A laser machining process is described for laser machining glass or glass-like materials. This process machines articles or features in articles with chamfered edges in one manufacturing operation. Chamfered edges are desirable in glass and glass-like materials because they resist fracturing or chipping and eliminate sharp edges. Producing articles or features in articles in one manufacturing operation is desirable because it can save time and expense by eliminating the need to transfer the article to a separate machine for chamfering after laser machining. Alternatively, it can permit use of less expensive equipment because the same laser used for machining can be used to form the chamfer instead of having a separate process perform the chamfering. Producing chamfers with laser machining results in high quality chamfers without the need for a separate polishing or finishing step.
|
22. A method for forming a chamfer and making a second cut in a workpiece having a top surface and a bottom surface, the method comprising:
directing a laser beam having a wavelength onto said workpiece such that said laser beam has a fluence in a spot within said workpiece sufficient to remove material from said workpiece, wherein said workpiece is substantially transparent to said wavelength of said laser beam; and
moving said laser beam in relation to said workpiece to translate said spot across said workpiece along a plurality of paths, including first and second paths, such that an angle at which said laser beam intersects said top surface of said workpiece is in a range between substantially parallel and substantially perpendicular to said surface and substantially perpendicular to said paths, wherein directing said laser beam comprises directing said laser beam to intersect said top surface of said workpiece at a first angle between substantially parallel and substantially perpendicular to said top surface of said workpiece and substantially perpendicular to said first path during one or more first passes to form a first cut extending from said one of said top and bottom surfaces into said bulk material to form said chamfer within at least one of said top surface and said bottom surface, wherein directing said laser beam also comprises directing said laser beam to intersect said top surface of said workpiece at a second angle substantially perpendicular to said top surface of said workpiece and substantially perpendicular to said second path during one or more second passes to form a second cut initiating at and extending from said first cut into said bulk material, wherein said first and second angles are different, and wherein said second cut is interior to said one of said top and bottom surfaces.
1. A method comprising:
providing a workpiece including a bulk material and having a top surface and a bottom surface;
forming a chamfer within said bottom surface, wherein forming said chamfer includes:
providing a laser machining system including a laser operable to emit a laser beam having a wavelength, wherein said laser machining system also includes beam optics operable to focus said laser beam to a focal spot;
determining laser parameters for producing said focal spot suitable forming a chamfer within said bottom surface, wherein said bulk material is substantially transparent to said wavelength of said laser beam and has a fluence ablation threshold, wherein said laser beam has a laser beam fluence that is lower than said fluence ablation threshold of said bulk material except at said focal spot, and wherein said laser parameters cooperate with said beam optics to provide a focused fluence at said focal spot that is greater than said fluence ablation threshold of said bulk material;
generating said laser beam;
directing said laser beam onto said top surface of said workpiece; and
moving said laser beam in relation to said workpiece to translate said laser beam across said top surface along a plurality of separate paths to form said chamfer in said bottom surface of said workpiece, wherein said plurality of separate paths includes first and second paths, wherein along said first path said focal spot is focused at said bottom surface such that said focal spot provides said focused fluence sufficient to remove bulk material from said bottom surface to form a kerf in said bottom surface of said workpiece, and wherein along said second path said focal spot is changed to be more deeply within said bulk material with respect to said bottom surface such that said focal spot provides said focused fluence sufficient to remove bulk material to extend said kerf more deeply into said bulk material.
45. A method for forming a chamfer in a workpiece including a bulk material and having a top surface and a bottom surface, the method comprising:
providing a laser machining system including a laser operable to emit a laser beam having a wavelength, wherein said laser machining system also includes beam optics operable to focus said laser beam to a focal spot;
determining laser parameters for producing said focal spot suitable forming a chamfer within said top surface, wherein said bulk material is substantially transparent to said wavelength of said laser beam and has a fluence ablation threshold, wherein said laser beam has a laser beam fluence that is lower than said fluence ablation threshold of said bulk material except at said focal spot, and wherein said laser parameters cooperate with said beam optics to provide a focused fluence at said focal spot that is greater than said fluence ablation threshold of said bulk material;
generating said laser beam;
directing a laser beam onto said top surface of said workpiece; and
moving said laser beam in relation to said workpiece to translate said laser beam across said top surface along a plurality of separate paths, wherein said plurality of separate paths includes first and second paths, wherein along said first path said focal spot is focused at said top surface such that said focal spot provides said focused fluence sufficient to remove bulk material from said top surface to form a kerf in said top surface of said workpiece, and wherein along said second path said focal spot is changed to be more deeply within said bulk material with respect to said top surface such that said focal spot provides said focused fluence sufficient to remove bulk material to extend said kerf more deeply into said bulk material, wherein directing said laser beam comprises directing said laser beam to intersect said workpiece at one or more angles between substantially parallel and substantially perpendicular to said top surface of said workpiece and substantially perpendicular to said paths.
28. A method for forming a chamfer in a workpiece including a bulk material and having a top surface and a bottom surface, the method comprising:
providing a laser machining system including a laser operable to emit a laser beam having a wavelength, wherein said laser machining system also includes beam optics operable to focus said laser beam to a focal spot;
determining laser parameters for producing said focal spot suitable forming a chamfer within said top surface, wherein said bulk material is substantially transparent to said wavelength of said laser beam and has a fluence ablation threshold, wherein said laser beam has a laser beam fluence that is lower than said fluence ablation threshold of said bulk material except at said focal spot, and wherein said laser parameters cooperate with said beam optics to provide a focused fluence at said focal spot that is greater than said fluence ablation threshold of said bulk material;
generating said laser beam;
directing a laser beam onto said top surface of said workpiece; and
moving said laser beam in relation to said workpiece to translate said laser beam across said top surface along a plurality of separate paths, wherein said plurality of separate paths includes first and second paths, wherein along said first path said focal spot is focused at said top surface such that said focal spot provides said focused fluence sufficient to remove bulk material from said top surface to form a kerf in said top surface of said workpiece, and wherein along said second path said focal spot is changed to be more deeply within said bulk material with respect to said top surface such that said focal spot provides said focused fluence sufficient to remove bulk material to extend said kerf more deeply into said bulk material, wherein said chamfer has a chamfer beginning and a chamfer end, wherein said kerf extends from said chamfer beginning to said chamfer end such that said kerf extends from said top surface at a kerf angle between substantially parallel and substantially perpendicular to said top surface to match a desired chamfer angle of said chamfer, and wherein said top surface overlies said chamfer end of said kerf.
3. The method of
4. The method of
5. The method of
6. The method of
7. The method of
8. The method of
9. The method of
10. The method of
11. The method of
12. The method of
13. The method of
15. The method of
20. The method of
21. The method of
24. The method of
25. The method of
26. The method of
27. The method of
29. The method of
30. The method of
31. The method of
33. The method of
34. The method of
35. The method of
36. The method of
38. The method of
43. The method of
44. The method of
|
The field of the technical subject matter relates to laser machining glass or glass-like articles. In particular it relates to laser machining an article with a chamfer on an edge that adjoins the top or bottom surface of the article or on a feature laser machined into the article. In more particular it relates to laser machining glass or glass-like article with a chamfer in a single manufacturing operation
Laser machining chamfered features in glass or glass-like articles such as sapphire, ceramic or glass ceramics is desirable because adding a chamfer to an edge makes the edge safer, in the sense that it is less likely to cause cuts or scratches when handled, makes it less likely to chip or crack and in general, makes the edge stronger. While chamfered edges are desirable, no methods exist for creating an article with a chamfered edge in one manufacturing operation. Prior art methods of producing chamfered edges involve creating a feature such as a through cut or trench in one operation and then producing a chamfer in one or more additional steps.
A chamfer is a bevel created on an edge formed by two adjoining surfaces. These surfaces typically are at approximately right angles at the edge where they adjoin, although other angles are possible.
Glass cutting has been traditionally realized by a mechanical saw approach, which scribes the glass and follows this step with a mechanical breaking process step. In recent years, laser technology has been adopted for glass cutting, which typically employs a laser as a localized heating source, sometimes accompanied by a cooling nozzle, to generate stress and microcracks along the trajectories described by the passage of the laser beam to cut the glass. Such resultant stress and microcracks may either be sufficient to cause the glass to fracture and separate along the designed trajectories or may require a follow-up breaking step to separate the glass. Existing technologies utilizing a laser only without the match of a cooling source include MLBA (Multiple Laser Beam Absorption) cutting technology as described in US patent applications 2007/0039932 Device for Separative Machining of Components made Form Brittle Material With Stress-Free Component Mounting and 2007/0170162 Method and Device for Cutting Through Semiconductor Materials, which use a near infrared (IR) laser source in combination with a pair of reflective mirrors to maximize the volume absorption of photon energy in the glass along the path to be separated so that there will be sufficient thermal stress generated so as to break the parts without needing to apply additional force. This technology, however, does require an initial mechanical notch to function as a pre-crack. The laser generated stress will make the initial crack propagate to form the separation. Another method of cutting glass or other brittle material is described in U.S. Pat. No. 5,609,284 Method of Splitting Non-Metallic Materials, which uses a CO2 source to heat the glass following with a cooling nozzle to generate stress so as to initiate microcracks along the cutting path, and then applying a mechanical breaking step to separate the glass. None of these methods address forming a chamfer on the resulting edges.
Laser machining of glass and glass-like articles can be performed for the purpose of machining shapes into the surface, for instance machining depressions to hold liquids, or machining thru holes for applying controls such as push buttons to the article or to provide a via to pass electrical signals, fluid or light through the article. U.S. Pat. No. 6,143,382 Glass Substrate Having Fine Holes describes a method of drilling fine holes in glass but this method requires doping the glass with silver atoms to promote absorption of the laser energy. Another U.S. Pat. No. 6,756,563 System and Method for Forming Holes in Substrates Containing Glass, describes a method of forming holes in glass substrates. Neither of these approaches discusses forming a chamfer on the finished hole. US patent application 2006/0127640 Glass Substrate With Fine Holes And Method For Producing The Same discusses drilling holes in a glass substrate with a laser and subsequently using a wet etch with strong acid to form rounded edges on the holes, but this involves adding one or more operations which add additional operations and equipment to the manufacturing process. This prior art illustrates the difficulty in creating chamfers on features internal to the article, such as holes or other openings machined into the article. Chamfering these edges often requires specialized equipment and fixturing in addition to requiring additional manufacturing steps.
U.S. Pat. No. 6,521,862 Apparatus and Method for Improving Chamfer Quality of Disk Edge Surfaces With Laser Treatment describes a method for producing smooth chamfers on a glass disk by mechanically grinding the chamfers and then melting them slightly with a laser. This produces smooth chamfers but requires at least two extra manufacturing operations and at least two separate machines to achieve a chamfer of acceptable quality.
What is needed then is a method and apparatus for forming features in glass or glass-like articles which can form high quality beveled or curved chamfers on both external and internal laser cut edges in one manufacturing operation.
The instant invention is a method for forming chamfered features in glass or glass-like materials in one manufacturing operation. By one manufacturing operation we mean the article being processed is fixtured on a laser processing machine, the desired feature is laser machined into the article and one or more of the resultant feature edges are chamfered using the same laser processing equipment that formed the feature prior to the article being removed from the machine. While adding the chamfer in this fashion necessarily adds a step to the manufacturing operation, the additional time required is minimized because the chamfer is added while the article is still fixtured on the laser processing machine, thereby eliminating the need to remove the article from the machine, fixture the part on a different machine and then produce the chamfer. Producing a feature and chamfer in one operation eliminates the need to refixture the article and eliminate the need for an additional machine to perform the operation, thereby reducing the time and expense required to produce an article with chamfered edges. In the instant invention, the laser parameters can be varied to produce chamfers of different sizes and shapes without changing the equipment or fixturing. In addition, by varying the laser parameters appropriately, a desired level of surface smoothness and finish can be achieved without additional manufacturing operations or equipment.
An embodiment of the instant invention is shown in
A further embodiment of the instant invention is shown in
One of the goals of the instant invention is to permit laser machining of chamfered features in glass or glass-like materials in one manufacturing operation. An exemplary machine that can produce a and control a laser beam capable of ablating glass and glass-like materials, fixture the materials and move the laser beam(s) with respect to the material is the MM5800 laser micromachining system produced by Electro Scientific Industries, Inc., Portland, Oreg., the assignee of the instant invention.
The laser beam can be either continuous wave (CW) or pulsed. Laser parameters which are controlled to provide the desired ablation rate include wavelength, average power, spatial distribution, spot size and speed of travel. In the case of pulsed lasers, pulse width, pulse energy, pulse temporal distribution and repetition rate can be controlled to provide the desired ablation. Laser wavelengths can range from infrared (IR), such as 10.6 micron wavelengths emitted by CO2 lasers down to frequency tripled or quadrupled solid state laser which operate in the ultraviolet (UV) range below 355 nm. Average power can range up to tens of Watts. Spatial distribution can either be Gaussian, modified or clipped Gaussian or shaped distributions such as “top hat” or annular. See for example U.S. Pat. No. 6,791,060 Beam Shaping and Projection Imaging with Solid State UV Gaussian Beam to Form Vias, assigned to the assignee of the instant invention. Spot sizes can typically range from a few microns to more than 100 microns. Exemplary rates of travel for the laser beam with respect to the material surface being ablated can range from a few mm/s to 500 mm/s depending upon the amount of material to be removed. For pulsed lasers, pulse width can range from femtosecond pulses up to tens of nanoseconds. Pulse energy can range from a few microJoules per pulse to hundreds of milliJoules, depending upon the pulse width. Pulses can have Gaussian temporal distribution or be shaped or sliced to have faster rise and/or fall time. Pulses can also be produced with more complex tailored temporal distribution. For an example of this type of pulse see U.S. Pat. No. 7,348,516 Methods of and Laser Systems for Link Processing using Laser Pulses With Specially Tailored Power Profiles, assigned to the assignee of the instant invention. The repetition rate of pulsed lasers used for this purpose can range from a few kHz to over 1 MHz.
In one embodiment of the instant invention, referring to
In yet another embodiment of the instant invention a laser beam makes multiple passes along multiple adjacent paths to form a chamfer, changing the angle at which the laser beam impinges the material as the path changes. As shown in
In yet another embodiment of the instant invention, the laser beam angle is varied with respect to the workpiece. In this embodiment, the equipment that changes the angle of the laser beam with respect to the workpiece is designed to change the angle of the laser beam in a plane about a point at a fixed distance from the workpiece. In addition, the equipment that changes the angle will rotate to keep the plane within which the laser beam changes angle perpendicular to the path that the laser beam follows on the workpiece. This arrangement will be made clearer by referring to
It will be obvious to those having skill in the art that many changes may be made in the details of the above described embodiments of the instant invention without departing from the underlying principles thereof. The scope of the instant invention should, therefore, be determined only by the following claims.
Matsumoto, Hisashi, Lei, Weisheng, Simenson, Glenn, Li, Guangyu, Howerton, Jeffery
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
4702042, | Sep 27 1984 | LIBBEY-OWENS-FORD CO | Cutting strengthened glass |
4828900, | Dec 23 1987 | PPG Industries Ohio, Inc | Discrete glass cutting and edge shaping |
5043553, | Oct 12 1988 | Rolls-Royce plc | Method and apparatus for drilling a shaped hole in a workpiece |
5413664, | May 09 1990 | Canon Kabushiki Kaisha | Apparatus for preparing a semiconductor device, photo treatment apparatus, pattern forming apparatus and fabrication apparatus |
5609284, | Apr 02 1992 | P T G PRECISION TECHNOLOGY CENTER, L L C | Method of splitting non-metallic materials |
5637244, | May 13 1993 | LASER DESIGN INTERNATIONAL, LLC | Method and apparatus for creating an image by a pulsed laser beam inside a transparent material |
5665134, | Jun 07 1995 | OL SECURITY LIMITED LIABILITY COMPANY | Laser machining of glass-ceramic materials |
5826772, | Aug 31 1995 | Corning Incorporated | Method and apparatus for breaking brittle materials |
5973290, | Feb 26 1997 | W L GORE & ASSOCIATES, INC | Laser apparatus having improved via processing rate |
6143382, | Jun 04 1997 | NIPPON SHEET GLASS CO , LTD | Glass substrate having fine holes |
6326589, | Sep 19 1997 | Fraunhofer-Gesellschaft zur Forderung der Angewandten Forschung E.V. | Method and device for treating materials with plasma-inducing high energy radiation |
6521862, | Oct 09 2001 | Western Digital Technologies, INC | Apparatus and method for improving chamfer quality of disk edge surfaces with laser treatment |
6634186, | Aug 18 2000 | Nippon Sheet Glass Co., Ltd. | Process for cutting a glass sheet and a glass disk for a recording medium |
6642476, | Jul 23 2001 | Vitesco Technologies USA, LLC | Apparatus and method of forming orifices and chamfers for uniform orifice coefficient and surface properties by laser |
6642477, | Oct 23 2001 | IMRA America, Inc.; IMRA America, Inc | Method for laser drilling a counter-tapered through-hole in a material |
6756563, | Mar 07 2002 | Orbotech Ltd. | System and method for forming holes in substrates containing glass |
6795274, | Sep 07 1999 | Asahi Glass Company, Ltd | Method for manufacturing a substantially circular substrate by utilizing scribing |
6820330, | Dec 13 1996 | Tessera, Inc. | Method for forming a multi-layer circuit assembly |
6962279, | Oct 18 2000 | GE Medical Systems Global Technology Company, LLC | Apparatus and method for glass separation for flat panel displays |
6992026, | Sep 13 2000 | HAMAMATSU PHOTONICS K K | Laser processing method and laser processing apparatus |
7007512, | Nov 17 2000 | National Institute of Advanced Industrial Science and Technology; Nippon Sheet Glass Co., Ltd. | Method for machining glass substrate |
7023001, | Mar 31 2003 | Institut National D'Optique | Method for engraving materials using laser etched V-grooves |
7060933, | Jun 08 2004 | Igor, Troitski | Method and laser system for production of laser-induced images inside and on the surface of transparent material |
7217448, | Feb 22 2002 | Nippon Sheet Glass Co., Ltd. | Glass structure and method for producing the same |
7378342, | Aug 27 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods for forming vias varying lateral dimensions |
7723212, | Jul 30 2004 | MITSUBOSHI DIAMON INDUSTRIAL CO LTD ; MITSUBOSHI DIAMOND INDUSTRIAL CO , LTD | Method for forming median crack in substrate and apparatus for forming median crack in substrate |
8075999, | Aug 08 2008 | Corning Incorporated | Strengthened glass articles and methods of making |
20010035447, | |||
20010038930, | |||
20010040150, | |||
20020005805, | |||
20020033558, | |||
20020041946, | |||
20020060978, | |||
20030044539, | |||
20030096078, | |||
20030102291, | |||
20030111447, | |||
20030150839, | |||
20030201261, | |||
20030217568, | |||
20040104846, | |||
20040200067, | |||
20050042805, | |||
20050087522, | |||
20050184035, | |||
20050221044, | |||
20050223744, | |||
20060127640, | |||
20060151450, | |||
20060169677, | |||
20070012665, | |||
20070039932, | |||
20070170162, | |||
20070262464, | |||
20070291496, | |||
20080047933, | |||
20080093775, | |||
20080128953, | |||
20080185367, | |||
20080283509, | |||
20080290077, | |||
20080296273, | |||
20090020511, | |||
20090045179, | |||
20090201444, | |||
20100197116, | |||
20100206008, | |||
20100243626, | |||
20100320179, | |||
20110003619, | |||
20110240611, | |||
20110240616, | |||
CN1657220, | |||
DE10029110, | |||
DE102006046313, | |||
DE102007009786, | |||
EP321838, | |||
JP11163403, | |||
JP2001274441, | |||
JP2002192369, | |||
JP2002241141, | |||
JP2002308637, | |||
JP2004299969, | |||
JP2007290011, | |||
WO3002289, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 17 2008 | Electro Scientific Industries, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Apr 05 2019 | 4 years fee payment window open |
Oct 05 2019 | 6 months grace period start (w surcharge) |
Apr 05 2020 | patent expiry (for year 4) |
Apr 05 2022 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 05 2023 | 8 years fee payment window open |
Oct 05 2023 | 6 months grace period start (w surcharge) |
Apr 05 2024 | patent expiry (for year 8) |
Apr 05 2026 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 05 2027 | 12 years fee payment window open |
Oct 05 2027 | 6 months grace period start (w surcharge) |
Apr 05 2028 | patent expiry (for year 12) |
Apr 05 2030 | 2 years to revive unintentionally abandoned end. (for year 12) |