A method for multilevel programming flash memory cells of a three dimensional array of flash memory cells, the method may include receiving or determining a multiple phase programming scheme that is responsive to coupling between flash memory cells of the three dimensional array; and programming data to multiple flash memory cells of the three dimensional array in response to the multiple phase programming scheme. The multiple phase programming scheme determine a manner in which multiple programming levels are applied. At least two programming levels of the multiple programming levels correspond to bits of different significance.
|
11. A method for multilevel programming flash memory cells of a three dimensional array of flash memory cells, the method comprising: receiving or determining a multiple phase programming scheme that is responsive to coupling between flash memory cells of the three dimensional array; and programming data to multiple flash memory cells of the three dimensional array in response to the multiple phase programming scheme; wherein the multiple phase programming scheme determine a manner in which multiple programming levels are applied; wherein at least two programming levels of the multiple programming levels correspond to bits of different significance;
wherein the multiple phase programming scheme defines (a) an edge programming rule that is associated with edge flash memory cells and (b) a non-edge programming rule that differs from the edge programming rule and is associated with non-edge flash memory cells.
1. A method for multilevel programming flash memory cells of a three dimensional array of flash memory cells, the method comprising:
receiving or determining a multiple phase programming scheme that is responsive to coupling between flash memory cells of the three dimensional array; and
programming data to multiple flash memory cells of the three dimensional array in response to the multiple phase programming scheme; wherein the multiple phase programming scheme determine a manner in which multiple programming levels are applied;
wherein at least two programming levels of the multiple programming levels correspond to bits of different significance;
wherein the three dimensional array comprises multiple planes of flash memory cells, each plane comprise multiple rows and columns of flash memory cells; and
wherein the multiple phase programming scheme determines an order of programming pages, wherein the order of programming pages is responsive to coupling between flash memory cells that belong to different planes.
21. A method for multilevel programming flash memory cells of a three dimensional array of flash memory cells, the method comprising: receiving or determining a multiple phase programming scheme that is responsive to coupling between flash memory cells of the three dimensional array; and programming data to multiple flash memory cells of the three dimensional array in response to the multiple phase programming scheme; wherein the multiple phase programming scheme determine a manner in which multiple programming levels are applied; wherein at least two programming levels of the multiple programming levels correspond to bits of different significance; wherein the three dimensional array comprises multiple planes of flash memory cells, each plane comprise multiple rows and columns of flash memory cells; and
wherein one of the following is true:
(i) the multiple phase programming scheme determines a diagonal programming order of pages of each plane of the three dimensional array; and
(ii) the multiple phase programming scheme determines, (a) for a first programming level, a diagonal programming order of pages of each plane of the three dimensional array, and (b) for a second programming level, a column based programming.
20. A memory controller, comprising a memory module for storing a multiple phase programming scheme that is responsive to coupling between flash memory cells of the three dimensional array; and a write circuit for programming data to multiple flash memory cells of the three dimensional array in response to the multiple phase programming scheme; wherein the multiple phase programming scheme determine a manner in which multiple programming levels are applied; wherein at least two programming levels of the multiple programming levels correspond to bits of different significance;
wherein at least one of the following is true:
(i) the three dimensional array comprises multiple planes of flash memory cells, each plane comprise multiple rows and columns of flash memory cells; and the multiple phase programming scheme determines an order of programming pages, wherein the order of programming pages is responsive to coupling between flash memory cells that belong to different planes;
(ii) the multiple phase programming scheme defines (a) an edge programming rule that is associated with edge flash memory cells and (b) a non-edge programming rule that differs from the edge programming rule and is associated with non-edge flash memory cells;
(iii) the three dimensional array comprises multiple planes of flash memory cells that comprise multiple pages, wherein the multiple pages are programmed one group of pages after the other; wherein each group of pages comprises pages located along a same virtual line; wherein each virtual line is orthogonal to a plane;
(iv) the three dimensional array comprises multiple planes of flash memory cells that comprise multiple pages, wherein the multiple pages are programmed one group of pages after the other; wherein each group of pages comprises pages located along a same virtual line; wherein each virtual line is neither parallel or orthogonal to a plane; and
(v) the multiple phase programming scheme determines, (a) for a first programming level, a diagonal programming order of pages of each plane of the three dimensional array, and (b) for a second programming level, a column based programming.
19. A non-transitory computer readable medium that stores instructions that once executed by the computer cause the computer to execute the stages of:
receiving or determining a multiple phase programming scheme that is responsive to coupling between flash memory cells of a three dimensional array; and
programming data to multiple flash memory cells of the three dimensional array in response to the multiple phase programming scheme;
wherein the multiple phase programming scheme determine a manner in which multiple programming levels are applied;
wherein at least two programming levels of the multiple programming levels correspond to bits of different significance; and
wherein at least one of the following is true:
(i) the three dimensional array comprises multiple planes of flash memory cells, each plane comprise multiple rows and columns of flash memory cells; and the multiple phase programming scheme determines an order of programming pages, wherein the order of programming pages is responsive to coupling between flash memory cells that belong to different planes;
(ii) the multiple phase programming scheme defines (a) an edge programming rule that is associated with edge flash memory cells and (b) a non-edge programming rule that differs from the edge programming rule and is associated with non-edge flash memory cells;
(iii) the three dimensional array comprises multiple planes of flash memory cells that comprise multiple pages, wherein the multiple pages are programmed one group of pages after the other; wherein each group of pages comprises pages located along a same virtual line; wherein each virtual line is orthogonal to a plane;
(iv) the three dimensional array comprises multiple planes of flash memory cells that comprise multiple pages, wherein the multiple pages are programmed one group of pages after the other; wherein each group of pages comprises pages located along a same virtual line; wherein each virtual line is neither parallel or orthogonal to a plane; and
(v) the multiple phase programming scheme determines, (a) for a first programming level, a diagonal programming order of pages of each plane of the three dimensional array, and (b) for a second programming level, a column based programming.
2. The method according to
3. The method according to
4. The method according to
5. The method according to
7. The method according to
8. The method according to
9. The method according to
10. The method according to
12. The method according to
13. The method according to
14. The method according to
15. The method according to
16. The method according to
17. The method according to
18. The method according to
22. The method according to
(i) the multiple phase programming scheme determines, (a) for a first programming level, a diagonal programming order of pages of each plane of the three dimensional array, and (b) for a second programming level, a column based programming; and
(ii) the multiple phase programming scheme determines a diagonal programming order of pages of each plane of the three dimensional array.
23. The non-transitory computer readable medium according to
24. The non-transitory computer readable medium according to
25. The non-transitory computer readable medium according to
26. The non-transitory computer readable medium according to
27. The non-transitory computer readable medium according to
28. The memory controller according to
29. The memory controller according to
30. The memory controller according to
31. The memory controller according to
32. The memory controller according to
|
Nonvolatile flash memory devices store information in the form of charge in a flash memory cell. A flash memory cell may consist of a CMOS transistor with an additional floating metal gate between the substrate and the transistors gate or it may be constructed with no floating metal gate such that charge may be trapped in the insulator between the control gate and the channel. The charge is either stored in the floating gate or in the insulator and is injected to the floating gate during an operation known as programming. The charge may be removed during an operation known as an erase operation.
As the charge in the floating gate or insulator may vary contiguously, it is possible to store more than just one bit per flash transistor by using several charge levels to symbolize different sequences of bits.
The voltage level distributions of
The 3 bpc cell includes a most significant bit (MSB), a central significant bit (CSB) and a least significant bit (LSB). A physical page of flash memory module may store three logical pages. This physical page is programmed one logical page after the other. The programming includes various types of programming such as MSB programming (in which some of the cells are programmed to a single lobe and some are left in the erase state. At the end of this programming process only two lobes exists, the erase and the MSB lobes), a CSB programming (in which the erase lobe and the MSB lobe are each split into two lobes by further programming pulses, depending on the original state of each cell and the corresponding CSB bit. At the end of this step there are four lobes) and a LSB programming (in which each of the four lobes is further split to create 8 lobes, overall). The logical pages are read by applying various types of read operations such as MSB read (in which a MSB threshold 114 is used), CSB read (in which two CSB thresholds 112 and 116 are used) and LSB read (in which four LSB thresholds 111, 113, 115 and 117 are used).
The previous paragraph describes one method. There are several methods for programming 8 lobes.
A NAND flash array (or block) is constructed from NAND flash memory cells. The NAND flash memory cells are grouped into columns (or strings).
Once Colum 32(q) is illustrated in further details—it shows the thirty two flash memory cells 34(q) of the column, bit line select transistor and ground select transistor, and the voltages 33(q) supplied to the transistors and flash memory cells (Bit Line Select, Vbias, Vth). Column 32(q) is connected to sense amplifier 35(q), that in turn is connected to latch 36(q). A string (column) is duplicated many times (for example Q=34560-250000 times) in a block and includes several (for example—thirty two) flash memory cells. Each of the flash memory cells is associated with a different wordline (or row) which connects all of the corresponding cells in the other strings of the block. When a block is chosen, each string is connected to a corresponding bitline by turning on the Bit Line Select and the Ground Select transistors. When a read operation is performed, a sense amplifier is connected to the bit-line and after allowing some time (say 25-125 uS) for the bit-line voltage to settle, the result is stored by a latch.
In order to measure the charge in a certain cell within a string, all other cells are switched on by applying a high voltage on their gates (given by Vbias) and a comparison voltage, Vth, is applied to the gate of the selected cell. If the cell is charged and Vth is not high enough, the gate will not allow current to flow and the sense-amplifier will output a “0”. On the other hand, if the cell is not charge or Vth is high enough, current will flow and the sense-amplifier will output a “1”. Different schemes may exist where the cell being samples is biased with a constant voltage (say Vcc) but in the sense-amplifier a comparison against a reference string is performed which reference value may be determined by some external voltage, Vth.
The above sampling technique holds when a bit may be obtained only through a single threshold comparison. When more than a single threshold comparison is required, the above procedure may be performed for each threshold and the results may then be combined. Alternatively, several sense-amplifiers may be used simultaneously, each one compares against a different threshold, and the results are then combined to yield the required bit value.
All cells in a word-line (physical page) are programmed simultaneously and read simultaneously. In case of MLC or TLC, the programming of a wordline is divided into two or three stages, referred to as MSB, CSB and LSB page programming stages.
Above we described a standard floating gate planar NAND device. Historically, planar NAND design enabled continued storage capacity density improvements through continuous shrinking of the basic cell feature sizes from one NAND technology node to the next, reducing the basic gate size from 48 nm-41 nm-32 nm-25 nm-19 nm. However, it is proving harder and harder to shrink the basic silicon process feature size for several reasons. The main reasons include: a. limitations in the tools required and b. limitation in the reliability of a single NAND flash cell. The NAND Flash cell reliability is primarily determined by the number of electrons use to store a state in a cell. In smaller technology nodes (such as 16 nm) the number of electrons per state in a cell becomes very small (a few tens), greatly reducing the reliability of the stored information.
Therefore, it has been suggested to produce a multi-layered NAND Flash memory array which overcome the limits of planar NAND design and which continues with current trends in storage density improvements. It was suggested that in a multi-layered NAND Flash array, the basic feature size will be much larger than current planar NAND feature size (e.g. 40 nm instead of 19 nm) and thus eliminating the problems associated with such small technology nodes (namely, tooling and NAND transistor reliability). However, to allow improvement in density, the NAND arrays are to be stacked one on top of the other, 64-128 floor high. Thus, obtain a gain in the vertical dimension, which is higher than the loss due to going back from a 19 nm to 40 nm technology node. The introduction of NAND cell in a third dimension earned this technological advancement the name of 3D NAND.
There are various manners to build 3D NAND device and still allow the reduction in cost per bits, even though the production process has become more complicated and requires more steps. One of the key steps which allows the reduction of the cost is etching or hole drilling which enables to simultaneously produce multiple NAND gates on several floors, without increasing the cost linearly with the number of floors.
Several methods have been suggested for producing 3D NAND which differ in how the NAND cells are organized in space. Non-limiting examples of 3D NAND arrays include the bit cost scalable (BiCS) standard memory, pipe shaped BiCS memory (p-BiCS) of Toshiba, the terabit cell array transistor (TACT) of Toshiba, the Vertical recess array transistor (VRAT) of Samsung, a 3D dual control-gate with a surrounding floating-gate of Hynix.
In a vertical channel design, the NAND Flash bit-line or column described previously and in
All pages belonging to the same bit-lines (to the same plane) constitute a block—thus planes 101(1)-101(J) form J erase blocks. As in the planar case, all cells belonging to the same block are erased simultaneously and all cells belonging to the same page/row are programmed simultaneously. A block may constitute more than one plane, as shown in
In a vertical channel 3D NAND the NAND Flash bit-line or column is horizontal to the base axis of the die, as shown in
A 3D NAND array adds additional disturb factors. One of these is additional cell to cell coupling. Now each cell has many more neighboring cells. Instead of nine neighboring cells in a planar NAND (four near neighbors and four diagonal), now there are twenty six neighbors to each cell 200 (see
Cell to cell coupling in 3D NAND is also different than in planar NAND through coupling between different blocks. Different blocks may affect one another through the cells on their borders. Since in standard NAND, block programming order is arbitrary, it is difficult to control the coupling effects on the boarders of the blocks.
It should be noted that cell to cell coupling may vary, depending on 3D NAND implementation and may also exhibit no coupling due to the basic structure of the NAND cell. However, it is inevitable that as 3D NAND device technology node will shrink to increase density, so will cell to cell coupling will become more severe.
The coupling effect between cells is further increased when multiple bits per cell are programmed due to the larger charge and larger voltages.
In the following we present methods to limit the amount of disturb from neighboring cells using methods of programming ordering, depending on the 3D NAND structure, read back coupling cancellation methods and block management schemes.
According to an embodiment of the invention there may be provided a method for multilevel programming flash memory cells of a three dimensional array of flash memory cells.
The subject matter regarded as the invention is particularly pointed out and distinctly claimed in the concluding portion of the specification. The invention, however, both as to organization and method of operation, together with objects, features, and advantages thereof, may best be understood by reference to the following detailed description when read with the accompanying drawings in which:
In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, it will be understood by those skilled in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, and components have not been described in detail so as not to obscure the present invention.
The subject matter regarded as the invention is particularly pointed out and distinctly claimed in the concluding portion of the specification. The invention, however, both as to organization and method of operation, together with objects, features, and advantages thereof, may best be understood by reference to the following detailed description when read with the accompanying drawings.
It will be appreciated that for simplicity and clarity of illustration, elements shown in the figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity. Further, where considered appropriate, reference numerals may be repeated among the figures to indicate corresponding or analogous elements.
Because the illustrated embodiments of the present invention may for the most part, be implemented using electronic components and circuits known to those skilled in the art, details will not be explained in any greater extent than that considered necessary as illustrated above, for the understanding and appreciation of the underlying concepts of the present invention and in order not to obfuscate or distract from the teachings of the present invention.
Any reference in the specification to a method should be applied mutatis mutandis to a system capable of executing the method and should be applied mutatis mutandis to a non-transitory computer readable medium that stores instructions that once executed by a computer result in the execution of the method.
Any reference in the specification to a system should be applied mutatis mutandis to a method that may be executed by the system and should be applied mutatis mutandis to a non-transitory computer readable medium that stores instructions that may be executed by the system.
Any reference in the specification to a non-transitory computer readable medium should be applied mutatis mutandis to a system capable of executing the instructions stored in the non-transitory computer readable medium and should be applied mutatis mutandis to method that may be executed by a computer that reads the instructions stored in the non-transitory computer readable medium.
The invention describes methods, systems and computer readable media for managing three dimensional arrays of flash memory cells.
The terms “cell”, “memory cell” and “flash memory ell” are used in an interchangeable manner.
The following description refers to a multiple phase programming scheme. Any reference to the multiple phase programming scheme should be applied mutatis mutandis to programming according to the multiple phase programming scheme. The multiple phase programming scheme is termed “multiple phase” as it related to different programming phases. The different phases may correspond to different programming levels—to programming bits of different significance (such as MAB programming, zero or more CSB programming and LSB programming). The multiple phase programming scheme may determine the order of programming different cells, pages, rows, planes, erase blocks of super-blocks that include multiple erase blocks. Additionally or alternatively the multiple phase programming scheme may define parameters such as density of programming (types of allowable levels of programming and the like), differences between programming edge flash memory cells and non-edge flash memory cells and the like.
A three dimensional array of flash memory cells may be an ordered array or a non-ordered array. The array may be a rectangular array but other shapes of arrays can also be provided. An array is three dimensional in the sense that multiple flash memory cells are surrounded by other flash memory cells from more than two directions.
Decoupling Through Programming
There is provided a multi-bit per cell scheme that is used during the cell programming. In such a scheme, the programming is performed in phases which may or may not correspond to bits in a cell. For simplicity of explanation it is assumed that different phase correspond to different programming levels.
In order to reduce coupling not all stages are programmed into the row one following the other. Rather, the stages may be programmed first to one row and the next one and only after performing the programming all first stage on neighboring rows, will we return to the first row and program the second stage.
We can define the following general rules to reduce coupling:
The definition of neighboring rows is through the definition of neighboring cells as far as they coupling effect is concerned. That is, we define a neighboring cell if it has some coupling effect on current cell.
The above schemes allow for several programming orders. Let us consider the case where a NAND block consists of a cube of cells. The cube of cell can be divided into a plane of rows where the first element of all rows lies on the same plane—the same plane that defines the plane of rows. Therefore, we can define the programming order as a two dimensional map which defines the programming order of each page within this two dimensional map.
One example is to program the first stage on all rows within the block, then the second stage of all rows within a block and last, the third stage of all rows in the block. As shown in
Accordingly the order of programming may include:
Order
level
Page
Order
level
Page
Order
level
Page
0
MSB
210(0,0)
16
CSB
210(0,0)
32
LSB
210(0,0)
1
MSB
210(0,1)
17
CSB
210(0,1)
33
LSB
210(0,1)
2
MSB
210(0,2)
18
CSB
210(0,2)
34
LSB
210(0,2)
3
MSB
210(0,3)
19
CSB
210(0,3)
35
LSB
210(0,3)
4
MSB
210(1,0)
20
CSB
210(1,0)
36
LSB
210(1,0)
5
MSB
210(1,2)
21
CSB
210(1,2)
37
LSB
210(1,2)
6
MSB
210(1,3)
22
CSB
210(1,3)
38
LSB
210(1,3)
7
MSB
210(1,4)
23
CSB
210(1,4)
39
LSB
210(1,4)
8
MSB
210(2,0)
24
CSB
210(2,0)
40
LSB
210(2,0)
9
MSB
210(2,1)
25
CSB
210(2,1)
41
LSB
210(2,1)
10
MSB
210(2,2)
26
CSB
210(2,2)
42
LSB
210(2,2)
11
MSB
210(2,3)
27
CSB
210(2,3)
43
LSB
210(2,3)
12
MSB
210(3,0)
28
CSB
210(3,0)
44
LSB
210(3,0)
13
MSB
210(3,1)
29
CSB
210(3,1)
45
LSB
210(3,1)
14
MSB
210(3,2)
30
CSB
210(3,2)
46
LSB
210(3,2)
15
MSB
210(3,3)
31
CSB
210(3,3)
47
LSB
210(3,3)
A second method is to divide the two dimensional map into diagonals. For example, starting from the lower right corner, will be a diagonal of one element (see
Then we need only to order the programming order of the diagonal programming (where within a diagonal we program the rows in order, starting from the upper right corner and going down to the lower left corner). In the example in
The above scheme can be generalized as follows: do not program stage j into diagonal t before stage j−1 has been programmed to diagonals t+1 . . . t+v where v is designated as the programming order type. See, for example,
Accordingly the order of programming may include:
Order
level
Page
Order
level
Page
Order
level
Page
0
MSB
210(0,0)
16
CSB
210(0,0)
32
LSB
210(0,0)
1
MSB
210(1,0)
17
CSB
210(1,0)
33
LSB
210(1,0)
2
MSB
210(0,1)
18
CSB
210(0,1)
34
LSB
210(0,1)
3
MSB
210(2,0)
19
CSB
210(2,0)
35
LSB
210(2,0)
4
MSB
210(1,1)
20
CSB
210(1,1)
36
LSB
210(1,1)
5
MSB
210(0,2)
21
CSB
210(0,2)
37
LSB
210(0,2)
6
MSB
210(3,0)
22
CSB
210(3,0)
38
LSB
210(3,0)
7
MSB
210(2,1)
23
CSB
210(2,1)
39
LSB
210(2,1)
8
MSB
210(1,2)
24
CSB
210(1,2)
40
LSB
210(1,2)
9
MSB
210(0,3)
25
CSB
210(0,3)
41
LSB
210(0,3)
10
MSB
210(3,1)
26
CSB
210(3,1)
42
LSB
210(3,1)
11
MSB
210(2,2)
27
CSB
210(2,2)
43
LSB
210(2,2)
12
MSB
210(1,3)
28
CSB
210(1,3)
44
LSB
210(1,3)
13
MSB
210(3,2)
29
CSB
210(3,2)
45
LSB
210(3,2)
14
MSB
210(2,3)
30
CSB
210(2,3)
46
LSB
210(2,3)
15
MSB
210(3,3)
31
CSB
210(3,3)
47
LSB
210(3,3)
It is noted that although the previous examples (
The mentioned above programming orders may be applied mutatis mutandis to the p-BiCS U-shape bit-line structure shown in
All of the above methods also hold, with simple adaptation, for the vertical gate 3D NAND devices and for 2 bit per cells as well. It should be noted that the general rule above allows for many more programming order combinations.
Decoupling Through Reading
Above we described programming orders which are intended to reduce the coupling effect through limitations on charge increase between each programming step. However, this method does not completely eliminate coupling, only reduces it.
Furthermore, we have not considered what happens between block boundaries, where no effort was yet done to reduce coupling. Therefore, in the following we suggest a method that takes into account coupling during a read operation in 3D NAND devices.
In general we can model the measured cell pass threshold as a linear combination which is a result of the target cell charge and all neighboring cells charge.
This can be roughly described in the following formula:
Where Ci, i=1 . . . nneighbors is denote at the neighboring cells ai, i=1 . . . nneighbors are coefficients that predict the effect of a charge at the neighboring cells on VT. PVT (Target Cell) is the intended program voltage of the target cell and VT (Target Cell) is the actual measure target voltage of the cell.
We can replace Ci with a linear estimator of Ci based on rough measurements of VT at the neighboring cells such that
Where bi, i=1 n . . . nneighbors are coefficients that predict the effect of a rough measurement of the neighboring VT on the target cell VT (Target Cell). The noise is some random variable the replaces the uncertainty in the estimation of the effect of the neighboring VT on the target cell VT.
We assume throughout that the neighboring cells are ordered based on the absolute value of bi, starting for largest to smallest (starting from neighbor which most affects target cell).
When a row read operation is performed, it is typically made through a rough estimation of the row cells VT, based on a single threshold comparison per distinguished lobe couple. The programmed values of the neighboring cells may affect the read value by shifting it across the compared read threshold. To overcome the error source we suggest performing the one or all of the following operations:
Note that in order to reduce memory consumption, it is not necessarily needed to read all neighboring rows into internal controller memory and save them for future calculation (as there may be quite a few neighboring rows), but rather, we can read each row and add its affect to an existing accumulator which will hold in the end the added term of Equation (2).
An example of a method that may apply the above decoupling by reading is illustrated in
Method 600 may start by stage 610 of reading first flash memory cells to provide a first read result.
Stage 610 may be followed by stage 620 of reading second flash memory cells to provide a second read result.
Stages 610 and 620 may be followed by stage 630 of estimating logical values stored in the first flash memory cells in response to the first result, the second read result and a coupling between the first and second flash memory cells. The first flash memory cells and the second flash memory cells belong to the three dimensional array.
The first and second flash memory cells may belong to adjacent subsets of the three dimensional array.
The second flash memory cells may partially surround the first flash memory cells from at least three orthogonal directions. Referring to
The second flash memory cells may form at least a majority of flash memory cells that affect the first read result.
The reading (620) of the second flash memory cells may be coarser than the reading (610) of the first flash memory cells.
The estimating (630) may include soft decoding the first and second read results.
The estimating (630) may include associating a reliability value to the estimation of the logical values stored in the first flash memory cells.
Stage 630 may be followed by stage 640 of determining whether to read one or more additional sets of flash memory cells in response to a result of the soft decoding.
Stage 630 (and even stage 620) may be followed by stage 640 of reading third flash memory cells to provide third read result; and stage 650 of estimating the logical values stored in the first flash memory cells in response to the first result, the second read result, the third read result, a coupling between the first and second flash memory cells, and a coupling between the first and third flash memory cells.
Although the mentioned above method was illustrated in relation to two or three read operations the method can be applicable to more than three read operations.
In general, method 600 may include repeating the stages of: determining whether to read next flash memory cells; reading, according to the determining, the next flash memory cells to provide a next read result; and estimating the logical values stored in the first flash memory cells in response to the first till next results and to coupling between the first flash memory cells and the second till next flash memory cells.
Memory Management to Reduce Block to Block Coupling Effect
The programming ordering methods described above are only effective within blocks. However, due to the 3D NAND structure, the NAND rows may suffer from coupling disturb from physically nearby blocks. As blocks may be full cubes of cells, bit-lines on the borders of a block may suffer from coupling from neighboring blocks that were programmed later (see
To overcome this problem or to reduce its effect we suggest following some or all of the following methods:
Method 500 may start by stage 510 of receiving or determining a multiple phase programming scheme that is responsive to coupling between flash memory cells of the three dimensional array.
The multiple phase programming scheme determine a manner in which multiple programming levels are applied.
At least two programming levels of the multiple programming levels correspond to bits of different significance. For example—a three level programming scheme may include programming three bits per cell—including most significant bit, central significant bit and least significant bit.
Stage 510 may be followed by stage 520 of programming data to multiple flash memory cells of the three dimensional array in response to the multiple phase programming scheme.
The three dimensional array may include multiple planes of flash memory cells, each plane comprise multiple rows and columns of flash memory cells.
The multiple phase programming scheme may be responsive to coupling between flash memory cells that belong to different planes.
The flash memory cells of a same page may be programmed concurrently and wherein the multiple phase programming scheme determines an order of programming pages.
The multiple phase programming scheme of stage 510 may determine to apply a certain level of programming of all pages before starting programming another level of programming of any of the pages, the other level is higher than the certain level. The programming of stage 530 may include applying a certain level of programming of all pages before starting programming another level of programming of any of the pages.
The multiple pages may be arranged in an ordered array and the multiple phase programming scheme may determine to apply the certain level of programming on one group of pages after the other.
The pages of a same group may be located along a same virtual line. Each virtual line may be either parallel to or orthogonal to a plane. Alternatively—each virtual line is neither parallel or orthogonal to a plane.
Two non-limiting examples of programming orders of sixteen pages (an array of 4 by 4 pages) assuming three bit per cell programming are illustrated in
The multiple phase programming scheme may include virtually partitioning the three dimensional array to multiple three dimensional subarrays. Non-limiting examples of such three dimensional arrays are provide din the super-blocks 310, 320 and 330 of
Each three dimensional subarray may include multiple planes, each plane may include multiple rows and columns of flash memory cells. See for example planes 311, 312 and 313 of three dimensional subarray 310, planes 321, 322 and 323 of three dimensional subarray 320 and planes 331, 332 and 333 of three dimensional subarray 330 of
Each three dimensional subarray may include multiple erase blocks.
The multiple phase programming scheme may define at least one programming rule that is responsive to a distance between a flash memory cell that belong to a certain three dimensional subarray and to an adjacent three dimensional subarray.
The multiple phase programming scheme may define (a) an edge programming rule that is associated with edge flash memory cells (such as cells of planes 311, 313, 321, 323, 331 and 333 of
The non-edge programming rule may define a denser programming in relation to programming applied by the edge programming rule. For example—more bits can be programmed in non-edge planes than in edge planes.
The edge programming rule may define programming only a part of the edge flash memory cells while leaving some edge flash memory un-programmed.
A first set of first edge memory cells of a first three dimensional subarray and (b) a first set of second edge memory cells of a second three dimensional subarray are positioned on both sides of a border between the first and second three dimensional subarrays See, for example the cells of planes 313 and 321 of subarrays 310 and 320.
The edge programming rule defines a programming of the first sets of first and second flash memory cells.
The edge programming rule may prevents programming of a first subset of first edge memory cells while facilitating programming of a corresponding first subset of second edge memory cell. In the following text the term corresponding may refer to cells located at the same location but at another three dimensional subarray.
The edge programming rule may facilitates programming of a second subset of first edge memory cells while preventing programming of a corresponding second subset of second edge memory cell.
The edge programming rule may define (a) a first edge maximal level for programming a first subset of first edge memory cells, and (b) a second edge maximal level for programming a first subset of second edge memory cells, and wherein the first edge maximal level differs from the second edge maximal level.
The edge programming rule may define a programming of the first sets of the flash memory cells in a manner that is opposite to a programming of the second set of flash memory cells.
Stage 520 may include at least one of the following:
Memory controller 700 is coupled to a three dimensional array of flash memory cells 800.
Memory controller 700 includes read circuit 710, write circuit 720, erase circuit 730, memory module 750 and estimating circuit 760.
The read circuit 710 is arranged to read first flash memory cells to provide a first read result and read second flash memory cells to provide a second read result. The estimating circuit 720 is arranged to estimate logical values stored in the first flash memory cells in response to the first result, the second read result and a coupling between the first and second flash memory cells; wherein first flash memory cells and the second flash memory cells belong to a three dimensional array.
Additionally or alternatively, memory module 750 is arranged to store a multiple phase programming scheme that is responsive to coupling between flash memory cells of the three dimensional array. The write circuit is arranged to program data to multiple flash memory cells of the three dimensional array in response to the multiple phase programming scheme. The multiple phase programming scheme determine a manner in which multiple programming levels are applied; wherein at least two programming levels of the multiple programming levels correspond to bits of different significance.
The invention may also be implemented in a computer program for running on a computer system, at least including code portions for performing steps of a method according to the invention when run on a programmable apparatus, such as a computer system or enabling a programmable apparatus to perform functions of a device or system according to the invention. The computer program may cause the storage system to allocate disk drives to disk drive groups.
A computer program is a list of instructions such as a particular application program and/or an operating system. The computer program may for instance include one or more of: a subroutine, a function, a procedure, an object method, an object implementation, an executable application, an applet, a servlet, a source code, an object code, a shared library/dynamic load library and/or other sequence of instructions designed for execution on a computer system.
The computer program may be stored internally on a non-transitory computer readable medium. All or some of the computer program may be provided on computer readable media permanently, removably or remotely coupled to an information processing system. The computer readable media may include, for example and without limitation, any number of the following: magnetic storage media including disk and tape storage media; optical storage media such as compact disk media (e.g., CD-ROM, CD-R, etc.) and digital video disk storage media; nonvolatile memory storage media including semiconductor-based memory units such as FLASH memory, EEPROM, EPROM, ROM; ferromagnetic digital memories; MRAM; volatile storage media including registers, buffers or caches, main memory, RAM, etc.
A computer process typically includes an executing (running) program or portion of a program, current program values and state information, and the resources used by the operating system to manage the execution of the process. An operating system (OS) is the software that manages the sharing of the resources of a computer and provides programmers with an interface used to access those resources. An operating system processes system data and user input, and responds by allocating and managing tasks and internal system resources as a service to users and programs of the system.
The computer system may for instance include at least one processing unit, associated memory and a number of input/output (I/O) devices. When executing the computer program, the computer system processes information according to the computer program and produces resultant output information via I/O devices.
In the foregoing specification, the invention has been described with reference to specific examples of embodiments of the invention. It will, however, be evident that various modifications and changes may be made therein without departing from the broader spirit and scope of the invention as set forth in the appended claims.
Moreover, the terms “front,” “back,” “top,” “bottom,” “over,” “under” and the like in the description and in the claims, if any, are used for descriptive purposes and not necessarily for describing permanent relative positions. It is understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the invention described herein are, for example, capable of operation in other orientations than those illustrated or otherwise described herein.
The connections as discussed herein may be any type of connection suitable to transfer signals from or to the respective nodes, units or devices, for example via intermediate devices. Accordingly, unless implied or stated otherwise, the connections may for example be direct connections or indirect connections. The connections may be illustrated or described in reference to being a single connection, a plurality of connections, unidirectional connections, or bidirectional connections. However, different embodiments may vary the implementation of the connections. For example, separate unidirectional connections may be used rather than bidirectional connections and vice versa. Also, plurality of connections may be replaced with a single connection that transfers multiple signals serially or in a time multiplexed manner. Likewise, single connections carrying multiple signals may be separated out into various different connections carrying subsets of these signals. Therefore, many options exist for transferring signals.
Although specific conductivity types or polarity of potentials have been described in the examples, it will be appreciated that conductivity types and polarities of potentials may be reversed.
Each signal described herein may be designed as positive or negative logic. In the case of a negative logic signal, the signal is active low where the logically true state corresponds to a logic level zero. In the case of a positive logic signal, the signal is active high where the logically true state corresponds to a logic level one. Note that any of the signals described herein may be designed as either negative or positive logic signals. Therefore, in alternate embodiments, those signals described as positive logic signals may be implemented as negative logic signals, and those signals described as negative logic signals may be implemented as positive logic signals.
Furthermore, the terms “assert” or “set” and “negate” (or “deassert” or “clear”) are used herein when referring to the rendering of a signal, status bit, or similar apparatus into its logically true or logically false state, respectively. If the logically true state is a logic level one, the logically false state is a logic level zero. And if the logically true state is a logic level zero, the logically false state is a logic level one.
Those skilled in the art will recognize that the boundaries between logic blocks are merely illustrative and that alternative embodiments may merge logic blocks or circuit elements or impose an alternate decomposition of functionality upon various logic blocks or circuit elements. Thus, it is to be understood that the architectures depicted herein are merely exemplary, and that in fact many other architectures may be implemented which achieve the same functionality.
Any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality may be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated can also be viewed as being “operably connected,” or “operably coupled,” to each other to achieve the desired functionality.
Furthermore, those skilled in the art will recognize that boundaries between the above described operations merely illustrative. The multiple operations may be combined into a single operation, a single operation may be distributed in additional operations and operations may be executed at least partially overlapping in time. Moreover, alternative embodiments may include multiple instances of a particular operation, and the order of operations may be altered in various other embodiments.
Also for example, in one embodiment, the illustrated examples may be implemented as circuitry located on a single integrated circuit or within a same device. Alternatively, the examples may be implemented as any number of separate integrated circuits or separate devices interconnected with each other in a suitable manner.
Also for example, the examples, or portions thereof, may implemented as soft or code representations of physical circuitry or of logical representations convertible into physical circuitry, such as in a hardware description language of any appropriate type.
Also, the invention is not limited to physical devices or units implemented in non-programmable hardware but can also be applied in programmable devices or units able to perform the desired device functions by operating in accordance with suitable program code, such as mainframes, minicomputers, servers, workstations, personal computers, notepads, personal digital assistants, electronic games, automotive and other embedded systems, cell phones and various other wireless devices, commonly denoted in this application as ‘computer systems’.
However, other modifications, variations and alternatives are also possible. The specifications and drawings are, accordingly, to be regarded in an illustrative rather than in a restrictive sense.
In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. The word ‘comprising’ does not exclude the presence of other elements or steps then those listed in a claim. Furthermore, the terms “a” or “an,” as used herein, are defined as one or more than one. Also, the use of introductory phrases such as “at least one” and “one or more” in the claims should not be construed to imply that the introduction of another claim element by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim element to inventions containing only one such element, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an.” The same holds true for the use of definite articles. Unless stated otherwise, terms such as “first” and “second” are used to arbitrarily distinguish between the elements such terms describe. Thus, these terms are not necessarily intended to indicate temporal or other prioritization of such elements. The mere fact that certain measures are recited in mutually different claims does not indicate that a combination of these measures cannot be used to advantage.
While certain features of the invention have been illustrated and described herein, many modifications, substitutions, changes, and equivalents will now occur to those of ordinary skill in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.
Weingarten, Hanan, Sabbag, Erez
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
4430701, | Aug 03 1981 | International Business Machines Corporation | Method and apparatus for a hierarchical paging storage system |
4463375, | Sep 07 1982 | The Board of Trustees of the Leland Standford Junior University | Multiple-measurement noise-reducing system |
4584686, | Dec 22 1983 | NORTH AMERICAN PHILIPS CORPORATION A CORPORATION OF DE | Reed-Solomon error correction apparatus |
4589084, | May 16 1983 | RCA LICENSING CORPORATION, TWO INDEPENDENCE WAY, PRINCETON, NJ 08540, A CORP OF DE | Apparatus for symmetrically truncating two's complement binary signals as for use with interleaved quadrature signals |
4777589, | Jun 28 1985 | Hewlett-Packard Company | Direct input/output in a virtual memory system |
4866716, | May 15 1987 | Maxtor Corporation | Real-time BCH error correction code decoding mechanism |
5003597, | Dec 21 1989 | Xerox Corporation | Method and apparatus for data encryption |
5077737, | Aug 18 1989 | Micron Technology, Inc. | Method and apparatus for storing digital data in off-specification dynamic random access memory devices |
5297153, | Aug 24 1989 | U.S. Philips Corporation | Method and apparatus for decoding code words protected wordwise by a non-binary BCH code from one or more symbol errors |
5305276, | Sep 11 1991 | Rohm Co., Ltd. | Non-volatile IC memory |
5592641, | Jun 30 1993 | Intel Corporation | Method and device for selectively locking write access to blocks in a memory array using write protect inputs and block enabled status |
5623620, | Jun 30 1993 | Micron Technology, Inc | Special test modes for a page buffer shared resource in a memory device |
5640529, | Jul 29 1993 | Intel Corporation | Method and system for performing clean-up of a solid state disk during host command execution |
5657332, | May 20 1992 | SanDisk Technologies LLC | Soft errors handling in EEPROM devices |
5663901, | Apr 11 1991 | SanDisk Technologies LLC | Computer memory cards using flash EEPROM integrated circuit chips and memory-controller systems |
5724538, | Apr 08 1993 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Computer memory address control apparatus utilizing hashed address tags in page tables which are compared to a combined address tag and index which are longer than the basic data width of the associated computer |
5729490, | Jul 31 1995 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Parallel-dichotomic serial sensing method for sensing multiple-level non-volatile memory cells, and sensing circuit for actuating such method |
5740395, | Oct 30 1992 | Intel Corporation | Method and apparatus for cleaning up a solid state memory disk storing floating sector data |
5745418, | Nov 25 1996 | MACRONIX INTERNATIONAL CO , LTD | Flash memory mass storage system |
5778430, | Apr 19 1996 | Veritas Technologies LLC | Method and apparatus for computer disk cache management |
5793774, | Nov 04 1994 | Fujitsu Limited | Flash memory controlling system |
5920578, | Apr 23 1997 | Cirrus Logic, INC | Method and apparatus for efficiently processing a multi-dimensional code |
5926409, | Sep 05 1997 | Winbond Electronics Corporation | Method and apparatus for an adaptive ramp amplitude controller in nonvolatile memory application |
5933368, | Nov 25 1996 | Macronix International Co., Ltd. | Flash memory mass storage system |
5956268, | Feb 12 1997 | Hyundai Electronics America | Nonvolatile memory structure |
5956473, | Nov 25 1996 | MACRONIX INTERNATIONAL C , LTD | Method and system for managing a flash memory mass storage system |
5968198, | Aug 16 1996 | Unwired Planet, LLC | Decoder utilizing soft information output to minimize error rates |
5982659, | Dec 23 1996 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | Memory cell capable of storing more than two logic states by using different via resistances |
6011741, | Apr 11 1991 | SanDisk Technologies LLC | Computer memory cards using flash EEPROM integrated circuit chips and memory-controller systems |
6016275, | Mar 13 1998 | LG Semicon Co., Ltd. | Flash memory wear leveling system and method |
6038634, | Feb 02 1998 | GOOGLE LLC | Intra-unit block addressing system for memory |
6081878, | Oct 07 1997 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Increasing the memory performance of flash memory devices by writing sectors simultaneously to multiple flash memory devices |
6094465, | Mar 21 1997 | Qualcomm Incorporated | Method and apparatus for performing decoding of CRC outer concatenated codes |
6119245, | Aug 06 1997 | LAPIS SEMICONDUCTOR CO , LTD | Semiconductor storage device and method of controlling it |
6182261, | Nov 05 1998 | Qualcomm Incorporated | Efficient iterative decoding |
6192497, | Aug 27 1998 | RPX Corporation | Parallel Chien search circuit |
6195287, | Feb 03 1999 | SAMSUNG ELECTRONICS CO , LTD | Data programming method for a nonvolatile semiconductor storage |
6199188, | Oct 07 1997 | Maxtor Corporation | System for finding roots of degree three and degree four error locator polynomials over GF(2M) |
6209114, | May 29 1998 | Texas Instruments Incorporated | Efficient hardware implementation of chien search polynomial reduction in reed-solomon decoding |
6259627, | Jan 27 2000 | SAMSUNG ELECTRONICS CO , LTD | Read and write operations using constant row line voltage and variable column line load |
6272052, | Aug 21 1998 | Mitsubishi Denki Kabushiki Kaisha | Block-erase type semiconductor storage device with independent memory groups having sequential logical addresses |
6278633, | Nov 05 1999 | SAMSUNG ELECTRONICS CO , LTD | High bandwidth flash memory that selects programming parameters according to measurements of previous programming operations |
6279133, | Oct 05 1998 | KAWASAKI MICROELECTRONICS, INC | Method and apparatus for significantly improving the reliability of multilevel memory architecture |
6301151, | Aug 09 2000 | Winbond Electronics Corporation | Adaptive programming method and apparatus for flash memory analog storage |
6370061, | Jun 19 2001 | MUFG UNION BANK, N A | Ceiling test mode to characterize the threshold voltage distribution of over programmed memory cells |
6374383, | Jun 07 1999 | Maxtor Corporation | Determining error locations using error correction codes |
6504891, | Jul 28 1995 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Timer circuit with programmable decode circuitry |
6532169, | Jun 26 2001 | MUFG UNION BANK, N A | SONOS latch and application |
6532556, | Jan 27 2000 | SAMSUNG ELECTRONICS CO , LTD | Data management for multi-bit-per-cell memories |
6553533, | Feb 05 1998 | Mitsubishi Electric Corporation | Method and apparatus for detecting and correcting errors and erasures in product ECC-coded data arrays for DVD and similar storage subsystems |
6560747, | Nov 10 1999 | Maxtor Corporation | Error counting mechanism |
6637002, | Oct 21 1998 | Maxtor Corporation | Decoder for error correcting block codes |
6639865, | Oct 25 2000 | Samsung Electronics Co., Ltd.; SAMSUNG ELECTRONICS CO , LTD | Memory device, method of accessing the memory device, and reed-solomon decoder including the memory device |
6674665, | Jun 26 2001 | MUFG UNION BANK, N A | SONOS latch and application |
6675281, | Jan 22 2002 | TM TECHNOLOGY INC | Distributed mapping scheme for mass storage system |
6704902, | |||
6751766, | May 20 2002 | SanDisk Technologies LLC | Increasing the effectiveness of error correction codes and operating multi-level memory systems by using information about the quality of the stored data |
6772274, | Sep 13 2000 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Flash memory system and method implementing LBA to PBA correlation within flash memory array |
6781910, | May 17 2002 | SAMSUNG ELECTRONICS CO , LTD | Small area magnetic memory devices |
6792569, | Apr 24 2001 | International Business Machines Corporation | Root solver and associated method for solving finite field polynomial equations |
6873543, | May 30 2003 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Memory device |
6891768, | Nov 13 2002 | SAMSUNG ELECTRONICS CO , LTD | Power-saving reading of magnetic memory devices |
6914809, | Jul 07 2003 | SAMSUNG ELECTRONICS CO , LTD | Memory cell strings |
6915477, | Dec 28 2001 | Alcatel Lucent | Delay sensitive adaptive quality control loop for rate adaptation |
6952365, | Jan 18 2002 | SanDisk Technologies LLC | Reducing the effects of noise in non-volatile memories through multiple reads |
6961890, | Aug 16 2001 | SK HYNIX INC | Dynamic variable-length error correction code |
6968421, | Nov 19 2001 | SanDisk Technologies LLC | Partial block data programming and reading operations in a non-volatile memory |
6990012, | Oct 07 2003 | SAMSUNG ELECTRONICS CO , LTD | Magnetic memory device |
6996004, | Nov 04 2003 | VALLEY DEVICE MANAGEMENT | Minimization of FG-FG coupling in flash memory |
6999854, | May 28 2004 | TANDEM DIABETES CARE, INC | Medical infusion pump capable of learning bolus time patterns and providing bolus alerts |
7010739, | Apr 11 2002 | CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | Error evaluator for inversionless Berlekamp-Massey algorithm in Reed-Solomon decoders |
7012835, | Oct 03 2003 | SanDisk Technologies LLC | Flash memory data correction and scrub techniques |
7038950, | Nov 05 2004 | Infineon Technologies LLC | Multi bit program algorithm |
7068539, | Jan 27 2004 | SanDisk Technologies LLC | Charge packet metering for coarse/fine programming of non-volatile memory |
7079436, | Sep 30 2003 | SAMSUNG ELECTRONICS CO , LTD | Resistive cross point memory |
7149950, | Sep 12 2003 | SAMSUNG ELECTRONICS CO , LTD | Assisted memory device for reading and writing single and multiple units of data |
7177977, | Mar 19 2004 | SanDisk Technologies LLC | Operating non-volatile memory without read disturb limitations |
7188228, | Oct 01 2003 | SanDisk Technologies LLC | Hybrid mapping implementation within a non-volatile memory system |
7191379, | Sep 10 2003 | SAMSUNG ELECTRONICS CO , LTD | Magnetic memory with error correction coding |
7196946, | Apr 05 2005 | SanDisk Technologies LLC | Compensating for coupling in non-volatile storage |
7203874, | May 08 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Error detection, documentation, and correction in a flash memory device |
7212426, | Dec 31 2003 | Samsung Electronics Co., Ltd. | Flash memory system capable of inputting/outputting sector data at random |
7290203, | Oct 29 2004 | GLOBALFOUNDRIES U S INC | Dynamic memory architecture employing passive expiration of data |
7292365, | Jan 15 2003 | Xerox Corporation | Methods and systems for determining distribution mean level without histogram measurement |
7301928, | Jun 09 2004 | HITACHI KOKUSAI ELECTRIC INC. | Wireless packet transfer apparatus and method |
7315916, | Dec 16 2004 | SanDisk Technologies LLC | Scratch pad block |
7388781, | Mar 06 2006 | Sandisk IL Ltd. | Multi-bit-per-cell flash memory device with non-bijective mapping |
7395404, | Dec 16 2004 | SanDisk Technologies LLC | Cluster auto-alignment for storing addressable data packets in a non-volatile memory array |
7441067, | Nov 15 2004 | SanDisk Technologies LLC | Cyclic flash memory wear leveling |
7443729, | Jul 20 2006 | SanDisk Technologies LLC | System that compensates for coupling based on sensing a neighbor using coupling |
7450425, | Aug 30 2006 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Non-volatile memory cell read failure reduction |
7454670, | Jan 27 2004 | Samsung Electronics Co., Ltd. | Data management apparatus and method of flash memory |
7466575, | May 12 2006 | Apple Inc | Memory device programming using combined shaping and linear spreading |
7533328, | Jul 04 2006 | SanDisk IL, Ltd. | Method of error correction in a multi-bit-per-cell flash memory |
7558109, | Nov 03 2006 | SanDisk Technologies LLC | Nonvolatile memory with variable read threshold |
7593263, | Dec 17 2006 | Apple Inc | Memory device with reduced reading latency |
7610433, | Feb 05 2004 | Malikie Innovations Limited | Memory controller interface |
7613043, | May 15 2006 | Apple Inc. | Shifting reference values to account for voltage sag |
7619922, | Apr 01 2005 | SanDisk Technologies LLC | Method for non-volatile memory with background data latch caching during erase operations |
7697326, | May 12 2006 | Apple Inc | Reducing programming error in memory devices |
7706182, | Dec 03 2006 | Apple Inc | Adaptive programming of analog memory cells using statistical characteristics |
7716538, | Sep 27 2006 | SanDisk Technologies LLC | Memory with cell population distribution assisted read margining |
7804718, | Mar 07 2007 | Mosaid Technologies Incorporated | Partial block erase architecture for flash memory |
7805663, | Sep 28 2006 | SanDisk Technologies LLC | Methods of adapting operation of nonvolatile memory |
7805664, | Oct 05 2006 | CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | Likelihood metric generation for trellis-based detection and/or decoding |
7844877, | Nov 15 2005 | Ramot at Tel Aviv University Ltd. | Method and device for multi phase error-correction |
7889571, | Jan 09 2008 | III Holdings 1, LLC | Buffering systems methods for accessing multiple layers of memory in integrated circuits |
7911848, | Aug 01 2008 | Samsung Electronics Co., Ltd. | Memory device and memory data determination method |
7961797, | Oct 10 2006 | CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | Nonlinear viterbi complexity reduction |
7975192, | Oct 30 2006 | Apple Inc | Reading memory cells using multiple thresholds |
8020073, | Oct 29 2004 | GLOBALFOUNDRIES U S INC | Dynamic memory architecture employing passive expiration of data |
8108590, | Jan 06 2000 | Super Talent Electronics, Inc | Multi-operation write aggregator using a page buffer and a scratch flash block in each of multiple channels of a large array of flash memory to reduce block wear |
8122328, | Mar 30 2007 | SAMSUNG ELECTRONICS CO , LTD | Bose-Chaudhuri-Hocquenghem error correction method and circuit for checking error using error correction encoder |
8159881, | Jun 03 2009 | MARVELL INTERNATIONAL LTD; CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | Reference voltage optimization for flash memory |
8190961, | Nov 28 2006 | CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | System and method for using pilot signals in non-volatile memory devices |
8250324, | Nov 30 2009 | International Business Machines Corporation | Method to efficiently locate meta-data structures on a flash-based storage device |
8300823, | Jan 28 2008 | NetApp, Inc | Encryption and compression of data for storage |
8305812, | Aug 26 2009 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Flash memory module and method for programming a page of flash memory cells |
8327246, | Dec 18 2007 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Apparatus for coding at a plurality of rates in multi-level flash memory systems, and methods useful in conjunction therewith |
8407560, | Jul 14 2010 | Hewlett Packard Enterprise Development LP | Systems and methods for encoding information for storage in an electronic memory and for decoding encoded information retrieved from an electronic memory |
8417893, | Feb 04 2008 | Apple Inc. | Memory mapping techniques |
8472280, | Dec 21 2010 | SanDisk Technologies LLC | Alternate page by page programming scheme |
8559231, | Mar 08 2011 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Sense operation in a stacked memory array device |
8867280, | Feb 24 2012 | Seoul National University R&DB Foundation | 3D stacked NAND flash memory array enabling to operate by LSM and operation method thereof |
20010034815, | |||
20020063774, | |||
20020085419, | |||
20020154769, | |||
20020156988, | |||
20020174156, | |||
20030014582, | |||
20030065876, | |||
20030101404, | |||
20030105620, | |||
20030177300, | |||
20030192007, | |||
20040015771, | |||
20040030971, | |||
20040059768, | |||
20040080985, | |||
20040153722, | |||
20040153817, | |||
20040181735, | |||
20040203591, | |||
20040210706, | |||
20050013165, | |||
20050018482, | |||
20050083735, | |||
20050117401, | |||
20050120265, | |||
20050128811, | |||
20050138533, | |||
20050144213, | |||
20050144368, | |||
20050169057, | |||
20050172179, | |||
20050213393, | |||
20050243626, | |||
20060059406, | |||
20060059409, | |||
20060064537, | |||
20060101193, | |||
20060195651, | |||
20060203587, | |||
20060221692, | |||
20060248434, | |||
20060268608, | |||
20060282411, | |||
20060284244, | |||
20060294312, | |||
20070025157, | |||
20070063180, | |||
20070081388, | |||
20070098069, | |||
20070103992, | |||
20070104004, | |||
20070109858, | |||
20070124652, | |||
20070140006, | |||
20070143561, | |||
20070150694, | |||
20070168625, | |||
20070171714, | |||
20070171730, | |||
20070180346, | |||
20070223277, | |||
20070226582, | |||
20070226592, | |||
20070228449, | |||
20070253249, | |||
20070253250, | |||
20070263439, | |||
20070266291, | |||
20070271494, | |||
20070297226, | |||
20080010581, | |||
20080028014, | |||
20080049497, | |||
20080055989, | |||
20080082897, | |||
20080092026, | |||
20080104309, | |||
20080112238, | |||
20080116509, | |||
20080126686, | |||
20080127104, | |||
20080128790, | |||
20080130341, | |||
20080137413, | |||
20080137414, | |||
20080141043, | |||
20080148115, | |||
20080158958, | |||
20080159059, | |||
20080162079, | |||
20080168216, | |||
20080168320, | |||
20080181001, | |||
20080198650, | |||
20080198652, | |||
20080201620, | |||
20080209114, | |||
20080219050, | |||
20080225599, | |||
20080250195, | |||
20080263262, | |||
20080282106, | |||
20080285351, | |||
20080301532, | |||
20090024905, | |||
20090027961, | |||
20090043951, | |||
20090046507, | |||
20090072303, | |||
20090091979, | |||
20090103358, | |||
20090106485, | |||
20090113275, | |||
20090125671, | |||
20090132755, | |||
20090144598, | |||
20090144600, | |||
20090150599, | |||
20090150748, | |||
20090157964, | |||
20090158126, | |||
20090168524, | |||
20090187803, | |||
20090199074, | |||
20090213653, | |||
20090213654, | |||
20090228761, | |||
20090240872, | |||
20090282185, | |||
20090282186, | |||
20090287930, | |||
20090300269, | |||
20090323942, | |||
20100005270, | |||
20100025811, | |||
20100030944, | |||
20100058146, | |||
20100064096, | |||
20100088557, | |||
20100091535, | |||
20100095186, | |||
20100110787, | |||
20100115376, | |||
20100122113, | |||
20100124088, | |||
20100131580, | |||
20100131806, | |||
20100131809, | |||
20100131826, | |||
20100131827, | |||
20100131831, | |||
20100146191, | |||
20100146192, | |||
20100149881, | |||
20100172179, | |||
20100174853, | |||
20100180073, | |||
20100199149, | |||
20100211724, | |||
20100211833, | |||
20100211856, | |||
20100241793, | |||
20100246265, | |||
20100251066, | |||
20100253555, | |||
20100257309, | |||
20100269008, | |||
20100293321, | |||
20100318724, | |||
20110051521, | |||
20110055461, | |||
20110093650, | |||
20110096612, | |||
20110099460, | |||
20110119562, | |||
20110153919, | |||
20110161775, | |||
20110194353, | |||
20110209028, | |||
20110214029, | |||
20110214039, | |||
20110246792, | |||
20110246852, | |||
20110252187, | |||
20110252188, | |||
20110271043, | |||
20110302428, | |||
20120001778, | |||
20120005554, | |||
20120005558, | |||
20120005560, | |||
20120008401, | |||
20120008414, | |||
20120017136, | |||
20120051144, | |||
20120063227, | |||
20120066441, | |||
20120110250, | |||
20120124273, | |||
20120246391, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 23 2014 | AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD | (assignment on the face of the patent) | / | |||
Jul 29 2014 | DENSBITS TECHNOLOGIES LTD | KREOS CAPITAL IV EXPERT FUND LIMITED | SECURITY INTEREST | 033444 | /0628 | |
Feb 23 2015 | DENSBITS TECHNOLOGIES LTD | KREOS CAPITAL IV EXPERT FUND LIMITED | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 035222 | /0547 | |
Nov 12 2015 | SABBAG, EREZ | DENSBITS TECHNOLOGIES LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 037110 | /0595 | |
Nov 18 2015 | WEINGARTEN, HANAN | DENSBITS TECHNOLOGIES LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 037110 | /0595 | |
Dec 14 2015 | KREOS CAPITAL IV EXPERT FUND LIMITED | DENSBITS TECHNOLOGIES LTD | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 041339 | /0921 | |
Dec 14 2015 | DENSBITS TECHNOLOGIES LTD | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 037622 | /0224 | |
May 09 2018 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | MERGER SEE DOCUMENT FOR DETAILS | 047422 | /0464 | |
Sep 05 2018 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | CORRECTIVE ASSIGNMENT TO CORRECT THE EXECUTION DATE PREVIOUSLY RECORDED AT REEL: 047422 FRAME: 0464 ASSIGNOR S HEREBY CONFIRMS THE MERGER | 048883 | /0702 | |
Aug 26 2020 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | BROADCOM INTERNATIONAL PTE LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 053771 | /0901 | |
Feb 02 2023 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | MERGER SEE DOCUMENT FOR DETAILS | 062952 | /0850 | |
Feb 02 2023 | BROADCOM INTERNATIONAL PTE LTD | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | MERGER SEE DOCUMENT FOR DETAILS | 062952 | /0850 |
Date | Maintenance Fee Events |
Jul 06 2020 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jun 27 2024 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Jan 03 2020 | 4 years fee payment window open |
Jul 03 2020 | 6 months grace period start (w surcharge) |
Jan 03 2021 | patent expiry (for year 4) |
Jan 03 2023 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 03 2024 | 8 years fee payment window open |
Jul 03 2024 | 6 months grace period start (w surcharge) |
Jan 03 2025 | patent expiry (for year 8) |
Jan 03 2027 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 03 2028 | 12 years fee payment window open |
Jul 03 2028 | 6 months grace period start (w surcharge) |
Jan 03 2029 | patent expiry (for year 12) |
Jan 03 2031 | 2 years to revive unintentionally abandoned end. (for year 12) |