In a mark forming step in a manufacturing method for a component incorporated substrate in which an electronic component is positioned with reference to a mark formed in a copper layer, when an imaginary line extending from a search center of a search range of a sensor, to an edge side of the search range is represented as a search reference line and an imaginary line extending, in a state in which a mark center, is matched with the search center, from the mark center in the same direction as the search reference line to an outer ridgeline of the mark is represented as a mark reference line, the mark formed in a shape in which the outer ridgeline of the mark is present in a position where a length of the mark reference line is in a range of 30% or more of the search reference line.
|
1. A manufacturing method for a component incorporated substrate in which, in an insulating substrate including a wiring pattern on a surface, an electric or electronic component including a terminal electrically connected to the wiring pattern is incorporated, the manufacturing method comprising:
a mark forming step for forming a copper layer to be patterned as the wiring layer on a supporting plate and forming a mark formed by a plating method on a second surface on an opposite side of a first surface in contact with the supporting plate of the copper layer, the mark having a proximal end face in contact with the second surface, a side surface extending from an outer circumferential edge of the proximal end face in a direction orthogonal to the second surface, an outer circumferential curved surface tapering and extending in an arcuate shape from a proximal end edge of the side surface, and a top surface extending from a distal end edge of the outer circumferential curved surface and opposed to the proximal end face;
a component mounting step for, after detecting the mark using detecting means for detecting a detection target in a square search range set in an image pickup screen that reflects a picked-up image of the detection target, positioning the component with reference to the detected mark and mounting the component on the second surface of the copper layer with an insulative adhesive layer interposed therebetween;
an embedding layer forming step for forming, on the second surface of the copper layer on which the component is mounted, an embedding layer functioning as the insulating substrate in which the component and the mark are embedded;
a window forming step for, after peeling the supporting plate off the copper layer, etching and removing, with a copper etching agent used for etching of copper, a part of the copper layer from the first layer side of the copper layer exposed by the peeling and forming a window for partially exposing the embedding layer together with the entire proximal end face of the mark;
a conduction via forming step for specifying a position of the terminal of the component with reference to the mark exposed from the window and, after forming a via hole reaching the terminal, filling a conductive material in the via hole and forming a conduction via for electrically connecting the terminal and the copper layer; and
a pattern forming step for forming the copper layer electrically connected to the terminal via the conduction via into the wiring pattern, wherein
in the mark forming step, when an imaginary line extending from a search center, which is a center of the search range, to an edge side of the search range is represented as a search reference line and an imaginary line extending, in a state in which a center of the mark is matched with the search center, from the center of the mark in a same direction as the search reference line and to an outer ridgeline, which is a boundary between the top surface and the outer circumferential curved surface in the mark, is represented as a mark reference line, the mark is formed in a shape in which the outer ridgeline of the mark is present in a position where a length of the mark reference line is in a range of 30% or more of the search reference line.
2. The manufacturing method for the component incorporated substrate according to
3. The manufacturing method for the component incorporated substrate according to
4. The manufacturing method for the component incorporated substrate according to
|
The present invention relates to manufacturing method for a component incorporated substrate in which electric or electronic components are embedded in a substrate and a component incorporated substrate manufactured using the method.
In recent years, according to an increase in density and improvement of functions of electronic circuit substrate, a component incorporated substrate having structure in which electronic components are embedded in an insulating substrate which is an insulating layer has been attracting attention (see, for example, Patent Document 1). In such a component incorporated substrate, a wiring pattern is formed on the surface of the insulating substrate. The component incorporated substrate can be used as a module with other various electronic components surface-mounted in predetermined positions of the wiring pattern. The component incorporated substrate can also be used as a core substrate in manufacturing a component incorporated multilayer circuit substrate with a build-up method.
In such a component incorporated substrate, it is necessary to provide a connecting section that electrically connects the wiring pattern on the surface of the insulating substrate and a terminal of an electronic component in the insulating substrate. As a conventional manufacturing method for a component incorporated substrate, first, a copper layer, which should be a wiring pattern, is formed on a supporting plate. A connecting section is formed in a predetermined position on the copper layer by solder paste. The electronic component is disposed such that the terminal is positioned on the connecting section. Subsequently, the connecting section and the electronic component are embedded by an insulating material, which becomes the insulating substrate. An intermediate product incorporating the electronic component is obtained. Thereafter, the supporting plate is peeled off the intermediate product. The exposed copper layer is formed into a wiring pattern having a predetermined shape, whereby a component incorporated substrate is obtained.
Incidentally, when the other various electronic components are surface-mounted on the surface of the component incorporated substrate, reflow soldering is performed. Therefore, the component incorporated substrate is exposed to high temperature equal to or higher than a melting temperature of solder every time the reflow soldering is performed. Therefore, it is likely that reliability of the connecting section between the wiring pattern and the terminal section of the electronic component is deteriorated.
Therefore, in the component incorporated substrate, in order to attain improvement of thermal reliability of the connecting section between the wiring pattern and the terminal section of the electronic component, it is conceivable to use, as a material forming such a connecting section, copper that has a high melting point compared with the solder and is less easily affected by heat in the reflow soldering. The connecting section formed using the copper is formed by, for example, after embedding the electronic component in the insulating substrate, providing a connection hole that extends from the wiring pattern on the substrate surface to the terminal of the electronic component in the substrate and filling the copper in the connection hole using a plating method. In this case, since the connection hole has to be accurately formed toward the terminal of the electronic component in the insulating substrate, in a manufacturing process, it is necessary to improve accuracy of positioning of the electronic component and accuracy of specifying of a terminal position. A form of a manufacturing method for a component incorporated substrate that attains improvement of these kinds of accuracy is explained below.
First, a supporting plate is prepared and a copper layer is formed on the supporting plate. A mark consisting of a columnar body of copper is formed on the copper layer by the plating method. Subsequently, after the mark is detected by a sensor of an optical system, an electronic component is positioned in a predetermined position on the copper layer with reference to the position of the detected mark and fixed by an insulative adhesive. Thereafter, the fixed electronic component and the mark are covered with an insulating material to form an insulating layer as an insulating substrate embedded with the electronic component. Thereafter, the supporting plate is peeled to expose the copper layer. In the exposed copper layer, a portion where the mark is present is etched and removed, whereby the mark is exposed. A terminal position of the electronic component is specified with reference to the exposed mark. A connection hole reaching the terminal is formed. Thereafter, copper plating is applied to the entire copper layer including the formed connection hole to fill the connection hole with the copper, whereby the copper layer and the terminal are electrically connected. Finally, the copper layer on the surface of the insulating substrate is processed into a predetermined wiring pattern, whereby a component incorporated substrate is manufactured.
With the manufacturing method, since the same mark is used as a reference for the positioning of the electronic component and the specifying of the terminal position, it is possible to accurately perform the positioning of the electronic component and the specifying of the position of the terminal.
Patent Document 1: Japanese Patent Application Laid-Open No. 2010-027917
Incidentally, in the manufacturing method explained above, there is a problem in that, when the electronic component is positioned with reference to the mark, detection accuracy of the mark is deteriorated because of a detection error of the mark and positioning accuracy of the component is also deteriorated according to the deterioration in the detection accuracy of the mark. If the component cannot be accurately positioned in the predetermined position, accuracy of specifying a terminal position in a later process is also affected. In future, since the electronic component will be further reduced in size and higher positioning accuracy will be requested, further improvement of the detection accuracy of the mark is demanded.
The present invention has been devised in view of the above circumstances and it is an object of the present invention to provide a manufacturing method for a component incorporated substrate that can improve detection accuracy of a mark and therefore can accurately perform positioning of a component and specifying of the position of the component and a component incorporated substrate manufactured using the method.
In order to attain such an object, according to the present invention, there is provided a manufacturing method for a component incorporated substrate in which, in an insulating substrate including a wiring pattern on the surface, an electric or electronic component including a terminal electrically connected to the wiring pattern is incorporated, the manufacturing method including: a mark forming step for forming a copper layer, which should be the wiring pattern, on a supporting plate and forming a mark formed by a plating method on a second surface on the opposite side of a first surface in contact with the supporting plate of the copper layer, the mark having a proximal end face in contact with the second surface, a side surface extending from the outer circumferential edge of the proximal end face in a direction orthogonal to the second surface, an outer circumferential curved surface tapering and extending in an arcuate shape from the proximal end edge of the side surface, and a top surface extending from the distal end edge of the outer circumferential curved surface and opposed to the proximal end face; a component mounting step for, after detecting the mark using detecting means for detecting the detection target in a square search range set in an image pickup screen that reflects a picked-up image of a detection target, positioning the component with reference to the detected mark and mounting the component on the second surface of the copper layer with an insulative adhesive layer interposed therebetween; an embedding layer forming step for forming, on the second surface of the copper layer on which the component is mounted, an embedding layer functioning as the insulating substrate in which the component and the mark are embedded; a window forming step for, after peeling the supporting plate off the copper layer, etching and removing, with a copper etching agent used for etching of copper, a part of the copper layer from the first surface side of the copper layer exposed by the peeling and forming a window for partially exposing the embedding layer together with the entire proximal end face of the mark; a conduction via forming step for specifying the position of a terminal of the component with reference to the mark exposed from the window and, after forming a via hole reaching the terminal, filling a conductive material in the via hole and forming a conduction via for electrically connecting the terminal and the copper layer; and a pattern forming step for forming the copper layer electrically connected to the terminal via the conduction via into the wiring pattern. In the mark forming step, when an imaginary line extending from a search center, which is the center of the search range, to the edge side of the search range is represented as a search reference line and an imaginary line extending, in a state in which the center of the mark is matched with the search center, from the center of the mark in the same direction as the search reference line and to an outer ridgeline, which is the boundary between the top surface and the outer circumferential curved surface in the mark, is represented as a mark reference line, the mark is formed in a shape in which the outer ridgeline of the mark is present in a position where a length of the mark reference line is in a range of 30% or more of the search reference line.
It is preferable to adopt a form in which the mark is formed in a circular shape in plan view.
It is preferable to adopt a form in which the mark is formed in a square shape in plan view.
It is preferable to adopt a form in which the mark is formed in a ring shape in plan view.
According to the present invention, there is provided a component incorporated substrate manufactured using the manufacturing method for the component incorporated substrate, the component incorporated substrate including a mark having a proximal end face in contact with a second surface of the copper layer, a side surface extending from the outer circumferential edge of the proximal end face in a direction orthogonal to the second surface, an outer circumferential curved surface tapering and extending in an arcuate shape from the proximal end edge of the side surface, and a top surface extending from the distal end edge of the outer circumferential curved surface and opposed to the proximal end face.
In the manufacturing method for the component incorporated substrate according to the present invention, in the mark forming step, when an imaginary line extending from a search center, which is the center of the search range of the detecting means, to the edge side of the search range is represented as a search reference line and an imaginary line extending, in a state in which the center of the mark is matched with the search center, from the center of the mark in the same direction as the search reference line and to an outer ridgeline, which is the boundary between the top surface and the outer circumferential curved surface in the mark, is represented as a mark reference line, the mark is formed in a shape in which the outer ridgeline of the mark is present in a position where the length of the mark reference line is in a range of 30% or more of the search reference line. Therefore, effects described below are attained. That is, since a ratio of the mark in the search range increases, it is possible to accurately perform specifying of the contour of the mark. Consequently, it is possible to improve detection accuracy of the mark and accurately perform positioning of the component and specifying of the position of the component.
Since the component incorporated substrate of the present invention is obtained by the manufacturing method explained above, detection accuracy of the mark is high, the terminal of the incorporated component and the wiring pattern are highly accurately positioned, failures of electrical connection are extremely few, and the component incorporated substrate is excellent in quality.
In the present invention, first, a mark for positioning consisting of a columnar body made of copper is formed on a starting material (a mark forming step). The starting material is prepared, for example, as explained below.
First, as shown in
Note that, as the supporting plate 2, a thin plate made of aluminum can be used. In this case, the first copper layer 4 consists of, for example, a copper foil and is stuck to the surface of a thin plate made of aluminum.
Subsequently, as shown in
The shape of the marks 12 is explained in detail. First, as shown in
The optical system sensor picks up an image of the detection target. A square search range is set in an image pickup screen that reflects the image. In the detection of the mark 12, the mark 12 is fit in the search range. Detection light is irradiated in the search range in this state. The detection of the mark 12 is performed by receiving, with a light receiving sensor, reflected light of the detection light irradiated on the top surface 23 of the mark 12, reflected, and returned. Specifically, as shown in
The optical system sensor usually receives the detection light reflected from the mark 12 and detects the mark 12. Specifically, the mark 12 is detected as explained below. First, the detection light is irradiated on the top surface 23 and the outer circumferential curved surface 19 of the mark 12 and a portion deviating from the mark 12. The detection light irradiated on the top surface 23 directly returns to the light reception sensor. Therefore, a level of light reception intensity is high. On the other hand, the detection light irradiated on the outer circumferential curved surface 19 scatters. Therefore, light directly returning to the light reception sensor is little compared with the top surface 23. Reflected light does not return from the portion deviating from the mark 12. A light reception intensity level of the light reception sensor is extremely low. The outer ridgeline 25 is read from a difference between the levels of the light reception intensity of the light reception sensor to detect the shape of the mark 12.
The inventor of this application has found that, when the mark 12 is set smaller than the lower limit region 84, the curvature radius of the outer circumferential curved surface 19 is larger and the widths P1 and P2 of the outer circumferential curved surface 19 are larger and, when the mark 12 is set larger than the lower limit region 84, the curvature radius of the outer circumferential curved surface 19 is smaller and the widths P1 and P2 of the outer circumferential curved surface 19 are smaller. When the widths P1 and P2 of the outer circumferential curved surface 19 are large, a reading error of the outer ridgeline 25 increases and affects the detection of the mark 12. In the present invention, under the knowledge explained above, in order to set the mark 12 larger than the lower limit region 84, the length of the mark reference line 82 is specified to be equal to or larger than 30% of the length of the search reference line 80.
In this way, when a relation in which the length of the mark reference line 82 is specified to be equal to or larger than 30% of the length of the search reference line 80 is satisfied, the mark 12 is relatively large and the curvature radius of the outer circumferential curved surface 19 is small. Therefore, it is possible to reduce a reading error of the outer ridgeline 25. When a degree of a measurement error of a measuring device is the same, the influence of the error on accuracy in specifying the outer shape of the mark is lower as the size of the mark is larger. As a result, detection accuracy of the mark is considered to be higher.
In this embodiment, the optical system sensor, the length of one side of the search range 78 of which is 5 mm, is used. Specific dimensions of the sections in this embodiment are described below. Concerning the mark 12, L1 is 2.540 mm, M1 is 2.476 mm, P1 is 0.035 mm, and P2 is 0.029 mm.
Note that a method of forming the mark 12 consisting of the copper plated layer is not limited to the electroplating method. An electroless plating method can also be adopted. The electroplating method and the electroless plating method can also be concurrently used.
The setting position of the mark 12 can be arbitrarily selected. However, it is preferable to provide the mark 12 in a position where an optical system sensor of an optical system positioning device (not shown in the figure), which performs positioning of an electronic component (hereinafter referred to as intra-substrate component) 14 that should be incorporated in the insulating substrate, can easily recognize the mark 12. In this embodiment, as shown in
It is preferable to apply conventionally publicly-known surface roughening treatment to the second surface 5 of the first copper layer 4 using a sulfuric acid-hydrogen peroxide-based copper etching agent among copper etching agents used for etching of copper. In this case, a masking tape is stuck to the marks 12. Such a masking tape is removed after the surface roughening treatment. Consequently, the marks 12 are not eroded. It is possible to maintain a glossy surface. As a result, a contrast between the marks having glossiness and the roughened first copper layer 4 around the marks is made clear. This contributes to a reduction in a detection error of the optical sensor. Since the first copper layer 4 is roughened, in an embedding layer forming step, which is a later step, an anchor effect is exhibited between the insulating substrate and the first copper layer 4 and improvement of adhesion can be attained.
Subsequently, the intra-substrate component 14 is mounted on the copper-plated steel plate 6 via an adhesive 16 (a component mounting step).
First, as shown in
The adhesive 16 hardens and changes to an adhesive layer 18 having predetermined thickness. The adhesive layer 18 to be obtained fixes the intra-substrate component 14 in a predetermined position and has a predetermined insulation property. The adhesive 16 is not particularly limited as long as the adhesive 16 exhibits predetermined bonding strength and a predetermined insulation property after the hardening. However, an adhesive obtained by adding a filler to thermosetting epoxy resin or polyimide resin is used. As the filler, for example, fine powder of silica (silicon dioxide), glass fiber, or the like is used.
In the present invention, a form of the adhesive 16 supplied to the mounting planned region S is not particularly limited. A form may be adopted in which the adhesive 16 in a liquid state is applied at predetermined thickness. A form may be adopted in which the adhesive 16 of a sheet shape having predetermined thickness is placed. In this embodiment, an adhesive in a liquid state obtained by adding fine powder of silica to thermosetting epoxy resin is used.
Subsequently, as shown in
Specifically, as it is evident from
Subsequently, an insulating base material is stacked to embed the intra-substrate component 14 and the mark 12 (an embedding layer forming step).
First, as shown in
Subsequently, the first insulating base material 22 is stacked on the first copper layer 4. The second insulating base material 24 is superimposed on the upper side of the first insulating base material 22. A copper foil, which should be a second copper layer 28, is further superimposed on the upper side of the second insulating base material 24 to form a stacked body. The first insulating base material 22 is disposed such that the intra-substrate component 14 is located in the through-hole 30. Thereafter, so-called hot press for pressing and heating is applied to the entire stacked body.
Consequently, after being pressurized and filled in a gap such as the through-hole 30, the thermosetting resin in the unhardened state of the prepregs is hardened by heat of the hot press. As a result, as shown in
Subsequently, as shown in
Subsequently, a predetermined part of the first copper layer 4 is removed to form a window in the obtained intermediate product 40 (a window forming step).
First, as shown in
Subsequently, the first copper layer 4 in the exposed portions is removed from the intermediate product 40 by a normal etching method using a copper etching agent consisting of a cupric chloride aqueous solution. Thereafter, the mask layers 39 and 41 are removed. Consequently, as shown in
Subsequently, via holes are formed in the adhesive layer 18 of the terminal present sections T (a via hole forming step).
First, the exposed marks 12, 12 are recognized by the optical system sensor of the optical system positioning device (not shown in the figure). The positions of the terminals 20 of the intra-substrate component 14 hidden by the adhesive layer 18 are specified with reference to the positions of the marks 12, 12. Thereafter, a laser, for example, a carbon dioxide laser is irradiated on the adhesive layer 18 in the specified terminal positions to remove the adhesive layer 18. As shown in
As it is evident from the forms explained above, the present invention is characterized in that the marks 12, 12 used for the positioning of the intra-substrate component 14 are used for the formation of the LVHs 46 again. That is, in the present invention, since the marks common to the positioning of the intra-substrate component 14 and the positioning of the LVHs 46 are used, it is possible to exhibit extremely high positioning accuracy. It is possible to form the LVHs 46 in accurate positions with respect to the terminals 20 hidden by the adhesive layer 18.
Subsequently, after a resin residue is removed from the intermediate product 40, in which the LVHs 46 are formed, by desmear treatment, plating treatment is applied to the intermediate product 40 to deposit copper on the surface of the intermediate product 40. The copper is filled in the LVHs 46. Consequently, conduction vias that electrically connect the terminals 20 of the intra-substrate component 14 and the first copper layer 4 are formed (a conduction via forming step).
First, electroless plating treatment of copper is applied to the insides of the LVHs 46 to cover the inner wall surfaces of the LVHs 46 and the surfaces of the terminals 20 of the intra-substrate component 14. Thereafter, electroplating treatment of copper is applied to grow, as shown in
Subsequently, a part of the first copper layer 4 and the second copper layer 28 on the surface of the insulating substrate 34 is removed to form predetermined wiring patterns 50 (a pattern forming step).
For the removal of a part of both the copper layers 4 and 28, the normal etching method is used. Consequently, as shown in
After the wiring patterns 50 are formed, a solder resist is applied to a portion where adhesion of solder is desired to be avoided on the surface of the insulating substrate 34. Consequently, a solder resist layer 60 is formed on the surface of the insulating substrate 34. In this embodiment, as shown in
As explained above, a component incorporated substrate 1 is obtained in which, in the insulating substrate 34 including the predetermined wiring patterns 50 on the surface, the intra-substrate component 14 including the terminals 20 electrically connected to the wiring patterns 50 is incorporated.
The component incorporated substrate 1 obtained in this way can be formed as a module substrate by surface-mounting other electronic components on the surface. The component incorporated substrate 1 can also be used as a core substrate to form a multilayer circuit substrate using a normally-performed build-up method.
Note that, in the first embodiment, the second windows are formed together with the first windows in the window forming step. However, the present invention is not limited to such a form. A form for forming only the first windows may be adopted. In this case, the positions of the terminals 20 of the component 14 are specified with reference to the marks 12 exposed from the first windows. The adhesive layer 18 including the copper layer 4 is removed to form via holes using, for example, a copper direct method.
Next, second to fifth embodiments are explained. In explaining the embodiments, concerning steps same as the steps already explained, detailed explanation of the steps is omitted. Constituent members and parts that exhibit functions same as the functions of the constituent members and the parts explained above are denoted by the same reference numerals and signs and explanation of the constituent members and the parts is omitted.
A second embodiment is different from the first embodiment only in that a mark 90, a plan view shape of which is square, shown in
In the mark forming step in the second embodiment, first, as shown in
In this embodiment, an optical system sensor, the length of one side of the search range 78 of which is 3 mm, is used. Specific dimensions of sections in this embodiment are as described below. Width L1 of the mark 90 is 1.541 mm, width M1 of a top surface 96 is 1.462 mm, and widths P1 and P2 of an outer circumferential curved surface 98 are respectively 0.042 mm and 0.037 mm. Note that, in
A third embodiment is different from the first embodiment only in that a ring-like mark 100, a plan view shape of which is circular, shown in
In the mark forming step in the third embodiment, first, as shown in
In this embodiment, an optical system sensor, the length of one side of the search range 78 of which is 5 mm, is used. Specific dimensions of sections in this embodiment are as described below. Width (a diameter) L1 of the mark 100 is 2.508 mm, width (a diameter) M1 of a top surface 106 is 2.431 mm, width (a diameter) N1 of the center through-hole 110 is 1.300 mm, width (a diameter) Q1 of the inner shape ridgeline 112 is 1.401 mm, widths P1 and P2 of an outer circumferential curved surface 108 are respectively 0.042 mm and 0.035 mm, widths P3 and P4 of the inner circumferential curved surface 111 are respectively 0.046 mm and 0.055 mm.
Note that, in
A fourth embodiment is different from the first embodiment only in that a ring-like mark 120, a plan view shape of which is square and the center of which is hollowed in a rectangular shape, shown in
In the mark forming step in the fourth embodiment, first, as shown in
In this embodiment, an optical system sensor, the length of one side of the search range 78 of which is 5 mm, is used. Specific dimensions of sections in this embodiment are as described below. Width L1 of the mark 120 is 2.559 mm, width M1 of a top surface 126 is 2.472 mm, width N1 of the center through-hole 130 is 0.500 mm, width Q1 of the inner shape ridgeline 132 is 0.577 mm, widths P1 and P2 of an outer circumferential curved surface 128 are respectively 0.048 mm and 0.039 mm, widths P3 and P4 of the inner circumferential curved surface 131 are respectively 0.036 mm and 0.041 mm.
Note that, in
A fifth embodiment is different from the first embodiment only in that a ring-like mark 140, a plan view shape of which is square and the center of which is hollowed in a circular shape, shown in
In the mark forming step in the fifth embodiment, first, as shown in
In this embodiment, an optical system sensor, the length of one side of the search range 78 of which is 5 mm, is used. Specific dimensions of sections in this embodiment are as described below. Width L1 of the mark 140 is 2.577 mm, width M1 of a top surface 146 is 2.475 mm, width N1 of the center through-hole 150 is 0.300 mm, width Q1 of the inner shape ridgeline 152 is 0.408 mm, widths P1 and P2 of an outer circumferential curved surface 148 are respectively 0.057 mm and 0.045 mm, widths P3 and P4 of the inner circumferential curved surface 151 are respectively 0.048 mm and 0.060 mm.
Note that, in
As explained above, the marks 12, 90, 100, 120, and 140 in the first to fifth embodiments are formed in the shapes in which all of the outer ridgelines 25, 94, 104, 124, and 144 are located further on the outer side than the lower limit region 84. Consequently, since a relation in which the length of the mark reference line 82 is in a range of 30% or more of the total length of the search reference line 80 is satisfied, it is possible to reduce a reading error of an outer ridgeline and attain improvement of detection accuracy of a mark.
Note that, in the present invention, the component incorporated in the insulating substrate is not limited to the package component. Other various electronic components such as a chip component can be components incorporated in the insulating substrate.
The material forming the mark is not limited to copper. Other materials such as nickel can also be used. When the mark is hollowed as in the third to fifth embodiments, it is possible to reduce an amount of the plating material for the mark. Therefore, this is effective in forming the mark using an expensive material.
Shimizu, Ryoichi, Iwamoto, Mitsuo, Toda, Mitsuaki
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5956564, | Jun 03 1997 | ULTRATECH, INC | Method of making a side alignment mark |
7178229, | Nov 20 2003 | CORETEC INCORPORATED | Method of making interlayer panels |
7719851, | Apr 27 2004 | TDK ELECTRONICS AG | Electronics module and method for manufacturing the same |
8225503, | Feb 11 2008 | IBIDEN CO , LTD | Method for manufacturing board with built-in electronic elements |
8921706, | Oct 01 2010 | MEIKO ELECTRONICS CO , LTD | Component-embedded substrate, and method of manufacturing the component-embedded substrate |
20090205202, | |||
20130242516, | |||
JP2002176298, | |||
JP2005159345, | |||
JP2007258374, | |||
JP2007535156, | |||
JP2010027917, | |||
JP2012507154, | |||
JP95022, | |||
TW201218897, | |||
WO2009101723, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 26 2012 | Meiko Electronics Co., Ltd. | (assignment on the face of the patent) | / | |||
Feb 19 2015 | SHIMIZU, RYOICHI | MEIKO ELECTRONICS CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 035211 | /0246 | |
Feb 19 2015 | IWAMOTO, MITSUO | MEIKO ELECTRONICS CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 035211 | /0246 | |
Feb 19 2015 | TODA, MITSUAKI | MEIKO ELECTRONICS CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 035211 | /0246 |
Date | Maintenance Fee Events |
Nov 30 2020 | REM: Maintenance Fee Reminder Mailed. |
May 17 2021 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Apr 11 2020 | 4 years fee payment window open |
Oct 11 2020 | 6 months grace period start (w surcharge) |
Apr 11 2021 | patent expiry (for year 4) |
Apr 11 2023 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 11 2024 | 8 years fee payment window open |
Oct 11 2024 | 6 months grace period start (w surcharge) |
Apr 11 2025 | patent expiry (for year 8) |
Apr 11 2027 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 11 2028 | 12 years fee payment window open |
Oct 11 2028 | 6 months grace period start (w surcharge) |
Apr 11 2029 | patent expiry (for year 12) |
Apr 11 2031 | 2 years to revive unintentionally abandoned end. (for year 12) |