semiconductor devices and fabrication methods thereof are provided. The semiconductor devices include: a substrate, the substrate including a p-type well adjoining an n-type well; a first p-type region and a first n-type region disposed within the n-type well of the substrate, where the first p-type region at least partially encircles the first n-type region; and a second p-type region and a second n-type region disposed in the p-type well of the substrate, where the second n-type region at least partially encircles the second p-type region. In one embodiment, the first p-type region fully encircles the first n-type region and the second n-type region fully encircles the second p-type region. In another embodiment, the semiconductor device may be a bipolar junction transistor or a rectifier.
|
1. A structure comprising:
a semiconductor device comprising a substrate, the substrate comprising a p-type well adjoining an n-type well, and the semiconductor device comprising:
a first p-type region and a first n-type region disposed within the n-type well of the substrate, wherein the first p-type region at least partially encircles the first n-type region; and
a second p-type region and a second n-type region disposed within the p-type well of the substrate, wherein the second n-type region at least partially encircles the second p- type region,
wherein one of the p-type well or the n-type well of the substrate is located within the other of the p-type well or the n-type well of the substrate, and
wherein a portion of the n-type well of the substrate extends between first p-type region and the first n-type region, and a portion of the p-type well of the substrate extends between the second p-type region and the second n-type region.
13. A method comprising:
providing a semiconductor device comprising a substrate, the substrate comprising a p-type well adjoining an n-type well, and the providing comprising:
fabricating a first p-type region and a first n-type region disposed within the n-type well of the substrate, and a second p-type region and a second n-type region disposed within the p-type well of the substrate, wherein the first p-type region at least partially encircles the first n-type region, and the second n-type region at least partially encircles the second p-type region,
forming one well of the p-type well or the n-type well within the substrate; and
forming the other well of the p-type well or the n-type well within the one well,
wherein a portion of the n-type well of the substrate extends between first p-type region and the first n-type region, and a portion of the p-type well of the substrate extends between the second p-type region and the second n-type region.
2. The structure of
3. The structure of
a base region and an emitter region, the base region comprising one of the first n-type region or the second p-type region and the emitter region comprising the other of the first n-type region or the second p-type region; and
a collector region and a ring region, the collector region comprising one of the first p-type region or the second n-type region and the ring region comprising the other of the first p-type region or the second n-type region.
4. The structure of
an electrical contact structure, the electrical contact structure electrically connecting the ring region and the emitter region.
6. The structure of
7. The structure of
a first section, the first section comprising the first p-type region;
a second section, the second section comprising the first n-type region;
a third section, the third section comprising the second n-type region; and
a fourth section, the fourth section comprising the second p-type region.
8. The structure of
9. The structure of
10. The structure of
11. The structure of
12. The structure of
14. The method of
15. The method of
forming at least one region of the first p-type region, first n-type region, second p-type region, or second n-type region with a second semiconductor material, wherein the first and second semiconductor materials are different semiconductor materials.
16. The method of
providing at least one cavity in the substrate; and
epitaxially growing the second semiconductor material from one or more surfaces of the at least one cavity to form the at least one region.
17. The method of
18. The structure of
19. The structure of
|
The present invention relates to semiconductor devices and methods of fabricating semiconductor devices.
Modern integrated circuit designs may include a variety of different semiconductor device types optimized for different functions. For example, field-effect transistors are widely used to provide digital functions, such as logic, memory, or processing. Other types of semiconductor devices, such as bipolar junction transistors and rectifiers, are desirable to provide analog functions, such as temperature detection, electrostatic discharge protection, amplification, or radio frequency functions. Therefore, integrated circuits combining these different types of semiconductor devices to provide both analog and digital functions are desirable. However, different device architectures of, for example, field-effect transistors and bipolar junction transistors, typically require separate fabrication processes, leading to increased complexity and cost.
The shortcomings of the prior art are overcome, and additional advantages are provided, through the provision, in one aspect, of a semiconductor device. The semiconductor device includes: a substrate, the substrate including a p-type well adjoining an n-type well; a first p-type region and a first n-type region disposed within the n-type well of the substrate, where the first p-type region at least partially encircles the first n-type region; and a second p-type region and a second n-type region disposed in the p-type well of the substrate, where the second n-type region at least partially encircles the second p-type region.
In another aspect, a method is presented. The method includes providing a semiconductor device including a substrate, the substrate including a p-type well adjoining to an n-type well. The providing includes: fabricating a first p-type region and a first n-type region disposed within the n-type well of the substrate, and a second p-type region and a second n-type region disposed within the p-type well of the substrate, where the first p-type region at least partially encircles the first n-type region, and the second n-type region at least partially encircles the second p-type region.
Additional features and advantages are realized through the techniques of the present invention. Other embodiments and aspects of the invention are described in detail herein and are considered a part of the claimed invention.
One or more aspects of the present invention are particularly pointed out and distinctly claimed as examples in the claims at the conclusion of the specification. The foregoing and other objects, features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
Aspects of the present invention and certain features, advantages, and details thereof, are explained more fully below with reference to the non-limiting examples illustrated in the accompanying drawings. Descriptions of well-known materials, fabrication tools, processing techniques, etc., are omitted so as not to unnecessarily obscure the invention in detail. It should be understood, however, that the detailed description and the specific examples, while indicating aspects of the invention, are given by way of illustration only, and not by way of limitation. Various substitutions, modifications, additions, and/or arrangements, within the spirit and/or scope of the underlying inventive concepts will be apparent to those skilled in the art from this disclosure.
In one implementation, an integrated circuit design may include multiple different device types at different locations to perform different functions. During integrated circuit and semiconductor fabrication processing, millions, billions or more devices of these devices, such as transistors, capacitors, rectifiers, and resistors, may be formed to enable logic circuits, memory storage elements, or analog components. The semiconductor fabrication process is very complex, and techniques that tend to reduce complexity can improve yield and reduce costs. Cost reductions may be achieved by, for example, the elimination or consolidation of process steps, or the simplification of designs.
For example, as described herein, several advantages may be realized by defining a single universal device design that may be adapted to act as multiple different device types, leading to reduced design and maintenance costs. For instance, a universal design layout for multiple semiconductor devices may be developed to enable multiple different devices. Initially, during an early fabrication stage, this universal design layout may be repeatedly patterned and formed onto, for example, a substrate. Later, in a subsequent fabrication stage, different conductive connections, such as metal lines and interconnects, may be added so that different instantiations of the universal design layout act as multiple different device types. Further, during operation, different bias voltages may be applied to different terminals of different devices, as needed to enable operation.
In addition, some of the required devices on an integrated circuit may be field-effect transistors, and others may be bipolar junction transistors. In such a case, a technique that allows both different types of transistors to be compatibly fabricated using common processing steps, such as masking, patterning, and etching, can significantly reduce costs.
Generally stated, provided herein, in one aspect, is a semiconductor device. The semiconductor device includes: a substrate, the substrate including a p-type well adjoining an n-type well; a first p-type region and a first n-type region disposed within the n-type well of the substrate, where the first p-type region at least partially encircles the first n-type region; and a second p-type region and a second n-type region disposed in the p-type well of the substrate, where the second n-type region at least partially encircles the second p-type region. In one example, the first p-type region fully encircles the first n-type region within the n-type well and the second n-type region fully encircles the second p-type region within the p-type well. In another example, one of the p-type well or the n-type well of the substrate is located within the other of the p-type well or the n-type well of the substrate. In a further example, the structure further includes a p-type substrate contact region, where the p-type substrate contact region is spaced apart from both the p-type well and the n-type well, and electrically contacts the substrate.
In one implementation, the semiconductor device includes a bipolar junction transistor, the bipolar junction transistor including: a base region and an emitter region, the base region including one of the first n-type region or the second p-type region and the emitter region including the other of the first n-type region or the second p-type region; and a collector region and a ring region, the collector region including one of the first p-type region or the second n-type region and the ring region including the other of the first p-type region or the second n-type region. In such an implementation, in one example, the electrical contact structure electrically connects the ring region and the emitter region. In another example, the ring region encircles the emitter region. In a further example, the ring region is configured to facilitate linearity of the bipolar junction transistor.
In another implementation, the semiconductor device includes a semiconductor controlled rectifier, the semiconductor controlled rectifier including: an anode, the anode including one of the first p-type region or second p-type region; a first section, the first section including the first p-type region; a second section, the second section including the first n-type region; a third section, the third section including the second n-type region; and a fourth section, the fourth section including the second p-type region.
In a further implementation, the substrate includes a first semiconductor material, and at least one region of the first p-type region, first n-type region, second p-type region, or second n-type region includes a second semiconductor material, where the first and second semiconductor materials are different semiconductor materials. In such an implementation, in one example, the first semiconductor material includes silicon and the second semiconductor material includes silicon germanium. In another example, the second semiconductor material of the at least one region is in at least partial crystal alignment with the first semiconductor material of the first substrate.
In one embodiment, the substrate includes multiple fins, and at least one region of the first p-type region, first n-type region, second p-type region, or second n-type region includes one or more fins of the multiple fins of the substrate. In such a case, the structure may further include at least one epitaxial contact structure, the at least one epitaxial contact structure contacting the one or more fins of the at least one region.
In another aspect, a method is presented. The method includes providing a semiconductor device including a substrate, the substrate including a p-type well adjoining to an n-type well. The providing includes: fabricating a first p-type region and a first n-type region disposed within the n-type well of the substrate, and a second p-type region and a second n-type region disposed within the p-type well of the substrate, where the first p-type region at least partially encircles the first n-type region, and the second n-type region at least partially encircles the second p-type region. In one example, the fabricating further includes forming the first p-type region to fully encircle the first n-type region within the n-type well and the second n-type region to fully encircle the second p-type region within the p-type well.
In one embodiment, the providing further includes: forming one well of the p-type well or the n-type well within the substrate; and forming the other well of the p-type well or the n-type well within the one well.
In another embodiment, the substrate includes a first semiconductor material, and the fabricating includes: forming at least one region of the first p-type region, first n-type region, second p-type region, or second n-type region with a second semiconductor material, wherein the first and second semiconductor materials are different semiconductor materials. In such a case, the forming may include: providing at least one cavity in the substrate; and epitaxially growing the second semiconductor material from one or more surfaces of the at least one cavity to form the at least one region.
In a further embodiment, the method further includes forming, before the fabricating, multiple fins extending from the substrate, wherein the fabricating includes fabricating at least one region of the first p-type region, first n-type region, second p-type region, or second n-type region to include one or more fins of the multiple fins of the substrate.
Reference is made below to the drawings, which are not drawn to scale for ease of understanding, wherein the same reference numbers used throughout different figures designate the same or similar components.
With reference to
Continuing with the illustrated embodiment, structure 100 includes a first p-type region 111 and a first n-type region 112 disposed within n-type well 110, and first p-type region 111 at least partially encircles first n-type region 112. Similarly, and in a symmetric configuration, structure 100 also includes a second p-type region 121 and a second n-type region 122, and second n-type region 122 at least partially encircles second p-type region 121.
The encircling region (for example, first p-type region 111 or second n-type region 122) surrounds and forms a full or partial border, or ring region, around a surrounded region (for example, first n-type region 112 or second p-type region 121), in at least two dimensions. As shown, first p-type region 111 fully encircles first n-type region 112 within n-type well 110, and second n-type region 122 fully encircles second p-type region 121 within p-type well 120. In other examples, the encircling region may at least partially surround another region in three-dimensions, similarly to how the outside surface of a sphere surrounds the inner volume thereof.
Structure 100 further includes a substrate contact region 130, which is spaced apart from both p-type well 120 and n-type well 110. Substrate contact region 130 may be p-type or n-type doped in different examples, and may be used to enable a low resistance contact to the substrate, which may be grounded.
During semiconductor fabrication processing, numerous identical structures may be formed simultaneously over a single semiconductor wafer. The initially identical structures may be later connected in different ways to be different semiconductor device types.
In one example substrate 102 may be or include any silicon-containing substrate material including, but not limited to, single crystal Si, polycrystalline Si, amorphous Si, Si-on-nothing (SON), Si-on-insulator (SOI), or Si-on-replacement insulator (SRI) substrates. In other examples, the substrate may be or include other suitable elementary semiconductors, such as, for example, germanium (Ge) in crystal, or a compound semiconductor such as silicon carbide (SiC), gallium arsenide (GaAs), gallium phosphide (GaP), indium phosphide (InP), indium arsenide (InAs), and/or indium antimonide (InSb) or combinations thereof, or an alloy semiconductor such as GaAsP, AlInAs, GaInAs, GaInP, or GaInAsP or combinations thereof. In further examples, the substrate may be an n-type or p-type doped semiconductor material.
Different regions, such as first p-type region 111 or second n-type region 122 may have uniform or varying depths, and may or may not be deeper than a depth of the surrounded region, for example, first n-type region 112 or second p-type region 121.
In one example, substrate 102 includes a first semiconductor material, such as single crystal silicon, which may be, for example, an intrinsic or un-doped semiconductor material. In such an example, the various p-type and n-type regions include doped regions of the uniform substrate. In order to form the various depicted p-type and n-type regions p-type or n-type dopants may be implanted into the substrate. For example, ion implantation may be used to introduce boron or phosphorous into the substrate to form p-type or n-type regions.
In another example, forming a doped region may include forming at least one cavity in the substrate, and growing a second semiconductor material from one or more surfaces of the at least one cavity to form the doped region.
For example, a cavity may be formed by etching the substrate using one or more steps of isotropic or anisotropic etching, including reactive ion etching (RIE) or plasma etching, using process parameters tuned to yield a desired cavity shape profile. As illustrated, the cavity shape profile may be U-shaped. In other examples, the cavity may be at least partially sigma shaped, having one or more angular faces, following crystallographic planes of the substrate, such as <110>, <111>, and/or <100> planes.
After cavity formation, the second semiconductor material may be deposited through, for example, epitaxial growth, which refers to the orderly growth of crystalline material from one or more surfaces of the cavity, in at least partial crystallographic alignment with the underlying surface. The second semiconductor material could be doped as it is deposited or grown (for example, using in situ doping), or could be doped after deposition. The second semiconductor material grown within the cavity may be either n-type or p-type doped, depending on whether an n-type or p-type region is desired, using n-type or p-type dopants as described above with reference to
In another embodiment, a combination of doping and epitaxial growth could be employed. For example, a deep n-well could be formed by doping a substrate, and then a shallower p-well could be formed in the deep n-well. A cavity could be formed in the p-well, and an epitaxial p-type region could be grown within the cavity. In such an example, there would be a p-n junction between the deep n-well and the shallower n-well, and the junction would not be located directly at the boundary of the cavity. By comparison, an epitaxial p-type region formed directly in an n-well would have a p-n junction located directly at the boundary of the cavity. Having the p-n junction located at the boundary of the cavity could lead to performance issues due to defects located at the cavity boundary, and bandgap lowering if the epitaxial material has a different bandgap than the substrate, which would be the case for silicon germanium epitaxial material within a silicon substrate. Such issues would not be present if the p-n junction were between the n-well and the p-well. Thus, the configuration described could lead to improved device performance, such as improved linearity and reduced variability from one device to the next. As used herein, linearity of the transistor refers to the ability of the transistor to retain the same device characteristics notwithstanding changes in external conditions, including, for example, increases in temperature. Advantageously, the present technique allows formation of a good quality p-n junction, allowing controlled spatial uniformity and dopant depth profile, leading to lower leakage current and higher breakdown voltage.
Advantageously, structure 100 is compatible with processing techniques for fabricating complementary metal oxide semiconductor (CMOS) fin field-effect transistors (fin FETs). Fin FETs use the extended fin portions as three-dimensional channels, advantageously providing enhanced performance (for example, increased on current) and low leakage.
Because an integrated circuit design may include both fin FETs in close proximity with other devices, such as the bipolar junction transistors and rectifiers described herein, techniques to allow joint formation over a fin type substrate can allow consolidation of process steps, reducing complexity and cost. For example, it may be simpler to form uniform, substantially parallel fins throughout a substrate, during an early stage of semiconductor fabrication, and then form devices thereafter.
As another example, during fabrication processing, numerous source and drain regions for numerous fin FETs are required, and it may be desirable to epitaxially grow such regions within source and drain cavities formed for that purpose. By using an appropriate mask to block unwanted growth in other regions, source and drain regions may be simultaneously grown across the integrated circuit. The same step of epitaxial growth may also be used to form at least one contact structure 105 across the integrated circuit, facilitating electrical contact to one or more regions of the semiconductor device. In such a manner, a pre-existing processing step may be reused for another purpose, thus consolidating and simplifying fabrication processing. Advantageously, the present technique allows for uniformity of contact height, reducing defects during downstream fabrication processing steps, leading to higher circuit yield and better performance within required tolerances.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprise” (and any form of comprise, such as “comprises” and “comprising”), “have” (and any form of have, such as “has” and “having”), “include” (and any form of include, such as “includes” and “including”), and “contain” (and any form of contain, such as “contains” and “containing”) are open-ended linking verbs. As a result, a method or device that “comprises,” “has,” “includes,” or “contains” one or more steps or elements possesses those one or more steps or elements, but is not limited to possessing only those one or more steps or elements. Likewise, a step of a method or an element of a device that “comprises,” “has,” “includes,” or “contains” one or more features possesses those one or more features, but is not limited to possessing only those one or more features. Furthermore, a device or structure that is configured in a certain way is configured in at least that way, but may also be configured in ways that are not listed.
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below, if any, are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. The embodiment was chosen and described in order to best explain the principles of one or more aspects of the invention and the practical application, and to enable others of ordinary skill in the art to understand one or more aspects of the invention for various embodiments with various modifications as are suited to the particular use contemplated.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
4940671, | Apr 18 1986 | NATIONAL SEMICONDUCTOR CORPORATION, A DE CORP | High voltage complementary NPN/PNP process |
8610241, | Jun 12 2012 | Taiwan Semiconductor Manufacturing Company, Ltd. | Homo-junction diode structures using fin field effect transistor processing |
20040095698, | |||
20040253779, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 20 2014 | SINGH, JAGAR | GLOBALFOUNDRIES Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 033601 | /0416 | |
Aug 25 2014 | GLOBALFOUNDRIES Inc. | (assignment on the face of the patent) | / | |||
Nov 27 2018 | GLOBALFOUNDRIES Inc | WILMINGTON TRUST, NATIONAL ASSOCIATION | SECURITY AGREEMENT | 049490 | /0001 | |
Nov 17 2020 | WILMINGTON TRUST, NATIONAL ASSOCIATION | GLOBALFOUNDRIES U S INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 056987 | /0001 | |
Nov 17 2020 | WILMINGTON TRUST, NATIONAL ASSOCIATION | GLOBALFOUNDRIES Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 054636 | /0001 |
Date | Maintenance Fee Events |
Aug 31 2020 | REM: Maintenance Fee Reminder Mailed. |
Feb 15 2021 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jan 10 2020 | 4 years fee payment window open |
Jul 10 2020 | 6 months grace period start (w surcharge) |
Jan 10 2021 | patent expiry (for year 4) |
Jan 10 2023 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 10 2024 | 8 years fee payment window open |
Jul 10 2024 | 6 months grace period start (w surcharge) |
Jan 10 2025 | patent expiry (for year 8) |
Jan 10 2027 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 10 2028 | 12 years fee payment window open |
Jul 10 2028 | 6 months grace period start (w surcharge) |
Jan 10 2029 | patent expiry (for year 12) |
Jan 10 2031 | 2 years to revive unintentionally abandoned end. (for year 12) |