A power amplifier includes: an amplifier; an input matching circuit connected to an input of the amplifier; an output matching circuit connected to an output of the amplifier; and a low-frequency processing circuit connected to the input matching circuit or the output matching circuit, wherein the low-frequency processing circuit includes a first line having a first end connected to the input matching circuit or the output matching circuit, a first shot stub connected to a second end of the first line and including a second line and a first capacitor connected in series each other, and a second short stub connected to the second end of the first line in parallel with the first short stub and including a third line and a second capacitor which are connected in series each other, the first line has a length of λ/8, the second line has a length of λ/4, and the third line has a length of λ/8 with respect to a wavelength λ of a fundamental frequency.
|
5. A power amplifier comprising:
an amplifier;
an input matching circuit connected to an input of the amplifier;
an output matching circuit connected to an output of the amplifier; and
a low-frequency processing circuit connected to the input matching circuit or the output matching circuit,
wherein the low-frequency processing circuit includes a first line having a first end connected to the input matching circuit or the output matching circuit, a shot stub connected to a second end of the first line and including a second line and a first capacitor connected in series each other, and an open stub including a third line connected to the second end of the first line,
the first line has a length of λ/8, the second line has a length of λ/4, and the third line has a length of λ/8 with respect to a wavelength λ of a fundamental frequency.
1. A power amplifier comprising:
an amplifier;
an input matching circuit connected to an input of the amplifier;
an output matching circuit connected to an output of the amplifier; and
a low-frequency processing circuit connected to the input matching circuit or the output matching circuit,
wherein the low-frequency processing circuit includes a first line having a first end connected to the input matching circuit or the output matching circuit, a first shot stub connected to a second end of the first line and including a second line and a first capacitor connected in series each other, and a second short stub connected to the second end of the first line in parallel with the first short stub and including a third line and a second capacitor which are connected in series each other,
the first line has a length of λ/8, the second line has a length of λ/4, and the third line has a length of λ/8 with respect to a wavelength λ of a fundamental frequency.
2. The power amplifier of
3. The power amplifier of
4. The power amplifier of
6. The power amplifier of
7. The power amplifier of
8. The power amplifier of
|
Field of the Invention
The present invention relates to a communication power amplifier intended mainly for satellite communication.
Background Art
Traveling wave tube amplifiers (TWTA) have been used so far as satellite communication power amplifiers, but TWTAs are being increasingly replaced by solid-sate amplifiers (SSPA) using FETs (field-effect transistors) such as GaAs (gallium arsenide) or GaN (gallium nitride) from the standpoints of cost and reliability in recent years. In power amplifiers, a low-frequency processing circuit is connected to an input matching circuit or an output matching circuit to provide high impedance at an operating frequency (fundamental frequency) and low impedance at a low frequency of the power amplifiers. In this way, the power amplifiers suppress intermodulation distortion while reducing influences of an RF signal on output power or efficiency. Conventional low-frequency processing circuits are made up of lines and capacitors connected to one another in series (e.g., see Japanese Patent Publication No. 2-61175).
As a technique for improving FET efficiency, a technique is known which optimizes impedance of matching circuits not only at a fundamental frequency but also at a second harmonic frequency. However, the conventional low-frequency processing circuits have low impedance at a frequency (second harmonic frequency) double the operating frequency of an RF signal. Therefore, when a conventional low-frequency processing circuit is added to a power amplifier whose impedance at the second harmonic frequency is optimized, there is a problem that the impedance at the second harmonic frequency is affected by the low-frequency processing circuit and deviates from optimum impedance.
Furthermore, attempting to design a low-frequency processing circuit so as to have high impedance with respect to the fundamental frequency and the second harmonic frequency would conventionally result in a problem that a transmission line making up the low-frequency processing circuit becomes longer, increasing the circuit scale.
The present invention has been implemented to solve the above-described problems and it is an object of the present invention to provide a power amplifier capable of reducing influences of an RF signal at a fundamental frequency and a second harmonic frequency on output power and efficiency, suppressing intermodulation distortion and reducing the size of the circuit.
According to the present invention, a power amplifier includes: an amplifier; an input matching circuit connected to an input of the amplifier; an output matching circuit connected to an output of the amplifier; and a low-frequency processing circuit connected to the input matching circuit or the output matching circuit, wherein the low-frequency processing circuit includes a first line having a first end connected to the input matching circuit or the output matching circuit, a first shot stub connected to a second end of the first line and including a second line and a first capacitor connected in series each other, and a second short stub connected to the second end of the first line in parallel with the first short stub and including a third line and a second capacitor which are connected in series each other, the first line has a length of λ/8, the second line has a length of λ/4, and the third line has a length of λ/8 with respect to a wavelength λ of a fundamental frequency.
In the present invention, the low-frequency processing circuit includes a first line and first and second short stub connected in parallel to the first line. The first line has a length of λ/8, the second line of the first short stub has a length of λ/4, and the third line of the second short stub has a length of λ/8. Therefore, it is possible to reduce influences of the RF signal at the fundamental frequency and the second harmonic frequency on the output power and efficiency, suppress intermodulation distortion and reduce the size of the circuit.
Other and further objects, features and advantages of the invention will appear more fully from the following description.
A power amplifier according to the embodiments of the present invention will be described with reference to the drawings. The same components will be denoted by the same symbols, and the repeated description thereof may be omitted.
A low-frequency processing circuit 4 is connected between the output matching circuit 3 and a grounding terminal. The low-frequency processing circuit 4 includes a line L1, and short stubs 5 and 6. One end of the line L1 is connected to the output matching circuit 3. The short stub 5 includes a line L2 and a capacitor C1 connected in series between the other end of the line L1 and the grounding terminal. The short stub 6 is connected between the other end of the line L1 and the grounding terminal in parallel with the short stub 5 and includes a line L3 and a capacitor C2 connected in series.
With respect to a wavelength λ which is an operating frequency (fundamental frequency) of the power amplifier, the line L1 has a length of λ/8, the line L2 has a length of λ/4, and the line L3 has a length of λ/8. The capacitor C1 has a capacitance (generally on the order of 100 to 10000 pF) which has low impedance at a low frequency and the capacitor C2 has a capacitance (generally around 10 pF, for example, when the fundamental frequency is 14 GHz) which has low impedance at a fundamental frequency.
Regarding impedance at a low frequency (corresponding to difference frequency of intermodulation distortion), it is possible to achieve low impedance by increasing the capacitance of the capacitor C1. For example, when the difference frequency of intermodulation distortion is 1 MHz to several hundreds of MHz, the capacitance of the capacitor C1 is often set to the order of 100 to 10000 pF.
Next, effects of the present embodiment will be described in comparison with a comparative example.
In contrast, the present embodiment sets the length of the line L1 of the low-frequency processing circuit 4 to λ/8, the length of the line L2 of the short stub 5 to λ/4, and the length of the line L3 of the short stub 6 to λ/8. Thus, the low-frequency processing circuit 4 has high impedance with respect to the fundamental frequency and the second harmonic frequency of the FET 2 and low impedance with respect to the difference frequency of intermodulation distortion without extending the transmission line making up the low-frequency processing circuit 4 so much. Therefore, it is possible to reduce influences of the RF signal at the fundamental frequency and the second harmonic frequency on the output power and efficiency, suppress intermodulation distortion and reduce the size of the circuit.
Note that although the low-frequency processing circuit 4 is connected between the output matching circuit 3 and the output terminal OUT in the present embodiment, similar effects can be obtained even when the low-frequency processing circuit 4 is connected between the FET 2 and the output matching circuit 3 or connected on the input matching circuit 1 side.
As in the case of the first embodiment, the low-frequency processing circuit 4 of the present embodiment has high impedance with respect to the fundamental frequency and the second harmonic frequency of the FET 2, and low impedance with respect to the difference frequency of intermodulation distortion. In this way, it is possible to reduce influences of the RF signal at the fundamental frequency and the second harmonic frequency on the output power and efficiency, suppress intermodulation distortion and reduce the size of the circuit. In addition, since the number of capacitors can be reduced by one compared to the first embodiment, the present embodiment is advantageous in terms of cost.
The FET 2 is normally designed to have a higher gain for a lower frequency and reduce the gain outside an operating frequency band through a matching circuit or the like, but its operation may become unstable due to an oscillation that may occur at a low frequency. In contrast, the low-frequency processing circuit 4 has low impedance at a low frequency, and therefore adding the resistor R1 causes a low frequency signal to attenuate and can improve stability. On the other hand, since point A has high impedance at the fundamental frequency or the second harmonic frequency, the influence of adding the resistor R1 is small.
When a capacitor having a relatively large parasitic inductance (laminated ceramic capacitor having a large capacitance or the like) is used as the capacitor C1 which has low impedance at a low frequency, the contribution of this parasitic inductance becomes dominant in the impedance of the capacitor C1 at the fundamental frequency or the second harmonic frequency.
For this reason, in the first embodiment, the impedance of the short stub 5 constructed of the line L2 and the capacitor C1 at the fundamental frequency and the second harmonic frequency deviates from ideal impedance (high impedance at the fundamental frequency and low impedance at the second harmonic frequency). Moreover, since management of the parasitic component is generally difficult, there is concern that a manufacturing variation in impedance of the low-frequency processing circuit 4 at the fundamental frequency or the second harmonic frequency may increase due to influences of the parasitic inductance.
In contrast, the present embodiment adds the capacitor C3 (e.g., single layer ceramic capacitor) having a small parasitic inductance to create a low impedance point at the fundamental frequency or the second harmonic frequency in parallel with the capacitor C1, and therefore the operation of the low-frequency processing circuit 4 further approximates to an ideal operation. Furthermore, since the impedance at the fundamental frequency or the second harmonic frequency becomes stable, it is possible to suppress manufacturing variations in impedance of the low-frequency processing circuit 4.
Since low impedance is provided through the capacitors C1 and C3 at point B at a low frequency, a fundamental frequency and a second harmonic frequency, even when the terminal 8 for applying a DC bias is connected, the influence on the DC power supply side through the terminal 8 is small. The present embodiment makes it possible to integrate the bias circuit for applying a DC bias and the low-frequency processing circuit 4 for suppressing intermodulation distortion, and a cost reduction can be expected through a reduction of the circuit scale and a reduction of the number of parts used.
Obviously many modifications and variations of the present invention are possible in the light of the above teachings. It is therefore to be understood that within the scope of the appended claims the invention may be practiced otherwise than as specifically described.
The entire disclosure of Japanese Patent Application No. 2015-060595, filed on Mar. 24, 2015 including specification, claims, drawings and summary, on which the Convention priority of the present application is based, is incorporated herein by reference in its entirety.
Matsuzuka, Takayuki, Kunii, Tetsuo, Udomoto, Junichi, Utsumi, Hiromitsu
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
6812794, | Feb 08 2000 | Mitsubishi Denki Kabushiki Kaisha | Multistage amplifier |
8076994, | Jun 22 2007 | Macom Technology Solutions Holdings, Inc | RF power transistor packages with internal harmonic frequency reduction and methods of forming RF power transistor packages with internal harmonic frequency reduction |
20040145034, | |||
20070296505, | |||
20120262234, | |||
20140218105, | |||
20150235941, | |||
JP2061175, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 19 2015 | MATSUZUKA, TAKAYUKI | Mitsubishi Electric Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036916 | /0199 | |
Aug 21 2015 | UDOMOTO, JUNICHI | Mitsubishi Electric Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036916 | /0199 | |
Aug 21 2015 | KUNII, TETSUO | Mitsubishi Electric Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036916 | /0199 | |
Aug 21 2015 | UTSUMI, HIROMITSU | Mitsubishi Electric Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036916 | /0199 | |
Oct 29 2015 | Mitsubishi Electric Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jun 25 2020 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jun 26 2024 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Jan 10 2020 | 4 years fee payment window open |
Jul 10 2020 | 6 months grace period start (w surcharge) |
Jan 10 2021 | patent expiry (for year 4) |
Jan 10 2023 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 10 2024 | 8 years fee payment window open |
Jul 10 2024 | 6 months grace period start (w surcharge) |
Jan 10 2025 | patent expiry (for year 8) |
Jan 10 2027 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 10 2028 | 12 years fee payment window open |
Jul 10 2028 | 6 months grace period start (w surcharge) |
Jan 10 2029 | patent expiry (for year 12) |
Jan 10 2031 | 2 years to revive unintentionally abandoned end. (for year 12) |