Devices, methods, and systems are provided herein for spacing an outer skin of a roof from the supporting structure of the roof such that the roof shields against weather elements, admits light, and allows advantageous air circulation. In one embodiment, a wedge-shaped device for spacing panels on a roof includes a bottom surface, a top surface inclined at an angle relative to the bottom surface, and an integral support structure connecting the top surface and the bottom surface, the support structure including a plurality of ribs and a plurality of nail boxes.
|
1. A wedge-shaped device for spacing panels on a roof, the device comprising:
a top surface;
a back surface, the top surface perpendicular to the back surface;
a bottom surface extending between the top surface and the back surface, a first end of the bottom surface terminating at an intersection with the top surface at an angle α, a second end of the bottom surface terminating at an intersection with the back surface at an angle β; and
an integral support structure connecting the top surface and the bottom surface, the support structure comprising a plurality of support ribs and a plurality of nail boxes, each of the plurality of nail boxes in the device comprising a hollow tube extending from the top surface to the bottom surface, a first nail box extending through a support rib and a second nail box connected to a support rib via a flange.
3. The device of
4. The device of
5. The device of
6. The device of
7. The device of
|
The present application is a divisional of U.S. patent application Ser. No. 14/037,170, filed Sep. 25, 2013, which is a divisional of U.S. patent application Ser. No. 13/168,089, filed Jun. 24, 2011 and issued on Oct. 1, 2013 as U.S. Pat. No. 8,544,239, which claims priority under 35 U.S.C. §119(e) to U.S. Provisional Patent Application Ser. No. 61/398,461, filed on Jun. 25, 2010. The disclosures of all of the above-referenced prior applications, publications, and patents are considered part of the disclosure of this application, and are incorporated by reference herein in their entirety.
1. Field of the Invention
The field of the invention relates to roofing materials, and more particularly to methods and systems for spacing panels on roofs.
2. Description of the Related Art
Roofs cover the uppermost part of a space or building, protecting the space or building interior from rain, snow, wind, cold, heat, sunlight, and other weather effects. Many roofs are pitched or sloped to provide additional protection against the weather, allowing rain or snow to run off the angled sides of the roof. Roofs generally include a supporting structure and an outer skin, which can be an uppermost weatherproof layer. The supporting structure of a roof typically includes beams of a strong, rigid material such as timber, cast iron, or steel. The outer layer of a roof can comprise panels or boards constructed of timber, metal, plastic, vegetation such as bamboo stems, or other suitable materials.
In some cases, a pitched roof is desired to shield a space against elements such as rain or snow, while still admitting light into the space and allowing air to freely circulate through the roof and into the space. Thus, methods and systems to efficiently and reliably attach an outer skin to the supporting structure of a roof such that the roof shields against weather elements, admits light, and allows advantageous air circulation are desired and remain a significant challenge in the design of roofing systems.
The systems, methods, and devices of the invention each have several aspects, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this invention, its more prominent features will now be discussed briefly. After considering this discussion, and particularly after reading the section entitled “Detailed Description” one will understand how the features of this invention provide advantages over other roofing systems.
Methods and devices for spacing panels on a roof are provided. In one embodiment, a wedge-shaped device for spacing panels on a roof includes a bottom surface; a top surface inclined at an angle α relative to the bottom surface; and an integral support structure connecting the top surface and the bottom surface. The support structure includes a plurality of support ribs and a plurality of nail boxes.
Another embodiment provides a method of installing roof panels on roof support beams. The method includes fastening a plurality of wedge-shaped spacers to a top surface of one or more roof support beams; and fastening a bottom surface of one or more roof panels to the spacers.
In yet another embodiment, a roof panel spacer system for constructing a roof is provided. The system includes a plurality of support beams; a plurality of spacers fastened to at least some of said support beams; and a plurality of roof panels fastened to the plurality of spacers. Each spacer orients each roof panel substantially horizontal to the ground. Each spacer is positioned to create a space between adjacent roof panels allowing air and light to pass through the roof. Each spacer is also positioned to create an overlap between adjacent roof panels, inhibiting rain and other weather elements from passing through the roof.
Any feature or combination of features described herein are included within the scope of the present invention provided that the features included in any such combination are not mutually inconsistent as will be apparent from the context, this description, and the knowledge of one skilled in the art. In addition, any feature or combination of features may be specifically excluded from any embodiment of the present invention. For purposes of summarizing the present invention, certain aspects, advantages, and novel features of the present invention are described herein. Of course, it is to be understood that not necessarily all such aspects, advantages, or features will be present in any particular embodiment of the present invention.
It is to be understood that embodiments presented herein are by way of example and not by way of limitation. The intent of the following detailed description, although discussing exemplary embodiments, is to be construed to cover all modifications, alternatives, and equivalents of the embodiments as may fall within the spirit and scope of the invention.
Roof Panel Spacer for Two-Sided Roof
The height H of the spacer 100 can be measured at different locations along the spacer 100. For example, the height of the spacer 100 at the back 110 can be HBACK, while the height of the spacer 100 at the front 112 can be HFRONT. Embodiments of the spacer 100 can be wedge-shaped. For example, the top surface 102 can be inclined at an angle α relative to the bottom surface 104. Additionally, the bottom surface 104 can be inclined at an angle β relative to the back 110. In some aspects, the top surface 102 is oriented at an angle of 90° or about 90° relative to the back 110.
The spacer 100 can include an integral support structure connecting the top surface 102 and the bottom surface 104. The support structure can include a plurality of support ribs. For example, the spacer 100 includes width ribs 130, 132 extending along the width W of the spacer 100 between the sides 106, 108. The spacer 100 can also comprise a length rib 134 extending along the length L of the spacer 100 between the back 110 and the front 112. Bottom surfaces of the ribs 130, 132, 134 can form all or a portion of the bottom surface 104 of the spacer 100.
In some aspects, the support structure also includes a plurality of nail boxes. For example, the spacer 100 includes nail boxes 150, 152, 154, 156, which will be described in greater detail below with reference to
A top surface 202 of the spacers 200 are adjacent to and contact the bottom surface 278 of the panel 275, while a bottom surface 204 of the spacers 200 are adjacent to and contact the top surfaces 272 of the support beams 270, 280. Other configurations are possible. For example, in another embodiment, the top surface 202 of the spacers 200 may be adjacent to the support beams 270, 280 and the bottom surface 204 of the spacers 200 may be adjacent to the panel 275.
In some embodiments, the spacers 200 are positioned on the support beams 270, 280 such that the panels 275, 282 are horizontal or substantially horizontal to the ground and θPANEL is 0° or about 0°. The spacers 200 may be positioned on the support beams 270, 280 such that a vertical space 284 separates the panels 275, 282. In the embodiment illustrated in
In some aspects, the top surface 276 of the panel 275 and the bottom surface 278 of the panel 282 overlap in a region 286. This overlap between adjacent panels 275, 282 can advantageously restrict rain and other weather elements from passing through the vertical space 284 and entering the space underneath the roof 268. For example, embodiments of spacers described herein can shield the interior of a building or other space below a roof from light rain and/or rain without horizontal wind.
Persons of skill in the art will understand that the spacers 200 can be used with roofs 268 of varying slope or pitch. For example, the support beams 270, 280 may be less sloped relative to the horizontal axis x of the roof 268 (corresponding to a smaller beam angle θBEAM than that illustrated in
Embodiments of the spacers 200 can advantageously be used to construct two-sided roofing structures. For example, the roof 268 illustrated in
As described above with reference to
Referring now to
Additionally, the bottom surface 104 can be inclined at an angle β relative to the back 110. The angle β can be between about 80° and about 65°. In the embodiment illustrated in
Roof Panel Spacer for Roof with Three or More Sides
The spacer 1300 generally has a width W measured along an x-axis of the spacer 1300, a length L measured along a y-axis of the spacer 1300, and a height H measured along a z-axis of the spacer 1300. The spacer 1300 includes a first top surface 1302A; a second top surface 1302B; a bottom surface 1304; and sides 1306, 1308, 1310, 1311, 1312, and 1313. In some aspects, the spacer 1300 includes a peaked top surface.
The height H of the spacer 1300 can be measured at different locations along the spacer 1300. For example, the height of the spacer 1300 where the sides 1310, 1311 meet can be HMAX, while the height of the spacer 1300 where the sides 1308, 1311 meet can be HMID. Embodiments of the spacer 1300 can be wedge-shaped. For example, the top surface 1302 of the spacer 1300 may be inclined at an angle α relative to the bottom surface 1304. The bottom surface 1304 can also be inclined by an angle β1 relative to the intersection of the sides 1308, 1311. Additionally, the bottom surface 1304 can be inclined at an angle β2 relative to the intersection of the sides 1310, 1311.
The spacer 1300 can include an integral support structure connecting the top surface 1302 and the bottom surface 1304. The support structure can include a plurality of support ribs. For example, the spacer 1300 includes width ribs 1330, 1332 extending along the width W of the spacer 1300 between the sides 1306, 1308. The spacer 100 can also comprise a length rib 1334 extending along the length L of the spacer 1300 between the sides 1310, 1311 and the sides 1312, 1313. Bottom surfaces of the ribs 1330, 1332, 1334 can form a portion of the bottom surface 1304 of the spacer 1300.
In some aspects, the support structure includes a plurality of nail boxes. For example, the spacer 1300 comprises nail boxes 1350, 1352, 1354, 1355, 1356, and 1357. Some embodiments of the nail boxes 1350, 1352, 1354, 1355, 1356, and 1356 comprise a hollow tube extending from the top surface 1302 and the bottom surface 1304. The nail boxes 1354, 1355 can be connected to the width rib 1331 via flanges 1360 and 1362. Other configurations are possible. For example, in some aspects, the spacer 1300 may not comprise width ribs, length ribs, nail boxes, and/or flanges.
In some aspects, the nail box 1354 comprises a recessed area 1351 and the nail box 1355 comprises a recessed area 1353 (not illustrated). The recessed areas 1351, 1353 can accommodate the head of a nail or other fastener disposed in nail boxes 1354, 1355, respectively. It will be understood that other nail boxes of the spacer 1300 can comprise recessed areas, and that the spacer 1300 need not comprise any recessed areas around the nail boxes.
A top surface 1402 of the spacers 1400 are adjacent to and contact the bottom surfaces 1478 of the panels 1475, 1482, while a bottom surface 1404 of the spacers 1400 are adjacent to and contact the top surface 1472 of the support beam 1470. Other configurations are possible.
In one embodiment of the present invention, the spacers 1400 are positioned on the support beam 1470 such that a vertical space 1484 separates the panels 1475, 1482. In some aspects, each of the adjacent panels on the roof 1468 are separated by a vertical space 1484. As described above with reference to
In some aspects, the top surface 1476 of the panel 1475 and the bottom surface 1478 of the panel 1482 overlap in a region 1486. This overlap between adjacent panels 1475, 1482 can advantageously restrict rain and other weather elements from passing through the spaces 1484 and entering the space underneath the roof 1468.
Installation of Roofing Spacers
Embodiments of the roofing spacers described herein can be installed using fasteners such as nails. In one embodiment, a spacer according to the present invention is first positioned on a support beam. Nails are driven into one or more nail boxes of the spacer. The nails may be driven into nail boxes comprising recessed areas, for example. These nails may initially restrict movement of the spacer relative to the support beam until additional nails are driven into the spacer. Next, a panel is positioned over the spacer, and additional nails are driven through the panel into the spacer. In some aspects, the installer is aware of the general location of the nail boxes which remain empty, but is not able to see the precise location of the empty nail boxes through the panel. The installer can estimate the location of the empty nail boxes and aim the nails so that they enter the spacer at or near the empty nail boxes.
It will be understood by those of skill in the art that positioning nails precisely in the nail boxes is not required to install embodiments of spacers described herein. Nails and other fasteners can effectively secure the spacers to support beams, and panels to the spacers, if they are driven into the nail boxes, the ribs, and/or the flanges described herein. It will also be understood that a nail need not be driven into each nail box provided on the spacers in order to secure the spacer to a support beam, or to secure a panel to the spacer.
Materials for a Roofing Spacer
Embodiments of the spacers described herein can be made of any suitable material, including plastic or metal. In one embodiment, spacers according to the present invention are made of polypropylene copolymer. In some aspects, the comonomer of the polypropylene copolymer is ethylene. Polypropylene copolymer is characterized as having high impact resistance strength. Polypropylene copolymer also has slightly increased elongation at break, and is thus more pliable, compared to unmodified polypropylene homopolymer. Typical material properties of polypropylene copolymer are provided in Table 1 below.
TABLE 1 | |||
Property | |||
Yield Point | 24 | MPa | |
Elongation at Yield | 10-12% | ||
Tensile Break | 33 | MPa | |
Elongation at Break | 650% | ||
Tensile Modulus | 1050 | MPa | |
Flexural Modulus | 1270 | MPa | |
Flexural Strength | 25-26 | MPa | |
Tensile Impact | 800 | kJ/m2 | |
Spacers described herein need not be made of polypropylene copolymer, and can be made of any suitable material, including but not limited to materials exhibiting material properties similar to that of polypropylene copolymer. Spacers made of polypropylene copolymer can advantageously accept fasteners without shattering or suffering other adverse structural effects which may result when a nail or other fastener is driven into the spacer.
Embodiments of the spacers described herein can be molded from one piece of injection-molded plastic, such that the spacer is monolithic. The spacers described herein can also be manufactured by connecting together separate components, such as the top surface, the bottom surface, the back, and the integral support structure, to form one spacer.
The above-described embodiments have been provided by way of example, and the present invention is not limited to these examples. Multiple variations and modifications to the disclosed embodiments will occur, to the extent not mutually exclusive, to those skilled in the art upon consideration of the foregoing description. Additionally, other combinations, omissions, substitutions and modifications will be apparent to the skilled artisan in view of the disclosure herein. Accordingly, the present invention is not intended to be limited by the disclosed embodiments.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
3797179, | |||
4355491, | Aug 18 1980 | MARTIN, OTIS M | Roof construction and method |
5056288, | Sep 23 1986 | GANTAN BEAUTY KOGYO KABUSHIKI KAISHA, D B A GANTAN BEAUTY INDUSTRY CO , LTD | Roof structure and fixture therefor |
5073061, | Apr 16 1990 | Industrial restraint edging system for segmented paving units | |
5087004, | Sep 28 1990 | Motorola, Inc.; Motorola, Inc | Convertible mounting apparatus |
5240343, | Dec 12 1989 | BRAVO FOXTROT HOLDINGS, INC | Holding device for paving blocks |
5249402, | Apr 09 1991 | Exteria Building Products, LLC | Decorative wall covering |
5390453, | Dec 27 1991 | Structural members and structures assembled therefrom | |
5832677, | Nov 03 1997 | Eve air vent | |
6061973, | Jun 04 1998 | Roof venting system for trussed and raftered roofs | |
6948288, | Oct 19 2000 | Roof tile support | |
8266844, | Jul 17 2008 | SUREFOOT HARDSCAPE PRODUCTS, INC | Paved surface restraint and method of installation |
8544239, | Jun 25 2010 | Formula Plastics, Inc. | Roof panel spacer |
8991106, | Jun 25 2010 | Formula Plastics, Inc. | Roof panel spacer |
20030182888, | |||
20060150536, | |||
20080209822, | |||
20100031593, | |||
20100313491, | |||
20110113704, | |||
EP2042664, | |||
GB2181470, | |||
JP2004023875, | |||
JP2006316818, | |||
JP2009035919, | |||
JP4105329, | |||
JP5154232, | |||
JP6006560, | |||
JP9158385, | |||
JP9268691, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 21 2010 | MORA, ELIAS | FORMULA PLASTICS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 039584 | 0304 | |
Mar 30 2015 | Formula Plastics, Inc. | (assignment on the face of the patent) |
Date | Maintenance Fee Events |
Jun 15 2020 | REM: Maintenance Fee Reminder Mailed. |
Nov 30 2020 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Oct 25 2019 | 4 years fee payment window open |
Apr 25 2020 | 6 months grace period start (w surcharge) |
Oct 25 2020 | patent expiry (for year 4) |
Oct 25 2022 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 25 2023 | 8 years fee payment window open |
Apr 25 2024 | 6 months grace period start (w surcharge) |
Oct 25 2024 | patent expiry (for year 8) |
Oct 25 2026 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 25 2027 | 12 years fee payment window open |
Apr 25 2028 | 6 months grace period start (w surcharge) |
Oct 25 2028 | patent expiry (for year 12) |
Oct 25 2030 | 2 years to revive unintentionally abandoned end. (for year 12) |