A microelectronic assembly includes a first microelectronic package having a substrate with first and second opposed surfaces and substrate contacts thereon. The first package further includes first and second microelectronic elements, each having element contacts electrically connected with the substrate contacts and being spaced apart from one another on the first surface so as to provide an interconnect area of the first surface between the first and second microelectronic elements. A plurality of package terminals at the second surface are electrically interconnected with the substrate contacts for connecting the package with a component external thereto. A plurality of stack terminals are exposed at the first surface in the interconnect area for connecting the package with a component overlying the first surface of the substrate. The assembly further includes a second microelectronic package overlying the first microelectronic package and having terminals joined to the stack terminals of the first microelectronic package.
|
1. A microelectronic assembly, comprising:
a first microelectronic package and a second microelectronic package overlying the first microelectronic package, each of the first and second microelectronic packages including:
first and second microelectronic elements, each having element contacts;
an interconnect area disposed between the first and second microelectronic elements;
a dielectric layer encapsulating the interconnect area and at least portions of the first and second microelectronic elements;
a plurality of package terminals electrically interconnected with the element contacts for connecting the package with a component external to the package;
a plurality of stack terminals positioned within the interconnect area and electrically interconnected with the package terminals;
redistribution traces disposed at a surface of the dielectric layer and positioned at least partially within the interconnect area, the redistribution traces electrically interconnecting the package terminals, the stack terminals, and the element contacts; and
elongated conductive interconnects extending through the dielectric layer within the interconnect area, the conductive interconnects joining the stack terminals and package terminals of the first microelectronic package and the stack terminals and package terminals of the second microelectronic package.
7. A microelectronic assembly, comprising:
a first microelectronic package, including:
first and second microelectronic elements each having element contacts, the first and second microelectronic elements being spaced apart from one another so as to provide an interconnect area between the first and second microelectronic elements;
a plurality of traces electrically connecting the interconnect area and the element contacts, the plurality of traces having a first surface and an opposed second surface;
a plurality of package terminals having surfaces exposed at the second surface of the plurality of traces, the plurality of package terminals connecting the package with a component external to the package; and
a plurality of stack terminals disposed within the interconnect area for connecting the package with another component overlying the first surface of the plurality of traces;
a second microelectronic package overlying the first microelectronic package and having terminals joined to the stack terminals of the first microelectronic package; and
first and second heat spreaders disposed between the first and second microelectronic packages, the first heat spreader being disposed on a first side of the interconnect area and the second heat spreader being disposed on a second side of the interconnect area with a gap being defined between the first and second heat spreaders, the stack terminals of the second microelectronic package being electrically connected with the stack terminals of the first microelectronic package through the gap.
12. A microelectronic assembly, comprising:
first and second microelectronic packages, each of the first and second microelectronic packages including:
first and second microelectronic elements each having element contacts, the first and second microelectronic elements being spaced apart from one another and bounding an interconnect region;
redistribution traces electrically interconnecting the interconnect region and the element contacts of the first and second microelectronic elements, the redistribution traces including first and second surfaces,
a plurality of contacts having surfaces exposed at the second surface of the redistribution traces, the surfaces of the plurality of contacts defining package terminals electrically interconnected with the element contacts for connecting the package with a component external to the package; and
a molded encapsulant layer overlying the interconnect region and at least portions of the first and second microelectronic elements, the molded encapsulant layer having an outer surface adjacent the first and second microelectronic elements,
wherein the second microelectronic package is bonded to the outer surface of the molded encapsulant layer of the first microelectronic package, at least some of the package terminals of the second microelectronic package facing the encapsulant surface;
a plurality of first conductive vias extending at least through the molded encapsulant layer of the first microelectronic package and through the interconnect region of the first microelectronic package, the plurality of first conductive vias connecting the package terminals of the first microelectronic package and the package terminals of the second microelectronic package;
a plurality of second conductive vias extending through the interconnect region and the molded encapsulant layer of the second microelectronic package, the second conductive vias having a first end adjacent the package terminals of the second microelectronic package and a second end adjacent the outer surface of the encapsulant layer of the second microelectronic package; and
a conductive bonding material disposed between the interconnect regions of the first and second microelectronic elements so as to electrically connect the package contacts of the first and second microelectronic packages through the plurality of first and second conductive vias.
2. The microelectronic assembly of
3. The microelectronic assembly of
4. The microelectronic assembly of
5. The microelectronic assembly of
6. The microelectronic assembly of
8. The microelectronic assembly of
9. The microelectronic assembly of
10. The microelectronic assembly of
11. The microelectronic assembly of
13. The microelectronic assembly of
14. The microelectronic assembly of
15. The microelectronic assembly of
16. The microelectronic assembly of
17. The microelectronic assembly of
18. The microelectronic assembly of
|
The present application is a continuation of U.S. patent application Ser. No. 14/217,820, filed Mar. 18, 2014, issuing as U.S. Pat. No. 8,980,693 on Mar. 17, 2015, which is a divisional of U.S. patent application Ser. No. 13/346,167, filed Jan. 9, 2012, issued as U.S. Pat. No. 8,680,684 on Mar. 25, 2014, the disclosures of all of which are incorporated herein by reference.
The present invention relates to improved microelectronic packages and to methods of making such packages.
Microelectronic elements generally comprise a thin slab of a semiconductor material, such as silicon or gallium arsenide, commonly called a die or a semiconductor chip. Semiconductor chips typically embody large numbers of active or passive devices which can be electrically connected together internally to perform circuit function, e.g., as an integrated circuit. Semiconductor chips are commonly provided as individual, prepackaged units. In some unit designs, the semiconductor chip is mounted to a substrate or chip carrier.
Despite the advances that have been made in semiconductor packaging, there is still a need for improvements which may help to reduce the overall size of the package, while enhancing electrical interconnection reliability. These attributes of the present invention are achieved by the construction of the microelectronic packages and methods of making the microelectronic packages as described hereinafter.
An aspect of the present disclosure relates to a microelectronic assembly including a first microelectronic package having a substrate with first and second opposed surfaces and substrate contacts thereon. The first package further includes first and second microelectronic elements, each having element contacts electrically connected with the substrate contacts, the first and second microelectronic elements being spaced apart from one another on the first surface so as to provide an interconnect area of the first surface between the first and second microelectronic elements. A plurality of package terminals at the second surface are electrically interconnected with the substrate contacts for connecting the package with a component external to the package. A plurality of stack terminals are exposed at the first surface in the interconnect area for connecting the package with a component overlying the first surface of the substrate. The assembly further includes a second microelectronic package overlying the first microelectronic package and having terminals joined to the stack terminals of the first microelectronic package.
The package terminals and the stack terminals can overlie each other in respective electrically connected pairs. In an example, the package terminals and the stack terminals can be opposite ends of conductive vias through the substrate.
Additional ones of the stack terminals can be at the first surface of the substrate in a portion thereof that is outside of the interconnect area. In an embodiment, the first microelectronic package can further include third and fourth microelectronic elements spaced on opposite sides of the interconnect area between the first and second microelectronic elements. In such an embodiment, the additional ones of the stack terminals can be in a corner region of the substrate bounded by adjacent ones of the microelectronic elements. Additionally or alternatively, at least some of the stack terminals can be connected with both of the first and second microelectronic elements. In such an example, at least some of the stack terminals that are connected with both of the first and second microelectronic elements can be configured to carry at least one of command, address, and timing signals.
The first microelectronic package can further include a molded encapsulant layer overlying at least a portion of the first surface of the substrate, and at least portions of the first conductive interconnects can comprise first conductive vias extending through the molded encapsulant layer to exposed ends. In an embodiment, contact-bearing faces of the first and second microelectronic elements can face the substrate, the substrate contacts including substrate contacts exposed at the second surface, and the element contacts can be connected with the substrate contacts by wire bonds.
The microelectronic assembly can include substrate contacts exposed at the first surface. In such an embodiment, the element contacts of the first and second first microelectronic elements can face the substrate contacts exposed at the first surface and can be joined thereto.
The second microelectronic package can include a third microelectronic element mounted on a second substrate. In such an embodiment, the terminals of the second package can be on the second substrate and electrically connected with the third microelectronic element. In an example, the second microelectronic package can include a substrate having first and second spaced apart surfaces and third and fourth microelectronic elements mounted on the second surface thereof. The third and fourth microelectronic elements can be spaced apart on the substrate of the second package to define an interconnect area therein, and the terminals can be exposed at the second surface of the substrate of the second package within the interconnect area. The substrate of the second package can further include a window extending therethrough between the first and second surfaces thereof, and the terminals of the second package can be joined to the stack terminals of the first package by wire bonds that extend through the window. In a further embodiment, the substrate of the first package can define a peripheral area surrounding at least one of the first and second microelectronic elements, additional stack terminals being located in the peripheral area. The peripheral area can surround at least one of the third and fourth microelectronic elements and a peripheral edge can bound the peripheral area. Additional terminals can be located in the peripheral area thereof, and at least some of the additional stack terminals of the first package can be joined with at least some of the additional terminals of the second package by wire bonds that extend past the peripheral edge of the substrate of the second package.
A third microelectronic package can overlie the first microelectronic package and can have terminals joined to the stack terminals of the first microelectronic package. Further, the microelectronic assembly can include a circuit panel with circuit contacts exposed at a surface thereof. The package terminals of the first microelectronic package can be electrically connected with the circuit contacts. The second microelectronic package terminals can be at least one of package terminals or stack terminals. The stack terminals of the first package can be electrically connected with the package terminals of the second package. Further, the stack terminals of the first and second packages can be electrically connected.
The microelectronic assembly can further include a heat spreader between the first and second microelectronic packages. The heat spreader can have an aperture formed therethrough that overlies at least a portion of the interconnect area. The stack terminals of the second microelectronic package can be connected with the stack terminals of the first microelectronic package through the aperture. The heat spreader can be a first heat spreader, in an embodiment of an assembly that further includes a second heat spreader, the first heat spreader being disposed on a first side of the interconnect area and the second heat spreader being disposed on a second side of the interconnect area. A gap can be defined between the first and second heat spreaders, and the stack terminals of the second microelectronic package can be connected with the stack terminals of the first microelectronic package through the gap.
Another aspect of the present disclosure relates to a microelectronic assembly including a first microelectronic package having first and second microelectronic elements. Each microelectronic element has front faces and back faces thereof and element contacts exposed at the respective front faces. The first and second microelectronic elements are laterally spaced apart from one another so as to provide an interconnect area therebetween. The first package further has a dielectric layer having a surface overlying the front faces of the first and second microelectronic elements and facing away from the front faces of the microelectronic elements. The dielectric layer further has a second surface opposite the first surface. A plurality of package terminals are exposed at the first surface of the dielectric layer and are electrically connected with the element contacts through traces extending along the dielectric layer and first metallized vias extending from the traces and contacting the element contacts. A plurality of stack terminals are exposed at the second surface of the dielectric layer and electrically connected with the package terminals for connecting the package with a component overlying the second surface of the dielectric layer. The assembly further includes a second microelectronic package overlying the first microelectronic package and having terminals joined to the stack terminals of the first microelectronic package.
In an example, the first package can further include a molded encapsulation layer at least partially surrounding the first and second microelectronic elements within the interconnect area and defining a surface thereof overlying the second surface of the dielectric layer. Conductive interconnects can be electrically connected with the stack terminals and having end surfaces exposed at the surface of the molded encapsulation layer.
Yet another aspect of the present disclosure relates to a microelectronic assembly including a first package, having a substrate with first and second opposed surfaces. The first package further includes first and second microelectronic elements each having element contacts electrically connected with corresponding substrate contacts on the first surface. The first and second microelectronic elements are spaced apart from one another on the first surface so as to provide an interconnect area of the first surface between the first and second microelectronic elements. A plurality of package terminals at the second surface are electrically interconnected with the substrate contacts for connecting the package with a component external to the package. A plurality of stack terminals exposed at the first surface of the substrate in the interconnect area are electrically connected with at least some of the package terminals. The assembly further includes a second microelectronic package overlying the first microelectronic package and having terminals. A plurality of conductive interconnects are joined between the stack terminals of the first microelectronic package and the terminals of the second microelectronic package.
The second microelectronic package can further have a second dielectric layer having first and second opposed surfaces and at least one microelectronic element mounted on the first surface of the dielectric layer.
A microelectronic assembly according to another embodiment of the present disclosure includes a first package having a substrate having first and second opposed surfaces and four microelectronic elements each having element contacts electrically connected with corresponding substrate contacts on the first surface. The microelectronic elements are arranged on the first surface so as to define an interconnect area of the first surface surrounded by the microelectronic elements. A plurality of package terminals at the second surface are electrically interconnected with the substrate contacts for connecting the package with a component external to the package. A plurality of stack terminals at the first surface in the interconnect area are electrically connected with the package terminals. The assembly further includes second microelectronic package overlying the first microelectronic package and having terminals. Conductive interconnects are joined between the stack terminals of the first microelectronic package and the terminals of the second microelectronic package. Each of the microelectronic elements can include a peripheral edge adjacent to the interconnect area such that the interior interconnect area is defined as a rectangular area. At least some of the first conductive elements can be electrically connected with at least two of the first microelectronic elements.
Another aspect of the present disclosure relates to a microelectronic assembly including a first package, having a substrate with first and second opposed surfaces. The first package also includes first and second microelectronic elements each having element contacts electrically connected with corresponding substrate contacts on the first surface, the first and second microelectronic elements being spaced apart from one another on the first surface so as to provide an interconnect area of the first surface between the first and second microelectronic elements. A plurality of contact pads have surfaces exposed at the second surface of the substrate, the surfaces of the contact pads defining package terminals electrically interconnected with the substrate contacts for connecting the package with a component external to the package. A molded encapsulant layer overlies at least a portion of the first surface of the substrate and defines an encapsulant surface. The assembly further includes a second microelectronic package bonded to the encapsulant surface and having terminals facing the encapsulant surface. A plurality of conductive vias extend at least through the molded encapsulant layer and connect the contact pads of the first microelectronic package and the terminals of the second microelectronic package.
The conductive vias can further extend through the contact pads of the first package in electrical contact therewith. The second microelectronic package can further include a substrate having first and second spaced apart surfaces. The second surface can be bonded to the encapsulant surface, and the terminals of the second package can be surfaces of conductive pads exposed at the second surface of the substrate. The conductive vias can further extend through the conductive pads of the second package in electrical contact therewith.
A system according to another aspect of the present disclosure can include a microelectronic assembly according to any of the embodiments discussed above and one or more other electronic components electrically connected to the microelectronic assembly.
A further aspect of the present disclosure relates to a method for making a microelectronic assembly. The method includes assembling a first microelectronic package with a second microelectronic package, the second microelectronic package overlying the first microelectronic package and having terminals thereon. The first microelectronic package includes a substrate having first and second opposed surfaces and substrate contacts thereon. The first package further includes first and second microelectronic elements, each having element contacts electrically connected with the substrate contacts. The first and second microelectronic elements are spaced apart from one another on the first surface so as to provide an interconnect area of the first surface between the first and second microelectronic elements. A plurality of package terminals at the second surface electrically interconnect with the substrate contacts for connecting the package with a component external to the package. A plurality of stack terminals are exposed at the first surface in the interconnect area for connecting the package with a component overlying the first surface of the substrate. The method further includes connecting the terminals of the second microelectronic package with the stack terminals of the first microelectronic package to form an electrical connection therebetween.
In an embodiment, the step of connecting the terminals of the second microelectronic package with the stack terminals of the first microelectronic package includes joining the package terminals to exposed ends of interconnects on an encapsulant layer of the first microelectronic package overlying the first surface of the substrate at least in the interconnect area thereof. In such an example, the interconnects can be joined to the stack terminals opposite the exposed ends thereof. In another embodiment, the step of connecting the terminals of the second microelectronic package with the stack terminals of the first microelectronic package can includes depositing conductive bond material masses into holes within an encapsulant layer of the first microelectronic package overlying the first surface of the substrate at least in the interconnect area. In such an embodiment, the stack terminals can be exposed at a surface of the encapsulant layer within the holes, and the conductive bond material masses can be joined to the terminals of the second package and the stack terminals of the first package.
In a further embodiment, the step of connecting the terminals of the second microelectronic package with the stack terminals of the first microelectronic package can includes forming a plurality of holes through at least an encapsulant of the first microelectronic package overlying the first surface of the substrate in at least the interconnect area thereof. The plurality of holes can be aligned with respective ones of the stack terminals at first ends thereof and with corresponding ones of the terminals of the second package at second ends thereof. Such a method can further include filling the holes with a conductive material in contact with the stack terminals of the first microelectronic package and the package terminals of the second package. The holes can be further formed through the substrate of the first package and through the respective stack terminals thereof. Alternatively, the holes can be further formed through a substrate of the second package and through the corresponding terminals thereof.
Various embodiments of the present invention will be now described with reference to the appended drawings. It is appreciated that these drawings depict only some embodiments of the invention and are therefore not to be considered limiting of its scope.
Turning now to the figures, where like reference numbers are used to indicate similar features,
In the exemplary embodiment of
Substrate wiring 22 can include a plurality of package terminals 26 exposed at the back surface 16 of substrate 12. Package terminals 26 can be electrically connected with either or both microelectronic elements 40 of the package 10A or 10B and can further be interconnected with each other. Package terminals 26 can be available for use in connecting package 10A or 10B with a component external to that package 10A, 10B. For example, package terminals 26 in package 10A can be used to connect package 10A with circuit contacts 72 exposed at a surface of a circuit panel 70 that can be a printed circuit board (“PCB”) or the like. The package terminals 26 of package 10B illustrate another example, in which package terminals 26 can be used to electrically connect with another package such as package 10A through structures of the package 10A, 10B that are discussed in greater detail below.
Microelectronic elements 40 are arranged along their respective substrates 12 in package 10A, 10B such that they are spaced apart on the first surface 14 to define an interconnect area 18 therebetween. In the embodiment shown in
A plurality of stack terminals 28 are arranged within interconnect area 18 exposed as front surface 14 of substrate 12. The term “exposed at”, as used herein does not refer to any specific means of attachment for stack terminals 28 onto substrate 12 or any relative position therebetween. Rather, it indicates that the electrically conductive structure is available for contact with a theoretical point moving in a direction perpendicular to the surface of the dielectric structure toward the surface of the dielectric structure from outside the dielectric structure. Thus, a terminal or other conductive structure which is exposed at a surface of a dielectric structure may project from such surface; may be flush with such surface; or may be recessed relative to such surface and exposed through a hole or depression in the dielectric. Stack terminals 28 can be an array of individual terminals 28 that can include various rows or columns thereof. Other alternative arrangements of terminals 28 are also possible, including those with only two stack terminals 28 or with more than two terminals in various locations selected based on connection with other elements of package 10A or 10B. Stack terminals 28 can be a part of or can otherwise be connected with substrate wiring 22 such that stack terminals 28 can be interconnected with the microelectronic elements 40 of the same package 10A or 10B, with other stack terminals 28 or with package terminals 26.
Stack terminals 28 can be used to connect the associated package 10A or 10B with an external component that overlies front surface 14 of substrate 12. In one example, a plurality of interconnect elements 56 can be connected with stack terminals 28 and extend upwardly therefrom to end surfaces 58 thereof that can be exposed at surface 54 of molded dielectric layer 52. Interconnects 56 can be pins, posts, masses of bond metal or other conductive material, such as may include solder or a metal such as copper, gold, silver, tin, bismuth, indium, aluminum, nickel, etc. In the embodiment shown interconnects 56 are in the form of pins that extend away from front surface 14 of substrate 12 and extend through the molded dielectric layer 52. In such an embodiment, end surfaces 58 can form terminals exposed at surface 54 for interconnection with another component. In other embodiments, end surfaces 58 can be covered by contacts that are connected therewith to provide a terminal with a larger surface area than that of end surfaces 58 themselves.
As shown in
A method for making a microelectronic assembly 8 such as that shown in
In package 10A, some package terminals 26 and stack terminals 28 may directly overlie one another and can be electrically connected by a via 30 that extends through substrate 12. In the specific embodiment shown, a via 30 can be exposed at ends thereof on front surface 14 and back surface 16 such that the respective ends thereof are, respectively, the stack terminals 28 and the package terminals 26. Other embodiments are possible, including those in which contact pads overlie via 30 to form stack terminals 28 and package terminals 26. As illustrated by package 10A, vias 30 can be connected with substrate wiring 22 that extends along back surface 16 and includes package terminals that are displaced in one or more lateral directions from vias 30. A similar arrangement is possible wherein the substrate wiring 22 extends along front surface 14 and includes stack terminals 28 that are displaced from vias 30. Embodiments of a package such as package 10A that includes displaced package terminals 26 can also overlie another package (such as in the place of package 10B) and such displacement can compensate for different spatial placement of interconnects 56 in different packages or can redistribute the particular connections.
As shown in
A method for making a package 8 as shown in
A number of other types of packages can be connected in such a manner using stack terminals in an interconnect area between microelectronic elements. Further a number of different connections to such stack terminals to external package terminals are also possible. In the examples shown in
In the example of
In further variations shown in
Packages of the types described herein can be assembled with additional packages of similar types by connecting with either the package terminals 426 or the stack terminals 428 of such additional packages. In an example, packages of any of the types described herein can be mounted to each other in a face-to-face arrangement such as those shown in
Similar stack terminal arrangements can also be incorporated into multiple die arrangements in wafer-level packages. As shown in
As in the embodiment of
As shown in
As previously discussed, any of the assemblies discussed above in
In addition to the interconnect area 618 defined within the four microelectronic elements 640, as shown in
In an assembly 608 of packages 610 of the type shown in
In certain embodiments of the invention, the microelectronic elements in the package include microelectronic elements configured to provide memory storage array function. For example, the microelectronic elements can provide dynamic random access memory (“DRAM”) function, and may in some cases include or be dedicated DRAM chips. In such case, the stack terminals 628 in the interconnect area may be configured to carry all of a group of command-address bus signals to a second microelectronic package. Packages that have centrally located terminals configured to carry command, address, and timing signals can be as further described in commonly owned U.S. Provisional Patent Application No. 61/506,889 filed Jul. 12, 2011 (the “'889 Application”), U.S. Provisional Patent Application No. 61/542,488 filed Oct. 3, 2011 (the “'488 Application”), and U.S. Provisional Patent Application No. 61/542,553 filed Oct. 3, 2011 (the “'553 Application”), the disclosures of said '889, '488, and '553 Applications being incorporated by reference herein. Typically, the command-address bus signals can be bussed on a circuit panel such as a printed circuit board or module card to multiple microelectronic packages in parallel, particularly to microelectronic packages mounted to the same or to opposite surfaces of the circuit panel. In one example, such a circuit panel can be a motherboard or single-inline memory module or “SIMM” or dual-inline memory module or “DIMM” module board. In a particular example, the command-address bus signal terminals of the interconnect area can be configured to carry all of a group of command signals, address signals, bank address signals and clock signals, wherein the command signals are write enable, row address strobe, and column address strobe, and the clock signals are sampling clocks used for sampling the address signals. While the clock signals can be of various types, in one embodiment, the clock signals carried by these terminals can be one or more pairs of differential clock signals which are received as differential or true and complement clock signals. In yet another example, package terminals aligned with the stack terminals or disposed on the outwardly-facing surface of the substrate will also include command-address bus signal terminals for mating with a circuit panel, or for mating with the stack terminals of a like package.
In one embodiment, the microelectronic package can be functionally equivalent to a SIMM or a DIMM, and the stack terminals in the interconnect area of the package, and the package terminals connected thereto, may be configured to carry all of a group of command-address bus terminals; i.e., all of the command signals, address signals, bank address signals, and clock signals transferred to the package, the command signals being write enable, row address strobe, and column address strobe signals, and the clock signals being sampling clocks used for sampling the address signals. In a particular embodiment, the package may incorporate a buffer element, e.g., an integrated circuit therefor, which is configured to regenerate the command-address bus signals received at the package terminals and transmit the regenerated signals on the stack terminals to additional packages which may be assembled therewith, as also described in the '488 Application. In such case, the microelectronic package may be functionally equivalent to a registered DIMM or “RDIMM”. In another example, the microelectronic package may be functionally equivalent to a load-reduced DIMM (“LRDIMM”) in which case, the buffer element can be configured to regenerate all of the data signals received by the microelectronic package and transmit the same to one or more additional microelectronic packages assembled therewith.
In a particular example, the microelectronic package can be configured to transfer, i.e., receive by the package, or transmit from the package thirty-two data bits in parallel in a clock cycle. In another example, the microelectronic package can be configured to transfer sixty-four data bits in parallel in a clock cycle. A number of other data transfer quantities are possible, among which only a few such transfer quantities will be mentioned without limitation. For example, the package can be configured to transfer 72 data bits per clock cycle which may include a set of 64 underlying bits which represent data and 8 bits which are error-correction code (“ECC”) bits for the 64 underlying bits. Ninety-six data bits, 108 bits (data and ECC bits), 128 data bits and 144 bits (data and ECC bits) are other examples of data transfer widths per cycle that the microelectronic package may be configured to support.
In
Various embodiments of the connection components described herein can be used in connection with various diverse electronic systems. The interconnection components described above can be utilized in construction of diverse electronic systems, as shown in
Although the description herein has been made with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present disclosure. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present disclosure as defined by the appended claims.
Haba, Belgacem, Bang, Kyong-Mo
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5579207, | Oct 20 1994 | Raytheon Company | Three-dimensional integrated circuit stacking |
6577013, | Sep 05 2000 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Chip size semiconductor packages with stacked dies |
8525314, | Nov 03 2004 | Tessera, Inc. | Stacked packaging improvements |
8678280, | Aug 26 2010 | Toshiba Tec Kabushiki Kaisha | Code reading apparatus, portable terminal, and commodity information processing system |
8680684, | Jan 09 2012 | Invensas Corporation | Stackable microelectronic package structures |
8980693, | Jan 09 2012 | Invensas Corporation | Stackable microelectronic package structures |
20010008794, | |||
20090155960, | |||
20110079924, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 07 2012 | BANG, KYONG-MO | Invensas Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 035298 | /0004 | |
Mar 20 2012 | HABA, BELGACEM | Invensas Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 035298 | /0004 | |
Mar 16 2015 | Invensas Corporation | (assignment on the face of the patent) | / | |||
Dec 01 2016 | TESSERA ADVANCED TECHNOLOGIES, INC | ROYAL BANK OF CANADA, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 040797 | /0001 | |
Dec 01 2016 | ZIPTRONIX, INC | ROYAL BANK OF CANADA, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 040797 | /0001 | |
Dec 01 2016 | DigitalOptics Corporation | ROYAL BANK OF CANADA, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 040797 | /0001 | |
Dec 01 2016 | Tessera, Inc | ROYAL BANK OF CANADA, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 040797 | /0001 | |
Dec 01 2016 | DTS, LLC | ROYAL BANK OF CANADA, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 040797 | /0001 | |
Dec 01 2016 | PHORUS, INC | ROYAL BANK OF CANADA, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 040797 | /0001 | |
Dec 01 2016 | iBiquity Digital Corporation | ROYAL BANK OF CANADA, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 040797 | /0001 | |
Dec 01 2016 | Invensas Corporation | ROYAL BANK OF CANADA, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 040797 | /0001 | |
Dec 01 2016 | DigitalOptics Corporation MEMS | ROYAL BANK OF CANADA, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 040797 | /0001 |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Nov 15 2019 | 4 years fee payment window open |
May 15 2020 | 6 months grace period start (w surcharge) |
Nov 15 2020 | patent expiry (for year 4) |
Nov 15 2022 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 15 2023 | 8 years fee payment window open |
May 15 2024 | 6 months grace period start (w surcharge) |
Nov 15 2024 | patent expiry (for year 8) |
Nov 15 2026 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 15 2027 | 12 years fee payment window open |
May 15 2028 | 6 months grace period start (w surcharge) |
Nov 15 2028 | patent expiry (for year 12) |
Nov 15 2030 | 2 years to revive unintentionally abandoned end. (for year 12) |