Disclosed is a mold for forming a deep grip container, the mold having drive mechanisms opposably to drive moveable inserts into the mold. The drive mechanisms may be located entirely within the mold and may include a slotted cam. Also disclosed is a method of manufacturing a blow molded bottle with a deep pinch grip comprising: providing a mold hanger having an outer envelope and providing within the outer envelope a drive mechanism to drive moveable inserts into the mold after blowing molten plastic into contact with the mold. Further disclosed is a blow molded bottle with a deep pinch grip manufactured according to the disclosed methods.
|
11. A mold with a cavity for forming a deep grip container, the mold comprising:
a first mold pocket configured to receive a first moveable insert;
a second mold pocket configured to receive a second moveable insert;
a first drive mechanism fully contained within the mold and configured to drive the first moveable insert in a first direction through the first mold pocket into the cavity; and
a second drive mechanism fully contained within the mold and configured to drive the second moveable insert in a second direction through the second mold pocket into the cavity, the second direction being generally opposed to the first direction,
wherein the first drive mechanism comprises a slotted cam.
1. A mold with a cavity for forming a deep grip container, the mold comprising:
a first mold pocket configured to receive a first moveable insert;
a second mold pocket configured to receive a second moveable insert;
a first drive mechanism fully contained within the mold and configured to drive the first moveable insert in a first direction through the first mold pocket into the cavity;
a second drive mechanism fully contained within the mold and configured to drive the second moveable insert in a second direction through the second mold pocket into the cavity, the second direction being generally opposed to the first direction; and
a cylinder shaft positioned in a cylinder shaft hole in the mold, the cylinder shaft in mechanical cooperation with the first drive mechanism.
9. A method of manufacturing a blow molded bottle with a deep pinch grip comprising:
providing a mold hanger having an outer envelope;
providing in the mold hanger a mold with a cavity configured to receive molten plastic;
providing within the outer envelope a first pocket configured to receive a first moveable insert;
providing within the outer envelope a second pocket configured to receive a second moveable insert;
providing within the outer envelope a first drive mechanism configured to drive the first moveable insert in a first direction through the first pocket into the cavity;
providing within the outer envelope a second drive mechanism configured to drive the second moveable insert in a second direction through the second mold pocket into the cavity, the second direction being generally opposed to the first direction;
providing within the outer envelope a cylinder shaft positioned in a cylinder shaft hole in the mold, the cylinder shaft in mechanical cooperation with the first drive mechanism;
blowing molten plastic into contact with the mold; and
after blowing the molten plastic into contact with the mold, operating the first and second drive mechanisms to drive the first and second moveable inserts into the cavity while the plastic is still pliable and form a blow-molded bottle with a deep pinch grip.
2. The mold of
3. The mold of
a roller mounted to the linkage and adapted to roll in the roller slot.
4. The mold of
5. The mold of
8. The mold of
10. The method of
12. The mold of
a cylinder shaft positioned in a cylinder shaft hole in the mold, the cylinder shaft in mechanical cooperation with the first drive mechanism; and
a linkage between the cylinder shaft and the first drive mechanism.
13. The mold of
a roller mounted to the linkage and adapted to roll in the roller slot.
14. The mold of
15. The mold of
a fluid pressure cylinder mounted to a bottom surface of the mold, wherein the cylinder shaft is configured to be operated by the fluid pressure cylinder.
18. The mold of
|
The present invention relates generally to blow molding containers, and more particularly to using moveable inserts to mold a deep-grip bottle, for example.
A prior art arrangement 102 for blow molding containers is shown in
In another prior art arrangement shown in
In the prior art arrangements, each blow molding station 12 may include a mold 16 supported by a mold hanger 14, as depicted in
Under a cooperative research and development agreement, it has been suggested to the present inventors to provide moveable inserts or slides in a mold to provide a grip deeper than the grip 39 provided by the conventional arrangement shown in
In a conventional ten station rotatable blow molding module as depicted in
For a typical Sidel-type ten station rotatable blow molding module, e.g. Sidel SBO-10 GUPM, clearance 130 may be 66 millimeters. In that case, the desired safety margin may be 25 millimeters, permitting the total increase of outer envelope to be equal to, or preferably less than, 41 millimeters. All of the various inventive mechanisms described herein can easily be installed in each blow molding station while adding no more than 26 millimeters to the outer envelope 99. With further refinements, such as for example using stronger (and therefore thinner) metal in the mold hanger, the inventive drive mechanisms described herein may be added to an existing blow molding station 12 without causing the improved blow molding station to extend laterally beyond outer envelope 99.
Use of moveable inserts at various stages of a blow molding process is depicted in
Moveable Ins
Deep pinch grip 539 has a width 525 smaller than a width that would be possible in these circumstances without moveable inserts. It is difficult and costly to attempt to blow mold such a deep pinch grip bottle without using slides. Deep pinch grip 539 provides larger ledges 526 and 526 to rest on fingers and a thumb of a user. For example, ledges 526 and 528 may each have a depth indicated at dimension 527. Dimension 527 may be at least 29 millimeters, providing a secure ledge for pinch grip 539. Use of the moveable inserts can increase the depth of the ledges from 16 millimeters to 29 millimeters and decrease the width 525 of the grip from 3 and ⅛ inch to 2 and ⅛ inch in a 1.75 liter bottle, for example. This is especially beneficial in a large heavy bottle, such as a 1.75 liter liquor bottle. Deep pinch grip 539 provides stability in an energy- and plastic-efficient design.
The inventors have devised several ways of adding moveable inserts to a blow molding station in a manner having a profile low enough to permit use of an otherwise standard blow molding module. In one embodiment, the moveable inserts are moved by a low-profile piston preferably contained in a mold hanger. In another embodiment, the moveable inserts are moved by a low-profile cam preferably contained in a mold. A low-profile piston and a low-profile cam are both means for driving moveable inserts.
At the stage shown in
Once piston 166 and moveable insert 118 are in their inward position, they form deep pinch grip 539 as previously described. When deep pinch grip bottle 524 is sufficiently hardened, moveable insert 118 can be moved in back to its outward position, forcing piston top 165 out to its outward position adjacent piston sleeve head end 164. This backward movement can be accomplished by applying fluid pressure against the bottom 184 of piston 166, such as by introducing fluid pressure from second source of fluid pressure 174 supplied by duct 187 through passage 177.
In
The inward position is shown at a later time in the left half of
Thus, drive mechanism 312 comprises a cam follower or roller in groove 8 and cylinder shaft 313, all contained in mold 216.
In one exemplary embodiment, the invention comprises a mold hanger 114 for supporting a bottle mold 116 in a blow molding station 112, the mold hanger 114 having a vertical direction 189 and a horizontal direction 187, the mold hanger 114 comprising a piston sleeve 159 fully contained within the mold hanger 114 and orthogonal to both the vertical direction 189 and the horizontal direction 187; a piston sleeve head end 164 capping the piston sleeve 159; a piston 166 slideably engaged with and fully contained within the piston sleeve 159, the piston 166 having a piston top 165 conforming to the size and shape of the piston sleeve head end 164 and a piston bottom 184; a moveable insert 118 integral with the piston bottom 184 and configured to be pushed by the piston bottom 184 in an inward direction away from the piston sleeve head end 164 into a mold 116 supported by the mold hanger 114; and a first source of fluid pressure 162 configured to apply pressure to the piston top 165 to push the piston 166 slideably away from the piston sleeve head end 164 and toward the mold 116; wherein the piston top 165 has an area larger than a cross sectional area of the moveable insert 118.
The mold hanger 114 may have a second source of fluid pressure 174 configured to apply pressure to the piston bottom 184 to push the piston 186 slideably toward the piston s
The first source of fluid pressure 162 preferably provides pressurized air from a pressurized air source that is also used to blow mold a bottle 24 in the bottle mold. Alternatively, the first source of fluid pressure 162 may provide hydraulic pressure.
Preferably, fluid pressure from the first source of fluid pressure 162 is sufficient to hold piston 166 and moveable insert 118 in the inward position shown in
A central axis 192 of piston 166 may be parallel to and laterally displaced from a central axis 194 of moveable insert 118. This lateral offset may provide room for second source of fluid pressure 174 to communicate with fluid passage 178 in mold hanger 114. The lateral offset may permit piston 166 to be centered along the horizontal direction 187 of mold hanger 114 while moveable insert 118 is off center to provide deep grip 539 offset from the center of the bottle which may be at axis 192.
Moveable insert 118 of mold hanger 114 may be configured to be pushed at least about one half inch into mold 116 supported by mold hanger 114. With such inserts in both halves of mold 116, deep grip 539 may be at least one inch deeper than without the insert. This may permit ledges 526 and 528 each to have a depth 527 of at least 29 millimeters instead of only about 16 millimeters without the moveable insert.
Piston sleeve 159 may be no more than one inch long in its axial direction along its axis 194. This length accommodates both the travel distance of piston 166 and the thickness of piston 166 itself. For example, if piston 166 is one half inch thick, piston 166 may travel one half inch within a one inch piston sleeve 159. If piston 166 were one quarter inch thick, piston 166 could travel three quarters of an inch within a one inch piston sleeve 159.
With the low profile of a once inch piston sleeve 159, mold hanger 114 may be no more than about two inches thick in the portion 675 surrounding piston sleeve 159. Mold hanger 114 may be no more than about one inch thick in the portion 677 beyond the piston sleeve head end 164. The thickness of mold hanger 114 could be reduced further by use of stronger metal, such as titanium. The thickness of a standard existing Sidel mold hanger is shown in
In a second exemplary embodiment, there is provided a method of retrofitting an original rotatable blow molding module 110 having multiple existing blow molding stations 112 affixed to the rotatable blow molding module 110, each existing blow molding station 112 having an existing mold hanger 14 for supporting and encasing mold 16 for a bottle 24, each existing mold hanger 14 defining an existing outer envelope 99, the method comprising: providing in each blow molding station 112 an improved mold hanger, the improved mold hanger substantially contained within the respective existing outer envelope 99 and configured to support and encase a mold for blow molding a bottle 524 from plastic; and providing in each improved mold hanger a pair of low-profile drive mechanisms configured opposably to drive a respective pair of moveable inserts 118 and 120 at least one half inch into a cavity of the mold 116 while the plastic is molten.
The method may further comprise providing a fluid pressure source in fluid communication with the drive mechanisms. The fluid pressure source may provide pneumatic or hydraulic pressure and may include pressure duct 170, for example. The method may include redirecting fluid pressure pre-existing on each existing blow molding station 112. In that case, pressure duct 170 may receive pressure from the same source of pressure used to blow mold containers in the mold, for example.
Alternately the fluid pressure source used in the method may comprise or be in fluid communication with a low profile, high pressure, canister 19. The method may include securing low profile, high pressure, canister 19 in each blow molding station below the respective mold in fluid communication with the respective drive mechanisms.
In the method, providing an improved mold hanger may comprises replacing the existing mold hanger 14. Or it may comprise reusing the existing mold hanger in altered form.
The method may include providing a drive mechanism comprising a slotted cam or a piston, for example. In the case of a piston, the piston may have a cross-sectional area larger than a cross-sectional area of the moveable insert. In this manner, the cross-sectional surface area of the piston that is impacted by fluid pressure pushing the piston in toward the mold is greater than the cross-sectional area of moveable insert subject to outward pressure from the air pressure used to blow mold a bottle in the mold. This helps ensure that the force of the drive mechanism pushing the moveable insert into the mold is strong enough to overcome friction and outward pressure even if the fluid pressure used to blow mold the bottle is the same as or less than the fluid pressure used to drive the drive mechanism inward.
In the method, the drive mechanism may be configured to drive the moveable insert within an insert pocket in the mold.
The method may be used where the original rotatable blow molding module before the retrofitting has no more than about 66 millimeters clearance between respective existing blow molding stations in operation. The rotatable blow molding module may be a ten-station Sidel-type GUPM wheel, for example. Before the retrofitting, the original rotatable blow molding module may have no moveable mold inserts.
In the method the moveable insert may be configured to move at least about one half inch into an interior cavity inside the mold.
A third exemplary embodiment provides a method of manufacturing a blow molded bottle 524 with a deep pinch grip 539 comprising: providing a mold hanger defining an outer envelope; providing in the mold hanger a mold with a cavity 345 configured to receive molten plastic; providing within the outer envelope a first moveable insert 118; providing within the outer envelope a second moveable insert 120; providing within the mold hanger a first drive mechanism configured to drive the first moveable insert 118 in a first direction into the cavity 345; providing within the mold hanger a second drive mechanism configured to drive the second moveable insert 120 in a second direction into the cavity 345, the second direction being generally opposed to the first direction; blowing molten plastic into contact with the mold; and after blowing the molten plastic into contact with the mold, operating the first and second drive mechanisms to drive the first and second moveable inserts into the cavity 345 while the plastic is still pliable and form a blow-molded bottle 534 with a deep pinch grip 539.
The method may include operating the first and second drive mechanisms to drive the first moveable insert 118 at least about one half inch into the cavity 345 and to drive the second moveable insert 120 at least about one half inch into the cavity 345.
In this method, deep pinch grip 539 may have a first ledge 526 at least about 29 millimeters deep formed by the first moveable insert 118 and a second ledge at least about 29 millimeters deep formed by the second moveable insert 120, as depicted in
The exemplary method of manufacturing a blow molded bottle 524 with a deep pinch grip 539 may further comprise operating the first and second drive mechanisms in reverse to move the first and second moveable inserts away from the blow-molded bottle.
A fourth exemplary embodiment is a blow molded bottle 524 with a deep pinch grip 539 manufactured according to a method described above in the third exemplary embodiment. Such a bottle may be, for example, a 1.75 liter bottle with a deep pinch grip 539 no more than about 2 and ⅛ inch wide (shown as dimension 525 in
In a fifth exemplary embodiment, the invention provides a mold with a cavity for forming a deep grip container, the mold comprising: a first mold pocket configured to receive a first moveable insert; a second mold pocket configured to receive a second moveable insert; a first drive mechanism fully contained within the mold and configured to drive the first moveable insert in a first direction through the first mold pocket into the cavity; and a second drive mechanism fully contained within the mold and configured to drive the second moveable insert in a second direction through the second mold pocket into the cavity, the second direction being generally opposed to the first direction.
The first drive mechanism may include a slotted cam. The mold may further comprise a cylinder shaft positioned in a cylinder shaft hole in the mold, the cylinder shaft in mechanical cooperation with the first drive mechanism. Such a mold may also have a linkage between the cylinder shaft and the first drive mechanism. It may further have an angled roller slot in the mold, angled upward and outward in relation to the cavity and a roller mounted to the linkage and adapted to roll in the roller slot. The angled roller slot may be a dog leg configuration with a straight portion of the slot located above an angled portion. The cylinder shaft can be configured to be operated by a fluid pressure cylinder mounted to a bottom surface of the mold. The fluid pressure cylinder may operate under hydraulic or pneumatic pressure.
In the mold of the fifth exemplary embodiment, the first drive mechanism may be configured to drive the first moveable insert in the first direction at least one half inch into the cavity and the second drive mechanism may be configured to drive the second moveable insert in the second direction at least one half inch into the cavity.
In a sixth exemplary embodiment, there is provided a method of retrofitting an existing blow molding station 12 having an existing mold hanger 14 for supporting and encasing a mold 16 for a bottle 24, the existing mold hanger defining an existing outer envelope 99. The method may comprise providing in the blow molding station an improved mold hanger, the improved mold hanger substantially contained within the existing outer envelope 99 defined by the existing mold hanger 14 and configured to support and encase a mold 116 for blow molding a bottle 524 from plastic; and providing in the improved mold hanger a pair of low-profile drive mechanisms configured to opposably drive a respective pair of moveable inserts 118 and 120 at least one half inch into a cavity 345 of the mold 116 while the plastic is molten.
This method may further include providing a fluid pressure source in fluid communication with the drive mechanisms. The fluid pressure source may be configured to provide hydraulic pressure or pneumatic pressure and, on one hand, may include fluid pressure pre-existing on and redirected from the existing blow molding station.
On the other hand, the fluid pressure source may be provided by a low profile, high pressure, canister. The canister may be secured below the mold in fluid communication with the drive mechanisms.
In the sixth exemplary embodiment, providing an improved mold hanger may include replacing the existing mold hanger, reusing the existing mold hanger in altered form, or reusing the existing mold hanger. Providing in the improved mold hanger a pair of low-profile drive mechanisms may include providing the drive mechanisms in a mold supported by the existing mold hanger.
In the method of retrofitting an existing blow molding station, the improved mold hanger laterally extends beyond the existing outer envelope by a cumulative total of less than the clearance distance 130, e.g. 66 millimeters. To include a safety margin, the improved mold hanger laterally extends beyond the existing outer envelope by a cumulative total of less than 41 millimeters. In the disclosed method, the improved mold hanger can easily be arranged to extends laterally beyond the existing outer envelope by a cumulative total of less than 26 millimeters. By making certain adjustments, the improved mold hanger will not extend laterally beyond the existing outer envelope 99 at all.
The drive mechanism in this method may be configured to drive the moveable insert within an insert pocket in the mold. The moveable insert may be configured to slide within the insert pocket at least about one half inch into an interior cavity inside the mold.
In this method the existing blow molding station 12 may be part of a ten-station Sidel-type GUPM wheel indicated in
In this exemplary method, the drive mechanism may comprise a slotted cam or a piston, for example. In the case of a piston, the top surface 165 of the piston may have a cross-sectional area larger than a cross-sectional area of the moveable insert.
In a seventh exemplary embodiment, there is provided a method of manufacturing a blow molded bottle with a deep pinch grip comprising: providing a mold hanger having an outer envelope; providing in the mold hanger a mold with a cavity configured to receive molten plastic; providing within the outer envelope a first pocket configured to receive a first moveable insert; providing within the outer envelope a second pocket configured to receive a second moveable insert; providing within the outer envelope a first drive mechanism configured to drive the first moveable insert in a first direction through the first pocket into the cavity; providing within the outer envelope a second drive mechanism configured to drive the second moveable insert in a second direction through the second mold pocket into the cavity, the second direction being generally opposed to the first direction; blowing molten plastic into contact with the mold; and after blowing the molten plastic into contact with the mold, operating the first and second drive mechanisms to drive the first and second moveable inserts into the cavity while the plastic is still pliable and form a blow-molded bottle with a deep pinch grip.
This exemplary method may further include operating the first and second drive mechanisms in reverse to move the first and second moveable inserts away from the blow-molded bottle.
An eighth exemplary embodiment is a blow molded bottle with a deep pinch grip manufactured according to the method of the seventh exemplary embodiment. This bottle may be a 1.75 liter bottle with a deep pinch grip no more than about 2 and ⅛ inch wide and having a ledge at least about 29 millimeters deep on a first side of the grip and a ledge at least about 29 millimeters deep on a second side of the grip. Any of the bottles mentioned herein may desirably be a 1.75 liter liquor bottle.
Guerin, Stephen R., Nahill, Thomas E., Barker, Keith J., Piccioli, David R.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
3218669, | |||
3457590, | |||
3928522, | |||
5817348, | Jul 18 1995 | A.K. Technical Laboratory, Inc. | Air working system for various drive units of stretch-blow molding machine |
6447281, | Sep 11 1998 | SIDEL, INC | Blow mold shell and shell holder assembly for blow-molding machine |
6615472, | Feb 05 1999 | Sidel, Inc. | Quick change blow mold shell assembly |
20010051192, | |||
20070145646, | |||
20090139996, | |||
20090236776, | |||
20110024952, | |||
20110057361, | |||
20110298162, | |||
DE102008038781, | |||
DE1176829, | |||
EP346518, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 15 2013 | Graham Packaging Company, L.P. | (assignment on the face of the patent) | / | |||
Apr 01 2013 | BARKER, KEITH J | Graham Packaging Company, L P | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 030163 | /0493 | |
Apr 01 2013 | NAHILL, THOMAS E | Graham Packaging Company, L P | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 030163 | /0493 | |
Apr 01 2013 | PICCIOLI, DAVID R | Graham Packaging Company, L P | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 030163 | /0493 | |
Apr 01 2013 | GUERIN, STEPHEN R | Graham Packaging Company, L P | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 030163 | /0493 | |
Aug 17 2017 | PACTIV PACKAGING INC | The Bank of New York Mellon | PATENT SECURITY AGREEMENT | 044722 | /0528 | |
Aug 17 2017 | REYNOLDS CONSUMER PRODUCTS LLC | The Bank of New York Mellon | PATENT SECURITY AGREEMENT | 044722 | /0528 | |
Aug 17 2017 | REYNOLDS PRESTO PRODUCTS INC | The Bank of New York Mellon | PATENT SECURITY AGREEMENT | 044722 | /0528 | |
Aug 17 2017 | PACTIV LLC | The Bank of New York Mellon | PATENT SECURITY AGREEMENT | 044722 | /0528 | |
Aug 17 2017 | GRAHAM PACKAGING PET TECHNOLOGIES INC | The Bank of New York Mellon | PATENT SECURITY AGREEMENT | 044722 | /0528 | |
Aug 17 2017 | Graham Packaging Company, L P | The Bank of New York Mellon | PATENT SECURITY AGREEMENT | 044722 | /0528 | |
Aug 17 2017 | EVERGREEN PACKAGING INC | The Bank of New York Mellon | PATENT SECURITY AGREEMENT | 044722 | /0528 | |
Aug 17 2017 | CLOSURE SYSTEMS INTERNATIONAL INC | The Bank of New York Mellon | PATENT SECURITY AGREEMENT | 044722 | /0528 | |
Aug 04 2020 | GRAHAM PACKAGING PLASTIC PRODUCTS LLC | CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS ADMINISTRATIVE AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 053398 | /0381 | |
Aug 04 2020 | GRAHAM PACKAGING PET TECHNOLOGIES INC | CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS ADMINISTRATIVE AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 053398 | /0381 | |
Aug 04 2020 | Graham Packaging Company, L P | CREDIT SUISSE AG, CAYMAN ISLANDS BRANCH, AS ADMINISTRATIVE AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 053398 | /0381 | |
Aug 04 2020 | THE BANK OF NEW YORK MELLON, AS THE COLLATERAL AGENT AND TRUSTEE | Graham Packaging Company, L P | RELEASE OF SECURITY INTEREST IN CERTAIN PATENT COLLATERAL | 053397 | /0128 | |
Aug 04 2020 | THE BANK OF NEW YORK MELLON, AS THE COLLATERAL AGENT AND TRUSTEE | GRAHAM PACKAGING PET TECHNOLOGIES INC | RELEASE OF SECURITY INTEREST IN CERTAIN PATENT COLLATERAL | 053397 | /0128 |
Date | Maintenance Fee Events |
Aug 06 2019 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Aug 01 2023 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Feb 09 2019 | 4 years fee payment window open |
Aug 09 2019 | 6 months grace period start (w surcharge) |
Feb 09 2020 | patent expiry (for year 4) |
Feb 09 2022 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 09 2023 | 8 years fee payment window open |
Aug 09 2023 | 6 months grace period start (w surcharge) |
Feb 09 2024 | patent expiry (for year 8) |
Feb 09 2026 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 09 2027 | 12 years fee payment window open |
Aug 09 2027 | 6 months grace period start (w surcharge) |
Feb 09 2028 | patent expiry (for year 12) |
Feb 09 2030 | 2 years to revive unintentionally abandoned end. (for year 12) |