systems and methods are provided for detecting held breath events. A physiological signal, such as a photoplethysmograph (PPG) signal, is processed to extract respiration-related morphology metric signals. The morphology signals are analyzed to determine when a patient's breath is being held.

Patent
   10022068
Priority
Oct 28 2013
Filed
Oct 27 2014
Issued
Jul 17 2018
Expiry
Apr 22 2036
Extension
543 days
Assg.orig
Entity
Large
0
326
currently ok
7. A system comprising:
an input for receiving a photoplethysmograph (PPG) signal; and
processing circuitry configured for:
posting a respiration rate value;
generating one or more types of respiration morphology signals based on the PPG signal,
calculating a threshold value for each of the one or more respiration morphology signals,
comparing data indicative of each respiration morphology signal to a respective one of the threshold values,
identifying a held breath event based at least on the comparing; and
suspending the posting of a respiration rate value when the held breath event is identified.
13. A non-transitory computer readable medium comprising instructions stored therein for performing the method comprising:
receiving a photoplethysmograph (PPG) signal;
posting a respiration rate value;
generating one or more types of respiration morphology signals based on the PPG signal;
calculating a threshold value for each of the one or more respiration morphology signals;
comparing data indicative of each respiration morphology signal to a respective one of the threshold values;
identifying a held breath event based at least on the comparing; and
suspending the posting of a respiration rate value when the held breath event is identified.
1. A computer-implemented method comprising:
receiving a photoplethysmograph (PPG) signal;
posting, using processing circuitry, a respiration rate value;
generating, using the processing circuitry, one or more types of respiration morphology signals based on the PPG signal;
calculating, using the processing circuitry, a threshold value for each of the one or more respiration morphology signals;
comparing, using the processing circuitry, data indicative of each respiration morphology signal to a respective one of the threshold values;
identifying, using the processing circuitry, a held breath event based at least on the comparing; and
suspending, using the processing circuitry, the posting of a respiration rate value when the held breath event is identified.
2. The method of claim 1, wherein the one or more respiration morphology signals are selected from the group consisting of a down signal, a kurtosis signal, a second derivative signal, a b/a ratio signal, an amplitude signal, an amplitude modulation signal, a frequency modulation signal, and any combination thereof.
3. The method of claim 1, wherein the data indicative of each respiration morphology signal comprises an average of each respiration morphology signal over a predetermined period of time.
4. The method of claim 1, wherein calculating a threshold value comprises determining a mean absolute deviation value for each of the one or more respiration morphology signals.
5. The method of claim 4, wherein calculating a threshold value comprises:
for each of the one or more respiration morphology signals, determining a plurality of mean absolute deviation values for a respective plurality of time windows; and
for each of the one or more respiration morphology signals, averaging the mean absolute deviation values of the plurality of time windows.
6. The method of claim 1, further comprising:
calculating an oxygen saturation from the PPG signal; and
continuing to suspend the posting until the oxygen saturation is increasing.
8. The system of claim 7, wherein the one or more respiration morphology signals are selected from the group consisting of a down signal, a kurtosis signal, a second derivative signal, a b/a ratio signal, an amplitude signal, an amplitude modulation signal, a frequency modulation signal, and any combination thereof.
9. The system of claim 7, wherein the data indicative of each respiration morphology signal comprises an average of each respiration morphology signal over a predetermined period of time.
10. The system of claim 7, wherein the processing circuitry is further configured for determining a mean absolute deviation value for each of the one or more respiration morphology signals.
11. The system of claim 10, wherein the processing circuitry is further configured for:
for each of the one or more respiration morphology signals, determining a plurality of mean absolute deviation values for a respective plurality of time windows; and
for each of the one or more respiration morphology signals, averaging the mean absolute deviation values of the plurality of time windows.
12. The system of claim 7, wherein the processing circuitry is further configured for:
calculating an oxygen saturation from the PPG signal; and
continuing to suspend the posting until the oxygen saturation is increasing.
14. The computer readable medium of claim 13, wherein the one or more respiration morphology signals are selected from the group consisting of a down signal, a kurtosis signal, a second derivative signal, a b/a ratio signal, an amplitude signal, an amplitude modulation signal, a frequency modulation signal, and any combination thereof.
15. The computer readable medium of claim 13, wherein the data indicative of each respiration morphology signal comprises an average of each respiration morphology signal over a predetermined period of time.
16. The computer readable medium of claim 13, wherein calculating a threshold value comprises determining a mean absolute deviation value for each of the one or more respiration morphology signals.
17. The computer readable medium of claim 16, wherein calculating a threshold value comprises:
for each of the one or more respiration morphology signals, determining a plurality of mean absolute deviation values for a respective plurality of time windows; and
for each of the one or more respiration morphology signals, averaging the mean absolute deviation values of the plurality of time windows.

The present disclosure claims priority to U.S. Provisional Application No. 61/896,538, filed on Oct. 28, 2013, which is hereby incorporated by reference herein in its entirety.

The present disclosure relates to physiological signal processing, and more particularly relates to identifying held breath events from a physiological signal.

The present disclosure provides a computer-implemented method comprising: receiving a photoplethysmograph (PPG) signal; generating, using processing circuitry, one or more respiration morphology signals based on the PPG signal; calculating, using the processing circuitry, a threshold value for each of the one or more respiration morphology signals; comparing, using the processing circuitry, data indicative of each morphology signal to a respective one of the threshold values; and identifying, using the processing circuitry, a held breath event based at least on the comparing.

The present disclosure provides a system comprising: an input for receiving a photoplethysmograph (PPG) signal; and processing circuitry configured for: generating one or more respiration morphology signals based on the PPG signal, calculating a threshold value for each of the one or more respiration morphology signals, comparing data indicative of each morphology signal to a respective one of the threshold values, and identifying a held breath event based at least on the comparing.

The present disclosure provides a non-transitory computer readable medium comprising instructions stored therein for performing the method comprising: receiving a photoplethysmograph (PPG) signal; generating one or more respiration morphology signals based on the PPG signal; calculating a threshold value for each of the one or more respiration morphology signals; comparing data indicative of each morphology signal to a respective one of the threshold values; and identifying a held breath event based at least on the comparing.

The above and other features of the present disclosure, its nature and various advantages will be more apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings in which:

FIG. 1 shows an illustrative patient monitoring system in accordance with some embodiments of the present disclosure;

FIG. 2 is a block diagram of the illustrative patient monitoring system of FIG. 1 coupled to a patient in accordance with some embodiments of the present disclosure;

FIG. 3 shows an illustrative PPG signal that is modulated by respiration in accordance with some embodiments of the present disclosure;

FIG. 4 shows a comparison of portions of the illustrative PPG signal of FIG. 3 in accordance with some embodiments of the present disclosure;

FIG. 5 shows an exemplary held breath event in accordance with some embodiments of the present disclosure;

FIG. 6 shows illustrative steps for identifying a held breath event in accordance with some embodiments of the present disclosure;

FIG. 7 shows an illustrative PPG signal, a first derivative of the PPG signal, and a second derivative of the PPG signal in accordance with some embodiments of the present disclosure; and

FIG. 8 shows illustrative signals used in connection with detecting held breath events in accordance with some embodiments of the present disclosure.

A physiological signal such as a photoplethysmograph (PPG) signal may be indicative of pulsatile blood flow. Pulsatile blood flow may be dependent on a number of physiological functions such as cardiovascular function and respiration. For example, the PPG signal may exhibit a periodic component that generally corresponds to the heart beat of a patient. This pulsatile component of the PPG signal may be used to determine physiological parameters such as heart rate.

Respiration may also impact the pulsatile blood flow that is indicated by the PPG signal. It may thus be possible to calculate respiration information such as respiration rate from the PPG signal. However, in some instances a patient's actions such as talking or holding of breath may temporarily disrupt respiration, and thus the respiratory modulations to the PPG signal. It may therefore be desirable to identify patient actions such as held breath events when determining respiration information such as respiration rate.

As with other respiration events, a held breath event may result in changes to the pulsatile blood flow that is indicated by the PPG signal. It may be desirable to identify held breath events based on these changes to the blood flow indicated by the PPG signal.

For purposes of clarity, the present disclosure is written in the context of the physiological signal being a PPG signal generated by a pulse oximetry system. It will be understood that any other suitable physiological signal or any other suitable system may be used in accordance with the teachings of the present disclosure.

An oximeter is a medical device that may determine the oxygen saturation of the blood. One common type of oximeter is a pulse oximeter, which may indirectly measure the oxygen saturation of a patient's blood (as opposed to measuring oxygen saturation directly by analyzing a blood sample taken from the patient). Pulse oximeters may be included in patient monitoring systems that measure and display various blood flow characteristics including, but not limited to, the oxygen saturation of hemoglobin in arterial blood. Such patient monitoring systems may also measure and display additional physiological parameters, such as a patient's pulse rate.

An oximeter may include a light sensor that is placed at a site on a patient, typically a fingertip, toe, forehead or earlobe, or in the case of a neonate, across a foot. The oximeter may use a light source to pass light through blood perfused tissue and photoelectrically sense the absorption of the light in the tissue. In addition, locations that are not typically understood to be optimal for pulse oximetry serve as suitable sensor locations for the monitoring processes described herein, including any location on the body that has a strong pulsatile arterial flow. For example, additional suitable sensor locations include, without limitation, the neck to monitor carotid artery pulsatile flow, the wrist to monitor radial artery pulsatile flow, the inside of a patient's thigh to monitor femoral artery pulsatile flow, the ankle to monitor tibial artery pulsatile flow, and around or in front of the ear. Suitable sensors for these locations may include sensors for sensing absorbed light based on detecting reflected light. In all suitable locations, for example, the oximeter may measure the intensity of light that is received at the light sensor as a function of time. The oximeter may also include sensors at multiple locations. A signal representing light intensity versus time or a mathematical manipulation of this signal (e.g., a scaled version thereof, a log taken thereof, a scaled version of a log taken thereof, etc.) may be referred to as the photoplethysmograph (PPG) signal. In addition, the term “PPG signal,” as used herein, may also refer to an absorption signal (i.e., representing the amount of light absorbed by the tissue) or any suitable mathematical manipulation thereof. The light intensity or the amount of light absorbed may then be used to calculate any of a number of physiological parameters, including an amount of a blood constituent (e.g., oxyhemoglobin) being measured as well as a pulse rate and when each individual pulse occurs.

In some applications, the light passed through the tissue is selected to be of one or more wavelengths that are absorbed by the blood in an amount representative of the amount of the blood constituent present in the blood. The amount of light passed through the tissue varies in accordance with the changing amount of blood constituent in the tissue and the related light absorption. Red and infrared (IR) wavelengths may be used because it has been observed that highly oxygenated blood will absorb relatively less Red light and more IR light than blood with a lower oxygen saturation. By comparing the intensities of two wavelengths at different points in the pulse cycle, it is possible to estimate the blood oxygen saturation of hemoglobin in arterial blood.

When the measured blood parameter is the oxygen saturation of hemoglobin, a convenient starting point assumes a saturation calculation based at least in part on Lambert-Beer's law. The following notation will be used herein:
I(λ,t)=I0(λ)c×p(−(0(λ)+(1−sr(λ))l(t))  (1)
where:

The traditional approach measures light absorption at two wavelengths (e.g., Red and IR), and then calculates saturation by solving for the “ratio of ratios” as follows.

d log I d t = - ( s β o + ( 1 - s ) β r ) d l d t . ( 3 )

d log I ( λ R ) / d t d log I ( λ IR ) / d t = s β o ( λ R ) + ( 1 - s ) β r ( λ R ) s β o ( λ IR ) + ( 1 - s ) β r ( λ IR ) . ( 4 )

s = d log I ( λ IR ) d t β r ( λ R ) - d log I ( λ R ) d t β r ( λ IR ) d log I ( λ R ) d t ( β o ( λ IR ) - β r ( λ IR ) ) - d log I ( λ IR ) d t ( β o ( λ R ) - β r ( λ R ) ) . ( 5 )

d log I ( λ , t ) d t log I ( λ , t 2 ) - log I ( λ , t 1 ) . ( 6 )

d log I ( λ , t ) d t log ( I ( t 2 , λ ) I ( t 1 , λ ) ) . ( 7 )

d log I ( λ R ) d t d log I ( λ IR ) d t log ( I ( t 1 , λ R ) I ( t 2 , λ R ) ) log ( I ( t 1 , λ IR ) I ( t 2 , λ IR ) ) = R , ( 8 )
where R represents the “ratio of ratios.”

s = β r ( λ R ) - R β r ( λ IR ) R ( β o ( λ IR ) - β r ( λ IR ) ) - β o ( λ R ) + β r ( λ R ) . ( 9 )

d log I d t = d I / d t I , ( 10 )
Eq. 8 becomes

d log I ( λ R ) d t d log I ( λ IR ) d t I ( t 2 , λ R ) - I ( t 1 , λ R ) I ( t 1 , λ R ) I ( t 2 , λ IR ) - I ( t 1 , λ IR ) I ( t 1 , λ IR ) = [ I ( t 2 , λ R ) - I ( t 1 , λ R ) ] I ( t 1 , λ IR ) [ I ( t 2 , λ IR ) - I ( t 1 , λ IR ) ] I ( t 1 , λ R ) = R , ( 11 )
which defines a cluster of points whose slope of y versus x will give R when
x=[I(t2IR)−I(t1IR)]I(t1R),  (12)
and
y=[I(t2R)−I(t1R)]l(t1IR).  (13)
Once R is determined or estimated, for example, using the techniques described above, the blood oxygen saturation can be determined or estimated using any suitable technique for relating a blood oxygen saturation value to R. For example, blood oxygen saturation can be determined from empirical data that may be indexed by values of R, and/or it may be determined from curve fitting and/or other interpolative techniques.

FIG. 1 is a perspective view of an embodiment of a patient monitoring system 10. System 10 may include sensor unit 12 and monitor 14. In some embodiments, sensor unit 12 may be part of an oximeter. Sensor unit 12 may include an emitter 16 for emitting light at one or more wavelengths into a patient's tissue. A detector 18 may also be provided in sensor unit 12 for detecting the light originally from emitter 16 that emanates from the patient's tissue after passing through the tissue. Any suitable physical configuration of emitter 16 and detector 18 may be used. In an embodiment, sensor unit 12 may include multiple emitters and/or detectors, which may be spaced apart. System 10 may also include one or more additional sensor units (not shown) that may take the form of any of the embodiments described herein with reference to sensor unit 12. An additional sensor unit may be the same type of sensor unit as sensor unit 12, or a different sensor unit type than sensor unit 12. Multiple sensor units may be capable of being positioned at two different locations on a subject's body; for example, a first sensor unit may be positioned on a patient's forehead, while a second sensor unit may be positioned at a patient's fingertip.

Sensor units may each detect any signal that carries information about a patient's physiological state, such as an electrocardiograph signal, arterial line measurements, or the pulsatile force exerted on the walls of an artery using, for example, oscillometric methods with a piezoelectric transducer. According to some embodiments, system 10 may include two or more sensors forming a sensor array in lieu of either or both of the sensor units. Each of the sensors of a sensor array may be a complementary metal oxide semiconductor (CMOS) sensor. Alternatively, each sensor of an array may be charged coupled device (CCD) sensor. In some embodiments, a sensor array may be made up of a combination of CMOS and CCD sensors. The CCD sensor may comprise a photoactive region and a transmission region for receiving and transmitting data whereas the CMOS sensor may be made up of an integrated circuit having an array of pixel sensors. Each pixel may have a photodetector and an active amplifier. It will be understood that any type of sensor, including any type of physiological sensor, may be used in one or more sensor units in accordance with the systems and techniques disclosed herein. It is understood that any number of sensors measuring any number of physiological signals may be used to determine physiological information in accordance with the techniques described herein.

In some embodiments, emitter 16 and detector 18 may be on opposite sides of a digit such as a finger or toe, in which case the light that is emanating from the tissue has passed completely through the digit. In some embodiments, emitter 16 and detector 18 may be arranged so that light from emitter 16 penetrates the tissue and is reflected by the tissue into detector 18, such as in a sensor designed to obtain pulse oximetry data from a patient's forehead.

In some embodiments, sensor unit 12 may be connected to and draw its power from monitor 14 as shown. In another embodiment, the sensor may be wirelessly connected to monitor 14 and include its own battery or similar power supply (not shown). Monitor 14 may be configured to calculate physiological parameters (e.g., pulse rate, blood oxygen saturation (e.g., SpO2), and respiration information) based at least in part on data relating to light emission and detection received from one or more sensor units such as sensor unit 12 and an additional sensor (not shown). In some embodiments, the calculations may be performed on the sensor units or an intermediate device and the result of the calculations may be passed to monitor 14. Further, monitor 14 may include a display 20 configured to display the physiological parameters or other information about the system. In the embodiment shown, monitor 14 may also include a speaker 22 to provide an audible sound that may be used in various other embodiments, such as for example, sounding an audible alarm in the event that a patient's physiological parameters are not within a predefined normal range. In some embodiments, the system 10 includes a stand-alone monitor in communication with the monitor 14 via a cable or a wireless network link.

In some embodiments, sensor unit 12 may be communicatively coupled to monitor 14 via a cable 24. In some embodiments, a wireless transmission device (not shown) or the like may be used instead of or in addition to cable 24. Monitor 14 may include a sensor interface configured to receive physiological signals from sensor unit 12, provide signals and power to sensor unit 12, or otherwise communicate with sensor unit 12. The sensor interface may include any suitable hardware, software, or both, which may allow communication between monitor 14 and sensor unit 12.

As is described herein, monitor 14 may generate a PPG signal based on the signal received from sensor unit 12. The PPG signal may consist of data points that represent a pulsatile waveform. The pulsatile waveform may be modulated based on the respiration of a patient. Respiratory modulations may include baseline modulations, amplitude modulations, frequency modulations, respiratory sinus arrhythmia, any other suitable modulations, or any combination thereof. Respiratory modulations may exhibit different phases, amplitudes, or both, within a PPG signal and may contribute to complex behavior (e.g., changes) of the PPG signal. For example, the amplitude of the pulsatile waveform may be modulated based on respiration (amplitude modulation), the frequency of the pulsatile waveform may be modulated based on respiration (frequency modulation), and a signal baseline for the pulsatile waveform may be modulated based on respiration (baseline modulation). Monitor 14 may analyze the PPG signal (e.g., by generating respiration morphology signals from the PPG signal, generating a combined autocorrelation sequence based on the respiration morphology signals, and calculating respiration information from the combined autocorrelation sequence) to determine respiration information based on one or more of these modulations of the PPG signal.

As is described herein, respiration information may be determined from the PPG signal by monitor 14. However, it will be understood that the PPG signal could be transmitted to any suitable device for the determination of respiration information, such as a local computer, a remote computer, a nurse station, mobile devices, tablet computers, or any other device capable of sending and receiving data and performing processing operations. Information may be transmitted from monitor 14 in any suitable manner, including wireless (e.g., WiFi, Bluetooth, etc.), wired (e.g., USB, Ethernet, etc.), or application-specific connections. The receiving device may determine respiration information as described herein.

FIG. 2 is a block diagram of a patient monitoring system, such as patient monitoring system 10 of FIG. 1, which may be coupled to a patient 40 in accordance with an embodiment. Certain illustrative components of sensor unit 12 and monitor 14 are illustrated in FIG. 2.

Sensor unit 12 may include emitter 16, detector 18, and encoder 42. In the embodiment shown, emitter 16 may be configured to emit at least two wavelengths of light (e.g., Red and IR) into a patient's tissue 40. Hence, emitter 16 may include a Red light emitting light source such as Red light emitting diode (LED) 44 and an IR light emitting light source such as IR LED 46 for emitting light into the patient's tissue 40 at the wavelengths used to calculate the patient's physiological parameters. In some embodiments, the Red wavelength may be between about 600 nm and about 700 nm, and the IR wavelength may be between about 800 nm and about 1000 nm. In embodiments where a sensor array is used in place of a single sensor, each sensor may be configured to emit a single wavelength. For example, a first sensor may emit only a Red light while a second sensor may emit only an IR light. In a further example, the wavelengths of light used may be selected based on the specific location of the sensor.

It will be understood that, as used herein, the term “light” may refer to energy produced by radiation sources and may include one or more of radio, microwave, millimeter wave, infrared, visible, ultraviolet, gamma ray or X-ray electromagnetic radiation. As used herein, light may also include electromagnetic radiation having any wavelength within the radio, microwave, infrared, visible, ultraviolet, or X-ray spectra, and that any suitable wavelength of electromagnetic radiation may be appropriate for use with the present techniques. Detector 18 may be chosen to be specifically sensitive to the chosen targeted energy spectrum of the emitter 16.

In some embodiments, detector 18 may be configured to detect the intensity of light at the Red and IR wavelengths. Alternatively, each sensor in the array may be configured to detect an intensity of a single wavelength. In operation, light may enter detector 18 after passing through the patient's tissue 40. Detector 18 may convert the intensity of the received light into an electrical signal. The light intensity is directly related to the absorbance and/or reflectance of light in the tissue 40. That is, when more light at a certain wavelength is absorbed or reflected, less light of that wavelength is received from the tissue by the detector 18. After converting the received light to an electrical signal, detector 18 may send the signal to monitor 14, where physiological parameters may be calculated based on the absorption of the Red and IR wavelengths in the patient's tissue 40.

In some embodiments, encoder 42 may contain information about sensor unit 12, such as what type of sensor it is (e.g., whether the sensor is intended for placement on a forehead or digit) and the wavelengths of light emitted by emitter 16. This information may be used by monitor 14 to select appropriate algorithms, lookup tables and/or calibration coefficients stored in monitor 14 for calculating the patient's physiological parameters.

Encoder 42 may contain information specific to patient 40, such as, for example, the patient's age, weight, and diagnosis. This information about a patient's characteristics may allow monitor 14 to determine, for example, patient-specific threshold ranges in which the patient's physiological parameter measurements should fall and to enable or disable additional physiological parameter algorithms. This information may also be used to select and provide coefficients for equations from which measurements may be determined based at least in part on the signal or signals received at sensor unit 12. For example, some pulse oximetry sensors rely on equations to relate an area under a portion of a PPG signal corresponding to a physiological pulse to determine blood pressure. These equations may contain coefficients that depend upon a patient's physiological characteristics as stored in encoder 42.

Encoder 42 may, for instance, be a coded resistor that stores values corresponding to the type of sensor unit 12 or the type of each sensor in the sensor array, the wavelengths of light emitted by emitter 16 on each sensor of the sensor array, and/or the patient's characteristics and treatment information. In some embodiments, encoder 42 may include a memory on which one or more of the following information may be stored for communication to monitor 14; the type of the sensor unit 12; the wavelengths of light emitted by emitter 16; the particular wavelength each sensor in the sensor array is monitoring; a signal threshold for each sensor in the sensor array; any other suitable information; physiological characteristics (e.g., gender, age, weight); or any combination thereof.

In some embodiments, signals from detector 18 and encoder 42 may be transmitted to monitor 14. In the embodiment shown, monitor 14 may include a general-purpose microprocessor 48 connected to an internal bus 50. Microprocessor 48 may be adapted to execute software, which may include an operating system and one or more applications, as part of performing the functions described herein. Also connected to bus 50 may be a read-only memory (ROM) 52, a random access memory (RAM) 54, user inputs 56, display 20, data output 84, and speaker 22.

RAM 54 and ROM 52 are illustrated by way of example, and not limitation. Any suitable computer-readable media may be used in the system for data storage. Computer-readable media are capable of storing information that can be interpreted by microprocessor 48. This information may be data or may take the form of computer-executable instructions, such as software applications, that cause the microprocessor to perform certain functions and/or computer-implemented methods. Depending on the embodiment, such computer-readable media may include computer storage media and communication media. Computer storage media may include volatile and non-volatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data. Computer storage media may include, but is not limited to, RAM, ROM, EPROM, EEPROM, flash memory or other solid state memory technology, CD-ROM, DVD, or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store the desired information and that can be accessed by components of the system.

In the embodiment shown, a time processing unit (TPU) 58 may provide timing control signals to light drive circuitry 60, which may control when emitter 16 is illuminated and multiplexed timing for Red LED 44 and IR LED 46. TPU 58 may also control the gating-in of signals from detector 18 through amplifier 62 and switching circuit 64. These signals are sampled at the proper time, depending upon which light source is illuminated. The received signal from detector 18 may be passed through amplifier 66, low pass filter 68, and analog-to-digital converter 70. The digital data may then be stored in a queued serial module (QSM) 72 (or buffer) for later downloading to RAM 54 as QSM 72 is filled. In some embodiments, there may be multiple separate parallel paths having components equivalent to amplifier 66, filter 68, and/or A/D converter 70 for multiple light wavelengths or spectra received. Any suitable combination of components (e.g., microprocessor 48, RAM 54, analog to digital converter 70, any other suitable component shown or not shown in FIG. 2) coupled by bus 50 or otherwise coupled (e.g., via an external bus), may be referred to as “processing equipment” or “processing circuitry.”

In some embodiments, microprocessor 48 may determine the patient's physiological parameters, such as SpO2, pulse rate, and/or respiration information, using various algorithms and/or look-up tables based on the value of the received signals and/or data corresponding to the light received by detector 18. As is described herein, microprocessor 48 may generate respiration morphology signals and determine respiration information from a PPG signal.

Signals corresponding to information about patient 40, and particularly about the intensity of light emanating from a patient's tissue over time, may be transmitted from encoder 42 to decoder 74. These signals may include, for example, encoded information relating to patient characteristics. Decoder 74 may translate these signals to enable microprocessor 48 to determine the thresholds based at least in part on algorithms or look-up tables stored in ROM 52. In some embodiments, user inputs 56 may be used to enter information, select one or more options, provide a response, input settings, any other suitable inputting function, or any combination thereof. User inputs 56 may be used to enter information about the patient, such as age, weight, height, diagnosis, medications, treatments, and so forth. In some embodiments, display 20 may exhibit a list of values, which may generally apply to the patient, such as, for example, age ranges or medication families, which the user may select using user inputs 56.

Calibration device 80, which may be powered by monitor 14 via a communicative coupling 82, a battery, or by a conventional power source such as a wall outlet, may include any suitable signal calibration device. Calibration device 80 may be communicatively coupled to monitor 14 via communicative coupling 82, and/or may communicate wirelessly (not shown). In some embodiments, calibration device 80 is completely integrated within monitor 14. In some embodiments, calibration device 80 may include a manual input device (not shown) used by an operator to manually input reference signal measurements obtained from some other source (e.g., an external invasive or non-invasive physiological measurement system).

Data output 84 may provide for communications with other devices utilizing any suitable transmission medium, including wireless (e.g., WiFi, Bluetooth, etc.), wired (e.g., USB, Ethernet, etc.), or application-specific connections. Data output 84 may receive messages to be transmitted from microprocessor 48 via bus 50. Exemplary messages to be sent in an embodiment described herein may include samples of the PPG signal to be transmitted to an external device for determining respiration information.

The optical signal attenuated by the tissue of patient 40 can be degraded by noise, among other sources. One source of noise is ambient light that reaches the light detector. Another source of noise is electromagnetic coupling from other electronic instruments. Movement of the patient also introduces noise and affects the signal. For example, the contact between the detector and the skin, or the emitter and the skin, can be temporarily disrupted when movement causes either to move away from the skin. Also, because blood is a fluid, it responds differently than the surrounding tissue to inertial effects, which may result in momentary changes in volume at the point to which the oximeter probe is attached.

Noise (e.g., from patient movement) can degrade a sensor signal relied upon by a care provider, without the care provider's awareness. This is especially true if the monitoring of the patient is remote, the motion is too small to be observed, or the care provider is watching the instrument or other parts of the patient, and not the sensor site. Processing sensor signals (e.g., PPG signals) may involve operations that reduce the amount of noise present in the signals, control the amount of noise present in the signal, or otherwise identify noise components in order to prevent them from affecting measurements of physiological parameters derived from the sensor signals.

FIG. 3 shows an illustrative PPG signal 302 that is modulated by respiration in accordance with some embodiments of the present disclosure. PPG signal 302 may be a periodic signal that is indicative of changes in pulsatile blood flow. Each cycle of PPG signal 302 may generally correspond to a pulse, such that a heart rate may be determined based on PPG signal 302. Each respiratory cycle 304 may correspond to a breath. The period of a respiratory cycle may typically be longer than the period of a pulsatile cycle, such that any changes in the pulsatile blood flow due to respiration occur over a number of pulsatile cycles. The volume of the pulsatile blood flow may also vary in a periodic manner based on respiration, resulting in modulations to the pulsatile blood flow such as amplitude modulation, frequency modulation, and baseline modulation. This modulation of PPG signal 302 due to respiration may result in changes to the morphology of PPG signal 302.

FIG. 4 shows a comparison of portions of the illustrative PPG signal 302 of FIG. 3 in accordance with some embodiments of the present disclosure. The signal portions compared in FIG. 4 may demonstrate differing morphology due to respiration modulation based on the relative location of the signal portions within a respiratory cycle 304. For example, a first pulse associated with the respiratory cycle may have a relatively low amplitude (indicative of amplitude and baseline modulation) as well as an obvious distinct dichrotic notch as indicated by point A. A second pulse may have a relatively high amplitude (indicative of amplitude and baseline modulation) as well as a dichrotic notch that has been washed out as depicted by point B. Frequency modulation may be evident based on the relative period of the first pulse and second pulse. Referring again to FIG. 3, by the end of the respiratory cycle 304 the pulse features may again be similar to the morphology of A. Although the impact of respiration modulation on the morphology of a particular PPG signal 302 has been described herein, it will be understood that respiration may have varied effects on the morphology of a PPG signal other than those depicted in FIGS. 3 and 4.

When a patient stops breathing either voluntarily or involuntarily, this may be referred to as a held breath event. FIG. 5 shows an example of a held breath event in accordance with some embodiments of the present disclosure. Square wave signal 502 represents actual breathing over time, with each square wave cycle corresponding to a breath. A held breath portion 504 of the square wave respiration signal 502 demonstrates a portion of respiration signal 502 during which the patient is having a held breath event. In some embodiments, a respiration signal, such as signal 502, may be generated from a physiological signal such as a PPG signal (e.g., based on modulations to the PPG signal corresponding to respiration), a sound signal (e.g., based on sounds corresponding to an inhalation or exhalation), an airflow signal (e.g., to directly detect inhalation or exhalation), an acceleration signal (e.g., attached to a patient's chest to detect breathing), any other suitable physiological signal, or any combination thereof. In an embodiment, respiration information signal 506 may be an exemplary representation of the signal energy of a respiration signal, which may correspond to the detected patient respiration. As is depicted in FIG. 5, respiration information signal 506 may decrease in strength significantly during a held breath event such as held breath event 504. As is described herein, a detector for held breath events may utilize this decrease in signal amplitude to identify held breath events based on a physiological signal.

FIG. 6 shows illustrative steps for identifying a held breath event from a PPG signal in accordance with some embodiments of the present disclosure. Although exemplary steps are described herein, it will be understood that steps may be omitted and that any suitable additional steps may be added for determining respiration information. Although the steps described herein may be performed by any suitable device, in an exemplary embodiment, the steps may be performed by monitoring system 10. At step 602, monitoring system 10 may receive a PPG signal as described herein. Although the PPG signal may be processed in any suitable manner, in an embodiment, the PPG signal may be analyzed each 5 seconds, and for each 5 second analysis window, the most recent 45 seconds of the PPG signal may be analyzed.

At step 604, monitoring system 10 may generate one or more respiration morphology signals from the PPG signal. Although respiration morphology signals may be used to calculate respiration information such as respiration rate, as described herein the respiration morphology signals may also be used to identify held breath events.

Any suitable number of respiration morphology signals may be generated from a PPG signal. In an exemplary embodiment, a down signal, a delta of second derivative (DSD) signal, a kurtosis signal, a b/a ratio signal, any other suitable morphology signal (such as those discussed below), or any combination thereof may be generated. Although a respiration morphology signal may be generated in any suitable manner, in an exemplary embodiment, each respiration morphology signal may be generated based on calculating a series of morphology metrics based on a PPG signal. One or more morphology metrics maybe calculated for each portion of the PPG signal (e.g., for each fiducial defined portion), a series of morphology metrics may be calculated over time, and the series of morphology metrics may be processed to generate one or more respiration morphology signals.

FIG. 7 depicts signals used for calculating morphology metrics from a received PPG signal. The abscissa of each plot of FIG. 7 may be represent time and the ordinate of each plot may represent magnitude. PPG signal 700 may be a received PPG signal, first derivative signal 720 may be a signal representing the first derivative of the PPG signal 700, and second derivative signal 740 may be a signal representing the second derivative of the PPG signal 700. Although particular morphology metric determinations are set forth below, each of the morphology metric calculations may be modified in any suitable manner. Any of a plurality of morphology metrics may be utilized in combination to determine respiration information.

Exemplary fiducial points 702 and 704 are depicted for PPG signal 700, and fiducial lines 706 and 708 demonstrate the location of fiducial points 702 and 704 relative to first derivative signal 720 and second derivative signal 740. Fiducial points 702 and 704 may define a fiducial-defined portion 710 of PPG signal 700. The fiducial points 702 and 704 may define starting ending points for determining morphology metrics as described herein, and the fiducial-defined portion 710 may be define a relevant portion of data for determining morphology metrics as described herein. It will be understood that other starting points, ending points, and relative portions of data may be utilized to determine morphology metrics.

An exemplary morphology metric may be a down metric. The down metric is the difference between a first (e.g., fiducial) sample of a fiducial-defined portion (e.g., fiducial defined portion 710) of the PPG signal (e.g., PPG signal 700) and a minimum sample (e.g., minimum sample 712) of the fiducial-defined portion of the PPG signal. A down metric may also be calculated based on other points of a fiducial-defined portion. The down metric is indicative of physiological characteristics which are related to respiration, e.g., amplitude and baseline modulations of the PPG signal. In an exemplary embodiment fiducial point 702 defines the first location for calculation of a down metric for fiducial-defined portion 710. In the exemplary embodiment the minimum sample of fiducial-defined portion 710 is minimum point 712, and is indicated by horizontal line 714. The down metric may be calculated by subtracting the value of minimum point 712 from the value of fiducial point 702, and is depicted as down metric 716.

Another exemplary morphology metric may be a kurtosis metric for a fiducial-defined portion. Kurtosis measures the peakedness of the first derivative 720 of the PPG signal. The peakedness is sensitive to both amplitude and period (frequency) changes, and may be utilized as an input to determine respiration information, such as respiration rate. Kurtosis may be calculated based on the following formulae:

D = 1 n i = 1 n ( x i - x _ ) 2 Kurtosis = 1 n D 2 i = 1 n ( x i - x _ ) 4
where:

Another exemplary morphology metric may be a delta of the second derivative (DSD) between consecutive fiducial-defined portions, e.g., at consecutive fiducial points. Measurement points 742 and 744 for a DSD calculation are depicted at fiducial points 702 and 704 as indicated by fiducial lines 706 and 708. The second derivative is indicative of the curvature of a signal. Changes in the curvature of the PPG signal are indicative of changes in internal pressure that occur during respiration, particularly changes near the peak of a pulse. By providing a metric of changes in curvature of the PPG signal, the DSD morphology metric may be utilized as an input to determine respiration information, such as respiration rate. The DSD metric may be calculated for each fiducial-defined portion by subtracting the second derivative of the next fiducial point from the second derivative of the current fiducial point.

Another exemplary morphology metric may be an up metric measuring the up stroke of the first derivative signal 720 of the PPG signal. The up stroke may be based on an initial starting sample (fiducial point) and a maximum sample for the fiducial-defined portion and is depicted as up metric 722 for a fiducial point corresponding to fiducial line 706. The up metric may be indicative of amplitude and baseline modulation of the PPG signal, which may be related to respiration information as described herein. Although an up metric is described herein with respect to the first derivate signal 720, it will be understood that an up metric may also be calculated for the PPG signal 700 and second derivative signal 740.

Another exemplary morphology metric may be a skew metric measuring the skewness of the original PPG signal 700 or first derivative 720. The skew metric is indicative of how tilted a signal is, and increases as the PPG signal is compressed (indicating frequency changes in respiration) or the amplitude is increased. The skewness metric is indicative of amplitude and frequency modulation of the PPG signal, which may be related to respiration information as described herein. Skewness may be calculated as follows:

g 1 = m 3 m 2 3 / 2 = 1 n i = 1 n ( x i - x _ ) 3 ( 1 n i = 1 n ( x i - x _ ) 2 ) 3 / 2
where:

Another exemplary morphology metric may be a b/a ratio metric (i.e., b/a), which is based on the ratio between the a-peak and b-peak of the second derivative signal 740. PPG signal 700, first derivative signal 720, and second derivative signal 700 may include a number of peaks (e.g., four peaks corresponding to maxima and minima) which may be described as the a-peak, b-peak, c-peak, and d-peak, with the a-peak and c-peak generally corresponding to local maxima within a fiducial defined portion and the b-peak and d-peak generally corresponding to local minima within a fiducial defined portion. For example, the second derivative of the PPG signal may include four peaks: the a-peak, b-peak, c-peak, and d-peak. Each peak may be indicative of a respective systolic wave, i.e., the a-wave, b-wave, c-wave, and d-wave. On the depicted portion of the second derivative of the PPG signal 740, the a-peaks are indicated by points 746 and 748, the b-peaks by points 750 and 752, the c-peaks by points 754 and 756, and the d-peaks by points 758 and 760. The b/a ratio measures the ratio of the b-peak (e.g., 750 or 752) and the a-peak (e.g., 746 or 748). The b/a ratio metric may be indicative of the curvature of the PPG signal, which demonstrates frequency modulation based on respiration information such as respiration rate. The b/a ratio may also be calculated based on the a-peak and b-peak in higher order signals such as PPG signal and first derivative PPG signal 720.

Another exemplary morphology metric may be a c/a ratio (i.e., c/a), which is calculated from the a-peak and c-peak of a signal. For example, first derivate PPG signal 720 may have a c-peak 726 which corresponds to the maximum slope near the dichrotic notch of PPG signal 700, and an a-peak 724 which corresponds to the maximum slope of the PPG signal 700. The c/a ratio of the first derivative is indicative of frequency modulation of the PPG signal, which is related to respiration information such as respiration rate as described herein. A c/a ratio may be calculated in a similar manner for PPG signal 700 and second derivative signal 740.

Another exemplary morphology metric may be a i_b metric measuring the time between two consecutive local minimum (b) locations 750 and 752 in the second derivative 740. The i_b metric is indicative of frequency modulation of the PPG signal, which is related to respiration information such as respiration rate as described herein. The i_b metric may also be calculated for PPG signal 700 or first derivative signal 720.

Another exemplary morphology metric may be a peak amplitude metric measuring the amplitude of the peak of the original PPG signal 700 or of the higher order derivatives 720 and 740. The peak amplitude metric is indicative of amplitude modulation of the PPG signal, which is related to respiration information such as respiration rate as described herein.

Another exemplary morphology metric may be a center of gravity metric measuring the center of gravity of a fiducial-defined portion from the PPG signal 700 in either or both of the x and y coordinates. The center of gravity is calculated as follows:
Center of gravity(x)=Σ(xi*yi)/Σyi
Center of gravity(y)=Σ(xi*yi)/Σxi

The center of gravity metric of the x coordinate for a fiducial-defined portion is indicative of frequency modulation of the PPG signal, which is related to respiration information such as respiration rate as described herein. The center of gravity metric of the y coordinate for a fiducial-defined portion is indicative of amplitude modulation of the PPG signal, which is related to respiration information such as respiration rate as described herein.

Another exemplary morphology metric is an area metric measuring the total area under the curve for a fiducial-defined portion of the PPG signal 700. The area metric is indicative of frequency and amplitude modulation of the PPG signal, which is related to respiration information such as respiration rate as described herein.

Another morphology metric is the PPG amplitude metric. This metric represents the amplitude of the patient's PPG signal. In some embodiments, the PPG amplitude metric is normalized to the baseline (i.e., DC component) of the underlying PPG signal.

Another morphology metric is the PPG amplitude modulation metric. This metric represents the modulation of amplitude over time on a patient's PPG signal.

Another morphology metric is the frequency modulation metric. This metric represents the modulation of periods between fiducial points on a physiological signal, such as a PPG signal.

Although a number of morphology metrics have been described herein, it will be understood that other morphology metrics may be calculated from PPG signal 700, first derivative signal 720, second derivative signal 740, and any other order of the PPG signal. It will also be understood that any of the morphology metrics described above may be modified to capture aspects of respiration information or other physiological information that may be determined from a PPG signal.

Referring again to FIG. 6, at step 604 a series of morphology metric values may be calculated for each morphology metric (e.g., down, kurtosis, DSD, b/a ratio, PPG amplitude, PPG amplitude modulation, and frequency modulation). In some embodiments, each series of morphology metric values may be further processed in any suitable manner to generate the respiration morphology signals. Although any suitable processing operations may be performed for each series of morphology metric values, in an exemplary embodiment, each series of morphology metric values may be filtered (e.g., based on frequencies associated with respiration) and interpolated to generate the respiration morphology signals.

At step 608, monitor 10 may calculate thresholds for use in identifying held breath events. As will be described herein, steps 608-612 describe a procedure for calculating thresholds for one or more of the respiration morphology signals and the pulsatile metric signals (at step 608), calculating average values associated with each of the one or more of the respiration morphology signals (at step 610), and identifying a held breath event based on a comparison of the thresholds and the average values (at step 612).

Although thresholds may be calculated for the one or more respiration morphology signals in any suitable manner, in some embodiments, the threshold may be based on a history of the mean absolute deviation for each of the one or more signals. For each of the one or more morphology signals, the mean absolute deviation may be calculated for any suitable portion of signal. For example, the mean absolute deviation may be calculated once for the respiration morphology signal for each 5 second window of received PPG data. The mean absolute deviation may be combined with a suitable number of previous windows, such as the 9 most previous windows (e.g., the mean absolute deviation may be calculated for each morphology signal for each 5 second window, and the 10 windows may be combined) to generate a combined value. This combination may be, for example, a weighted average of the 10 mean absolute deviation values. Weights may be fixed or determined based on any suitable criteria, such as signal quality. The combined value may be used as the threshold value. In some embodiments, the threshold value may be calculated from the combined value by multiplying the combined value by any suitable constant (e.g., determined based on empirical data).

At step 610, monitor 10 may calculate average values for each of the one or more respiration morphology signals to compare against respective thresholds that were calculated as discussed above, for example. As described herein, in an embodiment, average values may be calculated for the down, kurtosis, DSD, and b/a, the frequency modulation, pulse amplitude, and pulse amplitude modulation morphology signals.

Although it will be understood that the average values may be calculated in any suitable manner, in an embodiment, the average values may be calculated based on the average signal energy for the most recent 20 seconds of each of the respiration morphology signals. The average for each morphology signal may be calculated using weights, which may be fixed or determined based on any suitable criteria, such as signal quality.

FIG. 8 shows an illustrative square wave representation of a respiration signal 802, threshold signal 804, and average morphology signal 806 associated with a respiration morphology signal in accordance with some embodiments of the present disclosure. Respiration signal 802 is a square wave representation of respiration over time, with each square wave cycle corresponding to a breath. Held breath portions 808 and 810 of the square wave demonstrate portions of respiration signal 802 where the patient is having a held breath event. In an embodiment, threshold signal 804 and average signal 806 may be generated for one of a respiration morphology signal in accordance with the present disclosure (e.g., based on a down respiration morphology signal). As is depicted in FIG. 8, because threshold signal 804 is based on an extended sample of data (e.g., 10 5-second windows of received data), threshold signal 804 has a delayed response to held breath events, such that threshold signal 804 experiences a sharp decrease at a delay from the onset held breath events 808 and 810. Because average signal 806 is based on a smaller sample of data (e.g., 20 seconds), the average signal 804 responds quicker to held breath events than threshold signal 804, such that average signal 806 experiences a sharp decrease at a lesser delay from the onset of held breath events 808 and 810. At points 812 and 814, the value of average signal 806 may fall below the value of threshold signal 804. As is described with respect to step 612 below, the excursion of average signal 806 below threshold 804 may be used to identify a held breath event.

Referring back to FIG. 6, at step 612, monitor 10 may identify a held breath event based on the comparison of the threshold values to the respective average values. Although it will be understood that a comparison may be performed for any number of the respiration morphology signals, in an embodiment, the comparison may be performed for the threshold and average values associated with each of the down, kurtosis, DSD, b/a ratio, frequency modulation, pulse amplitude, and pulse amplitude morphology signals.

In some embodiments, a held breath event may be identified when a certain minimum number of the morphology signals fall below their respective thresholds. Although any suitable minimum number may be used in accordance with the present disclosure, in an embodiment a held breath event may be identified when a majority of the average signal values fall below the threshold signal values (e.g., 4 of 7 of the respiration morphology signals). In some embodiments, the respiration morphology signals may be assigned differing weights for identifying a held breath event. For example, in some embodiments, each of the respiration morphology signals may be assigned a weighting value, and if the associated average value falls below the threshold value, the weighting value associated with the respiration morphology signal may be added to a total weighting value. If the total weighting value exceeds an overall weighting threshold, monitor 10 may identify a held breath event.

In some embodiments, a held breath event may be identified based on a trained neural network. Although it will be understood that a trained neural network may be configured to identify a held breath event in any manner, in an embodiment, the neural network may be trained based on training data and weights may be assigned to nodes associated with each of the respiration morphology signals. Each node may then assert a node value associated with the assigned weight (e.g., based on the degree to which the average signal falls below the threshold signal) and the node values may be combined (e.g., added) and compared to threshold to determine whether a held breath event has been identified.

Once a held breath event has been initially identified, it may be desired to modify the comparison procedure. Although the comparison procedure may be modified in any suitable manner, in some embodiments, the comparison procedure may be modified by adjusting the threshold, for example, by fixing the threshold at the value at which the average fell below the threshold. In some embodiments, this may retain the held breath indication longer as the threshold value will no longer fall based on the held breath event. After a determination has been made as to whether a held breath event has occurred, processing may continue to step 614.

At step 614, monitor 10 may provide an indication of a held breath event based on the determination at step 612. Although it will be understood that monitor 10 may provide an indication of a held breath event in any suitable manner, in an embodiment, monitor 10 may stop posting a respiration rate value, provide a visual indication, provide an audible indication, provide a transmitted indication, provide any other suitable indication or response, or any combination thereof.

Although it will be understood that monitor 10 may stop posting respiration rate values in any suitable manner (e.g., immediately upon the identification of a held breath event), in some embodiments, monitor 10 may stop posting respiration rate based on how long the held breath event has persisted. In some embodiments, if a held breath event may has occurred for longer than a threshold duration, monitor 10 may cease posting of respiration rate values. In some embodiments, monitor 10 may have a number of criteria under which the respiration rate may not be posted (e.g., a weak respiration signal, patient speech interfering with the measurement of respiration, etc.). In some embodiments, an indication of a held breath event may be combined with these other criteria, such that if the total duration of all of the events exceeds a threshold, a respiration rate value may not be posted by monitor 10.

In some embodiments, if a respiration rate age is being used to keep track of a confidence of a calculated respiration rate (e.g., representing the average of the age of physiological data being used to calculate respiration rate), then when a held breath event is detected, monitoring system 10 may cause the respiration rate age to be increased as indication of lower confidence in the calculated respiration rate. If the respiration rate age is caused to exceed a posting thresholding, then this may cause the monitoring system 10 to stop posting a respiration rate.

In some embodiments, for relatively long held breath events, a calculated value of oxygen saturation may be used to determine whether to continue posting a respiration rate value. For example, if a held breath event is detected, and the oxygen saturation is decreasing, monitoring system 10 may cease posting respiration rate until the oxygen saturation begins to rise.

It may also be desired to provide an indication of a held breath indication, such as a visual indication, audible indication, or transmitted indication. Although it will be understood that a visual indication may be provided in any suitable manner, in some embodiments, a visual indication may be provided on display 20 as an icon, text, intermittent flashing, changes to display color, any other suitable visual indication of an indication, or any combination thereof.

Although it will be understood that an audible indication may be provided in any suitable manner, in some embodiments, an audible indication may be provided by speaker 22 as a spoken message, indication sound, any other suitable audible indication of an indication, or any combination thereof.

Although it will be understood that a transmitted indication message may be provided in any suitable manner, in some embodiments, a transmitted indication message may be provided by data output 84 to any suitable receiving device such as a central nurse station, smart phone, computing unit, medical pager, medical database, any other suitable receiving device, or any combination thereof.

The foregoing is merely illustrative of the principles of this disclosure and various modifications may be made by those skilled in the art without departing from the scope of this disclosure. The above described embodiments are presented for purposes of illustration and not of limitation. The present disclosure also can take many forms other than those explicitly described herein. Accordingly, it is emphasized that this disclosure is not limited to the explicitly disclosed methods, systems, and apparatuses, but is intended to include variations to and modifications thereof, which are within the spirit of the following claims.

McGonigle, Scott, Ochs, James

Patent Priority Assignee Title
Patent Priority Assignee Title
3532087,
3678296,
3884219,
3926177,
3976052, Apr 19 1974 Hewlett-Packard GmbH Respiration monitor
4289141, Aug 19 1976 Cormier Cardiac Systems, Inc. Method and apparatus for extracting systolic valvular events from heart sounds
4621643, Sep 02 1982 LIONHEART TECHNOLOGIES, INC Calibrated optical oximeter probe
4696307, Sep 11 1984 Device for continuously detecting the breathing rhythm, in particular with a view to preventing the sudden death of an infant due to cessation of breathing during sleep
5143078, Aug 04 1987 Colin Medical Technology Corporation Respiration rate monitor
5188108, Feb 15 1990 Koninklijke Philips Electronics N V Sensor, apparatus and method for non-invasive measurement of oxygen saturation
5273036, Apr 03 1991 E FOR M CORPORATION Apparatus and method for monitoring respiration
5279296, Jan 04 1991 Massachusetts Institute of Technology Method and apparatus for detecting cataractogenesis
5285783, Feb 15 1990 Koninklijke Philips Electronics N V Sensor, apparatus and method for non-invasive measurement of oxygen saturation
5285784, Feb 15 1990 Koninklijke Philips Electronics N V Sensor, apparatus and method for non-invasive measurement of oxygen saturation
5368026, Mar 26 1993 Nellcor Puritan Bennett Incorporated Oximeter with motion detection for alarm modification
5398682, Aug 19 1992 Method and apparatus for the diagnosis of sleep apnea utilizing a single interface with a human body part
5439483, Oct 21 1993 Pacesetter, Inc Method of quantifying cardiac fibrillation using wavelet transform
5482036, Mar 07 1991 JPMorgan Chase Bank, National Association Signal processing apparatus and method
5490505, Oct 06 1993 JPMorgan Chase Bank, National Association Signal processing apparatus
5558096, Jul 21 1995 BCI, INC Blood pulse detection method using autocorrelation
5575284, Apr 01 1994 University of South Florida Portable pulse oximeter
5584295, Sep 01 1995 Analogic Corporation System for measuring the period of a quasi-periodic signal
5588425, May 21 1993 adidas AG Method and apparatus for discriminating between valid and artifactual pulse waveforms in pulse oximetry
5590650, Nov 16 1994 Raven, Inc. Non-invasive medical monitor system
5605151, Aug 19 1992 Method for the diagnosis of sleep apnea
5632272, Mar 07 1991 JPMorgan Chase Bank, National Association Signal processing apparatus
5680871, Nov 02 1994 Whole-body plethysmograph
5682898, Apr 19 1995 Colin Medical Technology Corporation Respiration rate measuring apparatus
5685299, Oct 06 1993 JPMorgan Chase Bank, National Association Signal processing apparatus
5769785, Mar 07 1991 JPMorgan Chase Bank, National Association Signal processing apparatus and method
5778881, Dec 04 1996 Medtronic, Inc. Method and apparatus for discriminating P and R waves
5795304, Mar 26 1997 DREXEL UNIVERSITY, A PA CORP System and method for analyzing electrogastrophic signal
5797840, Sep 14 1994 Ramot University Authority for Applied Research & Industrial Development Apparatus and method for time dependent power spectrum analysis of physiological signals
5827195, May 09 1997 SPACELABS HEALTHCARE, INC Electrocardiogram noise reduction using multi-dimensional filtering
5862805, Nov 16 1995 Optelmed Ltd. Apparatus and method for measuring the variability of cardiovascular parameters
5865736, Sep 30 1997 Nellcor Puritan Bennett, Inc. Method and apparatus for nuisance alarm reductions
5891023, Aug 19 1992 Apparatus for the diagnosis of sleep apnea
5919133, Apr 26 1996 Datex-Ohmeda, Inc Conformal wrap for pulse oximeter sensor
5924980, Mar 11 1998 Siemens Aktiengesellschaft Method and apparatus for adaptively reducing the level of noise in an acquired signal
5967995, Apr 28 1998 PITTSBURGH OF, UNIVERSITY OF THE, COMMONWEALTH SYSTEM OF HIGHER EDUCATION System for prediction of life-threatening cardiac arrhythmias
6002952, Apr 14 1997 JPMorgan Chase Bank, National Association Signal processing apparatus and method
6018673, Oct 10 1996 Nellcor Puritan Bennett Incorporated Motion compatible sensor for non-invasive optical blood analysis
6035223, Nov 19 1997 Covidien LP Method and apparatus for determining the state of an oximetry sensor
6036642, Mar 07 1991 JPMorgan Chase Bank, National Association Signal processing apparatus and method
6036653, Nov 07 1996 Seiko Epson Corporation Pulsimeter
6081742, Sep 10 1996 Seiko Epson Corporation Organism state measuring device and relaxation instructing device
6094592, May 26 1998 Covidien LP Methods and apparatus for estimating a physiological parameter using transforms
6095984, Apr 17 1996 Seiko Epson Corporation Arrhythmia detecting apparatus
6117075, Sep 21 1998 Meduck Ltd. Depth of anesthesia monitor
6129675, Sep 11 1998 JPMorgan Chase Bank, National Association Device and method for measuring pulsus paradoxus
6135952, Mar 11 1998 Siemens Aktiengesellschaft Adaptive filtering of physiological signals using a modeled synthetic reference signal
6135966, May 01 1998 SARRUS BIOMEDICAL LIMITED Method and apparatus for non-invasive diagnosis of cardiovascular and related disorders
6142953, Jul 08 1999 Compumedics Sleep Pty Ltd Respiratory inductive plethysmography band transducer
6144867, Sep 18 1998 The United States of America as represented by the Secretary of the Army Self-piercing pulse oximeter sensor assembly
6171257, Sep 25 1998 ZOLL Medical Corporation Method and system for predicting the immediate success of a defibrillatory shock during cardiac arrest
6171258, Oct 08 1998 NOVASOM, INC Multi-channel self-contained apparatus and method for diagnosis of sleep disorders
6178261, Aug 05 1997 The Regents of the University of Michigan Method and system for extracting features in a pattern recognition system
6206830, Mar 07 1991 JPMorgan Chase Bank, National Association Signal processing apparatus and method
6208951, May 15 1998 HANGER SOLUTIONS, LLC Method and an apparatus for the identification and/or separation of complex composite signals into its deterministic and noisy components
6223064, Aug 19 1992 LYNN, LAWRENCE A Microprocessor system for the simplified diagnosis of sleep apnea
6229856, Apr 14 1997 JPMorgan Chase Bank, National Association Method and apparatus for demodulating signals in a pulse oximetry system
6238351, Sep 09 1998 RIC Investments, LLC Method for compensating for non-metabolic changes in respiratory or blood gas profile parameters
6263222, Mar 07 1991 JPMorgan Chase Bank, National Association Signal processing apparatus
6266547, Sep 09 1998 The United States of America as represented by the Secretary of the Army Nasopharyngeal airway with reflectance pulse oximeter sensor
6293915, Nov 20 1997 Seiko Epson Corporation Pulse wave examination apparatus, blood pressure monitor, pulse waveform monitor, and pharmacological action monitor
6306088, Oct 03 1998 INDIVIDUAL MONITORING SYSTEMS, INC Ambulatory distributed recorders system for diagnosing medical disorders
6325761, Sep 11 1998 JPMorgan Chase Bank, National Association Device and method for measuring pulsus paradoxus
6331162, Feb 01 1999 Pulse wave velocity measuring device
6334065, May 27 1999 JPMorgan Chase Bank, National Association Stereo pulse oximeter
6342039, Aug 19 1992 Lawrence A., Lynn Microprocessor system for the simplified diagnosis of sleep apnea
6350242, Sep 28 1995 DATA SCIENCES INTERNATIONAL, INC Respiration monitoring system based on sensed physiological parameters
6361501, Aug 26 1997 Seiko Epson Corporation Pulse wave diagnosing device
6393311, Oct 15 1998 Philips Electronics North America Corporation Method, apparatus and system for removing motion artifacts from measurements of bodily parameters
6398727, Dec 23 1998 Baxter International Inc Method and apparatus for providing patient care
6405076, Sep 20 1995 PROTOCOL SYSTEMS, INC Artifact rejector for repetitive physiologic-event-signal data
6408198, Dec 17 1999 Datex-Ohmeda, Inc Method and system for improving photoplethysmographic analyte measurements by de-weighting motion-contaminated data
6434408, Sep 29 2000 Datex-Ohmeda, Inc. Pulse oximetry method and system with improved motion correction
6436038, Aug 11 2000 Animal vital signs monitoring system
6463311, Dec 23 1999 JPMorgan Chase Bank, National Association Plethysmograph pulse recognition processor
6501975, Mar 07 1991 JPMorgan Chase Bank, National Association Signal processing apparatus and method
6506153, Sep 02 1998 Med-Dev Limited Method and apparatus for subject monitoring
6546267, Nov 26 1999 NIHON KOHDEN CORPORATION Biological sensor
6561986, Jan 17 2001 FUJIFILM SONOSITE, INC Method and apparatus for hemodynamic assessment including fiducial point detection
6564077, Oct 10 2001 Welch Allyn, Inc Method and apparatus for pulse oximetry
6567986, Mar 12 1998 SRI International Method and apparatus for distributing a globally accurate knowledge of time and frequency to a plurality of a high definition television studios
6577884, Jun 19 2000 General Hospital Corporation, The Detection of stroke events using diffuse optical tomagraphy
6606511, Jan 07 1999 JPMorgan Chase Bank, National Association Pulse oximetry pulse indicator
6608934, Apr 02 1997 Sonyx, Inc. Spectral encoding of information
6609016, Jul 14 1997 Medical microprocessor system and method for providing a ventilation indexed oximetry value
6654623, Jun 10 1999 Koninklijke Philips Electronics N.V. Interference suppression for measuring signals with periodic wanted signals
6684090, Jan 07 1999 JPMorgan Chase Bank, National Association Pulse oximetry data confidence indicator
6694178, Jan 12 1998 Energy-Lab Technologies GmbH Method and device for representing and monitoring functional parameters of a physiological system
6701170, Nov 02 2001 Covidien LP Blind source separation of pulse oximetry signals
6702752, Feb 22 2002 Datex-Ohmeda, Inc Monitoring respiration based on plethysmographic heart rate signal
6709402, Feb 22 2002 Datex-Ohmeda, Inc Apparatus and method for monitoring respiration with a pulse oximeter
6748252, Aug 19 1992 System and method for automatic detection and indication of airway instability
6754516, Jul 19 2001 Covidien LP Nuisance alarm reductions in a physiological monitor
6760608, Nov 15 1993 Lawrence A., Lynn Oximetry system for detecting ventilation instability
6783498, Mar 27 2002 adidas AG Method and system for extracting cardiac parameters from plethysmographic signals
6801798, Jun 20 2001 Purdue Research Foundation Body-member-illuminating pressure cuff for use in optical noninvasive measurement of blood parameters
6810277, Oct 15 1998 Philips Electronics North America Corporation Method, apparatus and system for removing motion artifacts from measurements of bodily parameters
6811538, Dec 29 2000 WATERMARK MEDICAL, INC Sleep apnea risk evaluation
6816741, Dec 30 1998 JPMorgan Chase Bank, National Association Plethysmograph pulse recognition processor
6819950, Oct 06 2000 Woolsthorpe Technologies Method for noninvasive continuous determination of physiologic characteristics
6839581, Apr 10 2000 U S DEPARTMENT OF VETERANS AFFAIRS Method for detecting Cheyne-Stokes respiration in patients with congestive heart failure
6839582, Sep 29 2000 Datex-Ohmeda, Inc. Pulse oximetry method and system with improved motion correction
6896661, Feb 22 2002 Datex-Ohmeda, Inc Monitoring physiological parameters based on variations in a photoplethysmographic baseline signal
6905470, Apr 15 2002 SAMSUNG ELECTRONICS CO , LTD Apparatus and method for detecting heartbeat using PPG
6909912, Jun 20 2002 UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC Non-invasive perfusion monitor and system, specially configured oximeter probes, methods of using same, and covers for probes
6918878, Jun 13 2003 GE Medical Systems Information Technologies, Inc. Methods and systems for monitoring respiration
6925324, May 30 2000 System and device for multi-scale analysis and representation of physiological data
6930608, May 14 2002 MOTOROLA SOLUTIONS, INC Apparel having multiple alternative sensors and corresponding method
6931269, Aug 27 2003 Datex-Ohmeda, Inc.; Datex-Ohmeda, Inc Multi-domain motion estimation and plethysmographic recognition using fuzzy neural-nets
6932774, Jun 27 2002 Denso Corporation Respiratory monitoring system
6966878, Aug 28 2003 GE Medical Systems Global Technology Company, LLC Method and apparatus for obtaining a volumetric scan of a periodically moving object
6970792, Dec 04 2002 Masimo Corporation Systems and methods for determining blood oxygen saturation values using complex number encoding
6980679, Oct 23 1998 Varian Medical Systems, Inc Method and system for monitoring breathing activity of a subject
6985763, Jan 19 2001 Tufts University; General Hospital Corporation, The Method for measuring venous oxygen saturation
6990426, Mar 16 2002 Samsung Electronics Co., Ltd. Diagnostic method and apparatus using light
7001337, Feb 22 2002 Datex-Ohmeda, Inc Monitoring physiological parameters based on variations in a photoplethysmographic signal
7020507, Jan 31 2002 SPACELABS HEALTHCARE, L L C Separating motion from cardiac signals using second order derivative of the photo-plethysmogram and fast fourier transforms
7024235, Jun 20 2002 UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC; BETA BIOMED SERVICES, INC Specially configured nasal pulse oximeter/photoplethysmography probes, and combined nasal probe/cannula, selectively with sampler for capnography, and covering sleeves for same
7025728, Jun 30 2003 NIHON KOHDEN CORPORATION Method for reducing noise, and pulse photometer using the method
7035679, Jun 21 2002 NELLCOR PURITAN BENNETT IRELAND Wavelet-based analysis of pulse oximetry signals
7037286, Oct 26 2004 TANNHAUSER GATE, LLC Wrist brace
7043293, Dec 24 2002 FUJIFILM SONOSITE, INC Method and apparatus for waveform assessment
7044918, Dec 30 1998 JPMorgan Chase Bank, National Association Plethysmograph pulse recognition processor
7052469, Nov 25 2002 Sanyo Electric Co., Ltd. Heart beat/respiration measuring device
7054453, Mar 29 2002 BRAINSCOPE SPV LLC Fast estimation of weak bio-signals using novel algorithms for generating multiple additional data frames
7054454, Mar 29 2002 BRAINSCOPE SPV LLC Fast wavelet estimation of weak bio-signals using novel algorithms for generating multiple additional data frames
7070566, Mar 13 2003 GE MEDICAL SYSTEMS INFORMATION TECHNOLOGIES, INC Artifact rejection using pulse quality values
7079880, Nov 02 2001 Covidien LP Blind source separation of pulse oximetry signals
7079888, Apr 11 2002 THE ANSAR GROUP INC Method and apparatus for monitoring the autonomic nervous system using non-stationary spectral analysis of heart rate and respiratory activity
7127278, Jun 20 2002 University of Florida Research Foundation, Incorporated Specially configured lip/cheek pulse oximeter/photoplethysmography probes, selectively with sampler for capnography, and covering sleeves for same
7147601, Sep 30 2003 Smithmarks, Inc. Signal averaging using gating signal obtained from autocorrelation of input signals
7167746, Jul 12 2004 MEDTRONIC ATS MEDICAL, INC ; MEDTRONIC ATS MEDICAL INC Anti-coagulation and demineralization system for conductive medical devices
7171251, Feb 01 2000 SPO MEDICAL EQUIPMENT LTD Physiological stress detector device and system
7171269, May 01 1999 The Court of Napier University Method of analysis of medical signals
7173525, Jul 23 2004 InnovAlarm Corporation Enhanced fire, safety, security and health monitoring and alarm response method, system and device
7177682, Apr 14 2000 Cardiac Pacemakers, Inc. Highly specific technique for discriminating atrial fibrillation from atrial flutter
7190261, Jan 24 2002 JPMorgan Chase Bank, National Association Arrhythmia alarm processor
7203267, Jun 30 2004 General Electric Company System and method for boundary estimation using CT metrology
7215986, Oct 07 1994 JPMorgan Chase Bank, National Association Signal processing apparatus
7215991, Sep 04 1993 Body Science LLC Wireless medical diagnosis and monitoring equipment
7218966, Apr 11 2003 Cardiac Pacemakers, Inc Multi-parameter arrhythmia discrimination
7225013, May 15 2003 WIDEMED TECHNOLOGIES LTD Adaptive prediction of changes of physiological/pathological states using processing of biomedical signals
7246618, Jun 20 2002 HABASHI, NADER M Ventilation method and control of a ventilator based on same
7254425, Jan 23 2004 Abbott Diabetes Care Inc Method for detecting artifacts in data
7254500, Mar 31 2003 The Salk Institute for Biological Studies Monitoring and representing complex signals
7283870, Jul 21 2005 The General Electric Company Apparatus and method for obtaining cardiac data
7289835, Feb 18 2000 CERCACOR LABORATORIES, INC Multivariate analysis of green to ultraviolet spectra of cell and tissue samples
7336982, Jul 07 2003 SILICON MITUS, INC Photoplethysmography (PPG) device and the method thereof
7343187, Nov 02 2001 Covidien LP Blind source separation of pulse oximetry signals
7344497, Mar 26 2003 Charlotte-Mecklenburg Hospital Non-invasive device and method for measuring the cardiac output of a patient
7355512, Jan 24 2002 JPMorgan Chase Bank, National Association Parallel alarm processor
7367339, Oct 03 2002 Scott Laboratories, Inc. Neural networks in sedation and analgesia systems
7367949, Jul 07 2003 Instrumentarium Corp Method and apparatus based on combination of physiological parameters for assessment of analgesia during anesthesia or sedation
7381185, May 10 2004 MedDorna, LLC Method and apparatus for detecting physiologic signals
7398115, Aug 19 1992 Pulse oximetry relational alarm system for early recognition of instability and catastrophic occurrences
7403806, Jun 28 2005 General Electric Company System for prefiltering a plethysmographic signal
7407486, Oct 14 2002 GE Healthcare Finland Oy Method and an apparatus for pulse plethysmograph based detection of nociception during anesthesia or sedation
7415297, Mar 08 2004 JPMorgan Chase Bank, National Association Physiological parameter system
7421296, Jan 26 2004 Pacesetter, Inc. Termination of respiratory oscillations characteristic of Cheyne-Stokes respiration
7438683, Mar 04 2004 JPMorgan Chase Bank, National Association Application identification sensor
7440787, Dec 04 2002 Masimo Corporation Systems and methods for determining blood oxygen saturation values using complex number encoding
7470235, Mar 30 2005 Kabushiki Kaisha Toshiba Pulse wave detecting device and method therefor
7485095, May 30 2000 Measurement and analysis of trends in physiological and/or health data
7496393, Oct 07 1994 JPMorgan Chase Bank, National Association Signal processing apparatus
7499835, Jun 05 2000 JPMorgan Chase Bank, National Association Variable indication estimator
7515949, Jun 29 2005 General Electric Company Wavelet transform of a plethysmographic signal
7519488, May 28 2004 Lawrence Livermore National Security, LLC Signal processing method and system for noise removal and signal extraction
7523011, Sep 27 2005 Meidensha Corporation; Toyota Jidosha Kabushiki Kaisha Method for analyzing signal waveform and analyzing vehicle dynamic characteristic
7561912, Sep 19 2005 Cardiac Pacemakers, Inc Use of periodicity in medical data analysis
7610324, Jul 08 2004 System for detection and estimation of periodic patterns in a noisy signal
7690378, Jul 21 2004 Pacesetter, Inc. Methods, systems and devices for monitoring respiratory disorders
7792571, Jun 27 2003 Cardiac Pacemakers, Inc Tachyarrhythmia detection and discrimination based on curvature parameters
7801591, May 30 2000 Digital healthcare information management
7869980, Nov 03 2005 INTERNATIONAL BUISNESS MACHINES CORPORATION Using statistics to locate signals in noise
7894868, Jun 03 1998 JPMorgan Chase Bank, National Association Physiological monitor
7899507, Jun 03 1998 JPMorgan Chase Bank, National Association Physiological monitor
7975472, Sep 11 2006 EBERSPAECHER EXHAUST TECHNOLOGY GMBH & CO KG Exhaust gas system for an internal combustion engine
7976472, Sep 07 2004 JPMorgan Chase Bank, National Association Noninvasive hypovolemia monitor
7988637, Dec 30 1998 JPMorgan Chase Bank, National Association Plethysmograph pulse recognition processor
8019400, Oct 07 1994 JPMorgan Chase Bank, National Association Signal processing apparatus
8046040, Jan 07 1999 JPMorgan Chase Bank, National Association Pulse oximetry data confidence indicator
8130105, Mar 01 2005 CERCACOR LABORATORIES, INC Noninvasive multi-parameter patient monitor
8140143, Apr 16 2009 Massachusetts Institute of Technology Washable wearable biosensor
8203438, Jul 29 2008 JPMorgan Chase Bank, National Association Alarm suspend system
8275553, Feb 19 2008 Covidien LP System and method for evaluating physiological parameter data
8364223, Jun 03 1998 JPMorgan Chase Bank, National Association Physiological monitor
8364225, May 20 2009 NELLCOR PURITAN BENNETT IRELAND Estimating transform values using signal estimates
8880576, Sep 23 2011 NELLCOR PURITAN BENNETT IRELAND Systems and methods for determining respiration information from a photoplethysmograph
20020117173,
20030028221,
20030033032,
20030036685,
20030158466,
20030163054,
20030163057,
20030212336,
20030225337,
20040015091,
20040260186,
20050004479,
20050022606,
20050027205,
20050043616,
20050043763,
20050049470,
20050059869,
20050070774,
20050109340,
20050115561,
20050209517,
20050215915,
20050222502,
20050222503,
20050240091,
20050251056,
20060074333,
20060122476,
20060155206,
20060192667,
20060209631,
20060211930,
20060217603,
20060217614,
20060229519,
20060241506,
20060247506,
20060258921,
20060265022,
20060282001,
20060293574,
20070004977,
20070010723,
20070021673,
20070032639,
20070073120,
20070073124,
20070123756,
20070129636,
20070129647,
20070142715,
20070142719,
20070149883,
20070149890,
20070167694,
20070167851,
20070179369,
20070213619,
20070213621,
20070225581,
20070239057,
20070255146,
20070282212,
20070293896,
20080045832,
20080060138,
20080066753,
20080076992,
20080077022,
20080081325,
20080081961,
20080082018,
20080091092,
20080167540,
20080167541,
20080171946,
20080190430,
20080200775,
20080202525,
20080214903,
20080243021,
20080316488,
20090105601,
20090247837,
20090326349,
20090326386,
20090326395,
20090326402,
20090326831,
20100016680,
20100113904,
20100113908,
20100113909,
20100286495,
20100331715,
20110004081,
20110021892,
20110028802,
20110066007,
20110066062,
20110071406,
20110077474,
20110275910,
20120179061,
20120253140,
20120296219,
20130006075,
20130079606,
20130245482,
20130267791,
20130289413,
EP72601,
EP1344488,
EP1507474,
JP9084776,
WO21438,
WO1025802,
WO1062152,
WO1076471,
WO1082099,
WO3000125,
WO3055395,
WO3084396,
WO4075746,
WO4105601,
WO5064314,
WO5096170,
WO6085120,
WO8043864,
WO8134813,
WO10001248,
WO10030238,
WO92015955,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Oct 22 2013MCGONIGLE, SCOTTCovidien LPASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0340400668 pdf
Oct 24 2013OCHS, JAMESCovidien LPASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0340400668 pdf
Oct 27 2014Covidien LP(assignment on the face of the patent)
Date Maintenance Fee Events
Dec 16 2021M1551: Payment of Maintenance Fee, 4th Year, Large Entity.


Date Maintenance Schedule
Jul 17 20214 years fee payment window open
Jan 17 20226 months grace period start (w surcharge)
Jul 17 2022patent expiry (for year 4)
Jul 17 20242 years to revive unintentionally abandoned end. (for year 4)
Jul 17 20258 years fee payment window open
Jan 17 20266 months grace period start (w surcharge)
Jul 17 2026patent expiry (for year 8)
Jul 17 20282 years to revive unintentionally abandoned end. (for year 8)
Jul 17 202912 years fee payment window open
Jan 17 20306 months grace period start (w surcharge)
Jul 17 2030patent expiry (for year 12)
Jul 17 20322 years to revive unintentionally abandoned end. (for year 12)