A packaged integrated circuit and method of forming the same. The package integrated circuit includes an integrated circuit formed on a semiconductor die affixed to a surface of a multi-layer substrate, and a switch-mode regulator formed on the semiconductor die (or another semiconductor die) affixed to the surface of the multi-layer substrate. The integrated circuit and the switch-mode regulator are integrated within a package to form the packaged integrated circuit.

Patent
   10103627
Priority
Feb 26 2015
Filed
Feb 26 2015
Issued
Oct 16 2018
Expiry
May 26 2035
Extension
89 days
Assg.orig
Entity
Large
0
252
currently ok
1. A packaged integrated circuit, comprising:
a multi-layer substrate;
an integrated circuit formed on a first semiconductor die affixed to a surface of said multi-layer substrate; and
a switch-mode regulator formed on a second semiconductor die affixed to said surface of said multi-layer substrate, wherein said switch-mode regulator comprises an inductor, and wherein said inductor is oriented such that a local magnetic field line of a magnetic field created by said inductor is substantially parallel to a portion of circuit traces of said multi-layer substrate routed within an electromagnetic interfering distance of said inductor, wherein said portion of said circuit traces is configured to substantially follow an orientation of said local magnetic field line within said electromagnetic interfering distance, and wherein an output of said switch-mode regulator is electrically coupled by said circuit traces to circuit elements of said integrated circuit.
2. The packaged integrated circuit as recited in claim 1, wherein said circuit elements comprise one or more of logic circuits, a memory, an analog-to-digital converter, a phase-locked loop, or any combination thereof.
3. The packaged integrated circuit as recited in claim 1, wherein said multi-layer substrate comprises said circuit traces formed on conductive substrate layers separated by insulating layers and electrically coupled by vias formed between said conductive substrate layers, and a ball-grid array formed on an opposing surface to said surface.
4. The packaged integrated circuit as recited in claim 1, wherein said integrated circuit comprises a digital integrated circuit.
5. The packaged integrated circuit as recited in claim 1, wherein said output of said switch-mode regulator is coupled by said circuit traces to an input of said integrated circuit.
6. The packaged integrated circuit as recited in claim 1, wherein said first semiconductor die and said second semiconductor die are electrically coupled to said circuit traces on said surface of said multi-layer substrate by wire bonds or by solder bumps in a flip-chip arrangement.
7. The packaged integrated circuit as recited in claim 1, wherein said switch-mode regulator comprises a controller formed on said first semiconductor die, said second semiconductor die, or both.
8. The packaged integrated circuit as recited in claim 1, wherein said switch-mode regulator comprises a capacitor, and wherein said capacitor and said inductor are each positioned on and bonded to said surface of said multi-layer substrate and electrically coupled to said second semiconductor die.
9. The packaged integrated circuit as recited in claim 8, wherein said inductor is positioned at a periphery of said multi-layer substrate.
10. The packaged integrated circuit as recited in claim 1, wherein said electromagnetic interfering distance is one millimeter for a multi-layer type chip inductor formed on said multi-layer substrate.
11. The packaged integrated circuit as recited in claim 1, wherein said inductor is formed with a magnetic core having a core gap with substantially lower magnetic permeability than said magnetic core and said electromagnetic interfering distance is five times a length of said core gap.
12. The packaged integrated circuit as recited in claim 1, wherein said multi-layer substrate is formed with a ground plane under and insulated from said circuit traces.
13. The packaged integrated circuit as recited in claim 1, wherein said portion of said circuit traces is routed such that a normal is aligned substantially perpendicular to said orientation of said local magnetic field line of said magnetic field produced by said inductor.
14. The packaged integrated circuit as recited in claim 1, wherein said multi-layer substrate comprises conductive layers separated by insulating layers, one conductive layer of said conductive layers comprises a ground plane, and solder pads for a ball-grid array formed on an opposing surface to said surface.
15. The packaged integrated circuit as recited in claim 1, comprising another switch-mode regulator formed on said second semiconductor die or a third semiconductor die affixed to said surface of said multi-layer substrate.
16. The packaged integrated circuit as recited in claim 1, wherein said integrated circuit comprises a field programmable gate array.
17. The packaged integrated circuit as recited in claim 1, wherein said integrated circuit and said switch-mode regulator are encapsulated in epoxy to form said packaged integrated circuit.
18. The packaged integrated circuit as recited in claim 1, comprising a cover positioned over and thermally coupled to said first semiconductor die, said second semiconductor die and said multi-layer substrate.
19. The packaged integrated circuit as recited in claim 18, wherein said cover includes an elevated portion over said first semiconductor die and said second semiconductor die.
20. The packaged integrated circuit as recited in claim 1, wherein said electromagnetic interfering distance comprises a distance at which time-varying voltages induced by said inductor are capable of adversely affecting operation of said packaged integrated circuit due to physical properties of said inductor with respect to the packaged integrated circuit.

The present invention is directed, in general, to electronic devices and, in particular, to a packaged integrated circuit including a switch-mode regulator, and method of forming the same.

Modern deep sub-micron digital integrated circuits (“ICs”) at 50 nanometers (“nm”) and smaller and systems on chip (“SOC”) exhibit very high transistor density and a need for tight voltage regulation of low voltages at semiconductor die pads internal to the integrated circuit, rather than at physical circuit nodes external to the integrated circuit package. The deep sub-micron integrated circuits, such as digital integrated circuits, and systems on chips that operate at input or bias voltages such as 1.2 volts or less can exhibit high sensitivity to interfering voltages induced into the integrated circuit or systems on chips. Hence, it is advantageous to provide point-of-load power conversion and regulation at the semiconductor die level. This is presently achieved in the integrated circuits by incorporating linear voltage regulators with low drop-out (“LDO”) voltages within an integrated circuit package. A drawback of using such linear voltage regulators is higher than desired chip power dissipation due to the dissipative voltage drop thereacross resulting in low power conversion efficiencies, typically in the 20-50 percent range.

Alternatively, switch-mode regulators provide the same voltage conversion capability at much higher efficiencies, typically in the 80-95 percent range, thereby reducing power dissipation by a factor of two or three. To date, however, the switch-mode regulators have not been incorporated into high density integrated circuits due to a mismatch in technologies. This is particularly true with the generation of high-frequency electromagnetic interference, and in silicon fabrication, packaging, assembly, and test, which are all challenging areas, principally for fabrication of digital integrated circuits such as field programmable gate arrays (“FPGAs”) constructed with sub-micron structures of dimensions 50 nanometers and less.

What is needed in the art is a technique to integrate a switch-mode regulator with an integrated circuit such as a sub-50 nanometers digital integrated circuit so that it can provide localized, point-of-load regulation at the semiconductor level while maintaining compatibility with silicon assembly and test technologies in a manner that does not introduce intolerable levels of interfering voltages in the integrated circuit package. Due to proximity to the load, silicon noise considerations are a concern, which can be even more challenging than board-level voltage regulation. Techniques to remove, reduce, or otherwise eliminate noise at the semiconductor die level are important, particularly for system on chips that employ sensitive, high speed circuits. A packaged integrated circuit constructed with a switch-mode regulator that does not introduce intolerable levels of circuit noise in nearby circuit elements of the integrated circuit would address an unanswered industry need.

These and other problems are generally solved or circumvented, and technical advantages are generally achieved, by advantageous embodiments of the present invention, which include a packaged integrated circuit including a switch-mode regulator, and method of forming the same. In one embodiment, the packaged integrated circuit includes an integrated circuit formed on a semiconductor die affixed to a surface of a multi-layer substrate, and a switch-mode regulator formed on the semiconductor die (or another semiconductor die) affixed to the surface of the multi-layer substrate. The integrated circuit and the switch-mode regulator are integrated within a package to form the packaged integrated circuit.

The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter, which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures or processes for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.

For a more complete understanding of the present invention, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:

FIG. 1 illustrates a schematic diagram of an embodiment of a power converter including power conversion circuitry employable as a switch-mode regulator;

FIG. 2 illustrates a plan view of an embodiment of a packaged integrated circuit;

FIG. 3 illustrates a partial schematic diagram of an embodiment of portions of a packaged integrated circuit;

FIG. 4 illustrates a plan view of an embodiment of portions of a packaged integrated circuit;

FIGS. 5 and 6 illustrate three-dimensional views of embodiments of an inductor;

FIG. 7 illustrates a plan view of an embodiment of packaged integrated circuit;

FIGS. 8 and 9 illustrate three-dimensional views of embodiments of a packaged integrated circuit;

FIG. 10 illustrates an elevational view of an embodiment of a packaged integrated circuit;

FIG. 11 illustrates a three-dimensional view of an embodiment of a packaged integrated circuit; and

FIG. 12 illustrates a flow diagram of an embodiment of a method of forming a packaged integrated circuit.

Corresponding numerals and symbols in the different figures generally refer to corresponding parts unless otherwise indicated. The figures are drawn to clearly illustrate the relevant aspects of the preferred embodiments and are not necessarily drawn to scale

The making and using of the presently preferred embodiments are discussed in detail below. It should be appreciated, however, that the embodiments provide many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the invention, and do not limit the scope of the invention.

Embodiments will be described in a specific context, namely, a packaged integrated circuit including an integrated circuit formed on a semiconductor die affixed to a surface of a multi-layer substrate such as a multi-layer printed circuit board, and a switch-mode regulator formed on the semiconductor die (or another semiconductor die) affixed to the surface of the multi-layer substrate. The integrated circuit and the switch-mode regulator are encapsulated to form the packaged integrated circuit. While the principles of the present invention will be described in the environment of a packaged digital integrated circuit incorporated on a multi-layer substrate with a switch-mode regulator (also referred to as a power converter), any application or related semiconductor technology that may benefit therefrom is well within the broad scope of the present invention.

Referring initially to FIG. 1, illustrated is a schematic diagram of an embodiment of a power converter including power conversion circuitry employable as a switch-mode regulator. The switch-mode regulator includes a power train 110, a controller 120 and a driver 130 and provides power to a system such as a microprocessor. While in the illustrated embodiment, the power train 110 employs a buck converter topology, those skilled in the art should understand that other converter topologies such as a forward converter topology are well within the broad scope of the present invention.

The power train 110 receives an input voltage Vin from a source of electrical power (represented by a battery) at an input thereof and provides a regulated output voltage Vout to power, for instance, a microprocessor at an output thereof. In keeping with the principles of a buck converter topology, the output voltage Vout is generally less than the input voltage Vin such that a switching operation of the switch-mode regulator can regulate the output voltage Vout. An active element such as a power semiconductor switch (e.g., a main power semiconductor switch or main power switch Qmn) is enabled to conduct for a primary interval (generally co-existent with a primary duty cycle “D” of the main power switch Qmn) and couples the input voltage Vin to an output filter inductor Lout. During the primary interval, an inductor current ILout flowing through the output filter inductor Lout increases as a current flows from the input to the output of the power train 110. A portion of the inductor current ILout is filtered by an output filter capacitor Cout.

During a complementary interval (generally co-existent with a complementary duty cycle “1-D” of the main power switch Qmn), the main power switch Qmn is transitioned to a non-conducting state and another active element such as another power semiconductor switch (e.g., an auxiliary power semiconductor switch or auxiliary power switch Qaux) is enabled to conduct. The auxiliary power switch Qaux provides a path to maintain a continuity of the inductor current ILout flowing through the output filter inductor Lout. During the complementary interval, the inductor current ILout through the output filter inductor Lout decreases. In general, the duty cycle of the main and auxiliary power switches Qmn, Qaux may be adjusted to maintain a regulation of the output voltage Vout of the power converter. Those skilled in the art should understand, however, that the conduction periods for the main and auxiliary power switches Qmn, Qaux may be separated by a small time interval to avoid cross conduction therebetween and beneficially to reduce the switching losses associated with the power converter. The designations VDRAIN and VGND illustrated in FIG. 1 identify, respectively, a drain terminal of the main power switch Qmn and a ground terminal of the switch-mode regulator.

The controller 120 including control circuit elements including hardware, software and/or combinations thereof receives a desired characteristic such as a desired 1.2 volt system bias voltage Vsystem from an internal or external source associated with the microprocessor, and the output voltage Vout of the switch-mode regulator. The controller 120 is also coupled to the input voltage Vin of the switch-mode regulator and a return lead of the source of electrical power (again, represented by a battery) to provide a ground connection therefor. A decoupling capacitor Cdec is coupled to the path from the input voltage Vin to the controller 120. The decoupling capacitor Cdec is configured to absorb high frequency noise signals associated with the source of electrical power to protect the controller 120.

In accordance with the aforementioned characteristics, the controller 120 provides a signal (e.g., a pulse width modulated signal SPWM) to control a duty cycle and a frequency of the main and auxiliary power switches Qmn, Qaux of the power train 110 to regulate the output voltage Vour thereof. The controller 120 may also provide a complement of the signal (e.g., a complementary pulse width modulated signal S1-PWM) in accordance with the aforementioned characteristics. Any controller adapted to control at least one power semiconductor switch of the power converter is well within the broad scope of the present invention. As an example, a controller employing digital circuitry is disclosed in U.S. Pat. No. 7,038,438, entitled “Controller for a Power Converter and a Method of Controlling a Switch Thereof,” to Dwarakanath, et al. and U.S. Pat. No. 7,019,505, entitled “Digital Controller for a Power Converter Employing Selectable Phases of a Clock Signal,” to Dwarakanath, et al., which are incorporated herein by reference.

The power converter also includes the driver 130 configured to provide drive signals SDRV1, SDRV2 to the main and auxiliary power switches Qmn, Qaux, respectively, based on the pulse width modulated signal and the complementary pulse width modulated signal SPWM, S1-PWM provided by the controller 120. There are a number of viable alternatives to implement a driver 130 that include techniques to provide sufficient signal delays to prevent crosscurrents when controlling multiple power semiconductor switches in the power converter. The driver 130 typically includes active elements such as switching circuitry incorporating a plurality of driver switches that cooperate to provide the drive signals SDRV1, SDRV2 to the main and auxiliary power semiconductor switches Qmn, Qaux. Of course, any driver 130 capable of providing the drive signals SDRV1, SDRV2 to control a power semiconductor switch is well within the broad scope of the present invention. As an example, a driver is disclosed in U.S. Pat. No. 7,330,017, entitled “Driver for a Power Converter and Method of Driving a Switch Thereof,” to Dwarakanath, et al., which is incorporated herein by reference. Also, an embodiment of a semiconductor device that may embody portions of the power conversion circuitry is disclosed in U.S. Pat. No. 7,230,302, entitled “Laterally Diffused Metal Oxide Semiconductor Device and Method of Forming the Same,” to Lotfi, et al., which is incorporated herein by reference, and an embodiment of an integrated circuit embodying power conversion circuitry, or portions thereof, is disclosed in U.S. Pat. No. 7,015,544, entitled “Integrated Circuit Employable with a Power Converter,” to Lotfi, et al., and U.S. patent application Ser. No. 14/091,739, entitled “Semiconductor Device including Alternating Source and Drain Regions, and Respective Source and Drain Metallic Strips,” to Lotfi, et al., which are incorporated herein by reference.

As introduced herein, an integrated circuit such as a field programmable gate array (“FPGA”) is formed on a semiconductor die affixed to a surface of a multi-layer substrate such as a multi-layer printed circuit board with a switch-mode regulator formed on the semiconductor die (or another semiconductor die) affixed to the surface of the multi-layer substrate. The integrated circuit and the switch-mode regulator are integrated within a package to form a packaged integrated circuit. The integrated circuit includes circuit elements, ones of which may form at least a portion of the controller and/or driver for the switch-mode regulator. This structure enables higher thermal and efficiency performance characteristics of the integrated circuit compared to one or more linear regulators formed on the same die or within the same package as the integrated circuit. The higher efficiency (e.g., 95 percent) for the switch-mode regulator also reduces waste heat dissipation. An integrated solution is provided with fewer thermal-design challenges and a reduction of the bill-of-material costs at the circuit-board level. In addition, complex power-up sequencing issues for the integrated circuit that otherwise need to be addressed by a circuit-board designer can be eliminated. The result is a scalable integration solution that employs a supply voltage from a switch-mode regulator for operation and can be configured to conform to load requirements of the integrated circuit. A high-efficiency solution employing new techniques to manage interfering voltages in the integrated circuit is beneficial for the packaged integrated circuit design.

In an embodiment, the substrate power plane in the multi-layer substrate is leveraged to route power from a regulated output of the switch-mode regulator to an input of and ultimately circuit elements of the integrated circuit. The use of the power plane reduces the effect of using external line traces that may produce resistive voltage drops and inductive voltage spikes that may cause a bias voltage at a node of the integrated circuit to fall outside a specification value. A larger number of input/output (“I/O”) pads of the digital logic can be bonded out due to a reduction in the number of bond pads to supply power to the more-efficiently designed packaged integrated circuit.

Because a switch-mode regulator is employed in lieu of a linear regulator, an input current to the packaged integrated circuit can be lower than its counterpart with the linear dissipative design roughly by a factor of the ratio of the output voltage of the switch-mode regulator to its input voltage (e.g., by a ratio of (1.2 volts)/(3.3 volts)=36 percent). It may be possible to use just one solder ball for a 3.3 volt input rail to the packaged integrated circuit.

An integrated switch-mode regulator formed with an inductor positioned on the multi-layer substrate presents a number of unique design considerations. In an embodiment, the inductor employed with the switch-mode regulator is placed at the periphery of the packaged integrated circuit to reduce the generation of interfering voltages into the circuit elements of the integrated circuit. The inductor is preferably positioned at least one millimeter (“mm”) away from the input/output traces or paths of the integrated circuit to achieve reduced magnetic field impact.

Locating an input node of the switch-mode regulator within the packaged integrated circuit introduces a chopped dc current produced by the switch-mode regulator that can corrupt return signals from circuit elements of the integrated circuit that flow in a ground plane. Mitigation of this issue is preferably taken care inside the package by increasing an alternating current (“ac”) ground plane impedance. A high-frequency output filter capacitor is positioned and electrically coupled on the multi-layer substrate between an output of the switch-mode regulator and the circuit elements of the integrated circuit to filter fast-edge current components within the packaged integrated circuit. The switch-mode regulator has an input capacitor connected to a ground connection and the output capacitor connected to a separate ground connection. These ground connections are connected at a point near the switch-mode regulator. This is advantageous to increase the ac impedance at this ground connection in the ground plane.

Magnetic fields produced by the inductor can interfere with sensitive, nearby high-speed circuit traces, for instance, low-voltage differential signal input/output traces or for double data rate (“DDR”) memory. This may result in increased noise on lines, particularly on surface circuit traces of the multi-layer substrate close to the inductor magnetic-field source. To mitigate these effects, the inductor is placed at a periphery of the packaged integrated circuit to reduce time-varying magnetic-field impacts on sensitive circuit elements such as analog and logic circuits, for example, in a field programmable gate array. The inductor may be positioned outside a practical electromagnetic interfering distance (e.g., one millimeter for a multi-layer type chip inductor) from the circuit traces to the sensitive circuit elements to reduce the interference resulting from a time-varying magnetic field. An electromagnetic interfering distance includes a distance that time-varying voltages induced by the inductor in sensitive circuit elements of an integrated circuit adversely affect an operation thereof.

The sensitive circuit elements of an integrated circuit may be coupled by circuit traces (e.g., input/output traces) on a surface of the multi-layer substrate that are either outside the electromagnetic interfering distance of the inductor or are routed substantially parallel to local magnetic field lines produced by the inductor. Attenuation of interfering voltages greater than, for instance, 40 decibels/millimeter can thereby be achieved. For gapped inductors, a preferred keep-out zone is five times an internal magnetic gap length of the gapped inductor (e.g., 0.5 millimeters) for similar attenuation. With respect to orientation of the magnetic field of the inductor, reduced interference in nearby circuit paths or traces is achieved by orienting the local magnetic field lines of the inductor substantially parallel to nearby sensitive circuit traces coupled to the integrated circuit.

In an embodiment, the circuit traces coupled to the integrated circuit that are within an electromagnetic interfering distance of an inductor are routed substantially parallel to the local magnetic fields lines created by the inductor to reduce voltage-induction effects caused by time-varying magnetic fields produced by the inductor. The circuit traces coupled to the integrated circuit that form a circuit loop near the inductor are formed so that normals to their enclosed areas are aligned substantially perpendicular to the local magnetic field lines created by the inductor.

Turning now to FIG. 2, illustrated is a plan view of an embodiment of a packaged integrated circuit. The packaged integrated circuit includes an integrated circuit 210 formed on a first semiconductor die 220 affixed to a surface 230 of a multi-layer substrate 240. The packaged integrated circuit also includes a switch-mode regulator 250 formed on a second semiconductor die 260 affixed to the surface 230 of the multi-layer substrate 240. The integrated circuit 210 and the switch-mode regulator 250 are then integrated within a package to form the packaged integrated circuit. The packaged integrated circuit receives an input voltage Vin (e.g., 3.3 volts (“V”) direct current (“dc”)) coupled to an input 252 of the switch-mode regulator 250. The switch-mode regulator 250 produces a regulated output voltage Vout such as 1.2 V dc at an output 254 thereof that is coupled by circuit traces or paths 270 to an input 212 of the integrated circuit 210. An input capacitor Cin (e.g., 22 microFarads (“μF”)) is coupled between the input 252 to the switch-mode regulator 250 and a power ground PGND to reduce a ripple associated with the input voltage Vin. An output capacitor Cout (e.g., 47 μF) is coupled between the output 254 of the switch-mode regulator 250 and a power ground PGND to reduce a ripple associated with the output voltage Vout. A separate analog ground AGND for the switch-mode regulator 210 is also illustrated in FIG. 2.

Turning now to FIG. 3, illustrated is a partial schematic diagram of an embodiment of portions of a packaged integrated circuit. A first semiconductor die 310 is formed with first, second, third and fourth circuit elements 320, 321, 322, 323 of an integrated circuit powered by a switch-mode regulator on a second semiconductor die 350. The first and second circuit elements 320, 321 may form at least a portion of a field programmable gate array 324 and the third and fourth circuit elements 320, 321 may form at least a portion of a processor 325. The integrated circuit may also include memory 326 formed from circuit elements.

The processor 325 may execute, among other things, machine-readable instructions or programs to implement the methods and/or processes described herein such as a controller for the switch-mode regulator. The programs stored in the memory 326 may include program instructions or computer program code that, when executed by the processor 325, enable the controller to perform tasks as described herein. The processor 325 may be, include, or be implemented by one or a plurality of processors of various types suitable to the local application environment, and may include or operate with one or more of general-purpose computers, special purpose computers, microprocessors, digital signal processors, field programmable gate arrays, application-specific integrated circuits, and processors based on a multi-core processor architecture, as non-limiting examples. Of course, other processors from other families are also appropriate. The memory 326 may be, include, or be implemented by random access memory, static random access memory, synchronous dynamic random access memory, dynamic random access memory, RAMBUS dynamic random access memory and/or other types of random access memory devices. The memory 326 may also be, include, or be implemented by read only memory, flash memory and/or other types of memory devices.

A regulated output voltage Vout such as 1.2 V dc at an output 354 of the switch-mode regulator 350 is supplied to the circuit elements 320, 321, 322, 323 over an output voltage bus 330 embodied in circuit traces in a multi-layer substrate 380. An input voltage Vin such as 3.3 V dc at the input 305 of the packaged integrated circuit also provides an input voltage Vin at an input 352 to the switch-mode regulator. As opposed to employing a linear voltage regulator with low drop-out voltages for power conversion and regulation, the switch-mode regulator presents a relatively minor source of heat for the packaged integrated circuit. The first and second semiconductor die 310, 350 are affixed to a surface 370 of the multi-layer substrate 380. As described herein, the integrated circuit and switch-mode regulator may also be formed on a semiconductor die.

Turning now to FIG. 4, illustrated is a plan view of an embodiment of portions of a packaged integrated circuit. The packaged integrated circuit includes an inductor 410 positioned on and bonded to a surface 420 of a multi-layer substrate 430 and electrically coupled to a circuit node of a semiconductor die including a switch-mode regulator (see, e.g., FIG. 2). The inductor 410 produces an external magnetic field illustrated by local magnetic field lines 440, 450. The inductor 410 is formed with a magnetic core 460 surrounded by windings such as conductive winding 470. The inductor 410 is positioned at a periphery of the multi-layer substrate 430. Circuit traces or paths 480 coupled to an integrated circuit (see, e.g., FIG. 2) are routed substantially parallel to the local magnetic field lines 440, 450 produced by the inductor 410 and are generally relatively undisturbed by time-varying magnetic fields produced by the inductor 410. As further protection against electromagnetic disturbance, the circuit trace 480 is separated by more than an electromagnetic interfering distance 490 from the inductor 410.

The process of orienting the circuit trace 480 (or portion thereof) substantially parallel to the local magnetic field lines 440, 450 to reduce a disturbing voltage relies on Maxwell's equations that describe an induced voltage in a circuit proportional to an area of the circuit that is intersected by a time varying magnetic field. To facilitate a design, the magnitude and direction of the local magnetic field lines 440, 450 produced by the inductor 410 can be mapped in a laboratory, as is well known in the art, with a probe formed with a small conductive loop coupled to an input terminal of a voltage-sensing device such as an oscilloscope, while exciting the inductor 410 with a time-varying voltage.

Thus, to reduce voltage-induction effects caused by time-varying magnetic fields produced by the inductor, circuit traces in the packaged integrated circuit that are near the inductor are routed substantially parallel to the inductor's local magnetic field lines. Circuit loops in the integrated circuit near the inductor are formed so that their normals to their enclosed areas are substantially perpendicular to the inductor's local magnetic field lines.

Turning now to FIGS. 5 and 6, illustrated are three-dimensional views of embodiments of an inductor. The inductor of FIG. 5 includes a magnetic core 510, such as a soft ferrite core, with a magnetic permeability substantially higher than that of a vacuum. The magnetic core 510 is formed with a core gap 530. A winding or an electrically conductive winding 520 is wrapped around and insulated from the magnetic core 510. The core gap 530 forms a portion of the magnetic path of the inductor through which a substantial portion of its magnetic field flows and has substantially lower magnetic permeability than the magnetic core 510. For an inductor formed with a core gap 530, an electromagnetic interfering distance for adjacent circuit traces is generally about five times a length of the magnetic core gap 530. The magnetic core gap 530 can produce a substantial magnetic field external to the inductor.

FIG. 6 illustrates a multi-layer inductor formed with a magnetic core having magnetic layers 620, 630, 640 each having a magnetic permeability substantially higher than that of a vacuum. The magnetic permeability of the soft ferrite can be ten times or more higher than that of a vacuum. The magnetic layers 620, 630, 640 are generally separated by insulating layers to reduce conductivity of paths for currents induced therein. The magnetic layers 620, 630, 640 are surrounded by a winding or an electrically conductive winding 650 that is wrapped around and insulated from the magnetic layers 620, 630, 640. For a multi-layer inductor that may be suitable for use with a switch-mode regulator as introduced herein, an electromagnetic interfering distance is, without limitation, about one millimeter.

Turning now to FIG. 7, illustrated is a plan view of an embodiment of packaged integrated circuit. The integrated circuit on the first semiconductor die 720 is powered by a switch-mode regulator formed on a second semiconductor die 740 that is also affixed to a surface 730 of a multi-layer substrate 710. The switch-mode regulator is formed with an inductor 750 positioned at a periphery of the multi-layer substrate 710. A circuit trace 760 such as a logic input/output trace on the surface 730 of the multi-layer substrate 710 near the inductor 750 and coupled to the integrated circuit on the first semiconductor die 720 is routed substantially parallel to external magnetic field lines of the magnetic field produced by the inductor 750. The circuit trace 760 is oriented so that an associated circuit loop near the inductor 750 created by the circuit trace 760 is formed with its normal to its enclosed area being substantially perpendicular to the local magnetic field lines of the inductor 750. This reduces (e.g., minimizes) a voltage induced into the circuit trace 760 by time-varying local magnetic field lines of the inductor 750.

As described herein, it is understood that time-varying magnetic field lines distant from the inductor 750 (substantially outside an electromagnetic interfering distance) produce less disturbance in circuit loops than time-varying local magnetic field lines near the inductor 750. Vias, such as via 770, are employed to couple circuit traces on the surface 730 of the multi-layer substrate 710 to circuit traces on an opposing surface of the multi-layer substrate 710 or to a ground plane 780 that may be formed on the opposing surface of the multi-layer substrate 710 and insulated from conductive circuit traces that lie thereabove. A small portion of a ground plane 780 is illustrated in the top left corner of the multi-layer substrate 710.

Turning now to FIG. 8, illustrated is a three-dimensional view of an embodiment of a packaged integrated circuit. The packaged integrated circuit is formed on a multi-layer substrate 800 formed with conductive layers 850, 860 separated by insulating layers 855, 865. One of the conductive layers (such as conductive layer 850) may form a ground plane for the packaged integrated circuit. Conductive circuit traces such as conductive circuit trace 870 are routed on an upper surface 805 of the multi-layer substrate 800. An integrated circuit such as a field programmable gate array formed on a first semiconductor die 810 is affixed to the upper surface 805 of the multi-layer substrate 800. A switch-mode regulator formed at least in part on a second semiconductor die 820 is affixed to the upper surface 805 of the multi-layer substrate 800. An inductor 830 on the upper surface 805 of the multi-layer substrate 800 is coupled to the second semiconductor die 820. A capacitor 840 is coupled to an output of the switch-mode regulator on the second semiconductor die 820 to filter high-frequency voltage harmonics produced by the switch-mode regulator. A regulated output voltage of the switch-mode regulator is coupled to an input such as a bias voltage input of the integrated circuit residing on the first semiconductor die 810.

The conductive circuit trace 870 that may be routed within an electromagnetic interfering distance of the inductor 830 is oriented substantially parallel to local magnetic field lines of the magnetic field produced by the inductor 830. The conductive circuit trace 870 is coupled to circuit elements 875 of the integrated circuit and a portion of the conductive circuit trace 870 (within the electromagnetic interfering distance) is routed such that a normal to an area enclosed by the conductive circuit trace 870 and a ground plane (such as the conductive layer 850) of the multi-layer substrate 800 positioned under the conductive circuit trace 870 is aligned substantially perpendicular to the local magnetic field lines of the magnetic field produced by the inductor 830. Remaining portions of the conductive circuit trace 870 that lie within the electromagnetic interfering distance of the inductor 830 are routed on one or more internal conductive layers of the multi-layer substrate 800, and can be shielded by overlying conductive layers of the multi-layer substrate 800 such as the conductive layer functional as a ground plane.

Another switch-mode regulator is formed in part on a third semiconductor die 825 affixed to the upper surface 805 of the multi-layer substrate 800. A regulated output voltage of the another switch-mode regulator is also coupled to an input such as a bias voltage input of the integrated circuit residing on the first semiconductor die 810. An inductor 835 on the upper surface 805 of the multi-layer substrate 800 is coupled to the third semiconductor die 825. Another capacitor 845 is coupled to an output of the another switch-mode regulator on the third semiconductor die 825 to filter high-frequency harmonics produced by the another switch-mode regulator. Pads on a surface of the semiconductor dice (such as a pad 880 on an upper surface 885 of the first semiconductor die 810) can be coupled to circuit traces such as circuit trace 870 on the upper surface 805 of the multi-layer substrate 800 by wire bonds such as wire bond 890 or by solder bumps on a lower surface of the first semiconductor die 810. Ones of the circuit elements 875 of the integrated circuit on the first semiconductor die 810 may form at least a portion of a controller for the switch-mode regulator and/or the another switch-mode regulator. Of course, the controller(s) may also be formed on either the second or third semiconductor die 820, 825. Additionally, the another switch-mode regulator may be formed on the second semiconductor die 820 as opposed to the third semiconductor die 825. The circuit elements 875 may be hardwired and/or execute program code on a processor formed thereby to control the switch-mode regulator and/or the another switch-mode regulator or perform other tasks intended for the integrated circuit.

Thus, a circuit trace from the regulated output of the switch-mode regulator runs in the multi-layer substrate, is electrically coupled to a bonding point to the first semiconductor die, and is routed up into the first semiconductor die through a wire bond (or, alternatively, a solder bump). No intervening linear regulator is necessary to regulate an input voltage to circuit elements of the integrated circuit on the first semiconductor die. In conventional art wherein the first semiconductor die and the switch-mode regulator that feeds it are separated, a linear regulator is necessary to be inserted in the path that includes the wire bond (or solder bump) and a power input node of the circuit elements of the integrated circuit.

Turning now to FIG. 9, illustrated is a three-dimensional view of an embodiment of a packaged integrated circuit. The packaged integrated circuit is encapsulated with an encapsulant 910 such as epoxy. An integrated circuit and switch-mode regulator of the packaged integrated circuit are not visible due to presence of the encapsulant 910. The packaged integrated circuit is formed with external input/output pads such as external input/output pad 920 on a lower surface 925 thereof. Solder balls such as solder ball 930 are formed on exposed surfaces of the external input/output pads 920 to form a “ball-grid array” to enable the packaged integrated circuit to be reflow-attached to an end product circuit board after being positioned thereon by a pick-and-place assembly machine. After being suitably heated in a reflow oven, the solder balls 930 melt and the packaged integrated circuit becomes reliably electrically coupled to circuit traces on the end product circuit board. Because the packaged integrated circuit is constructed with a power-efficient switch-mode regulator, thermal design issues for the designer of the end product circuit board are substantially ameliorated.

Turning now to FIG. 10, illustrated is an elevational view of an embodiment of a packaged integrated circuit formed with cover such as an overlying lid 1030. The overlying lid 1030 may be formed with an elevated portion 1080 in a central region thereof as indicated in FIG. 10 to accommodate integrated circuits and switch-mode regulators (at least one semiconductor die) under it. The packaged integrated circuit includes a substrate 1060, such as, without limitation, a printed-wiring board substrate formed with FR-4 or another insulating material. In an embodiment, the substrate 1060 is a multi-layer substrate. The packaged integrated circuit includes a first semiconductor die 1010 with an integrated circuit including circuit elements formed thereon. The packaged integrated circuit includes a second semiconductor die 1015 with a switch-mode regulator formed thereon. The first and second semiconductor die 1010, 1015 are flip-chip solder attached to lands and vias on an upper surface of the substrate 1060. The first and second semiconductor die 1010, 1015 may also be attached to lands and vias on the upper surface of the substrate 1060 by wire bonds.

The overlying lid 1030 can be formed with copper, aluminum, or steel and can be protected with a thin overlying metallic layer (not shown) to facilitate soldering to lands on the upper surface of the substrate 1060. In addition, a thin adhesive layer 1020 is applied to an upper surface of the first and second semiconductor die 1010, 1015 that contacts the overlying lid 1030 to provide a thermal path to transfer heat from the integrated circuit and/or switch-mode regulator to the overlying lid 1030. Vias, such as via 1040, provide a path to electrically and thermally couple traces on the upper surface of the substrate 1060 to traces and pads on a lower surface thereof. The substrate 1060 accommodates surface-mount components 1070 on the upper surface thereof such as, without limitation, a surface-mount resistor, diode, inductor or capacitor. The substrate 1060 is formed with pads 1050, 1055 on an upper surface thereof that provide in conjunction with an underlying via, such as via 1056, a thermal path from the overlying lid 1030 to a printed-wiring board (not shown) that may be electrically coupled to pads on the lower surface thereof. The substrate 1060 may be coupled to the printed-wiring board by a reflow soldering process that can employ, for example solder balls such as solder ball 1090.

Thus, the overlying lid 1030 is positioned over and thermally coupled to the first semiconductor die 1010, the second semiconductor die 1015 and the substrate 1060. While two semiconductor dice are illustrated in FIG. 10, it should be understood that the packaged integrated circuit may include any number of semiconductor dice including a single semiconductor die.

Turning now to FIG. 11, illustrated is a three-dimensional view of an embodiment of a packaged integrated circuit. In the example illustrated in FIG. 11, an integrated circuit such as a field programmable gate array and a switch-mode regulator are formed on a semiconductor die 1110. A controller for switch-mode regulator may incorporate circuit elements 1175 from the integrated circuit and/or employ distinct circuit elements from the integrated circuit, or a combination thereof. A regulated output voltage of the switch-mode regulator is coupled to an input such as a bias voltage input of the integrated circuit residing on the semiconductor die 810.

The packaged integrated circuit is formed on a multi-layer substrate 1100 formed with conductive layers 1150, 1160 separated by insulating layers 1155, 1165. One of the conductive layers (such as conductive layer 1150) may form a ground plane for the packaged integrated circuit. Conductive circuit traces such as conductive circuit trace 1170 are routed on an upper surface 1105 of the multi-layer substrate 1100. The semiconductor die 1110 is affixed to the upper surface 1105 of the multi-layer substrate 1100. An inductor 1130 on the upper surface 1105 of the multi-layer substrate 1100 is coupled to the semiconductor die 1110. A capacitor 1140 is coupled to an output of the switch-mode regulator on the semiconductor die 1110 to filter high-frequency voltage harmonics produced by the switch-mode regulator.

The conductive circuit trace 1170 that may be routed within an electromagnetic interfering distance of the inductor 1130 is oriented substantially parallel to local magnetic field lines of the magnetic field produced by the inductor 1130. The conductive circuit trace 1170 is coupled to circuit elements 1175 of the integrated circuit and a portion of the conductive circuit trace 1170 (within the electromagnetic interfering distance) is routed such that a normal to an area enclosed by the conductive circuit trace 1170 and a ground plane (such as the conductive layer 1150) of the multi-layer substrate 1100 positioned under the conductive circuit trace 1170 is aligned substantially perpendicular to the local magnetic field lines of the magnetic field produced by the inductor 1130. Remaining portions of the conductive circuit trace 1170 that lie within the electromagnetic interfering distance of the inductor 1130 are routed on one or more internal conductive layers of the multi-layer substrate 1100, and can be shielded by overlying conductive layers of the multi-layer substrate 1100 such as the conductive layer functional as a ground plane. Pads on a surface of the semiconductor die 1110 (such as a pad 1180 on an upper surface 1185 of the semiconductor die 1110) can be coupled to circuit traces such as circuit trace 1170 on the upper surface 1105 of the multi-layer substrate 1100 by wire bonds such as wire bond 1190 or by solder bumps on a lower surface of the semiconductor die 1110.

Thus, the main and auxiliary power switches Qmn, Qaux of the switch-mode regulator illustrated and described hereinabove with reference to FIG. 1 may be formed on the same semiconductor die as the integrated circuit. As described in U.S. Pat. No. 7,330,017, entitled “Driver for a Power Converter and Method of Driving a Switch Thereof,” to Dwarakanath, et al., previously referenced and incorporated above, a gate driver for the main and auxiliary power switches Qmn, Qaux referenced to a voltage level may include switching circuitry referenced to another voltage level and subject to a control voltage limit can be constructed with low-voltage circuit elements on a common die. Such technique can be employed to drive a power switch of a switch-mode regulator with low-voltage circuit elements.

Thus, the packaged integrated circuit includes a multi-layer substrate, and an integrated circuit (e.g., a digital integrated circuit, a processor, a field programmable gate array, etc.) and a switch-mode regulator formed on a semiconductor die affixed to a surface of the multi-layer substrate. An output of the switch-mode regulator is coupled to an input of the integrated circuit and ultimately to circuit elements of the integrated circuit by, for instance, circuit traces of the multi-layer substrate. The circuit elements may form at least one of logic circuits, memory, an analog-to-digital converter, and a phase-locked loop. The multi-layer substrate may include circuit traces formed on conductive substrate layers separated by insulating layers and electrically coupled by vias formed between the conductive substrate layers, and a ball-grid array formed on an opposing surface to the surface. The semiconductor die is electrically coupled to circuit traces on the surface of the multi-layer substrate by wire bonds or by solder bumps in a flip-chip arrangement. The switch-mode regulator includes a controller formed on the semiconductor die and circuit elements of the integrated circuit may form at least a portion of the controller.

The switch-mode regulator also includes a capacitor and an inductor each positioned on and bonded to the surface of the multi-layer substrate and electrically coupled to the semiconductor die. The inductor is positioned at a periphery of the multi-layer substrate and oriented so that a local magnetic field line of a magnetic field created by the inductor is substantially parallel to a portion of a circuit trace routed within an electromagnetic interfering distance of the inductor. The electromagnetic interfering distance is about one millimeter for a multi-layer type chip inductor formed on the multi-layer substrate. The inductor may be formed with a magnetic core having a core gap with substantially lower magnetic permeability than the magnetic core and the electromagnetic interfering distance is five times a length of the core gap. The multi-layer substrate may be formed with a ground plane under and insulated from the circuit trace. The circuit trace is coupled to a circuit element of the integrated circuit and the portion of the circuit trace is routed such that a normal to an area enclosed by the circuit trace and a ground plane of the multi-layer substrate is aligned substantially perpendicular to the local magnetic field line of the magnetic field produced by the inductor.

The multi-layer substrate may include conductive layers separated by insulating layers, one conductive layer of the conductive layers includes a ground plane, and solder pads for a ball-grid array formed on an opposing surface to the surface. The packaged integrated circuit may further include another switch-mode regulator formed on the semiconductor die or another semiconductor die affixed to the surface of the multi-layer substrate. The integrated circuit and the switch-mode regulator(s) are encapsulated in epoxy to form the packaged integrated circuit. Alternatively, a cover (e.g., including an elevated portion) may be positioned over and thermally coupled to the semiconductor die and the multi-layer substrate.

Turning now to FIG. 12, illustrated is a flow diagram of an embodiment of a method of forming a packaged integrated circuit. The method begins in a start step or module 1200. At a step or module 1210, the method continues by providing a multi-layer substrate. An integrated circuit (e.g., a digital integrated circuit) formed on a first semiconductor die is affixed to a surface of the multi-layer substrate at a step or module 1220. At a step or module 1230, a switch-mode regulator (e.g., employing a buck converter topology including, for instance, a power switch and a controller) formed on a second semiconductor die is affixed to the surface of the multi-layer substrate. The first semiconductor die and the second semiconductor die may be electrically coupled to circuit traces on the surface of the multi-layer substrate by wire bonds or by solder bumps in a flip-chip arrangement. At a step or module 1240, an output of the switch-mode regulator is coupled by circuit traces of the multi-layer substrate to an input of the integrated circuit. The output of the switch-mode regulator may be coupled (e.g., directly coupled) to circuit elements (e.g., logic circuits, memory, an analog-to-digital converter, and a phase-locked loop) of the integrated circuit.

At a step or module 1250, a capacitor and an inductor of the switch-mode regulator are each positioned on and bonded to the surface of the multi-layer substrate and electrically coupled to a circuit node of the second semiconductor die. The inductor may be positioned at a periphery of the multi-layer substrate and oriented so that a local magnetic field line of a magnetic field created by the inductor is substantially parallel to a portion of a circuit trace routed within an electromagnetic interfering distance of the inductor. The circuit trace may be coupled to a circuit element of the integrated circuit and the portion of the circuit trace is routed such that a normal to an area enclosed by the circuit trace and a ground plane of the multi-layer substrate positioned under the circuit trace is aligned substantially perpendicular to the local magnetic field line of the magnetic field produced by the inductor. The electromagnetic interfering distance may be one millimeter (“mm”) for a multi-layer type chip inductor formed on the multi-layer substrate. The inductor may be formed with a magnetic core having a core gap with substantially lower magnetic permeability than the magnetic core and the electromagnetic interfering distance is five times a length of the core gap.

At a step or module 1260, another switch-mode regulator formed on the second semiconductor die or a third semiconductor die (affixed to the surface of the multi-layer substrate). The integrated circuit (e.g., a field programmable gate array) on the first semiconductor die, the switch-mode regulator on the second semiconductor die and the another switch-mode regulator on the second semiconductor die or third semiconductor die are integrated within a package (e.g., encapsulated with an epoxy or covered with a lid) to form the packaged integrated circuit at a step or module 1270. In an embodiment, the multi-layer substrate includes circuit traces formed on conductive substrate layers separated by insulating layers and electrically coupled by vias formed between the conductive substrate layers, and a ball-grid array formed on an opposing surface to the surface. One of the conductive layers may include a ground plane, and solder pads for the ball-grid array are formed on the opposing surface to the surface. The method ends at step or module 1280. While the method above incorporates multiple semiconductor dice therein, it should be understood that the integrated circuit and switch-mode regulator(s) may be formed on a semiconductor die. Also, the controller for the switch-mode regulators may be located on the first, second or third semiconductor die, or a combination thereof. In other words, circuit elements of the integrated circuit may form at least a portion of the controller for the switch-mode regulators.

Thus, a packaged integrated circuit has been described herein. In one embodiment, the packaged integrated circuit includes a multi-layer substrate and an integrated circuit formed on a first semiconductor die affixed to a surface of the multi-layer substrate. The packaged integrated circuit also includes a switch-mode regulator formed on a second semiconductor die affixed to the surface of the multi-layer substrate. The integrated circuit and the switch-mode regulator are integrated within a package to form the packaged integrated circuit. A controller for the switch-mode regulator may be located on the first or second semiconductor die, or a combination thereof. In accordance therewith, at least one circuit element of the integrated circuit may form a portion of the controller for the switch-mode regulator. In a related, but alternative embodiment, the integrated circuit and the switch-mode regulator are formed on a semiconductor die. Again, at least one circuit element of the integrated circuit may form a portion of the controller for the switch-mode regulator.

Those skilled in the art should understand that the previously described embodiments of a packaged integrated circuit and related methods of constructing the same are submitted for illustrative purposes only. In addition, other embodiments capable of integrating a switch-mode regulator or power converter with an integrated circuit are well within the broad scope of the present invention. The integrated circuit and controller (and other circuits or circuit elements) may be implemented in accordance with hardware (embodied in one or more chips), or may be implemented as software or firmware for execution by a processor. In particular, in the case of firmware or software, the integrated circuit and controller may include and/or be provided as a computer program product including a computer readable medium or storage structure (e.g., non-transitory computer readable medium) embodying computer program code (i.e., software or firmware) thereon for execution by a processor.

For a better understanding of integrated circuits, semiconductor devices and methods of manufacture therefor see “Semiconductor Device Fundamentals,” by R. F. Pierret, Addison-Wesley (1996), and “Handbook of Sputter Deposition Technology,” by K. Wasa and S. Hayakawa, Noyes Publications (1992). For a better understanding of power converters, see “Modern DC-to-DC Switchmode Power Converter Circuits,” by Rudolph P. Severns and Gordon Bloom, Van Nostrand Reinhold Company, New York, N.Y. (1985) and “Principles of Power Electronics,” by J. G. Kassakian, M. F. Schlecht, and G. C. Verghese, Addison-Wesley (1991). The aforementioned references are incorporated herein by reference in their entirety.

Also, although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions, and alterations can be made herein without departing from the spirit and scope of the invention as defined by claims on embodiments. For example, many of the processes discussed above can be implemented in different methodologies and replaced by other processes, or a combination thereof.

Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods, and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, claims on embodiments are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.

Lotfi, Ashraf W., Wong, Choong Kit, Weld, John, Lim, Teik Wah

Patent Priority Assignee Title
Patent Priority Assignee Title
4761725, Aug 01 1986 Unisys Corporation Digitally controlled A.C. to D.C. power conditioner
4918026, Mar 17 1989 Delphi Technologies Inc Process for forming vertical bipolar transistors and high voltage CMOS in a single integrated circuit chip
4922327, Dec 24 1987 University of Toronto Innovations Foundation Semiconductor LDMOS device with upper and lower passages
4947192, Mar 07 1988 SAMSUNG ELECTRONICS CO , LTD Monolithic silicon integrated circuit chip for a thermal ink jet printer
4982353, Sep 28 1989 General Electric Company Subsampling time-domain digital filter using sparsely clocked output latch
5014098, Feb 26 1990 BEWES ASSETS LIMITED LIABILITY COMPANY CMOS integrated circuit with EEPROM and method of manufacture
5029283, Mar 28 1990 TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD Low current driver for gate array
5047358, Mar 17 1989 Delphi Technologies, Inc Process for forming high and low voltage CMOS transistors on a single integrated circuit chip
5156989, Nov 08 1988 Siliconix, Incorporated; SILICONIX INCORPORATED, A DE CORP Complementary, isolated DMOS IC technology
5169794, Mar 22 1991 National Semiconductor Corporation Method of fabrication of pnp structure in a common substrate containing npn or MOS structures
5264782, Aug 10 1992 International Business Machines Corporation Dropout recovery circuit
5285369, Sep 01 1992 Power Integrations, Inc. Switched mode power supply integrated circuit with start-up self-biasing
5321319, Jun 08 1992 Advanced Micro Devices, Inc. High speed CMOS bus driver circuit that provides minimum output signal oscillation
5366916, Feb 04 1993 BEWES ASSETS LIMITED LIABILITY COMPANY Method of making a high voltage implanted channel device for VLSI and ULSI processes
5405791, Oct 04 1994 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Process for fabricating ULSI CMOS circuits using a single polysilicon gate layer and disposable spacers
5407844, Nov 23 1990 Texas Instruments Incorporated Process for simultaneously fabricating an insulated gate field-effect transistor and a bipolar transistor
5469334, Sep 09 1991 Power Integrations, Inc.; Power Integrations, Inc Plastic quad-packaged switched-mode integrated circuit with integrated transformer windings and mouldings for transformer core pieces
5485027, Nov 08 1988 Siliconix Incorporated Isolated DMOS IC technology
5504450, Dec 08 1993 AT&T Corp. High voltage components for EEPROM system
5594324, Mar 31 1995 THERMO FUNDING COMPANY LLC Stabilized power converter having quantized duty cycle
5610421, Dec 15 1993 SGS-THOMSON MICROELECTRONICS S R L Integrated circuit with EPROM cells
5644266, Nov 13 1995 National Science Council Dynamic threshold voltage scheme for low voltage CMOS inverter
5668024, Jul 17 1996 Taiwan Semiconductor Manufacturing Company CMOS device structure with reduced risk of salicide bridging and reduced resistance via use of a ultra shallow, junction extension, ion implantation process
5689213, Aug 23 1995 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Post-fabrication programmable integrated circuit ring oscillator
5710054, Aug 26 1996 GLOBALFOUNDRIES Inc Method of forming a shallow junction by diffusion from a silicon-based spacer
5757045, Jul 17 1996 TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD. CMOS device structure with reduced risk of salicide bridging and reduced resistance via use of a ultra shallow, junction extension, ion implantation
5786630, Aug 07 1996 Intel Corporation Multi-layer C4 flip-chip substrate
5833585, Jun 11 1987 MEDX 96, INC Method and apparatus for exercising muscles
5859606, Jul 25 1997 Analog Devices International Unlimited Company Interpolation circuit for digital-to-analog converter
5877611, Oct 08 1997 ABB POWER ELECTRONICS INC Simple and efficient switching regulator for fast transient loads such as microprocessors
5888861, Jun 06 1997 Integrated Device Technology, Inc. Method of manufacturing a BiCMOS integrated circuit fully integrated within a CMOS process flow
5889315, Aug 18 1994 National Semiconductor Corporation Semiconductor structure having two levels of buried regions
5899732, Apr 11 1997 GLOBALFOUNDRIES Inc Method of implanting silicon through a polysilicon gate for punchthrough control of a semiconductor device
5930642, Jun 09 1997 GLOBALFOUNDRIES Inc Transistor with buried insulative layer beneath the channel region
5982645, Aug 25 1992 Square D Company Power conversion and distribution system
6005377, Sep 17 1997 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Programmable digital controller for switch mode power conversion and power supply employing the same
6022778, Mar 09 1995 SGS-THOMSON MICROELECTRONICS S R L Process for the manufacturing of integrated circuits comprising low-voltage and high-voltage DMOS-technology power devices and non-volatile memory cells
6118351, Jun 10 1997 Bell Semiconductor, LLC Micromagnetic device for power processing applications and method of manufacture therefor
6166989, Jul 28 1998 DRAM MEMORY TECHNOLOGIES LLC Clock synchronous type semiconductor memory device that can switch word configuration
6204542, Sep 29 1997 KAWASAKI MICROELECTRONICS, INC Field effect transistor with improved driving capability
6215076, Mar 28 1996 Canon Kabushiki Kaisha Printed circuit board with noise suppression
6250127, Oct 11 1999 POLESE COMPANY, INC Heat-dissipating aluminum silicon carbide composite manufacturing method
6255714, Jun 22 1999 Bell Semiconductor, LLC Integrated circuit having a micromagnetic device including a ferromagnetic core and method of manufacture therefor
6262564, Nov 10 2000 Lucent Technologies Inc. Driver for a controllable switch in a power converter
6271063, Jun 24 1997 STMicroelectronics, Inc. Method of making an SRAM cell and structure
6285539, Jul 13 1999 Renesas Electronics Corporation Switch driver
6288424, Sep 23 1998 U.S. Philips Corporation Semiconductor device having LDMOS transistors and a screening layer
6297108, Mar 10 2000 United Microelectronics Corp. Method of forming a high voltage MOS transistor on a semiconductor wafer
6320449, Oct 22 1999 STMicroelectronics S.r.l. Driver circuit for P-channel MOS switches
6333217, May 14 1999 Godo Kaisha IP Bridge 1 Method of forming MOSFET with channel, extension and pocket implants
6365475, Mar 27 2000 United Microelectronics Corp. Method of forming a MOS transistor
6380004, Feb 02 2000 Infineon Technologies Americas Corp Process for manufacturing radhard power integrated circuit
6384447, Dec 17 1999 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Flash memory cell for high efficiency programming
6384643, Dec 16 1999 Texas Instruments Incorporated Temperature and process compensated LDMOS drain-source voltage
6388468, Aug 30 2000 Yazaki North America Circuit and method for operating a MOSFET control circuit with a system operating voltage greater than a maximum supply voltage limit
6392275, Nov 20 1998 Semiconductor Components Industries, LLC Semiconductor device with DMOS, BJT and CMOS structures
6407579, Jan 20 2000 CALLAHAN CELLULAR L L C Fast high voltage level shifter with gate oxide protection
6413806, Feb 23 2000 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Semiconductor device and method for protecting such device from a reversed drain voltage
6420771, Apr 19 1999 National Semiconductor Corporation Trench isolated bipolar transistor structure integrated with CMOS technology
6477065, Oct 31 1994 Texas Instruments Incorporated Resonant gate driver
6495019, Apr 19 2000 Bell Semiconductor, LLC Device comprising micromagnetic components for power applications and process for forming device
6521960, Dec 30 1999 CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC Column transistor for semiconductor devices
6541819, May 24 2001 Bell Semiconductor, LLC Semiconductor device having non-power enhanced and power enhanced metal oxide semiconductor devices and a method of manufacture therefor
6545360, Sep 07 1999 Longitude Licensing Limited Semiconductor device and manufacturing method thereof
6550666, Aug 21 2001 QUESTECH SOLUTIONS PTE LTD Method for forming a flip chip on leadframe semiconductor package
6573694, Jun 27 2001 Texas Instruments Incorporated Stable low dropout, low impedance driver for linear regulators
6650169, Oct 01 2001 SNAPTRACK, INC Gate driver apparatus having an energy recovering circuit
6653174, Jun 05 1998 T-RAM ASSIGNMENT FOR THE BENEFIT OF CREDITORS , LLC Thyristor-based device over substrate surface
6688985, Feb 07 2001 Mattel, Inc. Electrically controlled racing game with information and control center
6730962, Dec 07 2001 Texas Instruments Incorporated Method of manufacturing and structure of semiconductor device with field oxide structure
6744676, Aug 14 1998 Invensas Corporation DRAM cell having a capacitor structure fabricated partially in a cavity and method for operating same
6765272, Apr 27 2001 Renesas Electronics Corporation Semiconductor device
6791305, Feb 28 2002 TDK Corporation Switching power supply control circuit and switching power supply using same
6822882, Aug 01 2003 ACLEAP POWER INC Gate driver with a DC offset bias circuit and a power converter employing the same
6833585, Apr 16 2001 Semiconductor Components Industries, LLC High voltage lateral DMOS transistor having low on-resistance and high breakdown voltage
6855985, Sep 29 2002 ADVANCED ANALOGIC TECHNOLOGIES HONG KONG LIMITED Modular bipolar-CMOS-DMOS analog integrated circuit & power transistor technology
6873017, May 14 2003 Semiconductor Components Industries, LLC ESD protection for semiconductor products
6879137, Jun 17 2002 GOOGLE LLC Power-supply device
6900101, Jun 13 2003 Texas Instruments Incorporated LDMOS transistors and methods for making the same
6911694, Jun 27 2001 Ricoh Company, LTD Semiconductor device and method for fabricating such device
6943447, Jan 10 2002 Fujitsu Limited Thin film multi-layer wiring substrate having a coaxial wiring structure in at least one layer
6960512, Jun 24 2003 Taiwain Semiconductor Manufacturing Company, Ltd. Method for manufacturing a semiconductor device having an improved disposable spacer
6992377, Feb 26 2004 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Semiconductor package with crossing conductor assembly and method of manufacture
6998674, Jun 05 2001 Renesas Electronics Corporation Semiconductor integrated circuit device with reduced leakage current
7012323, Aug 28 2001 Tessera, Inc Microelectronic assemblies incorporating inductors
7012792, Dec 26 2001 Renesas Electronics Corporation Semiconductor integrated circuit
7015544, Aug 23 2004 TAHOE RESEARCH, LTD Intergrated circuit employable with a power converter
7019505, Jan 29 2004 Altera Corporation; Intel Corporation Digital controller for a power converter employing selectable phases of a clock signal
7038438, Jan 29 2004 Altera Corporation; Intel Corporation Controller for a power converter and a method of controlling a switch thereof
7071044, May 05 2004 GLOBALFOUNDRIES Inc Method of making a test structure for gate-body current and direct extraction of physical gate length using conventional CMOS
7074684, Jun 14 2002 GLOBALFOUNDRIES Inc Elevated source drain disposable spacer CMOS
7129143, Oct 23 2003 DONGBU ELECTRONICS CO , LTD Semiconductor devices having dual spacers and methods of fabricating the same
7186606, Aug 23 2004 Altera Corporation; Intel Corporation Method of forming an integrated circuit employable with a power converter
7190026, Aug 23 2004 TAHOE RESEARCH, LTD Integrated circuit employable with a power converter
7195981, Aug 23 2004 TAHOE RESEARCH, LTD Method of forming an integrated circuit employable with a power converter
7211516, Apr 01 2005 Texas Instruments Incorporated; Texas Instruments Inc Nickel silicide including indium and a method of manufacture therefor
7214985, Aug 23 2004 Altera Corporation; Intel Corporation Integrated circuit incorporating higher voltage devices and low voltage devices therein
7229886, Aug 23 2004 TAHOE RESEARCH, LTD Method of forming an integrated circuit incorporating higher voltage devices and low voltage devices therein
7230302, Jan 29 2004 TAHOE RESEARCH, LTD Laterally diffused metal oxide semiconductor device and method of forming the same
7230316, Dec 27 2002 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having transferred integrated circuit
7232733, Aug 23 2004 TAHOE RESEARCH, LTD Method of forming an integrated circuit incorporating higher voltage devices and low voltage devices therein
7232762, Jun 16 2004 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming an improved low power SRAM contact
7244994, Jan 29 2004 TAHOE RESEARCH, LTD Laterally diffused metal oxide semiconductor device and method of forming the same
7256674, Nov 10 2004 Altera Corporation; Intel Corporation Power module
7262476, Nov 30 2004 Bell Semiconductor, LLC Semiconductor device having improved power density
7276998, Nov 10 2004 Altera Corporation; Intel Corporation Encapsulated package for a magnetic device
7330017, Jan 29 2004 Altera Corporation; Intel Corporation Driver for a power converter and a method of driving a switch thereof
7335948, Aug 23 2004 TAHOE RESEARCH, LTD Integrated circuit incorporating higher voltage devices and low voltage devices therein
7344985, Apr 01 2005 Texas Instruments Incorporated Nickel alloy silicide including indium and a method of manufacture therefor
7355217, Nov 22 2005 National Semiconductor Corporation MOS transistor structure with easy access to all nodes
7355255, Apr 01 2005 Texas Instruments Incorporated Nickel silicide including indium and a method of manufacture therefor
7365402, Jan 06 2005 Infineon Technologies AG LDMOS transistor
7391080, Nov 21 2003 Infineon Technologies AG LDMOS transistor device employing spacer structure gates
7408211, Nov 10 2006 United Microelectronics Corp. Transfer transistor of CMOS image sensor
7420247, Aug 12 2005 Cicion Semiconductor Device Corp. Power LDMOS transistor
7422967, May 12 2005 Texas Instruments Incorporated Method for manufacturing a semiconductor device containing metal silicide regions
7422968, Jul 29 2004 Texas Instruments Incorporated Method for manufacturing a semiconductor device having silicided regions
7426780, Nov 10 2004 Altera Corporation Method of manufacturing a power module
7462317, Nov 10 2004 Altera Corporation Method of manufacturing an encapsulated package for a magnetic device
7489007, May 31 2006 Advanced Analogic Technologies, Inc. High-voltage lateral DMOS device
7511350, Apr 01 2005 Texas Instruments Incorporated Nickel alloy silicide including indium and a method of manufacture therefor
7544558, Mar 13 2006 BCD SHANGHAI MICRO-ELECTRONICS COMPANY LIMITED Method for integrating DMOS into sub-micron CMOS process
7544995, Sep 10 2007 Altera Corporation Power converter employing a micromagnetic device
7598606, Feb 22 2005 STATS CHIPPAC PTE LTE Integrated circuit package system with die and package combination
7605428, May 31 2006 Advanced Analogic Technologies, Inc. High-voltage depletion mode MOSFET
7626233, Apr 23 2007 Infineon Technologies AG LDMOS device
7679342, Apr 16 2008 Altera Corporation Power converter with power switch operable in controlled current mode
7683426, May 31 2006 Advanced Analogic Technologies, Inc. High-voltage lateral DMOS device with diode clamp
7683453, May 31 2006 Advanced Analogic Technologies, Inc. Edge termination region for high-voltage bipolar-CMOS-DMOS integrated circuit devices
7710094, Dec 12 2008 HONG KONG APPLIED SCIENCE AND TECHNOLOGY RESEARCH INSTITUTE CO, LTD Current-mode-controlled current sensor circuit for power switching converter
7719054, May 31 2006 Advanced Analogic Technologies, Inc High-voltage lateral DMOS device
7759184, Jan 29 2004 TAHOE RESEARCH, LTD Laterally diffused metal oxide semiconductor device and method of forming the same
7788608, Oct 07 2006 ACTIVE-SEMI, INC Microbump function assignment in a buck converter
7812393, May 31 2006 Advanced Analogic Technologies, Inc. High-voltage extended drain MOSFET
7876080, Dec 27 2007 Altera Corporation; Intel Corporation Power converter with monotonic turn-on for pre-charged output capacitor
7892931, Dec 20 2006 Texas Instruments Incorporated Use of a single mask during the formation of a transistor's drain extension and recessed strained epi regions
7904864, Oct 07 2006 ACTIVE-SEMI, INC Interconnect layer of a modularly designed analog integrated circuit
7952160, Dec 31 2007 Intel Corporation Packaged voltage regulator and inductor array
7952459, Sep 10 2007 Altera Corporation; Intel Corporation Micromagnetic device and method of forming the same
7964484, Jun 05 2001 Renesas Electronics Corporation Semiconductor integrated circuit device with reduced leakage current
8040212, Jul 22 2009 Volterra Semiconductor Corporation Low profile inductors for high density circuit boards
8099619, Sep 28 2006 Intel Corporation Voltage regulator with drive override
8101479, Mar 27 2009 National Semiconductor Corporation Fabrication of asymmetric field-effect transistors using L-shaped spacers
8212315, Jan 29 2004 TAHOE RESEARCH, LTD Integrated circuit with a laterally diffused metal oxide semiconductor device and method of forming the same
8212316, Jan 29 2004 TAHOE RESEARCH, LTD Integrated circuit with a laterally diffused metal oxide semiconductor device and method of forming the same
8212317, Jan 29 2004 TAHOE RESEARCH, LTD Integrated circuit with a laterally diffused metal oxide semiconductor device and method of forming the same
8253195, Jan 29 2004 TAHOE RESEARCH, LTD Integrated circuit with a laterally diffused metal oxide semiconductor device and method of forming the same
8253196, Jan 29 2004 TAHOE RESEARCH, LTD Integrated circuit with a laterally diffused metal oxide semiconductor device and method of forming the same
8253197, Jan 29 2004 TAHOE RESEARCH, LTD Integrated circuit with a laterally diffused metal oxide semiconductor device and method of forming the same
8258575, Mar 28 2007 Advanced Analogic Technologies, Inc.; Advanced Analogic Technologies (Hong Kong) Limited Isolated drain-centric lateral MOSFET
8520402, Oct 25 2005 XILINX, Inc. Decoupling capacitor circuit assembly
8604597, Apr 28 2011 Monolithic Power Systems, Inc.; Monolithic Power Systems, Inc Multi-die packages incorporating flip chip dies and associated packaging methods
8618580, Sep 29 2006 Qualcomm Incorporated Integrated circuit chips with fine-line metal and over-passivation metal
8633540, Jan 29 2004 TAHOE RESEARCH, LTD Integrated circuit with a laterally diffused metal oxide semiconductor device and method of forming the same
8716790, Jan 29 2004 TAHOE RESEARCH, LTD Laterally diffused metal oxide semiconductor device and method of forming the same
8860390, Jun 04 2010 Apple Inc. Switching power supply opposite polarity inductor arrangement
8872609, Feb 25 2009 THRUCHIP JAPAN, INC Inductor element and integrated circuit device
8987815, Jan 29 2004 TAHOE RESEARCH, LTD Integrated circuit with a laterally diffused metal oxide semiconductor device and method of forming the same
8994469, Sep 23 2011 National Taipei University of Technology Suppression of far-end crosstalk and timing jitter by using rectangular resonators
9083332, Dec 05 2012 Volterra Semiconductor Corporation Integrated circuits including magnetic devices
9087392, Sep 26 2012 TAHOE RESEARCH, LTD Techniques for efficient GPU triangle list adjacency detection and handling
9118242, Aug 20 2012 International Business Machines Corporation Slab inductor device providing efficient on-chip supply voltage conversion and regulation
9299691, Nov 30 2012 Altera Corporation Semiconductor device including alternating source and drain regions, and respective source and drain metallic strips
20020164844,
20020175366,
20020185681,
20030011424,
20030109112,
20030147226,
20040094806,
20040121547,
20040227190,
20050110080,
20050112822,
20050167756,
20050168203,
20050168205,
20050169024,
20050179084,
20050179472,
20050194639,
20060027864,
20060038225,
20060038237,
20060038238,
20060039224,
20060040441,
20060040449,
20060040451,
20060040452,
20060081937,
20060145250,
20060278931,
20070224752,
20070284658,
20080001233,
20080061368,
20080061400,
20080067585,
20080067586,
20080067588,
20080080111,
20080142899,
20080153221,
20080157726,
20080199999,
20080242032,
20080272829,
20080301929,
20090065964,
20090096435,
20090096511,
20090167267,
20090212751,
20090261791,
20090269899,
20090296310,
20100039836,
20100044789,
20100052050,
20100052051,
20100052052,
20100156374,
20100164449,
20100164650,
20100244106,
20100244152,
20100301496,
20110006763,
20110031947,
20110049621,
20110074498,
20110095742,
20110101933,
20110101934,
20110101948,
20110101949,
20110215414,
20110221000,
20110316053,
20120074922,
20130151825,
20150280558,
20150302974,
20150302976,
CN101409281,
CN101952961,
EP2278345,
TW200816374,
TW200847330,
TW201120459,
TW201225298,
/////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Feb 25 2015LOTFI, ASHRAF W Altera CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0350420576 pdf
Feb 25 2015WELD, JOHNAltera CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0350420576 pdf
Feb 26 2015LIM, TEIK WAHAltera CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0350420576 pdf
Feb 26 2015WONG, CHOONG KITAltera CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0350420576 pdf
Feb 26 2015Altera Corporation(assignment on the face of the patent)
Date Maintenance Fee Events
Dec 30 2021M1551: Payment of Maintenance Fee, 4th Year, Large Entity.


Date Maintenance Schedule
Oct 16 20214 years fee payment window open
Apr 16 20226 months grace period start (w surcharge)
Oct 16 2022patent expiry (for year 4)
Oct 16 20242 years to revive unintentionally abandoned end. (for year 4)
Oct 16 20258 years fee payment window open
Apr 16 20266 months grace period start (w surcharge)
Oct 16 2026patent expiry (for year 8)
Oct 16 20282 years to revive unintentionally abandoned end. (for year 8)
Oct 16 202912 years fee payment window open
Apr 16 20306 months grace period start (w surcharge)
Oct 16 2030patent expiry (for year 12)
Oct 16 20322 years to revive unintentionally abandoned end. (for year 12)