An apparatus includes a first electronic device mounted on a first substrate and a second electronic device mounted on a second substrate. In some embodiments, the second substrate is configured to be removably connected to the first electronic device. The second electronic device is mountable on either planar surface of the second substrate.
|
12. An apparatus comprising:
a motherboard;
a substrate mounted on the motherboard;
an integrated circuit mounted on the substrate; and
a plurality of memory modules, each module of the plurality of memory modules being separately and removably attached to the substrate, and wherein the plurality of memory modules is configured to at least partially surround an internal void and the integrated circuit is mounted on an area of the substrate that is aligned with the internal void,
wherein removable attachment of one of the memory modules to the substrate brings the memory module into electrical communication with the integrated circuit.
16. An apparatus comprising:
a main board;
a first substrate mounted to the main board;
a first electronic device mounted on the first substrate;
a plurality of modules removably attachable to the first substrate, each of the plurality of modules being separately removably attachable to the first substrate, and comprising:
a second substrate including opposing planar surfaces; and
at least one second electronic device mounted to at least one of the planar surfaces,
wherein each module is configured to removably attach directly to the first substrate in a manner that electrically connects the at least one second electronic device with the first electronic device and defines a void aligned with the first electronic device.
1. An apparatus comprising:
a first substrate;
a second substrate including multiple, separate substrate components arranged at least partially surrounding a void, wherein each of the multiple substrate components is removably attached to the first substrate such that each of the multiple substrate components is attachable to the first substrate, removable from the first substrate, and reattachable to the first substrate;
a first electronic device mounted on the first substrate in an alignment with the void; and
one or more second electronic devices mounted on the second substrate, wherein at least one of the one or more second electronic devices is mounted on one or more of the multiple substrate components,
wherein the first electronic device is configured to communicate with the one or more second electronic devices via a path extending through the first substrate and the second substrate, and
wherein the first substrate is mounted on a third substrate.
2. The apparatus of
electrically connect the first electronic device and the one or more second electronic devices; and
maintain all of the substrate components of the second substrate a predetermined distance away from the first substrate.
3. The apparatus of
4. The apparatus of
5. The apparatus of
6. The apparatus of
7. The apparatus of
8. The apparatus of
9. The apparatus of
10. The apparatus of
11. The apparatus of
13. The apparatus of
14. The apparatus of
15. The apparatus of
17. The apparatus of
18. The apparatus of
|
The present embodiments relate to substrate configurations and more particularly, to electronic devices mounted on multiple substrates.
Integrated circuits (ICs) configured to process data at high bandwidths may need large amounts of memory to store and access information in order to process the data. Memory integral to the integrated circuit may not be large enough to store the information, and so memory devices separate from the integrated circuit may be used to store all or some of the information.
An apparatus includes a first substrate; a second substrate; a first electronic device mounted on the first substrate; and a second electronic device mounted on a second substrate. The first electronic device is configured to communicate with the second electronic device via a path extending through the first substrate and the second substrate. In addition, the first substrate is mounted on a third substrate.
The present disclosure describes an apparatus that includes a first electronic device mounted on a first substrate and a second electronic device mounted on a second substrate. The first electronic device and the second electronic device may be configured to communicate with each other via electrical connections that pass through at least one of the first substrate and the second substrate. In comparison with configurations where the first electronic device and the second electronic device are mounted on a single substrate, the first and second substrates of the apparatus of the present disclosure are configured, oriented, and/or positioned to increase a surface area on which the first and second electronic devices are mounted without increasing or substantially increasing the two-dimensional or planar dimensions of the apparatus.
The first substrate 104 and the second substrate 108 may be planar structures and may be positioned parallel or substantially parallel to each other. Each of the substrates 104, 108 may have opposing planar surfaces. For example, the first substrate 104 has a top planar surface 110 that opposes a bottom planar surface 112. Similarly, the second substrate 108 has a top planar surface 114 that opposes a bottom planar surface 116. Herein, the terms “top” and “bottom” are used to describe the relative position of the substrates, as well as other components mounted on and/or connected to the substrates in the embodiments. However, these terms should not be construed as limiting the relative positioning of the substrates since the substrates as a group can be in any orientation resulting in substantially parallel positioning between the substrates.
The first substrate 104 and the second substrate 108 may be positioned and/or aligned so that one of the top and bottom surfaces 110, 112 of the first substrate 104 faces one of the top and bottom surfaces 114, 116 of the second substrate 108. For example, as shown in
The first device 102 may be mounted on the top surface 110 or the bottom surface 112. For example, as shown in
The second substrate 108 may form or define a space, gap, or void 118 where the second devices 106 are not mounted. In one configuration, the second substrate 108 may be a contiguous structure that surrounds the space 118, forming a frame or a ring around the space 118. The second substrate 108 may be positioned relative to the first substrate 104 so that an area of the first substrate 104 is aligned with the space 118. The first device 102 may be mounted on the first substrate 104 in the area.
The second electronic devices 106 may be mounted on the second substrate 108. As shown in
In addition,
The substrate configurations shown in
The first substrate 704, which may be referred to as an organic substrate, may be made of a polymer or a polymer resin material, as opposed to a ceramic material. The first substrate 704 may be an intermediary substrate that electrically connects the first electronic device 702 with a third substrate 730, which may be referred to as a main board or motherboard, that connects the first electronic device 702 and/or the second electronic devices 706 with input and/or output connections of the apparatus 700A and/or other electronic devices mounted at other portions of the main board 702. The first substrate 704 may function and/or serve as a conduit or an intermediary substrate between the first electronic device 702 and the main board 730 where the pitch and spacing (which may be in the tens or hundreds of microns) of the input/output (I/O) connections of the first device 702 (which may number in the thousands, tens of thousands, or more) are too small for a feasible, reliable, and/or robust connection between the first electronic device 702 and the main board 730. The first substrate 704 may widen or “fan out” the pitch and/or spacing between the I/O connections of the first electronic device 702 so that electrical connection between the first electronic device 702 and the main board 730 may be feasible, reliable, and/or robust. Also, the first electronic device 702 may be delicate and/or fragile, and the first substrate 704 may provide support, protection, and/or encapsulation and to help prevent the first electronic device 702 from being damaged.
The first electronic device 702 may be connected to first substrate 704 using ball grid array (BGA) technology, which may include small solder bumps or balls 734 connecting input/output (I/O) connections of the first electronic device 702 with I/O connections of the first substrate 704. During assembly, after connecting the first electronic device 702 to the first substrate 704, the components may be subjected to a reflow process in an oven to form electrical joints between the first electronic device 702 and the first substrate 704. Also, an underfill, such as a polymer glue or adhesive, may be used to encapsulate the solder bumps 734 and cover them up between the first electronic device 702 and the substrate 704 to offset any undesirable affects heat may have on expansion of the bumps 734 during assembly and/or operation of the example apparatus 700A.
The main board 730 may be made of a polymer or a polymer composite, which may include a glass weave with resin. An example material may be an FR-4 glass-reinforced epoxy laminate. The main board 730 may be a substrate on which the other components of the apparatus 700A, including the first electronic device 702 and the second electronic devices 706 may be mounted. The first substrate 702 may be connected to the main board 730 using ball grid array (BGA) technology, which may include solder balls 732 connecting input/output (I/O) connections of the first electronic device 702 with I/O connections of the main board 730. In some example configurations, the solder balls 732 may be larger and/or have different dimensions in size and pitch as compared to the solder balls 734. Similar reflow methods may be used to create electrical joints between the first substrate 704 and the main board 730. Additionally, the main board 730 may include one or more layers with conductive traces, e.g., copper traces, extending through the layers. The I/O connections of the main board 730 may be connected to the conductive traces, which may electrically connect the first electronic device 702 and/or the second electronic devices 706 with other components mounted on the main board 730.
The second substrate 708 may be made of a material similar to the material of the main board 730. For example, the second substrate may be a polymer or a polymer composite, which may include a glass weave with resin, such as an FR-4 glass-reinforced epoxy laminate. Other materials may be used. Also, the second substrate may include one or more layers or sheets that include conductive traces, such as copper traces that are configured to transmit and/or propagate signals that are being sent from and/or being received by the second electronic devices 706. Any number of layers of the second substrate 708 may be used. The number may be determined by the type and/or the number of the second electronic devices 706 that are mounted on the second substrate 708. Other criteria may also be used to determine the number of layers of the second substrate.
As shown in
The second electronic devices 706 may be mounted on a top surface 714 and/or the bottom surface 716. Second electronic devices 706 mounted on both the top surface 714 and the bottom surface 716 may be referred to as a clamp-shell configuration. As explained above, any number of second electronic devices 706 may be mounted on the top surface 714 and/or the bottom surface 716. The number may be determined by the application for which the apparatus 700A is being used, the type and/or size of the second electronic devices 706, the number of second electronic devices needed and/or required by system requirements or specifications of the apparatus 700A and/or of the first electronic device 702, and/or the surface area of the top surface 714 and/or the bottom surface 716, as examples. At a minimum, a second electronic device 706 is mounted and/or disposed on the top surface 714 or the bottom surface 716.
In one example configuration, as shown in
The apparatus 700A may be configured so that the space 736 is unoccupied by any components, such as any electronic devices. For example, where thermal control and/or overheating for second electronic devices 706 mounted on the bottom surface 716 is of concern, the space 736 may provide a channel or passage for air flow to cool the second electronic devices 706 mounted on the bottom surface 718. Alternatively, where thermal control and/or overheating of the second electronic devices 706 is not of concern, then electronic devices, active and/or passive, which may communicate with the first electronic device 702, the second electronic devices 706, and/or other electronic devices included in the apparatus 700A, may be disposed in the space 736 and/or mounted on the top surface 738 of the main board 730 within the space 736.
As shown in
The second electronic devices 706 may be mounted on the top surface 714 and/or the bottom surface 716 using various technologies, which may depend on the type of the second electronic devices 706. One technology may be BGA technology, as described above. Using BGA technology, the second electronic devices 706 may be mounted on and/or connected to the second substrate 708 using solder bumps or balls 742. The solder bumps 742 may connect I/O connections of the second electronic devices 706 with conductive traces disposed on the top surface 714 and/or the bottom surface 716 of the second substrate 708. The traces may electrically connect the second electronic devices 706 with the connector 740.
The connector 740 may be configured to electrically connect conductive traces disposed on and/or in the layers of the second substrate 708 with conductive traces disposed on and/or in the first substrate 704. In turn, electrical connections may be established between the first electronic device 702 and the second electronic devices 706. The connector 740 may include one or more conductive paths that connect the conductive traces disposed on and/or in the first substrates 704 with the conductive traces disposed on and/or in the second substrate 708.
The conductive paths 850 may have ends that are connected to I/O connections 852 of a first substrate 804. The first substrate 804 may be representative of the first substrate 704 shown in
The I/O connections 852 may be connected to the conductive paths 850 of the connector 840 and also to conductive traces 854 disposed on or in the first substrate 804. For example, I/O connection 852a is connected to conductive path 850a and also to conductive trace 854a disposed on a surface of the second layer 804b; I/O connection 852b is connected to conductive path 850b and also to conductive trace 854b disposed on a surface of the third layer 804c; and I/O connection 852c is connected to conductive path 850c and also to conductive trace 854c disposed on a surface of the fourth layer 804d. The connector 840 and/or the conductive paths 850 of the connector 840 may be connected to the I/O connections 852 in various ways and/or using various technologies. For example, the conductive paths 850 may be soldered to the I/O connections 852 and/or connected to the I/O connections 852 using BGA technology.
Similarly, the conductive paths 850 may have ends that are connected to I/O connections 856 of a second substrate 808. The ends connected to the I/O connections 856 may be opposing ends of the ends connected to I/O connections 852. Also, the second substrate 808 may be representative of the second substrate 708 shown in
The I/O connections 856 may be connected to the conductive paths 850 of the connector 840 and also to conductive traces 858 disposed on or in the second substrate 808. For example, I/O connection 856a is connected to conductive path 850a and also to conductive trace 858a disposed on a surface of the fourth layer 808d; I/O connection 856b is connected to conductive path 850b and also to conductive trace 858b disposed on a surface of the third layer 808c; and I/O connection 856c is connected to conductive path 850c and also to conductive trace 858c disposed on a surface of the second layer 808b. The connector 840 and/or the conductive paths 850 of the connector 840 may be connected to the I/O connections 856 in various ways and/or using various technologies. For example, the conductive paths 850 may be soldered to the I/O connections 856 and/or connected to the I/O connections 856 using BGA technology. In some example configurations, the connector 840 and/or the conductive paths 850 may be connected to the second substrate 808 and/or the I/O connections 856 in the same or in a similar way that the connector 840 and/or the conductive paths 850 may be connected to the first substrate 804 and/or the I/O connections 852.
The connector 840 may also include a housing 860 that houses and/or provides protection for the conductive paths 850. The housing 860 may be made of a nonconductive material, such as plastic, polyimide, epoxy-based materials, or polytetrafluoroethylene (PTFE), as examples. The conductive paths 850 may be configured to be electrically insulated from each other within the housing 860. In addition to housing and/or providing protection for the conductive paths 850, the housing 860 may be configured as a support structure for the second substrate 808 to support the second substrate in an elevated and/or extended position away from the first substrate 804 as well as from a main board (such as the main board 730 shown in
Referring back to
The socket component 940a may include one or more sockets 970. The sockets 970 may be connected to I/O connections (such as the I/O connections 852 shown in
The pin component 940b may include one or more pins 972. The pins 972 may be connected to I/O connections (e.g., the I/O connections 856 shown in
The pin component 940b may be configured to engage with and connect to the socket component 940a. As such, the socket system 940 may be configured to be movable between an engaged position and a disengaged position. When the socket system 940 is in the disengaged position, the pin component 940b is disengaged with and/or unconnected from the socket component 940a. Alternatively, when the socket system 940 is in the engaged position, the pin component 940b is connected to the socket component 940.
In the engaged position, the pin component 940b is engaged with and/or connected to the socket component 940b. Each of the sockets 970 may be configured to have openings. To move to the engaged position, the pins 974 may be inserted into the openings of the sockets 970. Each of the sockets 970 and the pins 974 may be made of a conductive material, such as copper or gold. When the socket system 940 is in the engaged position, the sockets 970 and pins 974 may be connected to form conductive paths that electrically connect the first substrate 904 with the second substrate 908.
In addition, when the socket system 940 is in the engaged position, the sockets 970 and the pins 974 may be removably attached and/or removably connected to each other. By being removably attached and/or connected, the socket component 940a and the pin component 940b may be electrically connected to each other unless and/or until a threshold bias is applied to one of the components 940a, 940b, which disconnects the component 940a, 940b from the other component and moves the socket system into the disengaged position. For example, when the threshold bias is applied to the pin component 940b in a direction away from the socket component 940, the pin component 940b may be disengaged and/or disconnected from the socket component 940a.
The socket system 940 may provide a modular (or plug-in-play) configuration for an apparatus, e.g., the apparatus 700 shown in
The ability to attached and remove the second substrate may conserve resources and/or yield significant cost savings. To illustrate, the first electronic device (e.g., the first electronic device 702) may be an integrated circuit, such as an ASIC or a FPGA, and the second electronic devices (e.g., the second electronic devices 706) may include a plurality of memory devices. The memory devices mounted on the second substrate may be a memory module. The integrated circuit 706 may cost significantly more than the memory devices 706. During operation of the apparatus 700, one or more of the memory devices 706 may fail. The apparatus 700 may undergo testing, which identifies the failed memory device 706. Rather than discard the entire apparatus 700, the second substrate 708, the memory module, or at least a portion of the memory module having the failed memory device 706 mounted on it, may be removed from the apparatus 700. A new second substrate having an operable memory device may then replace the old memory module that was removed. The new memory module may be removably attached and/or connected to the apparatus 700. By replacing the failed memory device without having to discard the entire apparatus, significant cost savings may be experienced.
In addition or alternatively, by being configured for modularity, the apparatus 700 may be upgradable. Using the example above, where one or more of the memory devices 706 currently connected to the apparatus 700 may be upgraded with new memory devices (e.g., with new memory having improved performance and/or increased storage capacity), the current memory devices may be replaced with upgraded memory devices by removing the second substrate with the current memory devices from the apparatus 700 and attaching a second substrate having the upgraded memory. To replace failed memory and/or upgrade the memory, a type of the current memory may first need to be identified. In some example configurations, the apparatus 700 may include a serial programmable read only memory (SPROM) attached to the second substrate 708 that may be used to identify the type of the current memory. The SPROM may be one of the second electronic devices 706 or alternatively may be a component of the apparatus 700 separate and/or different from the second electronic devices 706.
In addition or alternatively, by being configured for modularity, power routing in the apparatus 700 may be improved. Each of the electronic devices 702, 706 may be required to receive power, such as DC power, in order to operate. Power may be supplied along paths designated for supplying the power. In the modular configuration shown in
Referring back to
The heat sink 786 may be disposed adjacent a side of the lid 780 that opposes the side of the lid that is connected to the first electronic device 702. Also, as shown in
At block 1104, the second substrate may be removed from the apparatus by disconnecting the second substrate from the first substrate. In one example configuration, the second substrate may be disconnected from the first substrate by disengaging or disconnecting a first socket system component that is attached to the second substrate from a second socket system component that is attached to the first substrate. At block 1106, a third substrate may be removably connected to the first substrate. A third electronic device may be mounted on the third substrate. The third electronic device may be of a same type as the second electronic device mounted on the second substrate. In addition, the third substrate may have same and/or similar dimensions as the second substrate. In one example, the third substrate may be connected to the first substrate by connecting a third socket system component to the second socket system component. The third socket system may be attached to the fourth substrate. Also, the third socket system component may of the same type as the first socket system component attached to the second substrate.
While various embodiments of the invention have been described, it will be apparent to those of ordinary skill in the art that many more embodiments and implementations are possible within the scope of the invention. Accordingly, the invention is not to be restricted except in light of the attached claims and their equivalents.
Patent | Priority | Assignee | Title |
10076063, | Mar 10 2015 | Kioxia Corporation | Electronic apparatus |
10440811, | Jun 30 2016 | Ciena Corporation | Active heatsink lid |
Patent | Priority | Assignee | Title |
5734555, | Mar 30 1994 | Intel Corporation | Shared socket multi-chip module and/or piggyback pin grid array package |
5742477, | Jul 06 1995 | NEC Corporation | Multi-chip module |
5793998, | Apr 17 1996 | Hewlett Packard Enterprise Development LP | Method and apparatus for interconnection of multiple modules |
6109929, | Jul 29 1998 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | High speed stackable memory system and device |
6477593, | Jun 11 1998 | RPX Corporation | Stacked I/O bridge circuit assemblies having flexibly configurable connections |
6483718, | Sep 05 2000 | ADVANCED INTERCONNECT SYSTEMS LIMITED | Semiconductor device and method of manufacture thereof, circuit board, and electronic instrument |
7719850, | Feb 16 2001 | CALLAHAN CELLULAR L L C | Arrangement with an integrated circuit mounted on a bearing means and a power supply module arrangement |
20100090325, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 12 2012 | AHMAD, MUDASIR | Cisco Technology, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027863 | /0488 | |
Mar 12 2012 | ARIA, PERCY | Cisco Technology, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027863 | /0488 | |
Mar 14 2012 | Cisco Technology, Inc | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jun 03 2019 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
May 30 2023 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Dec 01 2018 | 4 years fee payment window open |
Jun 01 2019 | 6 months grace period start (w surcharge) |
Dec 01 2019 | patent expiry (for year 4) |
Dec 01 2021 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 01 2022 | 8 years fee payment window open |
Jun 01 2023 | 6 months grace period start (w surcharge) |
Dec 01 2023 | patent expiry (for year 8) |
Dec 01 2025 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 01 2026 | 12 years fee payment window open |
Jun 01 2027 | 6 months grace period start (w surcharge) |
Dec 01 2027 | patent expiry (for year 12) |
Dec 01 2029 | 2 years to revive unintentionally abandoned end. (for year 12) |