A method for automatically routing a telephonic communication to at least one of a plurality of communication destination addresses is provided. The method is implemented by a computer readable medium having a plurality of code segments. The method comprises the step of receiving customer identifier and communicating with a customer history database configured to store historic data. The method also includes determining whether the received customer identifier corresponds to a stored customer identifier in the customer history database, wherein the customer profile included in the stored historic data is based on one or more components of a customer's demographic identity. Historic data corresponding to the stored customer number is identified based on the comparison of the received customer identifier and the stored customer identifier. The telephonic communication is associated with a predetermined communication destination based on the identified historic data. The associated communication data is transmitted to a switching signal.
|
1. A non-transitory computer readable medium adapted to control a computer and comprising a plurality of code segments for automatically routing a telephonic communication to at least one of a plurality of communication destination addresses, the non-transitory computer readable medium comprising the code segments that, when executed by a processor:
receive a customer identifier, wherein the customer identifier is generated from at least one of: automatic number identification (ANI), a customer voice portal prompted variable, or an ip address;
determine whether the received customer identifier corresponds to a stored customer identifier in a customer history database, the customer history database being configured to store historic data associated with at least one recorded telephonic communication having a corresponding stored customer identifier, the stored historic data comprising call type data, distress assessment data, stored behavioral assessment data, call preference data and customer profile;
record a telephonic communication from a caller to obtain caller voice data;
mine the historic data associated with the customer identifier in the caller voice data and apply a linguistic-based psychological behavioral model to the caller assessment voice data to generate the stored behavioral assessment data;
analyze the historic data corresponding to the received customer identifier and the stored customer identifier, wherein the customer profile included in the historic data is based on one or more components of a customer's demographic identity;
associate the telephonic communication with one of a plurality of communication destination addresses, the association of the telephonic communication data with one of the plurality of communication destination addresses being based on the analyzing of the historic data;
compare a stored customer profile with a customer service representative profile, wherein the stored customer profile includes the customer's demographic identity consisting of gender, race, age, income, and education; and
provide routing instructions which comprise identifying the associated communication destination address.
6. A system for automatically routing a telephonic communication to one of a plurality of communication destination addresses, the system comprising:
a customer history database storing historic data associated with at least one recorded telephonic communication having a corresponding stored customer identifier, the historic data comprising call type data, distress assessment data, stored behavioral assessment data, call preference data, and customer profile; and,
a first server configured to receive a customer identifier input signal from a communication system, wherein the customer identifier input signal is generated from at least one of: automatic number identification (ANI), a customer voice portal prompted variable, or an ip address;
the server comprising logic that, when executed by a processor:
communicates with the customer history database;
determines whether the received customer identifier input signal corresponds to the stored customer identifier in the customer history database;
records a telephonic communication from a caller to obtain caller voice data;
mines the historic data associated with the customer identifier in the caller voice data and applies a linguistic-based psychological behavioral model to the caller assessment voice data to generate the stored behavioral assessment data;
analyzes historic data corresponding to the received customer identifier and the mined historic data when the received customer identifier input signal corresponds to the stored customer identifier in the customer history database, wherein the customer profile included in the historic data is based on one or more components of a customer's demographic identity;
associates the telephonic communication with one of a plurality of communication destination addresses, the association being based on the analysis of the historic data corresponding to the received customer identifier and the customer's demographic identity;
compares the stored customer profile with a customer service representative profile, wherein the stored customer profile includes the customer's demographic identity consisting of gender, race, age, income, and education; and,
communicates the associated communication destination to a switch, wherein the switch is configured to route the telephonic communication to the associated communication destination address.
2. The non-transitory computer readable medium of
3. The computer readable medium of
4. The non-transitory computer readable medium of
5. The non-transitory computer readable medium of
7. The system of
8. The system of
separate the telephonic communication into at least caller voice data and customer service representative voice data; and
analyze at least the separated caller voice data by mining the separated caller voice data for the customer identifier.
9. The system of
10. The system of
|
This application is a continuation of U.S. patent application Ser. No. 14/616,423, filed Feb. 6, 2015, now allowed, which is a continuation of U.S. patent application Ser. No. 14/515,642 filed Oct. 16, 2014, now U.S. Pat. No. 8,983,054, which is a continuation of U.S. patent application Ser. No. 14/231,327, filed Mar. 31, 2014, now U.S. Pat. No. 8,891,754, issued Nov. 18, 2014, which is a continuation of U.S. application Ser. No. 11/731,478, filed Mar. 30, 2007, now U.S. Pat. No. 8,718,262, issued May 6, 2014, the entire contents of each of which is hereby incorporated herein its entirety by express reference thereto.
The invention relates to a method and system for routing a telephonic communication, and more particularly, for automatically routing future a telephone communication based on prior analytic attributes.
It is known to utilize telephone call centers to facilitate the receipt, response and routing of incoming telephone calls relating to customer service, retention, and sales. A customer is in contact with a customer service representative (“CSR”) or CSR agent who is responsible for answering the customer's inquiries and directing the customer to the appropriate individual, department, information source, or service as required to satisfy the customer's needs. It is well known to monitor calls between a customer and agent. Accordingly call centers typically employ individuals responsible for listening to the conversation between the customer and the agent. While monitoring such calls may occur in real time, it is often more efficient and useful to record the call for later review.
Information gathered from the calls is typically used to monitor the performance of the CSR agents to identify any possible training needs. Based on a review and analysis of the conversation, a monitor will make suggestions or recommendations to improve the quality of a customer's experience.
In many instances, call centers receive calls from repeat customer. The repeat customer may require assistance with a new issue or additional assistance with a prior issue. However, a customer may also have had particularly favorable, or particularly poor prior interactions with a customer service representative or transaction experience during a prior call. This favorable or poor interaction may have been a result of behavioral or non-behavioral compatibility with the responding customer service representative, response time, lack of knowledge, inaccessibility to direct contact with a customer service representative or various other analytic attributes or factors.
Thus, there is a need in customer relationship management (“CRM”) for tools useful in improving the quality of future customer interactions with agents by intuitively and automatically routing future calls by the same customer to an appropriate communication destination; whether a self-service destination or a compatible customer service representative. In particular, a need exists for tools that will allow for future call routing based on data collected during prior calls.
The present invention is provided to solve the problems discussed above and other problems, and to provide advantages and aspects not previously provided. A full discussion of the features and advantages of the present invention is deferred to the following detailed description, which proceeds with reference to the accompanying drawings.
According to the present invention, a computer program for automatically routing a telephonic communication to at least one of a plurality of communication destination addresses is provided. The computer program is embodied on a computer readable storage medium adapted to control a computer. The computer program comprises a plurality of code segments for performing the task. In particular, a code segment receives a customer identifier. The computer program then determines whether the received customer identifier corresponds to a customer identifier stored in a customer history database. The customer history database is configured to store historic data associated with recorded telephonic communications having corresponding stored customer identifiers. More particularly, the stored historic data includes at least one of the following: call type data, distress assessment data, behavioral assessment data, call preference data and customer profile. The historic data corresponding to the received customer identifier and the stored customer identifier is analyzed, and the telephonic communication is associated with one of a plurality of communication destination addresses. The associating is based on the analysis of the historic data. The computer program then transmits a signal identifying the associated communication destination address.
According to one aspect of the present invention, the computer program compares a stored customer profile with a customer service representative profile. A code segment also generates a score based upon the comparison of the customer profile with the customer service representative profile.
According to another aspect of the invention, an audible message is transmitted based on association of the telephonic communication with a communication destination address. A code segment of the computer program can also be provided to generate a customer route record.
According to still another aspect of the invention, the computer program analyzes the frequency of completed transactions in IVR. An audible message can be generated based on the frequency, indicating that a customer identifier completes transactions in IVR.
According to the present invention, a system for automatically routing a telephonic communication to one of a plurality of communication destination addresses is also provided. The system includes a customer history database and a first server configured to receive a customer identifier from a communication system. The customer history database stores historic data comprised of at least one of the following: call type data, distress assessment data, behavioral assessment data, call preference data, and customer profile. Further, the historic data is associated with a stored customer identifier.
The first server includes logic, or executable instructions in the form of code segments or the like, to execute various functions. More particularly, the first server includes logic for communicating with the customer history database. Logic is provided for determining whether the received customer identifier corresponds to a stored customer identifier in the customer history database. When the received customer identifier corresponds to a stored customer identifier in the customer history database, historic data corresponding to the received customer identifier is analyzed. The first server also includes logic for associating the telephonic communication with one of a plurality of communication destination addresses. This association is based on the analysis of the historic data corresponding to the received customer identifier. Logic is provided for communicating the associated communication destination to a switch. The switch is configured to route the telephonic communication to the associated communication destination address.
According to still another aspect of the present invention, the system is further comprised of a second server in operable communication with the first server. The second server is configured to record a telephonic communication between a caller and a customer service representative and includes logic for doing so. In particular, logic is provided to separate a telephonic communication into at least caller voice data and customer service representative voice data. The server also includes logic for analyzing at least the caller voice data by mining the separated caller voice data and applying a predetermined linguistic-based psychological behavioral model to the separated caller voice data. Behavioral assessment data corresponding to the analyzed caller voice data is then generated. The resultant behavioral assessment data can be transmitted to the customer history database.
According to yet another aspect, the logic for separating the telephonic communication into a caller voice data and a customer service representative includes logic for identifying a communication protocol associated with the telephonic communication and logic for recording the telephonic communication to a first electronic data file having a first and second audio track. The caller voice data is automatically recorded on the first audio track based on the identified communication protocol. The customer service representative voice data is automatically recorded on the second audio track based on the identified communication protocol.
According to one embodiment of the present invention, the system for automatically routing a telephonic communication to one of a plurality of communication destination addresses includes an interactive voice response (IVR) system, a telephone switch, a routing server and a recording server. The IVR is configured to receive telephonic communications and caller commands and to communicate with the telephone switch and the routing server. The telephone switch is configured to route a telephonic communication to one of a plurality of communication destination addresses.
The recording server is operably coupled, and in operable communication with the routing server. As discussed above, the recording server is configured to record a telephonic communication between a caller and a customer service representative. The recording server uses logic to perform the recording functions as described above. As previously noted, the logic can be in the form of hardwired logic gates or software. Thus, logic is provided to generate behavioral assessment data. According to one embodiment, the behavioral assessment data is generated by analyzing the caller voice data by mining caller voice data associated with the telephonic communication. A linguistic-based psychological behavioral model is applied to the caller voice data. Logic is also provided to generate distress assessment data and call preference data. The generated behavioral assessment data, distress assessment data and call preference data is transmitted to a customer history database as described above.
According to one embodiment of the invention, the routing server is configured to receive a transmitted customer identifier from the interactive voice response system. The routing server also includes logic, or executable instructions in the form of code segments or the like, for performing the desired routing function. In particular, logic is provided to receive a customer identifier. The server includes logic to determine whether the received customer identifier corresponds to a stored customer identifier in a customer history database. As discussed herein, the customer history database is configured to store historic data. That historic data is associated with at least one recorded telephonic communication having a corresponding stored customer identifier. The stored historic data includes one or more of the following: call type data, distress assessment data, behavioral assessment data, call preference data and customer profile.
The routing server analyzes the historic data corresponding to the received customer identifier and the stored customer identifier. The telephonic communication is then associated with one of a plurality of communication destination addresses. This association is based on the analysis of the historic data. The routing sever then transmits a signal identifying the associated communication destination address.
According to yet another embodiment of the present disclosure, a non-transitory computer readable medium adapted to control a computer and including a plurality of code segments for automatically routing a telephonic communication to at least one of a plurality of communication destination addresses, the non-transitory computer readable medium including the code segments that, when executed by a processor receives a customer identifier, determines whether the received customer identifier corresponds to a stored customer identifier in a customer history database, the customer history database being configured to store historic data associated with at least one recorded telephonic communication having a corresponding stored customer identifier, the stored historic data comprising call type data, distress assessment data, behavioral assessment data, call preference data and customer profile; records a telephonic communication from a caller to obtain caller voice data; generates behavioral assessment data by analyzing the caller voice data by mining the historic data associated with the customer identifier and applying a linguistic-based model to the caller voice data; analyzes the historic data corresponding to the received customer identifier and the stored customer identifier, wherein the customer profile included in the historic data is based on one or more components of a customer's demographic identity; associates the telephonic communication with one of a plurality of communication destination addresses, the association of the telephonic communication data with one of the plurality of communication destination addresses being based on the analyzing of the historic data; and provides routing instructions which comprise identifying the associated communication destination address. In other embodiments, the disclosure encompasses systems for automatically routing a telephonic communication to one of a plurality of communication destination addresses,
Other features and advantages of the invention will be apparent from the following specification taken in conjunction with the following drawings.
To understand the present invention, it will now be described by way of example, with reference to the accompanying drawings in which:
While this invention is susceptible of embodiments in many different forms, there is shown in the drawings and will herein be described in detail preferred embodiments of the invention with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the broad aspect of the invention to the embodiments illustrated.
Referring to
As shown in
Process descriptions or blocks in figures should be understood as representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process. Alternate implementations are included within the scope of the embodiments of the present invention in which functions may be executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those having ordinary skill in the art.
Generally, in terms of hardware architecture, as shown in
The processor 16 is a hardware device for executing software, particularly software stored in memory 18. The processor 16 can be any custom made or commercially available processor, a central processing unit (CPU), an auxiliary processor among several processors associated with the computer 12, a semiconductor based microprocessor (in the form of a microchip or chip set), a macroprocessor, or generally any device for executing software instructions. Examples of suitable commercially available microprocessors are as follows: a PA-RISC series microprocessor from Hewlett-Packard Company, an 80x8 or Pentium series microprocessor from Intel Corporation, Intel Xeon (Single and Dual Core), Intel Xeon Processor MP (Single and Dual Core), a PowerPC microprocessor from IBM, a Sparc microprocessor from Sun Microsystems, Inc., or a 8xxx series microprocessor from Motorola Corporation.
The memory 18 can include any one or a combination of volatile memory elements (e.g., random access memory (RAM, such as DRAM, SRAM, SDRAM, etc.)) and nonvolatile memory elements (e.g., ROM, hard drive, tape, CDROM, etc.). Moreover, memory 18 may incorporate electronic, magnetic, optical, and/or other types of storage media. The memory 18 can have a distributed architecture where various components are situated remote from one another, but can be accessed by the processor 16.
The software in memory 18 may include one or more separate programs, each of which comprises an ordered listing of executable instructions for implementing logical functions. In the example of
The control system 14 may be a source program, executable program (object code), script, or any other entity comprising a set of instructions to be performed. When a source program, the program needs to be translated via a compiler, assembler, interpreter, or the like, which may or may not be included within the memory 18, so as to operate properly in connection with the O/S 24. Furthermore, the control system 14 can be written as (a) an object oriented programming language, which has classes of data and methods, or (b) a procedure programming language, which has routines, subroutines, and/or functions, for example but not limited to, C, C++, C# (C Sharp), PHP, Pascal, Basic, Fortran, Cobol, Perl, Java, and Ada. In one embodiment, the control system 14 is written in C++. The I/O devices 20 may include input devices, for example but not limited to, a keyboard, mouse, scanner, microphone, touch screens, interfaces for various medical devices, bar code readers, stylus, laser readers, radio-frequency device readers, etc. Furthermore, the I/O devices 20 may also include output devices, for example but not limited to, a printer, bar code printers, displays, etc. Finally, the I/O devices 20 may further include devices that communicate both inputs and outputs, for instance but not limited to, a modulator/demodulator (modem; for accessing another device, system, or network), a radio frequency (RF) or other transceiver, a telephonic interface, a bridge, a router, etc.
If the computer 12 is a PC, workstation, PDA, or the like, the software in the memory 18 may further include a basic input output system (BIOS) (not shown in
When the computer 12 is in operation, the processor 16 is configured to execute software stored within the memory 18, to communicate data to and from the memory 18, and to generally control operations of the computer 12 pursuant to the software. The control system 14 and the O/S 24, in whole or in part, but typically the latter, are read by the processor 16, perhaps buffered within the processor 16, and then executed.
When the control system 14 is implemented in software, as is shown in
In another embodiment, where the control system 14 is implemented in hardware, the control system 14 can be implemented with any or a combination of the following technologies, which are each well known in the art: a discrete logic circuit(s) having logic gates for implementing logic functions upon data signals, an application specific integrated circuit (ASIC) having appropriate combinational logic gates, a programmable gate array(s) (PGA), a field programmable gate array (FPGA), etc.
As may be seen in
According to the present invention, computer telephony integration (“CTI”) technology is provided. In a preferred embodiment discussed herein, CTI resides on a telephony server 207. However, it will be understood by those skilled in the art that CTI can reside on its own server or at other hardware described herein. Generally, in terms of hardware architecture, the telephony server 207 includes a processor, memory, and one or more input and/or output (I/O) devices (or peripherals) that are communicatively coupled via a local interface. The processor can be any custom-made or commercially available processor, a central processing unit (CPU), an auxiliary processor among several processors associated with the telephony server 207, a semiconductor based microprocessor (in the form of a microchip or chip set), a macroprocessor, or generally any device for executing software instructions. The memory of the telephony server 207 can include any one or a combination of volatile memory elements (e.g., random access memory (RAM, such as DRAM, SRAM, SDRAM, etc.)) and nonvolatile memory elements (e.g., ROM, hard drive, tape, CDROM, etc.). The telephony server 207 may further include a keyboard and a mouse for control purposes, and an attached graphic monitor for observation of software operation. It will be understood that the telephony server may include standard CTI technology, such as that sold by Cisco, Avaya, Genesys or other provider of CTI providers.
According to one embodiment, the telephony server 207 also incorporates PBX control software to control the initiation and termination of connections between stations and via outside trunk connections to the PSTN 203. In addition, the software may monitor the status of all telephone stations 211 in real-time on the network and may be capable of responding to telephony events to provide traditional telephone service. This may include the control and generation of the conventional signaling tones such as dial tones, busy tones, ring back tones, as well as the connection and termination of media streams between telephones on the local network. Further, the PBX control software may use a multi-port module 223 and PCs to implement standard PBX functions such as the initiation and termination of telephone calls, either across the network or to outside trunk lines, the ability to put calls on hold, to transfer, park and pick up calls, to conference multiple callers, and to provide caller ID information. Telephony applications such as voice mail and auto attendant may be implemented by application software using the PBX as a network telephony services provider.
Referring to
The control processor 221 may include buffer storage and control logic to convert media streams from one format to another, if necessary, between the trunk interface 217 and local network. The trunk interface 217 provides interconnection with the trunk circuits of the PSTN 203. The local network interface 219 provides conventional software and circuitry to enable the telephony server 207 to access the local network. The buffer RAM and control logic implement efficient transfer of media streams between the trunk interface 217, the telephony server 207, the digital signal processor 225, and the local network interface 219.
The trunk interface 217 utilizes conventional telephony trunk transmission supervision and signaling protocols required to interface with the outside trunk circuits from the PSTN 203. The trunk lines carry various types of telephony signals such as transmission supervision and signaling, audio, fax, or modem data to provide plain old telephone service (POTS). In addition, the trunk lines may carry other communication formats such T1, ISDN or fiber service to provide telephony or multimedia data images, video, text or audio.
The control processor 221 manages real-time telephony event handling pertaining to the telephone trunk line interfaces, including managing the efficient use of digital signal processor resources for the detection of caller ID, DTMF, call progress and other conventional forms of signaling found on trunk lines. The control processor 221 also manages the generation of telephony tones for dialing and other purposes, and controls the connection state, impedance matching, and echo cancellation of individual trunk line interfaces on the multi-port PSTN module 223.
Preferably, conventional PBX signaling is utilized between trunk and station, or station and station, such that data is translated into network messages that convey information relating to real-time telephony events on the network, or instructions to the network adapters of the stations to generate the appropriate signals and behavior to support normal voice communication, or instructions to connect voice media streams using standard connections and signaling protocols. Network messages are sent from the control processor 221 to the telephony server 207 to notify the PBX software in the telephony server 207 of real-time telephony events on the attached trunk lines. Network messages are received from the PBX Switch 205 to implement telephone call supervision and may control the set-up and elimination of media streams for voice transmission.
The local network interface 219 includes conventional circuitry to interface with the local network. The specific circuitry is dependent on the signal protocol utilized in the local network. In one embodiment, the local network may be a local area network (LAN) utilizing IP telephony. IP telephony integrates audio and video stream control with legacy telephony functions and may be supported through the H.323 protocol. H.323 is an International Telecommunication Union-Telecommunications protocol used to provide voice and video services over data networks. H.323 permits users to make point-to-point audio and video phone calls over a local area network. IP telephony systems or VoIP can be integrated with the public telephone system through a local network interface 219, such as an IP/PBX-PSTN gateway, thereby allowing a user to place telephone calls from an enabled computer. For example, a call from an IP telephony client to a conventional telephone would be routed on the LAN to the IP/PBX-PSTN gateway. The IP/PBX-PSTN gateway translates H.323 protocol to conventional telephone protocol and routes the call over the conventional telephone network to its destination. Conversely, an incoming call from the PSTN 203 is routed to the IP/PBX-PSTN gateway and translates the conventional telephone protocol to H.323 protocol.
As noted above, PBX trunk control messages are transmitted from the telephony server 207 to the control processor 221 of the multi-port PSTN. In contrast, network messages containing media streams of digital representations of real-time voice are transmitted between the trunk interface 217 and local network interface 219 using the digital signal processor 225. The digital signal processor 225 may include buffer storage and control logic. Preferably, the buffer storage and control logic implement a first-in-first-out (FIFO) data buffering scheme for transmitting digital representations of voice audio between the local network to the trunk interface 217. It is noted that the digital signal processor 225 may be integrated with the control processor 221 on a single microprocessor.
The digital signal processor 225 can include a coder/decoder (CODEC) connected to the control processor 221. The CODEC may be a type TCM29c13 integrated circuit made by Texas Instruments, Inc. In one embodiment, the digital signal processor 225 receives an analog or digital voice signal from a station within the network or from the trunk lines of the PSTN 203. The CODEC converts the analog voice signal into in a digital from, such as digital data packets. It should be noted that the CODEC is not used when connection is made to digital lines and devices. From the CODEC, the digital data is transmitted to the digital signal processor 225 where telephone functions take place. The digital data is then passed to the control processor 221 which accumulates the data bytes from the digital signal processor 225. It is preferred that the data bytes are stored in a first-in-first-out (FIFO) memory buffer until there is sufficient data for one data packet to be sent according to the particular network protocol of the local network. The specific number of bytes transmitted per data packet depends on network latency requirements as selected by one of ordinary skill in the art. Once a data packet is created, the data packet is sent to the appropriate destination on the local network through the local network interface 219. Among other information, the data packet contains a source address, a destination address, and audio data. The source address identifies the location the audio data originated from and the destination address identifies the location the audio data is to be sent.
The system permits bidirectional communication by implementing a return path allowing data from the local network, through the local network interface 219, to be sent to the PSTN 203 through the multi-line PSTN trunk interface 217. Data streams from the local network are received by the local network interface 219 and translated from the protocol utilized on the local network to the protocol utilized on the PSTN 203. The conversion of data may be performed as the inverse operation of the conversion described above relating to the IP/PBX-PSTN gateway. The data stream is restored in appropriate form suitable for transmission through to either a connected telephone 211, 215 or an interface trunk 217 of the PSTN module 223, or a digital interface such as a T1 line or ISDN. In addition, digital data may be converted to analog data for transmission over the PSTN 203.
Generally, the PBX switch of the present invention may be implemented with hardware or virtually. A hardware PBX has equipment located local to the user of the PBX system. The PBX switch 205 utilized may be a standard PBX manufactured by Cisco, Avaya, Siemens AG, NEC, Nortel, Toshiba, Fujitsu, Vodavi, Mitel, Ericsson, Panasonic, or InterTel. In contrast, a virtual PBX has equipment located at a central telephone service provider and delivers the PBX as a service over the PSTN 203.
The Recording Server
As illustrated in
Generally, hardware architecture is the same as that discussed above and shown in
In one preferred embodiment, the recording server 209 incorporates recording software for recording a telephone signal based on the source address and/or destination address of the signal. The method utilized by the recording server 209 depends on the communication protocol utilized on the communication lines to which the recording server 209 is coupled. The signal carrying audio data of a communication between at least two users can be an analog signal or a digital signal in the form of a network message. In one embodiment, the signal is an audio data transmitted according to a signaling protocol, for example the H.323 protocol described above.
One example of a recording method that may be used in the present system is illustrated in
Similar to the process described above, when the call center agent speaks, their voice is digitized (if needed) and converted into digital data packet 235 according to the communication protocol utilized on the local network. The data packet 235 comprises a source address identifying the address of the call center agent, a destination address identifying the address of the outside caller, and second constituent audio data comprising at least a portion of the call center agent's voice. The data packet 235 is received by the local network interface 219 and translated from the communication protocol utilized on the local network to the communication protocol utilized on the PSTN 203. The conversion of data can be performed as described above. The data packet 235 is restored in appropriate form suitable for transmission through to either a connected telephone 211, 215 or a interface trunk 217 of the PSTN module 223, or a digital interface such as a T1 line or ISDN. In addition, digital data can be converted to analog data for transmission through the PSTN.
The recording server 209 receives either a data packet 235 comprising: the source address identifying the address of the outside caller, a destination address identifying the address of the call center agent, and the first constituent audio data comprising at least a portion of the outside callers voice; or a data packet 235 comprising a source address identifying the address of the call center, a destination address identifying the address of the outside caller, and second constituent audio data comprising at least a portion of the customer's agent voice. It is understood by one of ordinary skill in the art that the recording server 209 is programmed to identify the communication protocol utilized by the local network and extract the audio data within the data packet 235. In one embodiment, the recording server 209 can automatically identify the utilized communication protocol from a plurality of communication protocols. The plurality of communication protocols can be stored in local memory or accessed from a remote database.
The recording server 209 comprises recording software to record the communication session between the outside caller and a call center agent in a single data file in a stereo format. The first data file 241 has at least a first audio track 237 and a second audio track 237. Once a telephone connection is established between an outside caller and a call center agent, the recording software creates a first data file 241 to record the communication between the outside caller and the call center agent. It is contemplated that the entire communication session or a portion of the communication session can be recorded.
Upon receiving the data packet 235, the recording server 209 determines whether to record the audio data contained in the data packet 235 in either the first audio track 237 or the second audio track 239 of the first data file 241 as determined by the source address, destination address, and/or the audio data contained within the received data packet 235. Alternatively, two first data files can be created, wherein the first audio track is recorded to the one of the first data file and the second audio track is recorded to the second first data file. In one embodiment, if the data packet 235 comprises a source address identifying the address of the outside caller, a destination address identifying the address of the call center agent, and first constituent audio data, the first constituent audio data is recorded on the first audio track 237 of the first data file 241. Similarly, if the data packet 235 comprises a source address identifying the address of the call center agent, a destination address identifying the address of the outside caller, and second constituent audio data, the second constituent audio data is recorded on the second audio track 239 of the first data file 241. It should be noted the first and second constituent audio data can be a digital or analog audio waveform or a textual translation of the digital or analog waveform. The recording process is repeated until the communication link between the outside caller and call center agent is terminated.
As noted above, the recording server 209 can be connected to the trunk lines of the PSTN 203 as seen in
Once the communication link is terminated, the recording server 209 ends the recording session and stores the single data file having the recorded communication session in memory. After the first data file is stored in memory, the recording server 209 can extract either or both of the first constituent audio data from the first audio track of the first data file or the second constituent audio data from the second audio track of the first data file. In one embodiment, the first constituent audio data extracted from the first audio track is stored in a first constituent data file 243. Similarly, the second constituent audio data extracted from the second audio track can be stored in a second constituent data file 245. The first and second constituent data files 243, 245 can be compressed before being stored in memory. The extracted data can be in the form of a digital or analog audio waveform or can be a textual translation of the first or second constituent audio data. It is contemplated that either or both of the first constituent data file 243 or the second constituent data file 245 can be further analyzed or processed. For example, among other processes and analyses, filtering techniques can be applied to the first constituent data file and/or the second constituent data file. Moreover, event data, such as silence periods or over-talking, can be identified through analysis techniques known to those skilled in the art.
Further, as illustrated in
It is known in the art that “cradle-to-grave” recording may be used to record all information related to a particular telephone call from the time the call enters the contact center to the later of: the caller hanging up or the agent completing the transaction. All of the interactions during the call are recorded, including interaction with an IVR system, time spent on hold, data keyed through the caller's key pad, conversations with the agent, and screens displayed by the agent at his/her station during the transaction.
As shown in
It is contemplated by the present invention that mining and analysis in accordance with the present invention can be applied directly to voice data configured in audio format. Preferably, however, the voice data to be mined and analyzed is first translated into a text file. It will be understood by those of skill that the translation of audio to text and subsequent data mining may be accomplished by systems known in the art. For example, the method of the present invention may employ software such as that sold under the brand name Audio Mining SDK by Scansoft, Inc., or any other audio mining software suitable for such applications.
In one embodiment of the present invention, the voice data is mined for behavioral signifiers associated with a linguistic-based psychological behavioral model. In particular, the voice data is searched for text-based keywords (i.e., behavioral signifiers) relevant to a predetermined psychological behavioral model. One preferred such psychological behavioral model and behavioral analysis is described in commonly assigned U.S. patent application Ser. No. 11/131,486, which is incorporated herein by reference.
As shown in
In addition to the behavioral assessment of voice data, the method of the present invention may also employ distress analysis of voice data. Linguistic-based distress analysis is preferably conducted on both the textual translation of the voice data and the audio file containing voice data. Accordingly, linguistic-based analytic tools as well as non-linguistic analytic tools may be applied to the audio file. For example, one of skill in the art may apply spectral analysis to the audio file voice data while applying a word spotting analytical tool to the text file. Linguistic-based word spotting analysis and known algorithms for identifying distress can be applied to the textual translation of the communication. Preferably, the resultant distress data is also stored in the customer history database 302 for subsequent analysis of the communication and use in call routing.
It is also often desirable to analyze non-linguistic phone events occurring during the course of a conversation such as hold times, transfers, “dead-air,” overtalk, etc. Accordingly, in one embodiment of the present invention, phone event data resulting from analysis of these non-linguistic events is generated. As shown in
According to a preferred embodiment of the invention shown in
Generally, call assessment data 58 is comprised of behavioral assessment data 55, phone event data 70 and distress assessment data 72. The resultant call assessment data 58 may be subsequently viewed to provide an objective assessment or rating of the quality, satisfaction or appropriateness of the interaction between an agent and a customer. The call assessment data 58 may generate resultant data that is also useful for characterizing the success of the interaction between a customer and an agent and for determining desired routing of subsequent phone calls from the same customer.
According to the present invention, the system can employ a word-spotting algorithm that categorizes communications into particular types or categories based on words used in the communication. In one embodiment, each communication is automatically categorized as a service call type (e.g., a caller requesting assistance for servicing a previously purchased product), a retention call type (e.g., a caller expressing indignation, or having a significant life change event), or a sales call type (e.g., a caller purchasing an item offered by a seller). In one scenario, it may be desirable to analyze all of the “sales call type” communications received by a contact center during a predetermined time frame. In that case, the user would analyze each of the sales call type communications from that time period by applying the predetermined psychological behavioral model to each such communication.
Alternatively, the communications may be grouped according to customer categories, and the user may desire to analyze the communications between the call center and communicants within a particular customer category. For example, it may be desirable for a user to perform an analysis only of a “platinum customers” category, consisting of high end investors, or a “high volume distributors” category comprised of a user's best distributors.
As shown in
Thus, according to one embodiment of the present invention, the system includes and IVR system 206 a telephone switch 205, a recording server 209 and a routing server 300. The IVR system 206 is configured to receive telephonic communications and caller commands. The IVR system 206 is also configured to communicate with a telephone switch 205 and a routing server 300. The telephone switch 205 is configured to route a telephonic communication to one of a plurality of communication destination addresses.
According to one embodiment of the present invention, the recording server 209 is operably coupled, and in operable communication with the routing server 300. As discussed above, the recording server 209 is configured to record a telephonic communication between a caller and a customer service representative. The recording server 209 uses logic to perform the recording functions as described above. As previously noted, the logic can be in the form of hardwired logic gates or software. Thus, logic is provided to generate behavioral assessment data as discussed above. According to one embodiment shown in
The Routing Server
As illustrated in
Generally, hardware architecture is the same as that discussed above and shown in
As noted above, the routing server 300 incorporates software for receiving a transmitted customer identifier. The customer identifier can be received from an IVR, directly from the PSTN 203 or from other input device. The routing server 300 also incorporates software for sending instructions for routing a telephonic communication to an appropriate communication destination address based on certain criteria. More particularly, the routing server 300 is configured to receive a customer identifier. It will be understood that the customer identifier may be generated by any conventional means, including but not limited to, automatic number identification (ANI), voice portal prompted variables, IP addresses or any other suitable identifiers.
The routing server 300 determines whether the received customer identifier corresponds to a stored customer identifier in a customer history database 302. As discussed herein, the customer history database 302 is configured to store historic data. That historic data is associated with at least one recorded telephonic communication having a corresponding stored customer identifier. The stored historic data is comprised of at least one of the following: call type data, distress assessment data, behavioral assessment data, call preference data and customer profile.
The routing server 300 also analyzes the historic data corresponding to the received customer identifier and the stored customer identifier. The telephonic communication is associated with one of a plurality of communication destination addresses. This association step is based on the analysis of the historic data. Finally, the routing sever 300 transmits a signal identifying the associated communication destination address. This signal may be transmitted directly to a switch mechanism or through CTI.
According to one embodiment of the present invention, the routing server 300 compares a stored customer profile with a customer service representative profile. In this manner, the system or software of the present invention can include in a call routing analysis consideration of a scored comparison of the compatibility of the customer with the customer service representative. The customer profile score can be generated as a result of an analysis of various one or ones of demographic identifiers associated with a customer and a customer service representative. Accordingly, in one preferred embodiment in which the customer profile score is based on a personality (derived from the behavioral assessment data) and gender match, the scoring may be allocated according to the following scale in Table 1:
TABLE 1
Customer/CSR Match
Score
Strong Personality Match, Same Gender
1
Strong Personality Match, Different Gender
2
Moderate Personality Match, Same Gender
3
Moderate Personality Match, Different Gender
4
Weak Personality Match, Same Gender
5
Weak Personality Match, Different Gender
6
The routing server 300 can be, according to one embodiment, configured to transmit an audible message based on the association of the telephonic communication with a communication destination address. Accordingly, it is contemplated that upon selection of an appropriate communication destination address to which a telephonic communication will be routed, the system indicates to the customer the ultimate destination of the telephonic communication. It will be understood that the audible message is not limited to an indication of the communication destination address, but instead may communicate other information relating to the analysis of the customer history database.
It is also useful to gather an understanding of the number of transactions that a customer associated with a customer identifier has completed in IVR or another interface (such as a web interface). In particular, such information can be useful in determining whether to route a customer telephonic communication through IVR or directly to a customer service representative agent. Thus, according to one embodiment of the present invention, the system further determines the number of previously completed transactions in IVR corresponding to a received customer identifier.
According to one embodiment of the invention, the system is further configured to generate a customer route record. The route record will include relevant information about the caller and the call activity. For example, the route record may include information relating to the call frequency, call type, the customer profile, the customer behavioral assessment data and distress assessment data. It will be understood that the route record can include other data relevant to the customer's interaction with a customer service representative agent or call center.
Using information from the customer route record, the system can generate audible messages appropriate for the customer during subsequent interactions. For example, an audible message relating to call type may be generated that states, “if you are calling about your previous [call type] on [date], please press 1.” As another example, an audible message relating to a customers previous distress assessment data may be generated to state, “we understand you may have had an unsatisfactory experience in a call on [date]; recognizing your importance to us, we are routing your call to a specialized group of customer service representatives.”
Thus, the present invention allows for automatic call routing based on past indicators and analytic attributes. The following chart (Table 2) outlines exemplary experiences of a customer during an interaction as a result of various analytic outputs.
TABLE 2
Analytic Attribute
Analysis
Message
Routing
Self Service
X opt outs over Y
“We understand your
Bypass IVR and
Preference Through
period of time
preference not to use
route directly to a
IVR
our voice responsive
customer service
system, so we are
representative
routing you directly
to one of our customer
service representatives”
Call Type
Caller calls back
“If you are calling
Route to a
within x days of a
about your previous
customized IVR
scored call
[insert call type] on
script
[insert date], please
press 1”
Level of Distress
Caller calls back
“We understand you
Bypass IVR and rout
within x days after a
may have had an
directly to
scored call with high
unsatisfactory
specialized customer
distress assessment
experience in a call
service representative
values and no
on [insert date];
resolution
recognizing your
importance to us, we
are routing your call to
a specialized group of
customer service
representatives.”
Profile Match
Match score based
No message
Attempt to route to
on personality and
compatible customer
gender
service representative
While the specific embodiments have been illustrated and described, numerous modifications come to mind without significantly departing from the spirit of the invention, and the scope of protection is only limited by the scope of the accompanying claims.
Conway, Kelly, Gustafson, David, Brown, Douglas, Danson, Christopher
Patent | Priority | Assignee | Title |
10642889, | Feb 20 2017 | GONG IO LTD | Unsupervised automated topic detection, segmentation and labeling of conversations |
11089162, | May 28 2020 | NICE LTD.; NICE LTD | Dynamic metric optimization in predictive behavioral routing |
11276407, | Apr 17 2018 | GONG IO LTD | Metadata-based diarization of teleconferences |
11553090, | May 28 2020 | NICE LTD. | Dynamic metric optimization in predictive behavioral routing |
9826092, | Aug 05 2015 | INTUIT INC. | Method and system for call queue messaging |
Patent | Priority | Assignee | Title |
3851121, | |||
3855416, | |||
3855418, | |||
3971034, | Feb 09 1971 | Dektor Counterintelligence and Security, Inc. | Physiological response analysis method and apparatus |
4093821, | Jun 14 1977 | WELSH, JOHN GREEN | Speech analyzer for analyzing pitch or frequency perturbations in individual speech pattern to determine the emotional state of the person |
4142067, | Jun 14 1977 | WELSH, JOHN GREEN | Speech analyzer for analyzing frequency perturbations in a speech pattern to determine the emotional state of a person |
4377158, | Nov 14 1977 | Ernest H., Friedman | Method and monitor for voice fluency |
4490840, | Mar 30 1982 | Oral sound analysis method and apparatus for determining voice, speech and perceptual styles | |
4694483, | Jun 02 1986 | Innings Telecom Inc. | Computerized system for routing incoming telephone calls to a plurality of agent positions |
4811131, | Sep 17 1987 | NICE SYSTEMS, INC | Method and apparatus for scanning and recovering information from a record medium |
4827461, | Sep 17 1987 | NICE SYSTEMS, INC | Universal telecommunications audio coupling device |
4835630, | Sep 17 1987 | NICE SYSTEMS, INC | Modular configurable communications recorder |
4851937, | Sep 17 1987 | NICE SYSTEMS, INC | Apparatus for securing access to a communications recorder |
4853952, | Dec 03 1987 | NICE SYSTEMS, INC | Method and apparatus for visual indication of stored voice signals |
4864432, | Sep 17 1987 | NICE SYSTEMS, INC | Signal monitoring system with failsafe back-up capability |
4873592, | Sep 17 1987 | NICE SYSTEMS, INC | Pinch roller drive engagement mechanism for a communications monitor and logger |
4888652, | Sep 17 1987 | NICE SYSTEMS, INC | Communications recorder having a unique identification code and secure method and apparatus for changing same |
4891835, | Apr 30 1986 | NICE SYSTEMS, INC | Method and device for recording and replaying audio communications |
4893197, | Dec 29 1988 | NICE SYSTEMS, INC | Pause compression and reconstitution for recording/playback apparatus |
4958367, | Sep 17 1987 | NICE SYSTEMS, INC | Multichannel communications recorder having the capability to display channel activity and status |
5003575, | Dec 24 1987 | NICE SYSTEMS, INC | Method and apparatus for storing and forwarding voice signals with controlled access |
5008835, | Dec 28 1987 | NICE SYSTEMS, INC | Method and apparatus for storing and forwarding voice signals and generating replies |
5148483, | Aug 11 1983 | Method for detecting suicidal predisposition | |
5148493, | Sep 19 1988 | Loudspeaker structure | |
5206903, | Dec 26 1990 | AVAYA Inc | Automatic call distribution based on matching required skills with agents skills |
5216744, | Mar 21 1991 | NICE SYSTEMS, INC | Time scale modification of speech signals |
5239460, | Jan 03 1991 | AVAYA Inc | Arrangement for motivating telemarketing agents |
5274738, | Dec 31 1991 | NICE SYSTEMS, INC | Modular digital voice processing system |
5299260, | Nov 20 1990 | MPL APPLICATIONS, L L C | Telephone call handling system |
5339203, | Dec 21 1993 | NICE SYSTEMS, INC | Apparatus and method of retrieving a message from a digital audio tape |
5396371, | Dec 21 1993 | NICE SYSTEMS, INC | Endless loop voice data storage and retrievable apparatus and method thereof |
5446603, | Dec 21 1993 | NICE SYSTEMS, INC | Method of retrieving messages at selected times from a digital audio tape |
5448420, | Aug 02 1993 | NICE SYSTEMS, INC | Method and a system for storing audio |
5457782, | Dec 31 1991 | NICE SYSTEMS, INC | Digital signal processing circuit board having use for voice processing system |
5467391, | Oct 21 1992 | AVAYA Inc | Integrated intelligent call blending |
5535256, | Sep 22 1993 | e-talk Corporation | Method and system for automatically monitoring the performance quality of call center service representatives |
5559875, | Jul 31 1995 | Cisco Technology, Inc | Method and apparatus for recording and retrieval of audio conferences |
5561707, | Jul 10 1985 | RONALD A KATZ TECHNOLOGY LICENSING, L P | Telephonic-interface statistical analysis system |
5577254, | Jun 29 1993 | Bull HN Information Systems Inc.; BULL HN INFORMATION SYSTEMS INC | Method and apparatus for capturing the presentation of an interactive user session, monitoring, replaying and joining sessions |
5590171, | Jul 07 1994 | BELLSOUTH INTELLECTUAL PROPERTY GROUP, INC ; Bellsouth Intellectual Property Corporation | Method and apparatus for communications monitoring |
5590188, | Nov 09 1992 | Tekelec | Rules-based call routing |
5594790, | Jan 14 1993 | Wilmington Trust, National Association, as Administrative Agent | Method for selecting and controlling the automatic dialing of a call record campaign |
5594791, | Oct 05 1994 | Wilmington Trust, National Association, as Administrative Agent | Method and apparatus for providing result-oriented customer service |
5621789, | Sep 01 1993 | e-talk Corporation | Method and system for integrating a plurality of call center agent performance enhancement modules |
5633916, | Dec 30 1994 | Unisys Corporation | Universal messaging service using single voice grade telephone line within a client/server architecture |
5646981, | Jan 10 1995 | AVAYA Inc | Arrangement for automated delivery of voice-mail messages for software processes |
5696811, | Sep 22 1993 | e-talk Corporation | Method and system for automatically monitoring the performance quality of call center service representatives |
5710884, | Mar 29 1995 | Intel Corporation | System for automatically updating personal profile server with updates to additional user information gathered from monitoring user's electronic consuming habits generated on computer during use |
5712954, | Aug 23 1995 | Wilmington Trust, National Association, as Administrative Agent | System and method for monitoring audio power level of agent speech in a telephonic switch |
5717742, | Jun 22 1993 | AVAYA Inc | Electronic mail system having integrated voice messages |
5721827, | Oct 02 1996 | PERSONAL AUDIO LLC | System for electrically distributing personalized information |
5724420, | Sep 28 1994 | Wilmington Trust, National Association, as Administrative Agent | Automatic call distribution with answer machine detection apparatus and method |
5732216, | Oct 02 1996 | PERSONAL AUDIO LLC | Audio message exchange system |
5734890, | Sep 12 1994 | Gartner Group | System and method for analyzing procurement decisions and customer satisfaction |
5737405, | Jul 25 1995 | Wilmington Trust, National Association, as Administrative Agent | Apparatus and method for detecting conversation interruptions in a telephonic switch |
5757904, | Feb 05 1996 | AVAYA Inc | Context-sensitive presentation of information to call-center agents |
5764728, | Jun 28 1996 | Mitel Networks Corporation | Silent monitoring agent IDs |
5768513, | Jun 27 1996 | AT&T Corp | Multimedia messaging using the internet |
5784452, | Jun 01 1994 | Wilmington Trust, National Association, as Administrative Agent | Telephony call center with agent work groups |
5790798, | May 31 1996 | CREDIT SUISSE AS ADMINISTRATIVE AGENT | Method and apparatus for simultaneously monitoring computer user screen and telephone activity from a remote location |
5799063, | Aug 15 1996 | BENHOV GMBH, LLC | Communication system and method of providing access to pre-recorded audio messages via the Internet |
5809250, | Oct 23 1996 | Intel Corporation | Methods for creating and sharing replayable modules representive of Web browsing session |
5815551, | Jul 10 1985 | Ronald A. Katz Technology Licensing, LP | Telephonic-interface statistical analysis system |
5818907, | Sep 22 1993 | e-talk Corporation | Method and system for automatically monitoring the performance quality of call center service representatives |
5818909, | Sep 27 1996 | Wilmington Trust, National Association, as Administrative Agent | Agent speech detector system and method for use with a telephonic switch |
5819005, | Aug 03 1993 | NICE SYSTEMS, INC | Modular digital recording logger |
5822306, | Apr 12 1996 | British Telecommunications public limited company | Multimedia switching apparatus |
5822400, | Aug 19 1996 | Wilmington Trust, National Association, as Administrative Agent | Call record scheduling system and method |
5822410, | Jan 11 1996 | BANK OF AMERICA, N A | Churn amelioration system and method therefor |
5822744, | Jul 15 1996 | Consumer comment reporting apparatus and method | |
5825869, | Apr 24 1995 | UNIFY, INC | Call management method and system for skill-based routing |
5828730, | Jan 19 1995 | CATUOGNO COURT REPORTING SERVICES, INC ; CATUOGNO COURT REPORTING AND STEN-TEL TRANSCRIPTION, INC | Method and apparatus for recording and managing communications for transcription |
5841966, | Apr 04 1996 | ADVANCED MESSAGING TECHNOLOGIES, INC | Distributed messaging system |
5845290, | Dec 01 1995 | Xaxon R&D Ltd. | File recording support apparatus and file recording support system for supporting recording of file on home page on internet and intranet |
5848396, | Apr 26 1996 | Conversant, LLC | Method and apparatus for determining behavioral profile of a computer user |
5854832, | Jun 26 1995 | Wilmington Trust, National Association, as Administrative Agent | Monitoring system and method used in automatic call distributor for timing incoming telephone calls |
5857175, | Aug 11 1995 | Catalina Marketing Corporation | System and method for offering targeted discounts to customers |
5859898, | Sep 17 1996 | Verizon Patent and Licensing Inc | Messaging architecture supporting digital and analog media |
5864616, | Jun 28 1996 | Intel Corporation | System and method for providing call statistics in real time |
5870549, | Apr 28 1995 | ADVANCED MESSAGING TECHNOLOGIES, INC | Systems and methods for storing, delivering, and managing messages |
5875436, | Aug 27 1996 | Xylon LLC | Virtual transcription system |
5878384, | Mar 29 1996 | RAKUTEN, INC | System and method for monitoring information flow and performing data collection |
5884032, | Sep 25 1995 | Pragmatus Telecom, LLC | System for coordinating communications via customer contact channel changing system using call centre for setting up the call between customer and an available help agent |
5884262, | Mar 28 1996 | Verizon Patent and Licensing Inc | Computer network audio access and conversion system |
5894512, | Jul 26 1996 | NCR Corporation | Method and apparatus for routing voice and video calls to a group of agents |
5897616, | Jun 11 1997 | IBM Corporation | Apparatus and methods for speaker verification/identification/classification employing non-acoustic and/or acoustic models and databases |
5903641, | Jan 28 1997 | AVAYA Inc | Automatic dynamic changing of agents' call-handling assignments |
5910107, | Dec 29 1993 | Clinical Decision Support, LLC | Computerized medical diagnostic and treatment advice method |
5911776, | Dec 18 1996 | Unisys Corporation | Automatic format conversion system and publishing methodology for multi-user network |
5914951, | Apr 16 1996 | Lucent Technologies Inc | System and method for controlling and monitoring communication between customers and customer service representatives |
5915001, | Nov 14 1996 | Nuance Communications | System and method for providing and using universally accessible voice and speech data files |
5915011, | Feb 19 1997 | Genesys Telecommunications Laboratories, Inc. | Statistically-predictive and agent-predictive call routing |
5923746, | Sep 18 1996 | Wilmington Trust, National Association, as Administrative Agent | Call recording system and method for use with a telephonic switch |
5926538, | Feb 11 1997 | Genesys Telecommunications Laboratories, Inc | Method for routing calls to call centers based on statistical modeling of call behavior |
5930764, | Oct 17 1995 | CITIBANK, N A | Sales and marketing support system using a customer information database |
5937029, | Aug 02 1996 | NICE LTD | Data logging system employing M[N +1] redundancy |
5940476, | Jun 28 1996 | ZARBAÑA DIGITAL FUND LLC | System and method for identifying an unidentified caller |
5940494, | Jul 12 1995 | Wilmington Trust, National Association, as Administrative Agent | Data display system and method for displaying real-time data relating to an automatic call distributor |
5940792, | Aug 18 1994 | British Telecommunications public limited company | Nonintrusive testing of telecommunication speech by determining deviations from invariant characteristics or relationships |
5943416, | Feb 17 1998 | Genesys Telecommunications Laboratories, Inc | Automated survey control routine in a call center environment |
5945989, | Mar 25 1997 | VOICECOM TELECOMMUNICATIONS, LLC | Method and apparatus for adding and altering content on websites |
5946375, | Sep 22 1993 | e-talk Corporation | Method and system for monitoring call center service representatives |
5946388, | Feb 06 1997 | Inventor Holdings, LLC | Method and apparatus for priority queuing of telephone calls |
5951643, | Oct 06 1997 | NCR Voyix Corporation | Mechanism for dependably organizing and managing information for web synchronization and tracking among multiple browsers |
5953389, | Nov 16 1993 | Verizon Patent and Licensing Inc | Combination system for provisioning and maintaining telephone network facilities in a public switched telephone network |
5953406, | May 20 1997 | Verizon Patent and Licensing Inc | Generalized customer profile editor for call center services |
5964839, | Mar 29 1996 | RAKUTEN, INC | System and method for monitoring information flow and performing data collection |
5978465, | May 05 1997 | Wilmington Trust, National Association, as Administrative Agent | Method and apparatus for allocating resources in a call center |
5987415, | Mar 23 1998 | Microsoft Technology Licensing, LLC | Modeling a user's emotion and personality in a computer user interface |
5991735, | Apr 26 1996 | Conversant, LLC | Computer program apparatus for determining behavioral profile of a computer user |
6003013, | May 24 1996 | HARRAH S OPERATING COMPANY, INC | Customer worth differentiation by selective activation of physical instrumentalities within the casino |
6006188, | Mar 19 1997 | DENDRITE, INC | Speech signal processing for determining psychological or physiological characteristics using a knowledge base |
6009163, | Jul 03 1997 | Qwest Communications International Inc | Method and system for regulating incoming calls from multiple points of origination |
6014647, | Jul 08 1997 | FMR LLC | Customer interaction tracking |
6021428, | Sep 15 1997 | Genesys Telecommunications Laboratories, Inc. | Apparatus and method in improving e-mail routing in an internet protocol network telephony call-in-center |
6026397, | May 22 1996 | Hewlett Packard Enterprise Development LP | Data analysis system and method |
6029153, | Mar 15 1996 | CITIBANK, N A | Method and system for analyzing and handling the customer files of a financial institution |
6058163, | Sep 22 1993 | e-talk Corporation | Method and system for monitoring call center service representatives |
6064731, | Oct 29 1998 | AVAYA Inc | Arrangement for improving retention of call center's customers |
6078891, | Nov 24 1997 | Method and system for collecting and processing marketing data | |
6108711, | Sep 11 1998 | Genesys Telecommunications Laboratories, Inc | Operating system having external media layer, workflow layer, internal media layer, and knowledge base for routing media events between transactions |
6128380, | Aug 24 1998 | UNIFY GMBH & CO KG | Automatic call distribution and training system |
6151571, | Aug 31 1999 | Accenture Global Services Limited | System, method and article of manufacture for detecting emotion in voice signals through analysis of a plurality of voice signal parameters |
6173053, | Apr 09 1998 | AVAYA Inc | Optimizing call-center performance by using predictive data to distribute calls among agents |
6185534, | Mar 23 1998 | Microsoft Technology Licensing, LLC | Modeling emotion and personality in a computer user interface |
6195426, | Dec 11 1997 | AT&T Corp | Service providing customized information to queuing customers |
6205215, | Jul 01 1998 | Verizon Patent and Licensing Inc | Method of and system for providing network-initiated multilingual operator assistance |
6212502, | Mar 23 1998 | Microsoft Technology Licensing, LLC | Modeling and projecting emotion and personality from a computer user interface |
6243684, | Feb 19 1999 | USADA, Inc. | Directory assistance system and method utilizing a speech recognition system and a live operator |
6246752, | Jun 08 1999 | NICE SYSTEMS, INC | System and method for data recording |
6249570, | Jun 08 1999 | NICE SYSTEMS, INC | System and method for recording and storing telephone call information |
6252946, | Jun 08 1999 | NICE SYSTEMS, INC | System and method for integrating call record information |
6252947, | Jun 08 1999 | NICE SYSTEMS, INC | System and method for data recording and playback |
6275806, | Aug 31 1999 | Accenture Global Services Limited | System method and article of manufacture for detecting emotion in voice signals by utilizing statistics for voice signal parameters |
6286030, | Jul 10 1998 | International Business Machines Corporation | Systems and methods for recording and visually recreating sessions in a client-server environment |
6289094, | Feb 10 1997 | Genesys Telecommunications Laboratories, Inc. | External positivistic forward transfer in call routing systems |
6295353, | Oct 07 1998 | AVAYA Inc | Arrangement for efficiently updating status information of a network call-routing system |
6330025, | May 10 1999 | MONROE CAPITAL MANAGEMENT ADVISORS, LLC | Digital video logging system |
6334110, | Mar 10 1999 | NCR Voyix Corporation | System and method for analyzing customer transactions and interactions |
6345094, | Jun 08 1998 | Wilmington Trust, National Association, as Administrative Agent | Inbound/outbound call record processing system and method |
6353810, | Aug 31 1999 | Accenture Global Services Limited | System, method and article of manufacture for an emotion detection system improving emotion recognition |
6363145, | Aug 17 1998 | UNIFY GMBH & CO KG | Apparatus and method for automated voice analysis in ACD silent call monitoring |
6363346, | Dec 22 1999 | TERADATA US, INC | Call distribution system inferring mental or physiological state |
6366658, | May 07 1998 | Verizon Patent and Licensing Inc | Telecommunications architecture for call center services using advanced interactive voice responsive service node |
6366666, | Dec 16 1998 | AVAYA Inc | Adjustment of call selection to achieve target values for interval-based performance metrics in a call center |
6370574, | May 31 1996 | CREDIT SUISSE AS ADMINISTRATIVE AGENT | Method and apparatus for simultaneously monitoring computer user screen and telephone activity from a remote location |
6389132, | Oct 13 1999 | AVAYA Inc | Multi-tasking, web-based call center |
6392666, | Jul 21 1999 | AVAYA Inc | Telephone call center monitoring system allowing real-time display of summary views and interactively defined detailed views |
6404857, | Sep 26 1996 | CREDIT SUISSE AS ADMINISTRATIVE AGENT | Signal monitoring apparatus for analyzing communications |
6404883, | Jun 28 1996 | Intel Corporation | System and method for providing call statistics in real time |
6411687, | Nov 11 1997 | Mitel Networks Corporation | Call routing based on the caller's mood |
6411708, | Jun 02 1998 | Wilmington Trust, National Association, as Administrative Agent | System and method for purging a call list |
6424709, | Mar 22 1999 | Wilmington Trust, National Association, as Administrative Agent | Skill-based call routing |
6427137, | Aug 31 1999 | Accenture Global Services Limited | System, method and article of manufacture for a voice analysis system that detects nervousness for preventing fraud |
6434230, | Feb 02 1999 | AVAYA Inc | Rules-based queuing of calls to call-handling resources |
6434231, | Feb 10 1997 | Genesys Telecommunications Laboratories, Inc. | Virtualized computer telephony integrated link for enhanced functionality in call centers |
6446119, | Aug 07 1997 | TUMBLEWEED HOLDINGS LLC | System and method for monitoring computer usage |
6466663, | Sep 30 1997 | Verizon Patent and Licensing Inc | Monitoring system client for a call center |
6480601, | Nov 12 1999 | Wilmington Trust, National Association, as Administrative Agent | Voice and data transfer from outbound dialing to inbound ACD queue |
6480826, | Aug 31 1999 | Accenture Global Services Limited | System and method for a telephonic emotion detection that provides operator feedback |
6490560, | Mar 01 2000 | Nuance Communications, Inc | Method and system for non-intrusive speaker verification using behavior models |
6510220, | May 31 1996 | CREDIT SUISSE AS ADMINISTRATIVE AGENT | Method and apparatus for simultaneously monitoring computer user screen and telephone activity from a remote location |
6535601, | Aug 27 1998 | AVAYA Inc | Skill-value queuing in a call center |
6542156, | Jul 21 1999 | AVAYA Inc | Telephone call center monitoring system with integrated three-dimensional display of multiple split activity data |
6542602, | Feb 14 2000 | Nice Systems Ltd. | Telephone call monitoring system |
6553112, | Jul 28 1997 | Fujitsu Limited | Call center system |
6556976, | Nov 10 1999 | WASTEBID COM, INC | Method and system for e-commerce and related data management, analysis and reporting |
6567504, | Jun 20 1994 | CASSIDIAN COMMUNICATIONS, INC | Automated calling system with database updating |
6567787, | Aug 17 1998 | PayPal, Inc | Method and apparatus for determining whether a verbal message was spoken during a transaction at a point-of-sale terminal |
6574605, | Nov 17 1998 | CITIBANK, N A | Method and system for strategic services enterprise workload management |
6598020, | Sep 10 1999 | UNILOC 2017 LLC | Adaptive emotion and initiative generator for conversational systems |
6600821, | Oct 26 1999 | Wilmington Trust, National Association, as Administrative Agent | System and method for automatically detecting problematic calls |
6601031, | Jan 13 2000 | GEMALTO SA; GEMATLO SA; Alcatel Lucent | Speech recognition front end controller to voice mail systems |
6611498, | Sep 26 1997 | Verizon Patent and Licensing Inc | Integrated customer web station for web based call management |
6628777, | Nov 16 1999 | INTRADIEM, INC | Method and system for scheduled delivery of training to call center agents |
6643622, | Feb 19 1999 | Data retrieval assistance system and method utilizing a speech recognition system and a live operator | |
6647372, | Dec 02 1999 | Forecourt Communications Group | Method and apparatus for using prior activities to improve the probability of completing transactions for a customer in a retail environment |
6658388, | Sep 10 1999 | UNILOC 2017 LLC | Personality generator for conversational systems |
6658391, | Dec 30 1999 | Strategic profiling | |
6662156, | Jan 27 2000 | Nuance Communications Austria GmbH | Speech detection device having multiple criteria to determine end of speech |
6665644, | Aug 10 1999 | International Business Machines Corporation | Conversational data mining |
6674447, | Dec 06 1999 | ORIDUS, INC | Method and apparatus for automatically recording snapshots of a computer screen during a computer session for later playback |
6691073, | Jun 18 1998 | CSR TECHNOLOGY INC | Adaptive state space signal separation, discrimination and recovery |
6697457, | Aug 31 1999 | Accenture Global Services Limited | Voice messaging system that organizes voice messages based on detected emotion |
6700972, | Aug 25 1999 | Raytheon BBN Technologies Corp | System and method for processing and collecting data from a call directed to a call center |
6711543, | May 30 2001 | CAMERONSOUND, LLC | Language independent and voice operated information management system |
6714642, | Jul 09 1999 | Bank One, Delaware | System and methods for call decisioning in a virtual call center integrating telephony with computers |
6721417, | Oct 14 1997 | Fujitsu Limited | Method and apparatus for controlling network automatic call distribution |
6721704, | Aug 28 2001 | Koninklijke Philips Electronics N.V. | Telephone conversation quality enhancer using emotional conversational analysis |
6724887, | Jan 24 2000 | VERINT AMERICAS INC | Method and system for analyzing customer communications with a contact center |
6728345, | Jun 08 1999 | NICE SYSTEMS, INC | System and method for recording and storing telephone call information |
6731307, | Oct 30 2000 | Koninklijke Philips Electronics N V | User interface/entertainment device that simulates personal interaction and responds to user's mental state and/or personality |
6731744, | Apr 27 1999 | Sprint Communications Company, L.P. | Call processing system and service control point for handling calls to a call center |
6735298, | Feb 10 1997 | Genesys Telecommunications Laboratoiries, Inc. | Call and data correspondence in a call-in center employing virtual restructuring for computer telephony integrated functionality |
6741697, | Mar 31 1998 | International Business Machines Corporation | Telephone call centre performance evaluation |
6744877, | Mar 08 1999 | AVAYA Inc | Method and system for enterprise service balancing |
6751297, | Dec 11 2000 | COGNYTE SOFTWARE LTD | Method and system for multimedia network based data acquisition, recording and distribution |
6757361, | Sep 26 1996 | CREDIT SUISSE AS ADMINISTRATIVE AGENT | Signal monitoring apparatus analyzing voice communication content |
6760414, | Dec 10 1997 | Keycorp | Personal computer banking system and method |
6760727, | Jul 30 1999 | CONCENTRIX CVG CUSTOMER MANAGEMENT DELAWARE LLC | System for customer contact information management and methods for using same |
6766012, | Oct 20 1999 | Wilmington Trust, National Association, as Administrative Agent | System and method for allocating agent resources to a telephone call campaign based on agent productivity |
6775372, | Jun 02 1999 | NICE SYSTEMS, INC | System and method for multi-stage data logging |
6782093, | Jun 27 2001 | CREDIT SUISSE AS ADMINISTRATIVE AGENT | Graphical method and system for visualizing performance levels in time-varying environment |
6785369, | Jun 08 1999 | NICE SYSTEMS, INC | System and method for data recording and playback |
6785370, | Jun 08 1999 | NICE SYSTEMS, INC | System and method for integrating call record information |
6788768, | Sep 13 1999 | MicroStrategy, Incorporated | System and method for real-time, personalized, dynamic, interactive voice services for book-related information |
6798876, | Dec 29 1998 | [24]7 AI, INC | Method and apparatus for intelligent routing of incoming calls to representatives in a call center |
6839671, | Dec 20 1999 | British Telecommunications public limited company | Learning of dialogue states and language model of spoken information system |
6842405, | Sep 30 1999 | NICE SYSTEMS, INC | Automatic selection of recording mode in portable digital audio recorder |
6853966, | Jun 03 1998 | SBC Technology Resources, Inc. | Method for categorizing, describing and modeling types of system users |
6864901, | Feb 11 2003 | Academia Sinica | Real-time screen recording system |
6865604, | Aug 26 1998 | STS SYSTEMS LTD | Method for extracting a computer network-based telephone session performed through a computer network |
6868392, | Jul 09 1999 | Fujitsu Limited | System and method for electronic shopping using an interactive shopping agent |
6870920, | Jun 02 1999 | Nuance Communications, Inc | System and method for multi-stage data logging |
6871229, | Aug 26 1998 | STS SYSTEMS LTD | Method for storing on a computer network a portion of a communication session between a packet source and a packet destination |
6880004, | Aug 26 1998 | STS SYSTEMS LTD | Method for restoring a portion of a communication session transmitted over a computer network |
6937706, | Jun 08 1999 | NICE SYSTEMS, INC | System and method for data recording |
6959078, | Jan 24 2000 | VERINT AMERICAS INC | Apparatus and method for monitoring and adapting to environmental factors within a contact center |
6959079, | Feb 14 2000 | NICE LTD | Telephone call monitoring system |
7010106, | Aug 28 2000 | NICE LTD | Digital recording of IP based distributed switching platform |
7010109, | Aug 28 2000 | Nice Systems Ltd. | Digital recording of IP based distributed switching platform |
7027708, | Dec 29 2000 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | System and method for reproducing a video session using accelerated frame playback |
7043745, | Dec 29 2000 | eTalk Corporation | System and method for reproducing a video session using accelerated frame recording |
7076427, | Oct 18 2002 | RingCentral, Inc | Methods and apparatus for audio data monitoring and evaluation using speech recognition |
7103553, | Jun 04 2003 | Matsushita Electric Industrial Co., Ltd. | Assistive call center interface |
7149788, | Jan 28 2002 | CREDIT SUISSE AS ADMINISTRATIVE AGENT | Method and system for providing access to captured multimedia data from a multimedia player |
7184540, | Nov 26 2002 | Wilmington Trust, National Association, as Administrative Agent | Personality based matching of callers to agents in a communication system |
7203285, | Jan 13 2000 | CREDIT SUISSE AS ADMINISTRATIVE AGENT | System and method for recording voice and the data entered by a call center agent and retrieval of these communication streams for analysis or correction |
7216162, | May 24 2000 | Cognyte Technologies Israel Ltd | Method of surveilling internet communication |
7219138, | Jan 31 2002 | CREDIT SUISSE AS ADMINISTRATIVE AGENT | Method, apparatus, and system for capturing data exchanged between a server and a user |
7222075, | Aug 31 1999 | Accenture Global Services Limited | Detecting emotions using voice signal analysis |
7263474, | Jan 29 2003 | SeaSeer Research and Development LLC | Cultural simulation model for modeling of agent behavioral expression and simulation data visualization methods |
7305082, | May 09 2000 | NICE LTD | Method and apparatus for quality assurance in a multimedia communications environment |
7305345, | Feb 15 2001 | ALTER DOMUS US LLC | Methods, systems, and computer program products for providing automated customer service via an intelligent virtual agent that is trained using customer-agent conversations |
7333445, | Dec 12 2000 | NICE LTD | Method and system for monitoring and recording voice from circuit-switched via a packet-switched network |
7346151, | Jun 24 2003 | AVAYA LLC | Method and apparatus for validating agreement between textual and spoken representations of words |
7346186, | Jan 30 2001 | MONROE CAPITAL MANAGEMENT ADVISORS, LLC | Video and audio content analysis system |
7349944, | Nov 18 1999 | Red Hat, Inc | System and method for record and playback of collaborative communications session |
7376735, | Jan 31 2002 | CREDIT SUISSE AS ADMINISTRATIVE AGENT | Method, apparatus, and system for capturing data exchanged between a server and a user |
7386105, | May 27 2005 | NICE LTD | Method and apparatus for fraud detection |
7424718, | Jan 28 2002 | CREDIT SUISSE AS ADMINISTRATIVE AGENT | Method and system for presenting events associated with recorded data exchanged between a server and a user |
7466816, | Jan 13 2000 | VERINT AMERICAS INC | System and method for analysing communication streams |
7474633, | Jun 13 2002 | NICE LTD | Method for forwarding and storing session packets according to preset and/or dynamic rules |
7478051, | Apr 02 2001 | CREDIT SUISSE AS ADMINISTRATIVE AGENT | Method and apparatus for long-range planning |
7545803, | Mar 16 2005 | NICE LTD | Third party recording of data transferred using the IP protocol |
7546173, | Aug 18 2003 | Nice Systems, Ltd. | Apparatus and method for audio content analysis, marking and summing |
7570755, | Sep 29 2006 | VERINT AMERICAS INC | Routine communication sessions for recording |
7574000, | Jan 13 2000 | VERINT AMERICAS INC | System and method for analysing communications streams |
7587041, | Jan 13 2000 | VERINT AMERICAS INC | System and method for analysing communications streams |
7613290, | Sep 29 2006 | VERINT AMERICAS INC | Recording using proxy servers |
7613635, | Sep 03 1996 | Comscore, Inc | Content display monitor |
7633930, | Mar 31 2006 | VERINT AMERICAS INC | Systems and methods for capturing multimedia communication signals |
7660297, | Aug 14 2006 | NICE LTD | Voice over IP forwarding |
7660307, | Jun 29 2006 | VERINT AMERICAS INC | Systems and methods for providing recording as a network service |
7665114, | Jun 26 2001 | MONROE CAPITAL MANAGEMENT ADVISORS, LLC | System and method for collecting video data |
7680264, | Mar 31 2006 | VERINT AMERICAS INC | Systems and methods for endpoint recording using a conference bridge |
7714878, | Aug 09 2004 | NICE LTD | Apparatus and method for multimedia content based manipulation |
7725318, | Jul 30 2004 | NICE SYSTEMS INC | System and method for improving the accuracy of audio searching |
7752043, | Sep 29 2006 | VERINT AMERICAS INC | Multi-pass speech analytics |
7769176, | Jun 30 2006 | VERINT AMERICAS INC | Systems and methods for a secure recording environment |
7787974, | Jan 05 2005 | CREDIT SUISSE AS ADMINISTRATIVE AGENT | Independent source recording |
7817795, | May 10 2006 | VERINT AMERICAS INC | Systems and methods for data synchronization in a customer center |
7822018, | Mar 31 2006 | VERINT AMERICAS INC | Duplicate media stream |
7848524, | Jun 30 2006 | VERINT AMERICAS INC | Systems and methods for a secure recording environment |
7853800, | Jun 30 2006 | VERINT AMERICAS INC | Systems and methods for a secure recording environment |
7881216, | Sep 29 2006 | VERINT AMERICAS INC | Systems and methods for analyzing communication sessions using fragments |
7881471, | Jun 30 2006 | VERINT AMERICAS INC | Systems and methods for recording an encrypted interaction |
7885813, | Sep 29 2006 | VERINT AMERICAS INC | Systems and methods for analyzing communication sessions |
7899178, | Sep 29 2006 | VERINT AMERICAS INC | Recording invocation of communication sessions |
7899180, | Jan 13 2000 | VERINT AMERICAS INC | System and method for analysing communications streams |
7903568, | Jun 29 2006 | VERINT AMERICAS INC | Systems and methods for providing recording as a network service |
7920482, | Sep 29 2006 | VERINT AMERICAS INC | Systems and methods for monitoring information corresponding to communication sessions |
7925889, | Aug 21 2002 | CREDIT SUISSE AS ADMINISTRATIVE AGENT | Method and system for communications monitoring |
7930314, | Sep 28 2006 | VERINT AMERICAS INC | Systems and methods for storing and searching data in a customer center environment |
7940914, | Aug 31 1999 | Accenture Global Services Limited | Detecting emotion in voice signals in a call center |
7949552, | Feb 22 2006 | VERINT AMERICAS INC | Systems and methods for context drilling in workforce optimization |
7953219, | Jul 19 2001 | NICE LTD | Method apparatus and system for capturing and analyzing interaction based content |
7965828, | Sep 29 2006 | VERINT AMERICAS INC | Call control presence |
7966397, | Jun 30 2006 | VERINT AMERICAS INC | Distributive data capture |
7991613, | Sep 29 2006 | VERINT AMERICAS INC | Analyzing audio components and generating text with integrated additional session information |
7995612, | Mar 31 2006 | VERINT AMERICAS INC | Systems and methods for capturing communication signals [32-bit or 128-bit addresses] |
7995717, | May 18 2005 | Mattersight Corporation | Method and system for analyzing separated voice data of a telephonic communication between a customer and a contact center by applying a psychological behavioral model thereto |
8000465, | Mar 31 2006 | VERINT AMERICAS INC | Systems and methods for endpoint recording using gateways |
8005675, | Mar 17 2005 | NICE LTD | Apparatus and method for audio analysis |
8005676, | Sep 29 2006 | VERINT AMERICAS INC | Speech analysis using statistical learning |
8050923, | Sep 29 2006 | VERINT AMERICAS INC | Automated utterance search |
8060364, | Nov 13 2003 | NICE LTD | Apparatus and method for event-driven content analysis |
8078463, | Nov 23 2004 | NICE LTD | Method and apparatus for speaker spotting |
8094790, | May 18 2005 | Mattersight Corporation | Method and software for training a customer service representative by analysis of a telephonic interaction between a customer and a contact center |
8094803, | May 18 2005 | Mattersight Corporation | Method and system for analyzing separated voice data of a telephonic communication between a customer and a contact center by applying a psychological behavioral model thereto |
8108237, | Feb 22 2006 | VERINT AMERICAS INC | Systems for integrating contact center monitoring, training and scheduling |
8112298, | Feb 22 2006 | VERINT AMERICAS INC | Systems and methods for workforce optimization |
8112306, | Feb 22 2006 | VERINT AMERICAS INC | System and method for facilitating triggers and workflows in workforce optimization |
8117064, | Feb 22 2006 | VERINT AMERICAS INC | Systems and methods for workforce optimization and analytics |
8130938, | Mar 31 2006 | VERINT AMERICAS INC | Systems and methods for endpoint recording using recorders |
8160233, | Feb 22 2006 | VERINT AMERICAS INC | System and method for detecting and displaying business transactions |
8165114, | Jun 13 2002 | NICE LTD | Voice over IP capturing |
8199886, | Sep 29 2006 | VERINT AMERICAS INC | Call control recording |
8204056, | Mar 31 2006 | VERINT AMERICAS INC | Systems and methods for endpoint recording using a media application server |
8255514, | Nov 04 2003 | COVENANT EYES, INC | Internet use monitoring system and method |
8285833, | Feb 12 2001 | CREDIT SUISSE AS ADMINISTRATIVE AGENT | Packet data recording method and system |
8331549, | May 01 2007 | VERINT AMERICAS INC | System and method for integrated workforce and quality management |
8442033, | Mar 31 2006 | VERINT AMERICAS INC | Distributed voice over internet protocol recording |
8594313, | Mar 31 2006 | VERINT AMERICAS INC | Systems and methods for endpoint recording using phones |
8670552, | Feb 22 2006 | VERINT AMERICAS INC | System and method for integrated display of multiple types of call agent data |
8713428, | Sep 03 1996 | Comscore, Inc; Rentrak Corporation; Proximic, LLC | Content display monitor |
8718262, | Mar 30 2007 | Mattersight Corporation | Method and system for automatically routing a telephonic communication base on analytic attributes associated with prior telephonic communication |
8724891, | Aug 31 2004 | MONROE CAPITAL MANAGEMENT ADVISORS, LLC | Apparatus and methods for the detection of abnormal motion in a video stream |
8725518, | Apr 25 2006 | NICE LTD | Automatic speech analysis |
8782541, | Mar 12 2001 | NICE LTD | System and method for capturing analyzing and recording screen events |
8837697, | Sep 29 2006 | VERINT AMERICAS INC | Call control presence and recording |
8861707, | May 31 1996 | CREDIT SUISSE AS ADMINISTRATIVE AGENT | Method and apparatus for simultaneously monitoring computer user screen and telephone activity from a remote location |
8891754, | Mar 30 2007 | Mattersight Corporation | Method and system for automatically routing a telephonic communication |
8929537, | Mar 26 2012 | AFINITI, LTD | Call mapping systems and methods using variance algorithm (VA) and/or distribution compensation |
8983054, | Mar 30 2007 | Mattersight Corporation | Method and system for automatically routing a telephonic communication |
20030069780, | |||
20030072463, | |||
20030142122, | |||
20030144900, | |||
20030145140, | |||
20030154092, | |||
20040041830, | |||
20040054715, | |||
20040073569, | |||
20040100507, | |||
20040162724, | |||
20040190687, | |||
20050010411, | |||
20050010415, | |||
20050204378, | |||
20060089837, | |||
20060168188, | |||
20060265088, | |||
20060265089, | |||
20070083540, | |||
20070094408, | |||
20070195945, | |||
20070198284, | |||
20070198325, | |||
20070198330, | |||
20070206767, | |||
20070237525, | |||
20070282807, | |||
20070297578, | |||
20080004945, | |||
20080040110, | |||
20080052535, | |||
20080080685, | |||
20150156323, | |||
D356783, | Apr 07 1993 | NICE SYSTEMS, INC | Modular digital voice processing machine for recording voice and data |
EP862304, | |||
EP863678, | |||
EP998108, | |||
EP1361739, | |||
EP1635534, | |||
GB2331201, | |||
GB2389736, | |||
WO174042, | |||
WO2073413, | |||
WO217165, | |||
WO3001809, | |||
WO3009175, | |||
WO2006124942, | |||
WO2006124945, | |||
WO2006125047, | |||
WO2007100345, | |||
WO2007106113, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 19 2014 | DANSON, CHRISTOPHER | Mattersight Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 037735 | /0140 | |
Mar 19 2014 | BROWN, DOUGLAS | Mattersight Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 037735 | /0140 | |
Mar 19 2014 | GUSTAFSON, DAVID | Mattersight Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 037735 | /0140 | |
Mar 28 2014 | CONWAY, KELLY | Mattersight Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 037735 | /0140 | |
Jul 16 2015 | Mattersight Corporation | (assignment on the face of the patent) | / | |||
Aug 01 2016 | Mattersight Corporation | HERCULES CAPITAL, INC | INTELLECTUAL PROPERTY SECURITY AGREEMENT | 039646 | /0013 | |
Jun 29 2017 | Mattersight Corporation | THE PRIVATEBANK AND TRUST COMPANY | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 043200 | /0001 | |
Jun 29 2017 | HERCULES CAPITAL, INC | Mattersight Corporation | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 043215 | /0973 |
Date | Maintenance Fee Events |
Mar 28 2019 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Aug 15 2019 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Aug 16 2023 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Feb 23 2019 | 4 years fee payment window open |
Aug 23 2019 | 6 months grace period start (w surcharge) |
Feb 23 2020 | patent expiry (for year 4) |
Feb 23 2022 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 23 2023 | 8 years fee payment window open |
Aug 23 2023 | 6 months grace period start (w surcharge) |
Feb 23 2024 | patent expiry (for year 8) |
Feb 23 2026 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 23 2027 | 12 years fee payment window open |
Aug 23 2027 | 6 months grace period start (w surcharge) |
Feb 23 2028 | patent expiry (for year 12) |
Feb 23 2030 | 2 years to revive unintentionally abandoned end. (for year 12) |