A titanium seat track may include a track plate formed of one of cold and hot rolled titanium. The track plate may include a top surface and a bottom surface. The titanium seat track may also include a titanium u-shaped channel formed of cold worked titanium sheet. The titanium u-shaped channel may include a first side wall and a second side wall extending from a base and terminating in a first channel edge and a second channel edge, respectively. The first channel edge and the second channel edge may be continuously welded to the bottom surface of the seat track.
|
20. A titanium seat track, the seat track comprising:
a track plate formed of one of cold and hot rolled titanium, the track plate including a top surface and a bottom surface, wherein the top surface is configured to retain seats;
a titanium u-shaped channel formed of cold worked titanium sheet, the titanium u-shaped channel including a first side wall and a second side wall extending outwardly from a base and terminating in a first channel edge and a second channel edge, respectively, the first channel edge and the second channel edge being continuously welded to the bottom surface of the track plate; and
a plurality of saddle mounts, a first and a second mount joint extends from each saddle mount of the plurality of saddle mounts, the first mount joint includes a first mount ridge and a first mount lip and the second mount joint includes a second mount ridge and a second mount lip.
1. A pre-weld seat track assembly, comprising:
a track plate formed of one of cold and hot rolled titanium, the track plate including a top surface and a bottom surface, wherein the top surface is configured to retain seats, the bottom surface including spaced first and second plate joints, the first plate joint including a first plate lip and a first plate ridge, and the second plate joint including a second plate lip and a second plate ridge; and
a titanium u-shaped channel formed of cold worked titanium sheet, the titanium u-shaped channel including a first side wall and a second side wall extending outwardly from a base and terminating in a first channel edge and a second channel edge, respectively;
wherein the first channel edge and the second channel edge are configured to be received by the first plate joint and the second plate joint, respectively, so that the first plate ridge supports the first side wall and the second plate ridge supports the second side wall, the first plate ridge is sized to extend across a first interface between the first channel edge and the first plate lip, and the second plate ridge is sized to extend across a second interface between the second channel edge and the second plate lip.
8. A method of fabricating a seat track, the method comprising:
cold forming a titanium channel including a first side wall, a second side wall, and a base;
one of stamping, laser cutting, water jet cutting, and machining the titanium channel to include a plurality of saddle-shaped recesses;
roll forming a titanium track plate;
machining the titanium track plate to include a first and a second plate joint, the first plate joint including a first plate ridge and a first plate lip, the second plate joint including a second plate ridge and a second plate lip;
welding the first plate lip to the first side wall such that the first plate ridge supports the first side wall and contains excess heat and molten material of the first plate lip inside the first plate joint;
welding the second plate lip to the second side wall such that the second plate ridge supports the second side wall and contains excess heat and molten material of the second plate lip inside the second plate joint;
providing a plurality of saddle mounts with each saddle mount including a first and a second mount joint; and
welding the first and the second mount joint of one of the saddle mounts of the plurality of saddle mounts to a respective saddle-shaped recess of the plurality of recesses.
14. A method of reducing weight of a titanium seat track, the method comprising:
cold forming a channel including a forward channel section, an aft channel section, and a plurality of mid channel sections;
one of stamping and coining a plurality of stiffeners into the forward channel section, the aft channel section, and the plurality of mid channel sections;
one of stamping, laser cutting, water jet cutting, and machining a plurality of weight-reducing apertures into the forward channel section, the aft channel section, and the plurality of mid channel sections;
one of stamping, laser cutting, water jet cutting, and machining the channel to include a plurality of saddle-shaped recesses, the forward channel section to include a pair of forward ligaments, the aft channel section to include a pair of aft ligaments, and each mid channel section of the plurality of mid channel sections to include a first pair of mid ligaments and a second pair of mid ligaments;
one of hot and cold roll forming a track plate;
machining the track plate to include a first and a second plate joint, a recessed lug including a recessed lip, and a lug including a protruding lip, the first plate joint including a first plate ridge and a first plate lip, the second plate joint including a second plate ridge and a second plate lip;
welding the first and the second plate lips to each of the forward channel section, the aft channel section, and the plurality of mid channel sections such that the first and the second plate ridges contain excess heat and molten material of the first and the second plate lips inside the first and the second plate joints, respectively;
welding a forward splice plate to the forward channel section and a forward end the track plate; and
welding an aft splice plate to the aft channel section and an aft end of the aft track plate.
2. The pre-weld seat track assembly of
3. The pre-weld seat track assembly of
4. The pre-weld seat track assembly of
5. The pre-weld seat track assembly of
6. The pre-weld seat track assembly of
7. The pre-weld seat track assembly of
9. The method of
10. The method of
11. The method of
12. The method of
13. The method of
15. The method of
16. The method of
17. The method of
18. The method of
19. The method of
|
The present disclosure relates generally to a seat track and, more particularly, to a seat track for an aircraft.
Many aircraft utilize seat tracks to anchor passenger seats to the airframe of the aircraft. Due to stress loads experienced on the seat tracks, such as during aircraft flight, many traditional seat tracks are designed with thick components to support such stress loads. Although these components compensate for the loads, the thickness of the components adds weight and cost to the overall system. In some traditional seat tracks, which are extruded, the weight penalty is overcome by machining excess material in areas on the seat track where minimum loads are experienced. While effective, the machining of the extruded seat tracks is time consuming and may add costs to the manufacturing process.
Other conventional seat tracks may be manufactured from composite buildups in an effort to overcome the weight penalty issues involved with extruded seat tracks. While also effective, such designs, however, are generally costly due to the manufacturing of the numerous components from different materials, which require additional time and effort to assemble. Moreover, the assembling of the many components may present other unintended issues such as, but not limited to, welding issues, rework related to the welding issues, such as, cold fused or incomplete welded joints, and increased scrap material.
In accordance with an aspect of the disclosure, a titanium seat track is provided. The titanium seat track may include a track plate formed of cold or hot rolled titanium. The track plate may include a top surface and a bottom surface wherein the top surface may be configured to retain seats of an aircraft. The titanium seat track may also include a titanium U-shaped channel formed of cold worked titanium sheet. The titanium U-shaped channel may include a first side wall and a second side wall extending from a base and terminating in a first channel edge and a second channel edge, respectively. The first channel edge and the second channel edge may be continuously welded to the bottom surface of the seat track.
In accordance with another aspect of the disclosure, a sample sequence of steps which may be practiced to fabricate a seat track and reduce weight of the seat track is provided. An illustrative step may include cold forming a channel. Another illustrative step may be machining the channel. Yet another illustrative step may be welding channel sections of the channel. Still another illustrative step may be roll forming a track plate. Still yet another illustrative step may be machining the track plate. Another illustrative step may be welding the track plate to the channel sections. Yet another illustrative step may be welding splice plates to corresponding channel section and track plate. Still another illustrative step may be providing a plurality of saddle mounts. Still yet another illustrative step may be welding the saddle mounts to respective saddle-shaped recesses. Another illustrative step may be coupling the splice plates to each other.
The features, functions, and advantages that have been discussed can be achieved independently in various embodiments or may be combined in yet other embodiments further details of which can be seen with reference to the following description and drawings.
Referring now to
With reference to
The channel 18 may be U-shaped and may be formed of a cold worked titanium sheet. The channel 18 may include a base 27 from which opposite-facing first and second side walls 28, 30 outwardly extend and terminate in first and second channel edges 32, 34, respectively. Both the first and second side walls 28, 30 may include a plurality of stiffeners 36, which may be stiffeners that are stamped or coined into the walls 28, 30 for adding strength thereto. Moreover, the base 27 may include a plurality of weight-reducing apertures 38 (shown in
Referring to
With particular reference to
As shown in
With reference to
Referring back to
Referring back to
Before welding, the track plate 16 may be positioned on the channel 18, as shown in
The pair of mount joints 84 of each saddle mount 42 are configured similarly to the first and second plate joints 44, 46 such that, during welding of a saddle mount 42 to its selected one saddle-shaped recess 40, the mount lips 88 of the pair of mount joints 84 melt to create a smooth transition coupling the mounts lips 88 to its selected one saddle-shaped recess 40 as the mount ridges 86 contain excess heat and molten material of the mount lips 88.
Alternatively, as illustrated in boxes 1012 and 1013, the channel 18 may be formed by stamping, laser cutting, water jet cutting, or machining the titanium sheet to include the plurality of saddle-shaped recesses 40, the plurality of weight-reducing apertures 38, and the plurality of stiffeners 36 and cold roll formed into the continuous channel. Moreover, by virtue of stamping, laser cutting, water jet cutting, or machining the plurality of saddle-shaped recesses 40, the forward channel section 90 is stamped, laser cut, water jet cut, or machined to include the pair of forward ligaments 96, the aft channel section 92 is stamped, laser cut, water jet cut, or machined to include the pair of aft ligaments 98, and the plurality of mid channel sections 94 is stamped, laser cut, water jet cut, or machined to include the first pair of mid ligaments 100 and the second pair of mid ligaments 102. Alternatively, the forward channel section 90, the aft channel section 92, and the plurality of mid channel sections 94 may be individually stamped, laser cut, water jet cut, or machined from the titanium sheet and cold roll formed.
As illustrated in box 1014, the individual channel sections may be welded such that the first pair of mid ligaments 100 of each mid channel section of the plurality of mid channel sections 94 is welded to an adjacent second pair of mid ligaments 102 of an adjacent mid channel section with a forward-most mid channel section having its first pair of mid ligaments 100 welded to the pair of forward ligaments 96 and the aft-most mid channel section having its second pair of mid ligaments 102 welded to the pair of aft ligaments 98 collectively defining the channel 18.
Box 1016 illustrates roll forming the track plate 16 from titanium. Rolling forming may be, but is not limited to, cold roll forming or hot roll forming. As illustrated in box 1018, the track plate 16 may be machined to include the first plate joint 44 and the second plate joint 46. The first plate joint 44 may be machined to include the first plate ridge 48 and the first plate lip 50. The second plate joint 46 may be machined to include the second plate ridge 52 and the second plate lip 54. Moreover, the track plate 16 may be machined to include the plurality of plate notches 26 along the plate edges 24. The forward end 56 of the track plate 16 may also be machined to include the lug 60 and the protruding lip 62 extending therefrom. Similarly, the aft end 58 of the track plate 16 may be machined to include the recess 64 and the recessed lip 66.
Box 1020 illustrates welding the track plate 16 to the channel 18, which may include welding the first and second plate lips 50, 54 of the track plate 16 to the first and second channel edges 32, 34, respectively, of the forward, aft, and plurality of mid channel sections 90, 92, 94.
Box 1022 illustrates welding the forward splice plate 68 to the forward channel section 90 and the forward end 56 of the track plate 16. Moreover, the aft splice plate 70 may be welded to the aft channel section 92 and the aft end 58 of the track plate 16. Box 1024 illustrates providing the plurality of saddle mounts 42, which may include machining titanium into the plurality of saddle mounts 42 and then cold forming into the saddle shape. Moreover, the plurality of saddle mounts 42 may be machined to include the mount ridges 86 and mount lips 88 as well as the plurality of mounting apertures 80 and the plurality of stress reliefs 82.
As illustrated in box 1026, each saddle mount of the plurality of saddle mounts 42 may be welded to a respective saddle-shaped recess of the plurality of saddle-shaped recesses 40. For example, the mount lips 88 of one saddle mount 42 may be welded to the forward channel section 90, the pair of forward ligaments 96, the first pair of mid ligaments 100 of the forward-most mid channel section 94, and the forward-most mid channel section 94. Similarly, the mount lips 88 of another saddle mount 42 may be welded to the aft channel section 92, the pair of aft ligaments 98, the second pair of mid ligaments 102 of the aft-most mid channel section 94, and the aft-most mid channel section 94. In a similar manner, the mount lips 88 of the other saddle mounts 42 may be welded to a respective mid channel section 94, its second pair of mid ligaments 102, and an adjacent mid channel section 94 and its first pair of mid ligaments 100.
Based on the foregoing, it can been seen that the present disclosure sets forth a titanium seat track fabricated in a manner which may overcome previous challenges of forming and welding other metals while maintaining robustness and corrosion resistance. Furthermore, through the novel teachings set forth above, the titanium seat track of the present disclosure may provide a reduction in titanium sheet gauge in some features such as, but not limited to, the ligaments of the channel sections thereby reducing weight of the seat track while still maintaining robust stability. The teachings of this disclosure may also improve seat track fabrication through the lip and ridge joint configurations machined to the track plate, saddle mounts, and splice plate such that welding efficiency may be increased and welding issues like cold fused or incomplete welded joints may be avoided. Moreover, the teachings of the present disclosure may also be employed to simplify seat track fabrication by eliminating shimming between the saddle mounts and the channel during assembly.
Patent | Priority | Assignee | Title |
10940934, | Sep 12 2017 | Airbus Operations, GmbH | Floor arrangement for a cabin of a vehicle |
11034455, | Sep 21 2018 | Airbus Operations GmbH | Rail systems for fixing fittings in a cabin of a vehicle |
11820486, | Feb 25 2022 | The Boeing Company | Seat track assembly with elongate carbon-fiber reinforced polymer flange |
Patent | Priority | Assignee | Title |
1725439, | |||
4776533, | Mar 20 1987 | Burns Aerospace Corporation | Aircraft seat track fitting assembly |
4869421, | Jun 20 1988 | Rohr Industries, Inc. | Method of jointing titanium aluminide structures |
5178346, | Jul 12 1991 | BE AEROSPACE, INC | Track fastener apparatus and assembly |
7100885, | Dec 19 2003 | Airbus Operations GmbH | Seat mounting rail, particularly for a commercial aircraft |
7207756, | Dec 19 2003 | Airbus Operations GmbH | Seat mounting rail, particularly for a commercial aircraft |
7281685, | Aug 20 2004 | Airbus Operations GmbH | Flush-top seat mounting rail for passenger aircraft |
7370831, | Mar 27 2004 | The Boeing Company; Boeing Company, the | Power strip for seats |
7389960, | Mar 27 2004 | Boeing Company, the | Passenger cabin seat power bus |
7413143, | Mar 29 2004 | The Boeing Company | Payload to support track interface and fitting apparatus and methods |
7506855, | Mar 29 2004 | The Boeing Company; Boeing Company, the | Non-protruding seat track apparatus |
7607613, | Mar 29 2004 | The Boeing Company | Payload support track interface and fitting |
7798447, | Mar 29 2004 | The Boeing Company | Non-protruding seat track apparatus and methods |
8002507, | May 15 2008 | The Boeing Company | Connector assembly for attaching a threaded fastener to a slotted surface |
8093531, | May 28 2004 | Airbus Operations GmbH | Method of energy beam welding aluminum to titanium |
8177184, | Dec 21 2006 | The Boeing Company | Seat track assembly |
8191829, | Nov 12 2008 | The Boeing Company | Seat track adapter |
8474756, | Oct 14 2008 | AIRBUS OPERATIONS S A S | System for fixing |
8608125, | Dec 21 2006 | The Boeing Company | Seat track assembly |
8701265, | May 15 2008 | The Boeing Company | Connector assembly for attaching a threaded fastener to a slotted surface |
9278484, | Apr 17 2008 | The Boeing Company | Method and apparatus for producing contoured composite structures and structures produced thereby |
9481467, | Oct 21 2013 | B E AEROSPACE, INC | Modular aircraft floor track adapter system |
20050211836, | |||
20150053838, | |||
DEP2848533, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 03 2015 | The Boeing Company | (assignment on the face of the patent) | / | |||
Aug 03 2015 | KONCZ, TIBOR ALBERT | The Boeing Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036238 | /0335 |
Date | Maintenance Fee Events |
Jun 27 2017 | ASPN: Payor Number Assigned. |
Sep 30 2020 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
May 30 2020 | 4 years fee payment window open |
Nov 30 2020 | 6 months grace period start (w surcharge) |
May 30 2021 | patent expiry (for year 4) |
May 30 2023 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 30 2024 | 8 years fee payment window open |
Nov 30 2024 | 6 months grace period start (w surcharge) |
May 30 2025 | patent expiry (for year 8) |
May 30 2027 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 30 2028 | 12 years fee payment window open |
Nov 30 2028 | 6 months grace period start (w surcharge) |
May 30 2029 | patent expiry (for year 12) |
May 30 2031 | 2 years to revive unintentionally abandoned end. (for year 12) |