hydrocarbon plastics and the efficient cooling of the camera module results in a higher image quality, in a short term perspective as well as in a long term perspective.
Fast neutrons that are slowed down by repeated collisions with light nuclei form thermal neutrons that can be absorbed by nuclear reactions. The total neutron shielding ability of polyethylene can be improved if a good thermal neutron absorbing material is added to it. An appropriate thermal neutron absorbing material is boron.
The material used for the transparent front panel 16 preferably is fully transparent so as to produce a true image of any object in front of the camera module. In a preferred embodiment, materials having a high hydrogen content are used, for instance, Polymethylmethacrylate (PMMA), known as PLEXIGLAS.
While certain illustrative embodiments of the invention have been described in particularity, it will be understood that various other modifications will be readily apparent to those skilled in the art without departing from the scope and spirit of the invention. Accordingly, it is not intended that the scope of the claims appended hereto be limited to the description set forth herein but rather that the claims be construed as encompassing all equivalents of the present invention which are apparent to those skilled in the art to which the invention pertains.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
4063458, | Jul 27 1976 | Klockner Humboldt Deutz Aktiengesellschaft | Method and apparatus for operating instruments subject to radiation |
5839284, | Oct 04 1996 | Raytheon Company | Image intensifier tv integral thermal control system |
6144031, | Apr 21 1997 | Teledyne FLIR, LLC | Infrared video camera system with uncooled focal plane array and radiation shield |
7402802, | Oct 19 2006 | Flir Systems, Inc.; FLIR SYSTEMS, INC | Infrared camera packaging systems and methods |
7634059, | Dec 05 2007 | Schlumberger Technology Corporation | Downhole imaging tool utilizing x-ray generator |
7790253, | Apr 17 2006 | PIXART IMAGING INCORPORATION | Wear-resistive housing for a portable electronic device |
20020003584, | |||
20040026624, | |||
GB921100, | |||
JP11191855, | |||
JP2000321394, | |||
JP200271876, | |||
JP2003143449, | |||
JP2003289458, | |||
JP2004343195, | |||
JP2005121469, | |||
JP2006287723, | |||
JP200691399, | |||
JP3085206, | |||
JP6265683, | |||
JP8094790, | |||
WO2004051986, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 15 2014 | ISEC Industrial Security AB | (assignment on the face of the patent) |
Date | Maintenance Fee Events |
Jun 24 2019 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Jun 24 2019 | M2554: Surcharge for late Payment, Small Entity. |
Jul 10 2023 | REM: Maintenance Fee Reminder Mailed. |
Sep 15 2023 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Sep 15 2023 | M2555: 7.5 yr surcharge - late pmt w/in 6 mo, Small Entity. |
Date | Maintenance Schedule |
Nov 17 2018 | 4 years fee payment window open |
May 17 2019 | 6 months grace period start (w surcharge) |
Nov 17 2019 | patent expiry (for year 4) |
Nov 17 2021 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 17 2022 | 8 years fee payment window open |
May 17 2023 | 6 months grace period start (w surcharge) |
Nov 17 2023 | patent expiry (for year 8) |
Nov 17 2025 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 17 2026 | 12 years fee payment window open |
May 17 2027 | 6 months grace period start (w surcharge) |
Nov 17 2027 | patent expiry (for year 12) |
Nov 17 2029 | 2 years to revive unintentionally abandoned end. (for year 12) |