The present disclosure describes implantable therapeutic devices and methods for endovascular placement of devices at a target site, such as an opening at a neck of an aneurysm. In particular, selected embodiments of the present technology comprise a coil loop, or tip, on a portion of the implantable device. The coil tip can provide a soft and/or smooth interface with the aneurysm and can provide improved coverage of the neck of the aneurysm.

Patent
   9259229
Priority
May 10 2012
Filed
Mar 14 2013
Issued
Feb 16 2016
Expiry
Sep 13 2033
Extension
183 days
Assg.orig
Entity
Large
18
254
currently ok
11. An aneurysm device endovascularly deliverable to a site proximate to an aneurysm, the aneurysm device comprising:
a closure structure having a distal-facing aspect configured to at least partially occlude the aneurysm;
wherein the closure structure comprises a perimeter support and an inner support, and wherein the inner support is within a boundary defined by the perimeter support;
a plurality of coil tips extending peripherally from the closure structure and configured to be at least partially contained in the aneurysm,
wherein the coil tips have a softer composition than that of the closure structure; and
a supplemental stabilizer connected to the closure structure, wherein the supplemental stabilizer is configured to reside in the artery and press outward against a luminal wall thereof.
1. An aneurysm device endovascularly deliverable to a site proximate to an aneurysm in an artery, the aneurysm device comprising:
a closure structure comprising a distal-facing aspect configured to at least partially span the aneurysm, and a proximal-facing aspect configured to arch over lumina of the artery,
wherein the closure structure comprises a perimeter support including a plurality of struts and an inner support including a plurality of struts, and
wherein the inner support is within a boundary defined by the perimeter support;
a first coil tip extending from the closure structure and configured to be at least partially contained within the aneurysm; and
a second coil tip extending from the closure structure and configured to be at least partially contained within the aneurysm,
wherein the first and second coil tips extend peripherally from opposing lateral sides of the closure structure,
wherein a material of the first and the second coil tips is softer than a material of the closure structure, perimeter support, and inner support.
2. The aneurysm device of claim 1 wherein the first coil tip and the second coil tip each comprise a loop shape, a basket shape, or a coil shape.
3. The aneurysm device of claim 1 wherein the first and second coil tips comprise platinum.
4. The aneurysm device of claim 1, further comprising an attachment feature configured to couple the first and second coil tips to the closure structure.
5. The aneurysm device of claim 4 wherein the attachment feature comprises hardened solder.
6. The aneurysm device of claim 1 wherein a portion of at least one of the closure structure, the first coil tip, or the second coil tip is at least partially covered with a barrier configured to occlude at least a portion of the aneurysm.
7. The aneurysm device of claim 1 wherein at least one of the first coil tip and the second coil tip comprises a permeable framework configured to allow flow to or from the aneurysm.
8. The aneurysm device of claim 1, further comprising a supplemental stabilizer proximally connected to the closure structure, wherein the supplemental stabilizer is configured to reside in the artery and press outward against a luminal wall thereof.
9. The aneurysm device of claim 1 wherein the first coil tip and second coil tip each comprise a loop and together form a generally Figure-8 shape.
10. The aneurysm device of claim 1 wherein at least one of the distal-facing aspect of the closure structure, the first coil tip, or the second coil tip form a complex curved surface.
12. The aneurysm device of claim 11 wherein the coil tips each comprise a loop shape, a basket shape, or a coil shape.
13. The aneurysm device of claim 11 wherein the coil tips reside in a neck portion of the aneurysm.
14. The aneurysm device of claim 11 wherein the closure structure and coil tips comprise a permeable framework configured to allow flow to or from the aneurysm.

The present application claims the benefit of and priority to U.S. Provisional Patent Application No. 61/645,496, filed May 10, 2012, which is incorporated herein by reference in its entirety. Further, components and features of embodiments disclosed in the application incorporated by reference may be combined with various components and features disclosed and claimed in the present application.

The present technology relates to implantable therapeutic devices and methods for endovascular placement of devices at a target site, such as an opening at a neck of an aneurysm. For example, selected embodiments of the present technology comprise coil-tipped aneurysm devices that can occlude the opening at the neck of the aneurysm and inhibit dislodgement of the device relative to the aneurysm.

Many of the currently available surgical approaches for closing openings and repairing defects in anatomical lumens and tissues (e.g., blood vessels), septal defects, and other types of anatomical irregularities and defects are highly invasive. Surgical methods for clipping brain aneurysms, for example, require opening the skull, cutting or removing overlying brain tissue, clipping and repairing the aneurysm from outside the blood vessel, and then reassembling tissue and closing the skull. Surgical techniques for repairing septal defects are also highly invasive. The risks related to anesthesia, bleeding, and infection associated with these types of procedures are high, and tissue that is affected during the procedure may or may not survive and continue functioning.

Minimally invasive surgical techniques have been developed to place occlusive devices within or across an opening or cavity in the body, such as in the vasculature, spinal column, fallopian tubes, bile ducts, bronchial and other air passageways, and the like. In general, an implantable device is guided along a delivery catheter and through a distal opening of the catheter using a pusher or delivery wire to deploy the device at a target site in the vasculature. Once the occlusive device has been deployed at the target site, it is detached from the pusher mechanism without disturbing placement of the occlusive device or damaging surrounding structures.

Minimally invasive techniques are also highly desirable for treating aneurysms. In general, the minimally invasive therapeutic objective is to prevent material that collects or forms in the cavity from entering the bloodstream and to prevent blood from entering and collecting in the aneurysm. This is often accomplished by introducing various materials and devices into the aneurysm. One class of embolic agents includes injectable fluids or suspensions, such as microfibrillar collagen, various polymeric beads, and polyvinylalcohol foam. Polymeric agents may also be cross-linked to extend their stability at the vascular site. These agents are typically deposited at a target site in the vasculature using a catheter to form a solid space-filling mass. Although some of these agents provide for excellent short-term occlusion, many are thought to allow vessel recanalization due to their absorption into the blood. Other materials, such as hog hair and suspensions of metal particles, have also been proposed and used to promote occlusion of aneurysms. Polymer resins, such as cyanoacrylates, are also employed as injectable vaso-occlusive materials. These resins are typically mixed with a radiopaque contrast material or are made radiopaque by the addition of a tantalum powder. Accurate and timely placement of these mixtures is crucial and very difficult because it is difficult or impossible to control them once they have been placed in the blood flow.

Implantable vaso-occlusive metallic structures are also well known and commonly used. Many conventional vaso-occlusive devices have helical coils constructed from a shape memory material or noble metal that forms a desired coil configuration upon exiting the distal end of a delivery catheter. The function of the coil is to fill the space formed by an anatomical defect and to facilitate the formation of an embolus with the associated allied tissue. Multiple coils of the same or different structures may be implanted serially in a single aneurysm or other vessel defect during a procedure. Implantable framework structures are also used in an attempt to stabilize the wall of the aneurysm or defect prior to insertion of filling material such as coils.

Techniques for delivering conventional metallic vaso-occlusive devices to a target site generally involve a delivery catheter and a detachment mechanism that detaches the devices, such as a coil, from a delivery mechanism after placement at the target site. For example, a microcatheter can be initially steered through the delivery catheter into or adjacent to the entrance of an aneurysm either with or without a steerable guidewire. If a guidewire is used, it is then withdrawn from the microcatheter lumen and replaced by the implantable vaso-occlusive coil. The vaso-occlusive coil is advanced through and out of the microcatheter and thus deposited within the aneurysm or other vessel abnormality. It is crucial to accurately implant such vaso-occlusive devices within the internal volume of a cavity and to maintain the device within the internal volume of the aneurysm. Migration or projection of a vaso-occlusive device from the cavity may interfere with blood flow or nearby physiological structures and poses a serious health risk.

In addition to the difficulties of delivering implantable occlusion devices, some types of aneurysms are challenging to treat because of structural features of the aneurysm or because of particularities of the site. Wide-neck aneurysms, for example, are known to present particular difficulty in the placement and retention of vaso-occlusive coils. Aneurysms at sites of vascular bifurcation are another example where the anatomical structure poses challenges to methods and devices that are effective in treating the typical sidewall aneurysms.

In view of such challenges, implanting conventional embolic coils, other structures, or materials in the internal space of an aneurysm has not been an entirely satisfactory surgical approach. The placement procedure may be arduous and lengthy because it often requires implanting multiple devices, such as coils, serially in the internal space of the aneurysm. Higher risks of complication from such sources as anesthesia, bleeding, thromboembolic events, procedural stroke, and infection are associated with such longer procedures. Moreover, because placement of structures in the internal space of an aneurysm does not generally completely occlude the opening, recanalization of the original aneurysm may occur, and debris and occlusive material may escape from within the aneurysm to create a risk of stroke or vessel blockage. Blood may also flow into the aneurysm after the placement of embolic devices, which may increase the risks of complication and further enlargement of the aneurysm.

Despite the numerous conventional devices and systems available for implanting embolic materials in an aneurysm and for occluding physiological defects using minimally invasive techniques, these procedures remain risky and rarely restore the physiological structure to its normal, healthy condition. It is also challenging to position conventional implantable devices during deployment, prevent shifting or migration of such devices after deployment, and preserve blood flow in neighboring vessels following after deployment.

FIG. 1A is a front isometric view of an aneurysm device having coil tips configured in accordance with an embodiment of the technology.

FIG. 1B is a top isometric view of the aneurysm device of FIG. 1A.

FIG. 2 is a front view of the aneurysm device of FIG. 1A implanted at an aneurysm and configured in accordance with embodiments of the technology.

The present disclosure describes implantable therapeutic devices and methods for endovascular placement of devices at a target site, such as an opening at a neck of an aneurysm. In particular, selected embodiments of the present technology comprise a coil loop, or tip, on a portion of the implantable device. The coil tip can provide a soft and/or smooth interface with the aneurysm and can provide improved coverage of the neck of the aneurysm. The following description provides many specific details for a thorough understanding of, and enabling description for, embodiments of the disclosure. Well-known structures, systems, and methods often associated with such systems have not been shown or described in detail to avoid unnecessarily obscuring the description of the various embodiments of the disclosure. In addition, those of ordinary skill in the relevant art will understand that additional embodiments may be practiced without several of the details described below.

FIGS. 1A and 1B are views of an aneurysm device 150 having coil tips 101 configured in accordance with an embodiment of the technology. In particular, FIG. 1A is a front isometric view of the aneurysm device 150, and FIG. 1B is a top isometric view of the device 150. Referring to FIGS. 1A and 1B together, the aneurysm device 150 comprises a closure structure 152 having one or more coil tips or loops 101 (two are shown in the illustrated embodiment), and an optional supplemental stabilizer or support 153 extending from the closure structure 152. In further embodiments, the closure structure 152 may be employed without the supplemental stabilizer 153.

The closure structure 152 can be a frame, scaffold, or other structure that can at least partially occlude, span, or block the neck of an aneurysm to prevent embolic coils or other coagulative material within the aneurysm from escaping into the bloodstream. The proximally-extending sides of the closure structure 152 and the supplemental stabilizer 153 hold a curved portion of the closure structure 152 at the neck of the aneurysm. The closure structure 152 includes a perimeter support 160 and an inner support 170. The supports 160 and 170 can have a rhombus-like (e.g., diamond-shaped) shape or configuration. The perimeter support 160 and inner support 170 can be joined at junctions 162 and 164. The aneurysm device 150 can also have struts 180a-d projecting proximally from the junctions 162 and 164. Struts 180a-b are connected at junction 162 and struts 180c-d are connected at junction 164 to form the supplemental stabilizer 153 with proximal anchoring segments.

The coil tips 101 can be coupled to the closure structure 152 and/or the supplemental stabilizer 153. In the illustrated embodiment, for example, the coil tips 101 are coupled to the junctions 162 and 164 (e.g., by soldering or other attachment mechanism). In further embodiments, the coil tips 101 may be co-formed with the closure structure 152 and/or supplemental stabilizer 153. In several embodiments, the coil tips 101 extend peripherally and/or distally beyond the perimeter supports 160. In some embodiments, the coil tips 101 replace the perimeter supports 160. The coil tips 101 can comprise various biocompatible materials, such as biocompatible metal or plastic. In one particular embodiment, for example, the coil tips 101 comprise a platinum coil having a 0.005 inch outside diameter. In further embodiments, the coil tips 101 can comprise different materials or sizes. In several embodiments, the coil tips 101 can be a soft and/or smooth shape or material to easily interface with an aneurysm.

While FIGS. 1A and 1B illustrate an embodiment wherein the coil tips 101 are in a generally “Figure 8” shape (having two “loops”), the coil tips 101 can take on alternate or additional 2-dimensional or 3-dimensional shapes in further embodiments. For example, the coil tips 101 can comprise one or more triangles, helices, spheres, complex basket shapes, or other atrial configurations. In some embodiments, the size and/or shape of the coil tips 101 can be tailored for improved neck coverage, improved anchoring ability, ease of delivery to a treatment site, or other feature. In other embodiments, there can be more or fewer coil tips 101 or portions of coil tips 101. In still further embodiments, a portion of the inner supports 170, perimeter supports 160, and/or coil tips 101 can be at least partially covered with a barrier configured to occlude at least a portion of the aneurysm

In multiple device embodiments, the aneurysm device 150 is deployed such that it is anchored along a specific portion of an aneurysm neck. For example, FIG. 2 is a front view of the aneurysm device of FIG. 1A in a deployed configuration and implanted at an aneurysm A in accordance with embodiments of the technology. In the deployed configuration, the closure structure 152 has a distally projecting, arched framework portion. A proximal-facing aspect of the arch of the closure structure 152 extends laterally over the lumina of the bifurcating arteries. A distal-facing aspect of the arch of the closure structure 152 generally presses against the luminal surfaces of the bifurcating arteries. The distal-facing aspect of the closure structure 152 is configured to substantially align with or otherwise conform to the neck of the aneurysm by forming a curved surface that compatibly aligns with or engages the neck and the surrounding wall of the side branch vessels. In some embodiments, the distal-facing aspect has a complex curve, such as a hyperbolic paraboloid (e.g., a generally saddle-shaped form). In the illustrated embodiment, the hyperbolic paraboloid comprises a generally Y-shaped curve with a depressed central portion.

The coil tips 101 can extend distally and/or peripherally along or into the aneurysm and can improve the aneurysm device's ability to provide aneurysm neck coverage, as the coil tip 101 can be configured to be placed inside the aneurysm. For example, the coil tips 101 can be curved (e.g., complex curved) or parabolic shaped to better conform to the shape of the aneurysm or the vasculature to provide the desired degree of aneurysm occlusion and device stability. In the illustrated embodiment, the coil tips 101 can be placed within the aneurysm and can conform against the aneurysm wall, while the rest of the closure structure 152 (i.e., the inner supports 170 and perimeter supports 160) can conform against the luminal wall outside of the aneurysm. In some embodiments, the coil tips 101 contained in the aneurysm reside in the neck portion of the aneurysm and do not significantly or at all protrude past the neck portion into a body portion of the aneurysm. In still further embodiments, the coil tips 101 extend into the body of the aneurysm but do not conform to the aneurysm walls. In other embodiments, the coil tips 101 can conform against the luminal wall outside of the aneurysm.

The closure structure 152 can bridge a portion or all of the aneurysm neck and control blood flow into the aneurysm. In several embodiments, for example, the closure structure 152 spans unobtrusively over the lumina of the bifurcating arteries, forming no incursion into the vascular flow path. More particularly, the closure structure 152 can form a non-enclosed opening or hole, and in some embodiments can be entirely open in the proximal direction. In some embodiments, the coil tips 101 at least partially block or are positioned in the neck portion of the aneurysm A without causing significant stasis of flow in the aneurysm A.

The optional supplemental stabilizer 153 extends proximally from the closure structure 152 at an angle relative to a lateral axis. The supplemental stabilizer 153 can have struts that extend down into the parent artery and press outwardly against the luminal surface thereof. In further embodiments, the supplemental stabilizer 153 is absent.

The following Examples are illustrative of several embodiments of the present technology.

1. An aneurysm device endovascularly deliverable to a site proximate to an aneurysm in an artery, the aneurysm device comprising:

2. The aneurysm device of example 1 wherein the coil tip comprises a loop shape, a basket shape, or a coil shape.

3. The aneurysm device of example 1 wherein the coil tip comprises platinum.

4. The aneurysm device of example 1, further comprising an attachment feature configured to couple the coil tip to the closure structure.

5. The aneurysm device of example 4 wherein the attachment feature comprises hardened solder.

6. The aneurysm device of example 1 wherein a portion of at least one of the closure structure or coil tip is at least partially covered with a barrier configured to occlude at least a portion of the aneurysm

7. The aneurysm device of example 1 wherein the coil tip resides in a neck portion of the aneurysm.

8. The aneurysm device of example 1 wherein the coil tip comprises a permeable framework configured to allow flow to or from the aneurysm.

9. The aneurysm device of example 1, further comprising a supplemental stabilizer proximally connected to the closure structure, wherein the supplemental stabilizer is configured to reside in the artery and press outward against a luminal wall thereof.

10. The aneurysm device of example 1 wherein the coil tip comprises a first coil tip, and wherein the device further comprises a second coil tip extending from the closure structure, and wherein the first coil tip and second coil tip extend peripherally from opposing lateral sides of the closure structure.

11. The aneurysm device of example 10 wherein the first coil tip and second coil tip each comprise a loop and together form a generally Figure-8 shape.

12. The aneurysm device of example 1 wherein the closure structure comprises a plurality of laterally opposing supports.

13. The aneurysm device of example 1 wherein at least one of the distal-facing aspect of the closure structure or the coil tip form a complex curved surface.

14. An aneurysm device endovascularly deliverable to a site proximate to an aneurysm, the aneurysm device comprising:

15. The aneurysm device of example 14 wherein the coil tips each comprise a loop shape, a basket shape, or a coil shape.

16. The aneurysm device of example 14 wherein the coil tips reside in a neck portion of the aneurysm.

17. The aneurysm device of example 14 wherein the closure structure and coil tips comprise a permeable framework configured to allow flow to or from the aneurysm.

18. An aneurysm enclosure framework endovascularly deliverable to a site proximate to an aneurysm, the framework, when expanded at the site, comprising:

19. The aneurysm device of example 18 wherein the first coil tip and second coil tip each comprise a loop and together form a generally Figure-8 shape.

20. The aneurysm device of example 18 wherein the first coil tip and second coil tip press or contour against at least one of a neck portion or wall portion of the aneurysm.

From the foregoing, it will be appreciated that specific embodiments of the disclosure have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the disclosure. For example, structures and/or processes described in the context of particular embodiments may be combined or eliminated in other embodiments. In particular, the aneurysm devices described above with reference to particular embodiments can include one or more additional features or components, or one or more of the features described above can be omitted. Further, the coil tips described herein may be employed with a variety of different aneurysm devices or assemblies in addition to those described above. Moreover, while advantages associated with certain embodiments of the disclosure have been described in the context of these embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the disclosure.

Abrams, Robert M., Roue, Chad, Jensen, Marc

Patent Priority Assignee Title
10004510, Jun 03 2011 PULSAR VASCULAR, INC Systems and methods for enclosing an anatomical opening, including shock absorbing aneurysm devices
10285709, Sep 05 2008 PULSAR VASCULAR, INC Systems and methods for supporting or occluding a physiological opening or cavity
10335153, Sep 04 2009 PULSAR VASCULAR, INC Systems and methods for enclosing an anatomical opening
10426487, Oct 05 2011 PULSAR VASCULAR, INC. Devices, systems and methods for enclosing an anatomical opening
10499927, Oct 19 2005 PULSAR VASCULAR, INC Methods and systems for endovascularly clipping and repairing lumen and tissue defects
10624647, Jun 03 2011 PULSAR VASCULAR, INC Aneurysm devices with additional anchoring mechanisms and associated systems and methods
11129621, Dec 17 2018 Covidien LP Devices, systems, and methods for the treatment of vascular defects
11185333, Sep 05 2008 PULSAR VASCULAR, INC. Systems and methods for supporting or occluding a physiological opening or cavity
11278291, Dec 17 2018 Covidien LP Devices, systems, and methods for the treatment of vascular defects
11324513, Dec 17 2018 Covidien LP Devices, systems, and methods for the treatment of vascular defects
11344311, Jun 03 2011 PULSAR VASCULAR, INC. Aneurysm devices with additional anchoring mechanisms and associated systems and methods
11457923, Oct 05 2011 PULSAR VASCULAR, INC. Devices, systems and methods for enclosing an anatomical opening
11633189, Sep 04 2009 PULSAR VASCULAR, INC. Systems and methods for enclosing an anatomical opening
11678887, Dec 17 2018 Covidien LP Devices, systems, and methods for the treatment of vascular defects
11730485, Dec 17 2018 Covidien LP Devices, systems, and methods for the treatment of vascular defects
9510835, Oct 19 2005 PULSAR VASCULAR, INC Methods and systems for endovascularly clipping and repairing lumen and tissue defects
9615831, Sep 05 2008 Systems and methods for supporting or occluding a physiological opening or cavity
9636117, Oct 05 2011 PULSAR VASCULAR, INC. Devices, systems and methods for enclosing an anatomical opening
Patent Priority Assignee Title
3868956,
4164045, Aug 03 1977 CarboMedics, Inc. Artificial vascular and patch grafts
4248234, Mar 08 1979 KABUSHIKI KAISHA TOSHIBA, A CORP OF JAPAN Catheter with variable flexural modulus and method of using same
4645495, Jun 26 1985 Vascular access implant needle patch
4651751, Oct 14 1982 Edwards Lifesciences Corporation Guiding catheter and method of use
4665906, Oct 14 1983 Medtronic, Inc Medical devices incorporating sim alloy elements
4706671, May 02 1985 Catheter with coiled tip
4710192, Dec 30 1985 Diaphragm and method for occlusion of the descending thoracic aorta
4739768, Jun 02 1986 STRYKER EUROPEAN HOLDINGS III, LLC Catheter for guide-wire tracking
4820298, Nov 20 1987 DEVICE DEVELOPMENTS, INC Internal vascular prosthesis
4873978, Dec 04 1987 MICROVENTION, INC Device and method for emboli retrieval
4909787, Aug 14 1986 DANFORTH BIOMEDICAL, INC A CA CORP Controllable flexibility catheter with eccentric stiffener
4994069, Nov 02 1988 STRYKER EUROPEAN HOLDINGS III, LLC Vaso-occlusion coil and method
5011488, Dec 07 1988 MICROVENTION, INC , A CORP OF DE Thrombus extraction system
5074869, Sep 26 1988 Vascular occlusion device
5122136, Mar 13 1990 BLOSSOM FLOWER INC Endovascular electrolytically detachable guidewire tip for the electroformation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
5226911, Oct 02 1991 TARGET THERAPEUTICS, A DELAWARE CORPORATION Vasoocclusion coil with attached fibrous element(s)
5250071, Sep 22 1992 TARGET THERAPEUTICS, A DELAWARE CORPORATION Detachable embolic coil assembly using interlocking clasps and method of use
5261916, Dec 12 1991 TARGET THERAPEUTICS, A DELAWARE CORPORATION Detachable pusher-vasoocclusive coil assembly with interlocking ball and keyway coupling
5263964, May 06 1992 Board of Regents, The University of Texas System Coaxial traction detachment apparatus and method
5263974, Jan 09 1991 Matsutani Seisakusho Co., Ltd. Suture needle and method of and apparatus for grinding material for suture needle
5271414, Sep 30 1992 Becton, Dickinson and Company Biopsy cannula having non-cylindrical interior
5304195, Dec 12 1991 TARGET THERAPEUTICS, A DELAWARE CORPORATION Detachable pusher-vasoocclusive coil assembly with interlocking coupling
5334168, Jun 11 1993 CATHETER RESEARCH, INC Variable shape guide apparatus
5342386, Oct 26 1992 Cordis Corporation Catheter with multiple flexibilities along the shaft
5350397, Nov 13 1992 TARGET THERAPEUTICS, A DELAWARE CORPORATION Axially detachable embolic coil assembly
5354295, Mar 13 1990 STRYKER EUROPEAN HOLDINGS III, LLC In an endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
5527338, Sep 02 1992 Board of Regents, The University of Texas System Intravascular device
5531685, Jun 11 1993 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Steerable variable stiffness device
5578074, Dec 22 1994 Target Therapeutics, Inc Implant delivery method and assembly
5624449, Nov 03 1993 STRYKER EUROPEAN HOLDINGS III, LLC Electrolytically severable joint for endovascular embolic devices
5643254, Mar 03 1994 STRYKER EUROPEAN HOLDINGS III, LLC Endovascular embolic device detachment detection method
5665106, Sep 28 1993 Hemodynamics, Inc. Vascular patch applicator
5669931, Mar 30 1995 STRYKER EUROPEAN HOLDINGS III, LLC Liquid coils with secondary shape
5693067, Sep 02 1992 Board of Regents, The University of Texas System Intravascular device
5733294, Feb 28 1996 Scion Medical Limited Self expanding cardiovascular occlusion device, method of using and method of making the same
5733329, Dec 30 1996 Target Therapeutics, Inc Vaso-occlusive coil with conical end
5749890, Dec 03 1996 Incept, LLC Method and system for stent placement in ostial lesions
5749894, Jan 18 1996 STRYKER EUROPEAN HOLDINGS III, LLC Aneurysm closure method
5759194, Sep 28 1993 Hemodynamics, Inc. Vascular patch applicator
5766192, Oct 16 1996 Atherectomy, angioplasty and stent method and apparatus
5769884, Jun 27 1996 Cordis Corporation Controlled porosity endovascular implant
5797953, Mar 18 1994 Cook Medical Technologies LLC Helical embolization coil
5814062, Dec 22 1994 STRYKER EUROPEAN HOLDINGS III, LLC Implant delivery assembly with expandable coupling/decoupling mechanism
5843103, Mar 06 1997 Boston Scientific Scimed, Inc Shaped wire rotational atherectomy device
5895391, Sep 27 1996 Target Therapeutics, Inc Ball lock joint and introducer for vaso-occlusive member
5895410, Sep 12 1997 Scion Medical Limited Introducer for an expandable vascular occlusion device
5910145, Mar 31 1997 Stent delivery catheter system
5911737, Feb 28 1997 Lawrence Livermore National Security LLC Microfabricated therapeutic actuators
5916235, Aug 13 1997 The Regents of the University of California Apparatus and method for the use of detachable coils in vascular aneurysms and body cavities
5925060, Mar 13 1998 B BRAUN CELSA; Scion Medical Limited Covered self-expanding vascular occlusion device
5925062, Sep 02 1992 Board of Regents, The University of Texas System Intravascular device
5925683, Oct 17 1996 STRYKER EUROPEAN HOLDINGS III, LLC Liquid embolic agents
5928260, Jul 10 1997 STRYKER EUROPEAN HOLDINGS III, LLC Removable occlusion system for aneurysm neck
5933329, May 06 1997 MARK IV IDS CORP Board for mounting display element
5935114, Jul 07 1994 Boston Scientific Scimed, Inc Rapid exchange delivery catheter
5935148, Jun 24 1998 STRYKER EUROPEAN HOLDINGS III, LLC Detachable, varying flexibility, aneurysm neck bridge
5951599, Jul 09 1997 Boston Scientific Scimed, Inc Occlusion system for endovascular treatment of an aneurysm
5968068, Sep 12 1996 W L GORE & ASSOCIATES, INC Endovascular delivery system
5980514, Jul 26 1996 STRYKER EUROPEAN HOLDINGS III, LLC Aneurysm closure device assembly
5984944, Sep 12 1997 Scion Medical Limited Introducer for an expandable vascular occlusion device
6007544, Jun 14 1996 Beth Israel Deaconess Medical Center Catheter apparatus having an improved shape-memory alloy cuff and inflatable on-demand balloon for creating a bypass graft in-vivo
6013055, Nov 13 1997 Boston Scientific Scimed, Inc Catheter balloon having selected folding characteristics
6022341, Oct 03 1997 Medtronic, Inc Catheter with multiple internal diameters
6036720, Dec 15 1997 STRYKER EUROPEAN HOLDINGS III, LLC Sheet metal aneurysm neck bridge
6063070, Aug 05 1997 STRYKER EUROPEAN HOLDINGS III, LLC Detachable aneurysm neck bridge (II)
6063104, Jun 24 1998 STRYKER EUROPEAN HOLDINGS III, LLC Detachable, varying flexibility, aneurysm neck bridge
6071263, Mar 02 1992 Apparatus and method for retaining a catheter in a blood vessel in a fixed position
6077291, Jan 21 1992 Regents of the University of Minnesota Septal defect closure device
6081263, Oct 23 1997 Sony Electronics, INC; Sony Corporation System and method of a user configurable display of information resources
6090125, Apr 20 1995 Micrus Corporation Anatomically shaped vasoocclusive device and method of making the same
6093199, Aug 05 1998 ABBOTT CARDIOVASCULAR SYSTEMS INC; Abbott Laboratories Intra-luminal device for treatment of body cavities and lumens and method of use
6096021, Mar 30 1998 UNIVERSITY OF VIRGINIA PATENT FOUNDATION, THE Flow arrest, double balloon technique for occluding aneurysms or blood vessels
6096034, Jul 26 1996 STRYKER EUROPEAN HOLDINGS III, LLC Aneurysm closure device assembly
6102917, Jul 15 1998 Lawrence Livermore National Security LLC Shape memory polymer (SMP) gripper with a release sensing system
6110191, Sep 12 1996 W L GORE & ASSOCIATES, INC Endovascular delivery system
6117157, Mar 18 1994 Cook Medical Technologies LLC Helical embolization coil
6139564, Jun 16 1998 STRYKER EUROPEAN HOLDINGS III, LLC Minimally occlusive flow disruptor stent for bridging aneurysm necks
6146339, May 24 1999 Advanced Cardiovascular Systems, INC; ADVANCED CARDIOVASCULAR SERVICES Guide wire with operator controllable tip stiffness
6152944, Mar 05 1997 Boston Scientific Scimed, Inc Catheter with removable balloon protector and stent delivery system with removable stent protector
6168615, May 04 1998 Micrus Corporation Method and apparatus for occlusion and reinforcement of aneurysms
6168622, Jul 21 1998 ST JUDE MEDICAL, CARDIOLOGY DIVISION, INC Method and apparatus for occluding aneurysms
6174322, Aug 08 1997 Cardia, Inc. Occlusion device for the closure of a physical anomaly such as a vascular aperture or an aperture in a septum
6183495, May 05 1997 Micro Therapeutics, Inc. Wire frame partial flow obstruction device for aneurysm treatment
6193708, Aug 05 1997 STRYKER EUROPEAN HOLDINGS III, LLC Detachable aneurysm neck bridge (I)
6221066, Mar 09 1999 Micrus Corporation Shape memory segmented detachable coil
6221086, Mar 13 1998 Scion Medical Limited Covered self-expanding vascular occlusion device
6224610, Aug 31 1998 Micrus Corporation Shape memory polymer intravascular delivery system with heat transfer medium
6228052, Feb 29 1996 Medtronic Inc. Dilator for introducer system having injection port
6261305, Feb 12 1998 Evasc Neurovascular Limited Partnership Endovascular prothesis with expandable leaf portion
6293960, May 22 1998 Micrus Corporation Catheter with shape memory polymer distal tip for deployment of therapeutic devices
6296622, Dec 21 1998 Micrus Corporation Endoluminal device delivery system using axially recovering shape memory material
6309367, Jul 23 1999 NEUROVASX, INC Aneurysm shield
6325807, Jun 11 1999 Boston Scientific Scimed, Inc Variable strength sheath
6344048, Jul 10 1997 STRYKER EUROPEAN HOLDINGS III, LLC Removable occlusion system for aneurysm neck
6375668, Jun 02 1999 Stryker Corporation Devices and methods for treating vascular malformations
6383174, Aug 05 1997 STRYKER EUROPEAN HOLDINGS III, LLC Detachable aneurysm neck bridge (II)
6398791, Jun 11 1999 Boston Scientific Scimed, Inc Variable composite sheath with interrupted sections
6478773, Dec 21 1998 DEPUY SYNTHES PRODUCTS, INC Apparatus for deployment of micro-coil using a catheter
6491711, Nov 14 2000 Advanced Cardiovascular Systems, Inc. Balloon catheter with non-circular balloon taper and method of use
6517515, Mar 04 1998 Boston Scientific Scimed, Inc Catheter having variable size guide wire lumen
6530935, Feb 02 1996 Regents of the University of California, The Clot capture coil and method of using the same
6533905, Jan 24 2000 STRYKER EUROPEAN HOLDINGS III, LLC Method for sputtering tini shape-memory alloys
6554794, Sep 24 1997 Eclipse Surgical Technologies, Inc Non-deforming deflectable multi-lumen catheter
6589256, Mar 13 1998 Scion Medical Limited Covered self-expanding vascular occlusion device
6613074, Mar 10 1999 Codman & Shurtleff, Inc Endovascular aneurysm embolization device
6616681, Oct 05 2000 Boston Scientific Scimed, Inc Filter delivery and retrieval device
6626889, Jul 25 2001 Advanced Cardiovascular Systems, Inc. Thin-walled guiding catheter with improved radiopacity
6626928, Feb 23 2000 Angiogene, Inc.; Corporation du Centre de Recherche L'Universite de Montreal Occlusion device for treating aneurysm and use therefor
6638268, Apr 07 2000 Niazi Licensing Corporation Catheter to cannulate the coronary sinus
6652556, Oct 27 1999 Boston Scientific Scimed, Inc Filter apparatus for ostium of left atrial appendage
6663607, Jul 12 1999 STRYKER EUROPEAN HOLDINGS III, LLC Bioactive aneurysm closure device assembly and kit
6663648, Jun 15 2000 CARDINAL HEALTH SWITZERLAND 515 GMBH Balloon catheter with floating stiffener, and procedure
6669795, Jan 17 2002 MONARCH BIOSCIENCES, INC Methods of fabricating high transition temperature SMA, and SMA materials made by the methods
6672338, Dec 14 1998 Active slender tubes and method of making the same
6679836, Jun 21 2002 Boston Scientific Scimed, Inc Universal programmable guide catheter
6679903, Dec 15 1998 Micrus Corporation Intravascular device push wire delivery system
6689141, Oct 18 2000 MICROVENTION, INC Mechanism for the deployment of endovascular implants
6694979, Mar 04 2000 Pulmonx Corporation Methods and devices for use in performing pulmonary procedures
6723112, Nov 10 1998 STRYKER EUROPEAN HOLDINGS III, LLC Bioactive three loop coil
6740073, Dec 06 2000 Advanced Cardiovascular Systems, Inc. Guiding catheter reinforcement with angled distal end
6740277, Apr 24 2002 Becton Dickinson and Company Process of making a catheter
6746468, Jun 02 1999 Stryker Corporation Devices and methods for treating vascular malformations
6780196, Jul 10 1997 STRYKER EUROPEAN HOLDINGS III, LLC Removable occlusion system for aneurysm neck
6790218, Dec 23 1999 Occlusive coil manufacture and delivery
6824553, Apr 28 1995 STRYKER EUROPEAN HOLDINGS III, LLC High performance braided catheter
6835185, Dec 21 1998 Micrus Corporation Intravascular device deployment mechanism incorporating mechanical detachment
6837870, Jul 23 2002 Advanced Cardiovascular Systems, Inc. Catheter having a multilayered shaft section with a reinforcing mandrel
6863678, Sep 19 2001 Advanced Cardiovascular Systems, Inc. Catheter with a multilayered shaft section having a polyimide layer
6890218, Nov 05 2001 Siemens VDO Automotive Corporation Three-phase connector for electric vehicle drivetrain
6911037, Sep 07 1999 ev3 Endovascular, Inc Retrievable septal defect closure device
6936055, Aug 13 1997 STRYKER EUROPEAN HOLDINGS III, LLC Detachable aneurysm neck bridge (III)
6939055, May 20 2002 Stratos International, Inc. Stub having an optical fiber
6986774, Aug 16 1989 Medtronic, Inc. Method of manipulating matter in a mammalian body
6994092, Nov 08 1999 Boston Scientific Scimed, Inc Device for containing embolic material in the LAA having a plurality of tissue retention structures
7011094, Mar 02 2001 Pulmonx Corporation Bronchial flow control devices and methods of use
7033374, Sep 26 2000 MICROVENTION, INC Microcoil vaso-occlusive device with multi-axis secondary configuration
7033387, Sep 16 1997 Pulmonx Corporation Body fluid flow control device
7122043, May 19 2003 SEPTRX, INC Tissue distention device and related methods for therapeutic intervention
7147659, Oct 28 2004 Codman & Shurtleff, Inc Expandable stent having a dissolvable portion
7156871, Oct 28 2004 Codman & Shurtleff, Inc Expandable stent having a stabilized portion
7229461, Jul 10 1997 STRYKER EUROPEAN HOLDINGS III, LLC Removable occlusion system for aneurysm neck
7232461, Oct 29 2003 Codman & Shurtleff, Inc Neck covering device for an aneurysm
7267679, Sep 13 1999 REX MEDICAL, L P Vascular hole closure device
7322960, Mar 26 2003 Terumo Kabushiki Kaisha Catheter with puncture sensor
7343856, Feb 27 2003 Heidelberger Druckmaschinen AG Apparatus for controlling the temperature of an exposure drum in a printing plate exposer
7387629, Jan 21 2003 ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC Catheter design that facilitates positioning at tissue to be diagnosed or treated
7410482, Sep 04 1998 STRYKER EUROPEAN HOLDINGS III, LLC Detachable aneurysm neck bridge
7569066, Jul 10 1997 STRYKER EUROPEAN HOLDINGS III, LLC Methods and devices for the treatment of aneurysms
7608088, Sep 20 2001 Codman & Shurtleff, Inc Stent aneurysm embolization device
7662168, Sep 13 1999 Rex Medical, L.P. Vascular closure
7857825, Dec 01 1998 Cook Biotech Incorporated Embolization device
7892254, Sep 03 1996 Cook Medical Technologies LLC Embolization method for endovascular occlusion
8075585, Aug 29 2002 STRYKER EUROPEAN HOLDINGS III, LLC Device and method for treatment of a vascular defect
8388650, Sep 05 2008 PULSAR VASCULAR, INC Systems and methods for supporting or occluding a physiological opening or cavity
20030057156,
20030139802,
20030181922,
20030181942,
20030195385,
20030195553,
20030212412,
20040068314,
20040087998,
20040111112,
20040167597,
20040167602,
20040193246,
20040210248,
20040210298,
20050021023,
20050025797,
20050096728,
20050177224,
20060030929,
20060052862,
20060058837,
20060106418,
20060247680,
20060259131,
20060264905,
20060264907,
20070067015,
20070088387,
20070106311,
20070191884,
20070270902,
20080039930,
20080147100,
20080183143,
20080221600,
20080269774,
20090306678,
20100094335,
20130090682,
20130204290,
20130268046,
AU2006304660,
CN101489492,
CN102202585,
CN102762156,
CN103230290,
CN103381101,
CN103582460,
CN103607964,
CN1399530,
D407818, Mar 31 1995 Target Therapeutics, Inc Spiral vaso-occlusion coil
DE102008028308,
EP996372,
EP820726,
EP1269935,
EP1527753,
EP1951129,
EP2326259,
EP2451363,
EP2713904,
EP2713905,
HK1134421,
JP2001286478,
JP2009512515,
JP2013226419,
KR20080081899,
RE37117, Oct 05 1995 Target Therapeutics, Inc. Detachable embolic coil assembly using interlocking clasps and method of use
WO13593,
WO130266,
WO200139,
WO2071977,
WO2078777,
WO2087690,
WO213899,
WO3059176,
WO3075793,
WO2004019790,
WO2004026149,
WO2004105599,
WO2005033409,
WO2005082279,
WO2006119422,
WO2007047851,
WO2008151204,
WO2010028314,
WO2011029063,
WO2012167137,
WO2012167150,
WO2012167156,
WO2013052920,
WO9724978,
WO9726939,
WO9731672,
WO9823227,
WO9850102,
WO9905977,
WO9907294,
WO9915225,
/////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Mar 14 2013PULSAR VASCULAR, INC.(assignment on the face of the patent)
Jul 31 2015ABRAMS, ROBERT M PULSAR VASCULAR, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0362450145 pdf
Jul 31 2015ROUE, CHADPULSAR VASCULAR, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0362450145 pdf
Jul 31 2015JENSEN, MARCPULSAR VASCULAR, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0362450145 pdf
Dec 07 2016POMMEL MERGER SUB, INC PULSAR VASCULAR, INC MERGER SEE DOCUMENT FOR DETAILS 0417700001 pdf
Date Maintenance Fee Events
May 01 2019BIG: Entity status set to Undiscounted (note the period is included in the code).
Aug 02 2019M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Aug 02 2023M1552: Payment of Maintenance Fee, 8th Year, Large Entity.


Date Maintenance Schedule
Feb 16 20194 years fee payment window open
Aug 16 20196 months grace period start (w surcharge)
Feb 16 2020patent expiry (for year 4)
Feb 16 20222 years to revive unintentionally abandoned end. (for year 4)
Feb 16 20238 years fee payment window open
Aug 16 20236 months grace period start (w surcharge)
Feb 16 2024patent expiry (for year 8)
Feb 16 20262 years to revive unintentionally abandoned end. (for year 8)
Feb 16 202712 years fee payment window open
Aug 16 20276 months grace period start (w surcharge)
Feb 16 2028patent expiry (for year 12)
Feb 16 20302 years to revive unintentionally abandoned end. (for year 12)