A predetermined amount of solder (315) is deposited on the free ends of copper posts (310) extending from die pads of a semiconductor die (305). The solder (315) is coated with flux (320) and the semiconductor die (305) is placed on a leadframe (100) with the solder deposits (315) abutting interconnect locations (335) on inner lead portions (101). When reflowed, the solder deposits (315) melt and with the assistance of the flux (320) forms solder interconnects between the free ends of the copper posts (310) and the interconnect locations (335). Due to the predetermined amount of solder (315) deposited on the free ends of the copper posts (310), the molten solder (315) tends not to flow away from the interconnect location (335). Thus, advantageously allowing a substantial portion of the solder deposit (315) to remain at the interconnect locations (335) to form solder interconnects.

Patent
   6550666
Priority
Aug 21 2001
Filed
Aug 21 2001
Issued
Apr 22 2003
Expiry
Aug 21 2021
Assg.orig
Entity
Small
202
25
all paid
1. A method for forming a flip chip semiconductor package, the method comprising the steps of:
a) providing a patterned layer of metal conductors having a first surface;
b) providing a semiconductor die having a first surface with a pattern of pads thereon, the pads having non-reflowable material thereon, wherein the pattern of pads is different from the patterned layer of metal conductors, and wherein the non-reflowable material melts at a temperature that is higher than a predetermined reflow temperature;
c) disposing a predetermined amount of reflowable conductive material on free-ends of the non-reflowable material on each of the pads, wherein the reflowable conductive material melts at the predetermined reflow temperature;
d) placing the semiconductor die on the first surface of the patterned layer of metal conductors, wherein the reflowable conductive material on the non-reflowable material on each of the pads abut the patterned layer of metal conductors to form a pattern of interconnect locations on the patterned layer of metal conductors, and wherein the pattern of interconnect locations correspond with the pattern of pads; and
e) reflowing the reflowable conductive material at the predetermined reflow temperature, wherein a substantial portion of the reflowable conductive material on the non-reflowable material on the each of the pads remains substantially at the respective interconnect locations to form conductive interconnects between the non-reflowable material and the interconnect locations.
2. A method in accordance with claim 1 wherein step (c) comprises the step of determining the predetermined amount of reflowable conductive material based on material composition of the reflowable conductive material.
3. A method in accordance with claim 1 wherein step (c) comprises the step of determining the predetermined amount of reflowable conductive material based on material composition of the interconnect locations.
4. A method in accordance with claim 1 wherein step (c) comprises the step of determining the predetermined amount of reflowable conductive material based on material composition of the non-reflowable material.
5. A method in accordance with claim 1 wherein step (c) comprises the step of determining the predetermined amount of reflowable conductive material based on dimensions of the non-reflowable material.
6. A method in accordance with claim 1 wherein step (c) comprises the step of determining the predetermined amount of reflowable conductive material based on mass of the semiconductor die.
7. A method in accordance with claim 1 wherein step (c) comprises the step of determining the predetermined amount of reflowable conductive material based on number of pads having non-reflowable material thereon.
8. A method in accordance with claim 1 wherein step (c) comprises the step of determining the predetermined amount of reflowable conductive material based on expected final dimensions of reflowed reflowable material.
9. A method in accordance with claim 1 wherein step (c) comprises the step of plating the predetermined amount of reflowable conductive material on the non-reflowable material.
10. A method in accordance with claim 1 further comprising after step (c) and before step (d), the step of applying a cleaning agent.
11. A method in accordance with claim 10 comprising the step of applying a cleaning agent to the reflowable conductive material.
12. A method in accordance with claim 10 wherein step (c) comprises the step of determining the predetermined amount of reflowable conductive material based on material composition of the cleaning agent.
13. A method in accordance with claim 1 wherein step (a) comprises the step of providing the patterned layer of metal conductors having a first surface with a layer of plating thereon.
14. A method in accordance with claim 13 wherein step (c) comprises the step of determining the predetermined amount of reflowable conductive material based on material composition of the layer of plating.
15. A method in accordance with claim 1 wherein step (a) comprises the step of providing the patterned layer of copper conductors.
16. A method in accordance with claim 15 wherein step (a) further comprises the step of providing a layer of plating on the first surface of the patterned layer of copper conductors.
17. A method in accordance with claim 15 wherein step (b) comprises the step of providing a semiconductor die having the first surface with the corresponding pattern of pads thereon, the pads having copper posts thereon and extending therefrom.
18. A method in accordance with claim 17 wherein step (c) comprises the step of disposing a predetermined amount of solder on free ends of the copper posts.
19. A method in accordance with claim 18 after step (c) and before step (d) comprising the step of applying flux to the solder.
20. A method in accordance with claim 19 after the step of applying flux to the solder, the step of cleaning the semiconductor die and the patterned layer of copper conductors.
21. A method in accordance with claim 20 further comprising after the step of cleaning, the step of encapsulating at least a part of the semiconductor die and at least a part of the patterned layer of copper conductors to form a semiconductor package.
22. A method in accordance with claim 21, wherein the patterned layer of copper conductors comprises a portion of a leadframe, wherein the step of encapsulating at least a part of the semiconductor die and at least a part of the patterned layer of copper conductors to form a semiconductor package comprises the step of encapsulating at least the part of the semiconductor die and at least a part of the portion of the leadframe to form the semiconductor package, and further comprises after the step of encapsulating, the step of singulating the semiconductor package from the leadframe.
23. A method in accordance with claim 21 wherein the step of encapsulating comprises the step of molding.

The present invention relates to forming a flip chip semiconductor package on a leadframe, and more particularly to forming a flip chip semiconductor package with a bumped semiconductor die on a leadframe.

In semiconductor packaging, a relatively sensitive and difficult to handle semiconductor die is encapsulated in a package with external connections. Packaging allows the semiconductor die to be more conveniently handled, and it also allows external circuitry to be easily coupled thereto.

A known method of forming a flip chip on leadframe (FCOL) semiconductor package employs a plated leadframe. A leadframe is a patterned sheet of metal, typically copper, that has been plated, usually with silver, nickel or palladium. Conventionally, a leadframe is plated to prevent the copper from oxidizing, and to provide a surface to which solder will adhere. The pattern of the sheet of metal provides a leadframe for forming a semiconductor package.

Currently, leadframes for forming FCOL semiconductor packages have leads with inner lead portions and outer lead portions. The inner lead portions are arranged in a pattern with interconnect locations on the inner lead portions matching the pattern of pads on a semiconductor die. During the packaging process, typically eutectic solder is deposited on the interconnect locations. In addition, the pads on the semiconductor die are bumped. Bumping can comprise metal posts extending from the pads of the semiconductor die with solder balls on free ends of the metal posts. Typically, the solder balls are made of high lead solder.

U.S. patent application Ser. No. 09/564,382 by Francisca Tung, filed on Apr. 27, 2000, titled "Improved Pillar Connections For Semiconductor Chip", and Continuation-In-Part U.S. patent application Ser. No. 09/843,248 by Francisca Tung, filed on Apr. 27, 2001 titled "Pillar Connections For Semiconductor Chips and Method Of Manufacture", and assigned to a common assignee as this patent application, teaches forming pillar bump structures as described herein. These patent applications are incorporated herein by reference thereto.

Subsequently, the solder balls on the die, and the semiconductor die is flipped over, and placed on the leadframe, with the solder balls abutting the solder paste deposits on the interconnect locations. The assembly is then reflowed using an appropriate reflow profile.

Under the elevated reflow temperatures, the solder paste deposits melt, and with the assistance of the flux, the eutectic solder adheres to the interconnect locations on the leadframe and the high lead solder balls on the copper posts, thus forming solder interconnects between the high lead solder balls on the free ends of the metal posts and the interconnect locations on the leadframe. After reflow, when normal flux is used the assembly is cleaned to remove residual flux and encapsulated in mold compound. However, when no-clean flux is employed, the cleaning step is not necessarily required. The resultant package is known as a FCOL semiconductor package.

A disadvantage of this process is, when the solder paste melts, the molten solder tends to flows across the surface of the lead portions. This flow of solder is often referred to as overrun, and results in a variety of adverse effects in FCOL semiconductor packages.

A first concern is, when the solder flows away from an interconnect location, the respective solder interconnect constitutes less solder than required to provide a reliable electrical connection between the solder balls and the interconnect locations. A second concern is, solder interconnects formed with the reduced amount of solder do not support the semiconductor die evenly on the leadframe. Consequently, the planarity of the semiconductor die on the leadframe is adversely affected, and a non-planar die can give rise to shorting between the metal posts on the die. This condition is sometimes referred to as a collapsed die.

A third concern is the overrun results in solder flowing over the edges and onto the opposite surface of the lead portions. Later, during molding mold compound will not adhere well to the affected surfaces. A fourth concern is wicking, which occurs when a lead portion on a leadframe is shaped such that there is a small gap between the side of a downset die and the lead portion, and where there is an interconnect location close to the edge of the die. In this arrangement, the solder from the interconnect location can flow along the lead portion and, through capillary action, flow upwards through the small gap.

Further, eutectic solder paste is disposed on the interconnect locations using a printing process. This process of dispensing solder is known to suffer wide process variations. Consequently, the amount of solder paste dispensed on a leadframe can vary considerably. Such variations in the amount of solder paste dispensed for a particular semiconductor package leads to variations in the resultant solder joints, adversely affecting the reliability of the semiconductor package.

In an effort to reduce costs of producing FCOL semiconductor packages, un-plated or bare copper leadframes, simply referred to as copper leadframes, have been tried. However, to a large extent, the copper leadframes suffer the same disadvantages discussed hereinabove as the plated leadframe, and in some instances to a greater degree.

The present invention seeks to provide a method for forming a flip chip on leadframe semiconductor package, which overcomes or at least reduces the abovementioned problems of the prior art.

Accordingly, in one aspect, the present invention provides a method for forming a flip chip semiconductor package, the method comprising the steps of:

a) providing a patterned layer of metal conductors having a first surface for providing a pattern of interconnect locations thereon;

b) providing a semiconductor die having a first surface with a corresponding pattern of pads thereon, the pads having non-reflowable material thereon:

c) disposing a predetermined amount of reflowable conductive material on the non-reflowable material;

d) placing the semiconductor die on the patterned layer of metal conductors, wherein the reflowable conductive material abuts the interconnect locations; and

e) reflowing the reflowable conductive material, wherein a substantial portion of the reflowable conductive material remains substantially at the interconnect locations to form conductive interconnects between the non-reflowable material and the interconnect locations.

In another aspect the present invention provides a method for determining the amount of reflowable material to be disposed on non-reflowable bumps on a semiconductor die to mount the semiconductor die on a leadframe having interconnect locations thereon, the method comprising the steps of:

a) determining surface area of one of the non-reflowable bumps;

b) defining a corresponding interconnect location on the leadframe having substantially the same area as the surface area of the one of the non-reflowable bumps; and

c) selecting an amount of reflowable material such that a substantial portion of the selected amount of reflowable material remains at the interconnect location during reflow.

An embodiment of the present invention will now be more fully described, by way of example, with reference to the drawings of which:

FIG. 1 shows a top view of a part of a leadframe;

FIG. 2 shows a flowchart detailing a process for forming a FCOL semiconductor package with a semiconductor die and a leadframe; and

FIGS. 3A-D shows cross-sectional views of a part of the leadframe and the semiconductor die during the process in FIG. 1.

A predetermined amount of solder is deposited more uniformly on the free ends of copper posts extending from die pads of a semiconductor die. The solder deposits are coated with flux and the semiconductor die is then placed on a leadframe with the solder deposits abutting interconnect locations on inner lead portions of the leadframe. When reflowed, the solder deposits melt and with the assistance of the flux forms solder interconnects between the free ends of the copper posts and the interconnect locations. Due to the predetermined amount of solder deposited on the free ends of the copper posts more uniformly, the molten solder tends not to flow away from the interconnect locations. Thus, advantageously allowing a substantial portion of the solder to remain at the interconnect locations resulting in more uniform solder interconnects. After forming the solder interconnects, the assembly of the semiconductor die and the leadframe is encapsulated in mold compound with outer lead portions exposed and/or extending from the FCOL semiconductor package. A non-leaded version of the resultant package is often referred to as the quad non-lead package (QFN).

FIG. 1 shows a part of a leadframe 100, which has inner lead portions 101, outer lead portions 102 and dam bar portions 103. The outline 104 indicates the location for placing a flipped semiconductor die (not shown) on the leadframe 100. After a FCOL semiconductor package (not shown) is formed on the leadframe 100, the inner lead portions 101, which are coupled to the semiconductor die, will be enclosed with the semiconductor die in the FCOL semiconductor package, and th e , outer lead portions 102 will extend from the package. The dam bar portions 103 define an outline of the FCOL package, and provide a seal during the molding process that encapsulates the semiconductor die and the inner lead portions 102 in the FCOL package. The dam bar portions 103 and other excess portions of the lead frame 100 are removed during a subsequent trim and form operation after encapsulation or when the FCOL semiconductor package is singulated from the leadframe 100. lypically, the leadframe 100 is supplied by a vendor in a strip on which several FCOL semiconductor packages can be formed, as is known in the art. More commonly, the leadframe comprises copper and is plated with silver, nickel or palladium, however, the present invention also extends to use with un-plated leadframes, such as bare copper leadframes.

The leadframe 100 is a patterned metal leadframe, which provides a patterned layer of metal conductors, and can comprise a stamping from a sheet of metal, such as copper. Alternatively, the leadframe 100 can be produced by etching a copper sheet. When the thickness of the metal is relatively small, the leadframe 100 can comprise flexible circuits, also known as flex circuits, which includes a flexible substrate. In addition, the leadframe 100, as referred to herein, extends to substrates including ceramic, laminate, polyimide substrate, and tape.

With reference to FIG. 2 and FIGS. 3A-D a process 200 for forming a FCOL semiconductor package, in accordance with the present invention, starts 205 with providing 210 the copper leadframe 100. To facilitate description, only a portion of the lead frame 100 and a portion of a semiconductor die 305 are shown in FIGS. 3A-D. However, it will be appreciated by one skilled in the art, that the process 200 as described applies to all copper posts 310 on the semiconductor die 305 and all the inner lead portions 101 of the leadframe 100 that form the FCOL semiconductor package.

Next the semiconductor die 305 is provided 215, where the semiconductor die 305 includes copper posts 310 extending from pads (not shown) on the semiconductor die 305 as shown in FIG. 3A. A process for forming the copper posts 310 on the semiconductor die 305 when the die is part of a semiconductor wafer was alluded to earlier. A variety of other wafer bumping techniques may be employed to form non-reflowable bumps on a wafer, and the constituent bumped semiconductor dies of such wafers can be used in accordance with the present invention to form FCOL semiconductor packages. Examples of such non-reflowable bumps include gold, indium, tin, lead-free tin bismuth, lead free tin-copper, lead free tin-silver, and the like.

In addition, FIG. 3A shows the inner lead portions 101 of two adjacent leads of the leadframe 100 where each of the inner lead portions 101 has an interconnect location 335 thereon. An interconnect location herein is defined as the area on the inner lead portion 101 when the copper posts 310 are aligned with the inner lead portions 101 i.e. the area bounded by the circumference of the copper posts 310 when the copper posts are aligned with the inner lead portions 101, where the circumference of the copper posts are projected onto the inner lead portions 101. The broken lines in FIGS. 3A and 3C define the interconnect locations 335 on the inner lead portions 101. The pattern of interconnect locations 335 on the inner lead portions 101 corresponds to the pattern of copper posts 310 that extend from the semiconductor die 305 when the semiconductor die 315 is aligned with the inner lead portions 101.

Subsequently, reflowable conductive deposits 315, such as solder, is plated on or attached in the form of solder balls, on the free ends of the copper posts 310. In this way the solder deposits 315 are disposed 220 on the free ends of the copper posts 310. The solder deposits 315 can be disposed by a variety of techniques, as will be known to one skilled in the art. A reference cited earlier describes a process that disposes solder on the copper posts when the copper bumps are formed by electroplating.

The amount of solder disposed on the end of each of the copper posts 310 of the semiconductor die 305 is predetermined, and whatever process that is employed to dispose the solder, that process must ensure that the predetermined amount of solder is disposed on each of the copper post 310. Here, a plating process is used as the plating process has a lower process variation then that of the solder printing process. This allows the amount of solder disposed on the free ends of the copper posts to be better controlled and more uniform on a semiconductor die. The amount of solder disposed is dependent on a variety of factors which can include: type of solder, dimensions of the copper post, material at the interconnect location, mass of the semiconductor die, number of copper posts, reflow profile when reflowing the solder deposits 315, the expected final dimensions of the reflowed solder and copper post, and the type of flux. This measured amount of the solder, advantageously allows a substantial portion of the disposed solder deposits 315 to remain at the interconnect locations 335 during reflow when the solder deposits 315 are in molten state.

Flux 320 is then applied or coated 225 on the solder deposits 315. This is often achieved by briefly positioning the semiconductor die 305 with the solder deposits 315 immersed in a reservoir of the flux 320. At elevated temperatures, the flux 320 cleans a surface to which it is applied to enhance the adhesion of the solder deposits 315. The cleaned surfaces include the surface of the solder deposit 315 and the interconnect locations 335.

After the flux 320 is applied, the semiconductor die 305 is ready to be mounted on the leadframe 100. Alternatively, the flux 320 can be printed or disposed on the interconnect locations 335, although this would require additional equipment relative to a single handler picking up the semiconductor die 305 with the solder, dipping the solder deposits 315 on the copper posts 310 in flux 320 and then placing the semiconductor die 305 on the leadframe 100.

After applying the flux 320, the semiconductor die 305 is positioned above the leadframe 100 with the solder deposits 315 aligned with the interconnect locations 335 on the leadframe 100. The semiconductor die 305 is then placed 230 on the leadframe 100. The step of placing here can include exerting and maintaining a predetermined force on the semiconductor die 305 against the leadframe 100.

When the semiconductor die 305 is placed on the leadframe 100, the lower surface of the solder deposits 315 abut the interconnect locations 335, and the flux 320 on the solder deposits 315 flows around the solder deposits 315 and on the interconnect locations 335. The flux 320 on the solder deposits 315 wets or adheres to the interconnect locations 335 as shown in FIG. 3B, in preparation for the next step.

The assembly of the semiconductor die 305, the leadframe 100, and the flux 320, is then reflowed 235. Reflowing processes will be known to one skilled in the art in relation to flip chip semiconductor packages, and no further detail is provided herein, except to the extent where such detail enhances the understanding of the present invention. During reflow 235, the flux 320 cleans the interconnect locations 335 on the leadframe 100, and the solder deposits 315 change to a molten state. The molten solder flows onto the cleaned interconnect locations 335, and adheres thereto forming a solder interconnect 340 between each of the copper posts 310 and the corresponding interconnect locations 335, as shown in FIG. 3C.

The solder interconnect 340 is sometimes called a fillet. The predetermined amount of solder 315 deposited determines the formation of the solder interconnect 340, thus ensuring a substantial portion of the solder 315 deposited remains at the interconnect location 335.

Consequently, there is more solder at the interconnect locations 335, which increases the mechanical strength of the coupling between the copper posts 310 and the leadframe 100, thus producing more reliable electrical coupling.

Hence, the present invention, as described, advantageously, reduces the flow of solder away from the interconnect locations, thus, improving the coupling between the copper posts and the leadframe formed by the resultant solder interconnects.

After reflowing 235, when normal flux is used, the assembly is cleaned to remove any access flux 320, and the assembly is encapsulated 245 in mold compound 345 as shown in FIG. 3D, to produce a flip chip semiconductor package (not shown) on the leadframe 100. Alternatively, when no-clean flux is employed, cleaning is not necessarily required. Subsequently, after a final step of singulating the FCOLF semiconductor package from the leadframe 100, during which the dam bar portions 103 are severed, the process 200 ends 245. As will be known to one skilled in the art, there may be the additional steps of forming the external lead portions 102, and testing the functionality of the semiconductor die 320, prior to singulation.

An example of a semiconductor package formed in accordance with the present invention comprises a semiconductor die with copper post having a pitch of 250 microns, where the copper post has a length of 70 microns and a diameter of 100 microns. The solder plated on the free ends of the copper posts has a thickness of 30 microns, and the semiconductor die was mounted on a bare copper leadframe.

The present invention, as described, provides a method of forming a flip chip semiconductor package on a leadframe where a predetermined amount of solder disposed on the copper posts on a semiconductor die tends to remain at interconnect locations on the leadframe.

This is accomplished by determining the amount of solder to be disposed taking into account a variety of factors including type of solder, the dimensions of the metal post, the material at the interconnect location, the mass of the die, the number of metal posts, the reflow profile, the expected final dimensions of the reflowed solder and copper post and the type of flux.

Thus, the present invention, as described provides a method for forming a flip chip on leadframe semiconductor package, which overcomes or at least reduces the abovementioned problems of the prior art.

It will be appreciated that although only one particular embodiment of the invention has been described in detail, various modifications and improvements can be made by a person skilled in the art without departing from the scope of the present invention.

Tan, Kim Hwee, Chew, Jimmy Hwee Seng

Patent Priority Assignee Title
10008469, Apr 30 2015 Invensas Corporation Wafer-level packaging using wire bond wires in place of a redistribution layer
10008477, Sep 16 2013 Invensas Corporation Microelectronic element with bond elements to encapsulation surface
10020739, Mar 27 2014 Altera Corporation Integrated current replicator and method of operating the same
10026717, Nov 22 2013 Invensas Corporation Multiple bond via arrays of different wire heights on a same substrate
10032647, May 29 2014 Invensas Corporation Low CTE component with wire bond interconnects
10043779, Nov 17 2015 Invensas Corporation Packaged microelectronic device for a package-on-package device
10062661, May 03 2011 Tessera, Inc. Package-on-package assembly with wire bonds to encapsulation surface
10103627, Feb 26 2015 Altera Corporation Packaged integrated circuit including a switch-mode regulator and method of forming the same
10115678, Oct 12 2015 ADEIA SEMICONDUCTOR TECHNOLOGIES LLC Wire bond wires for interference shielding
10128216, Jul 19 2010 Tessera, Inc. Stackable molded microelectronic packages
10170412, May 22 2012 Invensas Corporation Substrate-less stackable package with wire-bond interconnect
10181457, Oct 26 2015 Invensas Corporation Microelectronic package for wafer-level chip scale packaging with fan-out
10224270, Mar 30 2009 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Fine pitch copper pillar package and method
10290613, Nov 22 2013 Invensas Corporation Multiple bond via arrays of different wire heights on a same substrate
10297582, Aug 03 2012 Invensas Corporation BVA interposer
10299368, Dec 21 2016 Invensas Corporation Surface integrated waveguides and circuit structures therefor
10325877, Dec 30 2015 Invensas Corporation Embedded wire bond wires for vertical integration with separate surface mount and wire bond mounting surfaces
10332854, Oct 23 2015 Invensas Corporation Anchoring structure of fine pitch bva
10381326, May 28 2014 Invensas Corporation Structure and method for integrated circuits packaging with increased density
10418318, Mar 30 2009 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Fine pitch copper pillar package and method
10460958, Aug 07 2013 Invensas Corporation Method of manufacturing embedded packaging with preformed vias
10475726, May 29 2014 Invensas Corporation Low CTE component with wire bond interconnects
10490528, Oct 12 2015 Invensas Corporation Embedded wire bond wires
10510659, May 22 2012 Invensas Corporation Substrate-less stackable package with wire-bond interconnect
10529636, Jan 17 2014 Invensas Corporation Fine pitch BVA using reconstituted wafer with area array accessible for testing
10535626, Jul 10 2015 ADEIA SEMICONDUCTOR TECHNOLOGIES LLC Structures and methods for low temperature bonding using nanoparticles
10559537, Oct 12 2015 ADEIA SEMICONDUCTOR TECHNOLOGIES LLC Wire bond wires for interference shielding
10573615, Jul 31 2012 MEDIATEK INC. Semiconductor package and method for fabricating base for semiconductor package
10573616, Jul 31 2012 MEDIATEK INC. Semiconductor package and method for fabricating base for semiconductor package
10580747, Jul 31 2012 MEDIATEK INC. Semiconductor package and method for fabricating base for semiconductor package
10580749, Mar 25 2005 STATS CHIPPAC PTE LTE Semiconductor device and method of forming high routing density interconnect sites on substrate
10593643, May 03 2011 Tessera, Inc. Package-on-package assembly with wire bonds to encapsulation surface
10629567, Nov 22 2013 Invensas Corporation Multiple plated via arrays of different wire heights on same substrate
10658302, Jul 29 2016 Invensas Corporation Wire bonding method and apparatus for electromagnetic interference shielding
10756049, Oct 17 2011 Invensas Corporation Package-on-package assembly with wire bond vias
10806036, Mar 05 2015 Invensas Corporation Pressing of wire bond wire tips to provide bent-over tips
10886250, Jul 10 2015 ADEIA SEMICONDUCTOR TECHNOLOGIES LLC Structures and methods for low temperature bonding using nanoparticles
10892246, Jul 10 2015 ADEIA SEMICONDUCTOR TECHNOLOGIES LLC Structures and methods for low temperature bonding using nanoparticles
10991669, Jul 31 2012 MEDIATEK INC.; MEDIATEK INC Semiconductor package using flip-chip technology
11088064, Mar 30 2009 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Fine pitch copper pillar package and method
11189595, Oct 17 2011 Invensas Corporation Package-on-package assembly with wire bond vias
11404338, Jan 17 2014 Invensas LLC Fine pitch bva using reconstituted wafer with area array accessible for testing
11424211, May 03 2011 TESSERA LLC Package-on-package assembly with wire bonds to encapsulation surface
11462483, Oct 12 2015 ADEIA SEMICONDUCTOR TECHNOLOGIES LLC Wire bond wires for interference shielding
11469201, Jul 31 2012 MEDIATEK INC. Semiconductor package and method for fabricating base for semiconductor package
11710718, Jul 10 2015 ADEIA SEMICONDUCTOR TECHNOLOGIES LLC Structures and methods for low temperature bonding using nanoparticles
11735563, Oct 17 2011 Invensas LLC Package-on-package assembly with wire bond vias
7176043, Dec 30 2003 Tessera, Inc Microelectronic packages and methods therefor
7462936, Oct 06 2003 Tessera, Inc Formation of circuitry with modification of feature height
7462942, Oct 09 2003 Advanpack Solutions Pte Ltd Die pillar structures and a method of their formation
7495179, Oct 06 2003 Tessera, Inc Components with posts and pads
7510401, Oct 12 2006 Tessera, Inc Microelectronic component with foam-metal posts
7528008, Dec 29 1994 Tessera, Inc. Method of electrically connecting a microelectronic component
7531894, Dec 29 1994 Tessera, Inc. Method of electrically connecting a microelectronic component
7545029, Aug 18 2006 Tessera, Inc Stack microelectronic assemblies
7554206, Dec 30 2003 Tessera, Inc. Microelectronic packages and methods therefor
7600667, Sep 29 2006 Intel Corporation Method of assembling carbon nanotube reinforced solder caps
7709968, Dec 30 2003 Tessera, Inc Micro pin grid array with pin motion isolation
7719121, Oct 17 2006 Tessera, Inc Microelectronic packages and methods therefor
7745943, Jun 25 2004 Tessera, Inc. Microelectonic packages and methods therefor
7816251, Oct 06 2003 Tessera, Inc. Formation of circuitry with modification of feature height
7939934, Mar 16 2005 Tessera, Inc Microelectronic packages and methods therefor
7999397, Jun 25 2004 Tessera, Inc. Microelectronic packages and methods therefor
8026583, Sep 14 2005 RPX Corporation Flip-chip module and method for the production thereof
8039956, Aug 22 2005 Texas Instruments Incorporated High current semiconductor device system having low resistance and inductance
8046912, Oct 06 2003 Tessera, Inc. Method of making a connection component with posts and pads
8058101, Dec 23 2005 Tessera, Inc Microelectronic packages and methods therefor
8067267, Dec 23 2005 Tessera, Inc Microelectronic assemblies having very fine pitch stacking
8084298, Feb 13 2006 United Microelectronics Corp Method for exchanging semiconductor chip of flip-chip module and flip-chip module suitable therefor
8093697, Dec 23 2005 Tessera, Inc. Microelectronic packages and methods therefor
8114711, Dec 29 1994 Tessera, Inc. Method of electrically connecting a microelectronic component
8148199, Dec 29 1994 Tessera, Inc. Method of electrically connecting a microelectronic component
8148205, Dec 29 1994 Tessera, Inc. Method of electrically connecting a microelectronic component
8183129, Sep 07 2005 Infineon Technologies AG Alignment marks for polarized light lithography and method for use thereof
8207604, Dec 30 2003 Tessera, Inc Microelectronic package comprising offset conductive posts on compliant layer
8329581, Jun 25 2004 Tessera, Inc. Microelectronic packages and methods therefor
8330272, Jul 08 2010 TESSERA INC ; Tessera, Inc Microelectronic packages with dual or multiple-etched flip-chip connectors
8334594, Oct 14 2009 Advanced Semiconductor Engineering, Inc. Chip having a metal pillar structure
8350384, Nov 24 2009 STATS CHIPPAC PTE LTE ; STATS CHIPPAC PTE LTD Semiconductor device and method of forming electrical interconnect with stress relief void
8391016, Sep 29 2006 Intel Corporation Carbon nanotube-reinforced solder caps, and chip packages and systems containing same
8404520, Oct 17 2011 Invensas Corporation Package-on-package assembly with wire bond vias
8482111, Jul 19 2010 Tessera, Inc Stackable molded microelectronic packages
8492893, Mar 16 2011 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor device capable of preventing dielectric layer from cracking
8513799, Dec 29 1994 Tessera, Inc. Method of electrically connecting a microelectronic component
8525314, Nov 03 2004 Tessera, Inc. Stacked packaging improvements
8531020, Nov 03 2004 Tessera, Inc. Stacked packaging improvements
8531039, Dec 30 2003 Tessera, Inc. Micro pin grid array with pin motion isolation
8536458, Mar 30 2009 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Fine pitch copper pillar package and method
8552553, Oct 14 2009 Advanced Semiconductor Engineering, Inc. Semiconductor device
8569885, Oct 29 2010 Advanced Semiconductor Engineering, Inc.; Advanced Semiconductor Engineering, Inc Stacked semiconductor packages and related methods
8580607, Jul 27 2010 Tessera, Inc Microelectronic packages with nanoparticle joining
8604348, Oct 06 2003 Tessera, Inc. Method of making a connection component with posts and pads
8623706, Nov 15 2010 Tessera, Inc Microelectronic package with terminals on dielectric mass
8637991, Nov 15 2010 Tessera, Inc. Microelectronic package with terminals on dielectric mass
8641913, Oct 06 2003 Tessera, Inc Fine pitch microcontacts and method for forming thereof
8659164, Nov 15 2010 Tessera, Inc Microelectronic package with terminals on dielectric mass
8686568, Sep 27 2012 Advanced Semiconductor Engineering, Inc. Semiconductor package substrates having layered circuit segments, and related methods
8698307, Sep 27 2010 Advanced Semiconductor Engineering, Inc. Semiconductor package with integrated metal pillars and manufacturing methods thereof
8716790, Jan 29 2004 TAHOE RESEARCH, LTD Laterally diffused metal oxide semiconductor device and method of forming the same
8723318, Jul 08 2010 Tessera, Inc. Microelectronic packages with dual or multiple-etched flip-chip connectors
8728865, Dec 23 2005 Tessera, Inc. Microelectronic packages and methods therefor
8810029, Nov 10 2003 STATS CHIPPAC PTE LTE ; STATS CHIPPAC PTE LTD Solder joint flip chip interconnection
8835228, May 22 2012 Invensas Corporation Substrate-less stackable package with wire-bond interconnect
8836136, Oct 17 2011 Invensas Corporation Package-on-package assembly with wire bond vias
8841779, Mar 25 2005 STATS CHIPPAC PTE LTE ; STATS CHIPPAC PTE LTD Semiconductor device and method of forming high routing density BOL BONL and BONP interconnect sites on substrate
8853558, Dec 10 2010 Tessera, Inc Interconnect structure
8872318, Aug 24 2011 Tessera, Inc Through interposer wire bond using low CTE interposer with coarse slot apertures
8878353, Dec 20 2012 Invensas Corporation Structure for microelectronic packaging with bond elements to encapsulation surface
8883563, Jul 15 2013 Invensas Corporation Fabrication of microelectronic assemblies having stack terminals coupled by connectors extending through encapsulation
8884443, Jul 05 2012 Advanced Semiconductor Engineering, Inc. Substrate for semiconductor package and process for manufacturing
8884448, Sep 28 2007 Tessera, Inc. Flip chip interconnection with double post
8907466, Jul 19 2010 Tessera, Inc. Stackable molded microelectronic packages
8927337, Nov 03 2004 Tessera, Inc. Stacked packaging improvements
8957527, Nov 15 2010 Tessera, Inc. Microelectronic package with terminals on dielectric mass
8969133, May 03 2011 Tessera, Inc. Package-on-package assembly with wire bonds to encapsulation surface
8975738, Nov 12 2012 Invensas Corporation Structure for microelectronic packaging with terminals on dielectric mass
8987815, Jan 29 2004 TAHOE RESEARCH, LTD Integrated circuit with a laterally diffused metal oxide semiconductor device and method of forming the same
9023691, Jul 15 2013 Invensas Corporation Microelectronic assemblies with stack terminals coupled by connectors extending through encapsulation
9029196, Nov 10 2003 STATS CHIPPAC PTE LTE ; STATS CHIPPAC PTE LTD Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask
9030001, Jul 27 2010 Tessera, Inc Microelectronic packages with nanoparticle joining
9034696, Jul 15 2013 Invensas Corporation Microelectronic assemblies having reinforcing collars on connectors extending through encapsulation
9041227, Oct 17 2011 Invensas Corporation Package-on-package assembly with wire bond vias
9064858, Nov 10 2003 STATS CHIPPAC PTE LTE ; STATS CHIPPAC PTE LTD Semiconductor device and method of forming bump-on-lead interconnection
9082753, Nov 12 2013 Invensas Corporation Severing bond wire by kinking and twisting
9087815, Nov 12 2013 Invensas Corporation Off substrate kinking of bond wire
9093435, May 03 2011 Tessera, Inc. Package-on-package assembly with wire bonds to encapsulation surface
9095074, Dec 20 2012 Invensas Corporation Structure for microelectronic packaging with bond elements to encapsulation surface
9105483, Oct 17 2011 Invensas Corporation Package-on-package assembly with wire bond vias
9123664, Jul 19 2010 Tessera, Inc. Stackable molded microelectronic packages
9137903, Dec 21 2010 Tessera, Inc Semiconductor chip assembly and method for making same
9153562, Nov 03 2004 Tessera, Inc. Stacked packaging improvements
9159665, Mar 25 2005 STATS CHIPPAC PTE LTE ; STATS CHIPPAC PTE LTD Flip chip interconnection having narrow interconnection sites on the substrate
9159708, Jul 19 2010 Tessera, Inc Stackable molded microelectronic packages with area array unit connectors
9177899, Jul 31 2012 MEDIATEK INC. Semiconductor package and method for fabricating base for semiconductor package
9214454, Mar 31 2014 Invensas Corporation Batch process fabrication of package-on-package microelectronic assemblies
9218988, Dec 23 2005 Tessera, Inc. Microelectronic packages and methods therefor
9219045, Nov 10 2003 STATS CHIPPAC PTE LTE ; STATS CHIPPAC PTE LTD Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask
9224707, Jul 05 2012 Advanced Semiconductor Engineering, Inc. Substrate for semiconductor package and process for manufacturing
9224717, May 03 2011 Tessera, Inc. Package-on-package assembly with wire bonds to encapsulation surface
9252122, Oct 17 2011 Invensas Corporation Package-on-package assembly with wire bond vias
9299691, Nov 30 2012 Altera Corporation Semiconductor device including alternating source and drain regions, and respective source and drain metallic strips
9324681, Dec 13 2010 Tessera, Inc. Pin attachment
9349706, Feb 24 2012 Invensas Corporation Method for package-on-package assembly with wire bonds to encapsulation surface
9356006, Mar 31 2014 Invensas Corporation Batch process fabrication of package-on-package microelectronic assemblies
9373573, Nov 10 2003 STATS CHIPPAC PTE LTE Solder joint flip chip interconnection
9379084, Nov 10 2003 STATS CHIPPAC PTE LTE ; STATS CHIPPAC PTE LTD Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask
9385101, Nov 10 2003 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming bump-on-lead interconnection
9391008, Jul 31 2012 Invensas Corporation Reconstituted wafer-level package DRAM
9397063, Jul 27 2010 Tessera, Inc. Microelectronic packages with nanoparticle joining
9412714, May 30 2014 Invensas Corporation Wire bond support structure and microelectronic package including wire bonds therefrom
9437532, Jul 05 2012 Advanced Semiconductor Engineering, Inc. Substrate for semiconductor package and process for manufacturing
9443839, Nov 30 2012 Altera Corporation Semiconductor device including gate drivers around a periphery thereof
9462690, Mar 30 2009 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Fine pitch copper pillar package and method
9496236, Dec 10 2010 Tessera, Inc. Interconnect structure
9502390, Aug 03 2012 Invensas Corporation BVA interposer
9508785, Nov 27 2013 Altera Corporation Semiconductor device including a resistor metallic layer and method of forming the same
9536938, Nov 27 2013 Altera Corporation Semiconductor device including a resistor metallic layer and method of forming the same
9553076, Jul 19 2010 Tessera, Inc. Stackable molded microelectronic packages with area array unit connectors
9553081, Nov 30 2012 Altera Corporation Semiconductor device including a redistribution layer and metallic pillars coupled thereto
9570382, Jul 19 2010 Tessera, Inc. Stackable molded microelectronic packages
9570416, Nov 03 2004 Tessera, Inc. Stacked packaging improvements
9583411, Jan 17 2014 Invensas Corporation Fine pitch BVA using reconstituted wafer with area array accessible for testing
9601454, Feb 01 2013 Invensas Corporation Method of forming a component having wire bonds and a stiffening layer
9615456, Dec 20 2012 Invensas Corporation Microelectronic assembly for microelectronic packaging with bond elements to encapsulation surface
9633971, Jul 10 2015 Invensas Corporation Structures and methods for low temperature bonding using nanoparticles
9633979, Jul 15 2013 Invensas Corporation Microelectronic assemblies having stack terminals coupled by connectors extending through encapsulation
9646917, May 29 2014 Invensas Corporation Low CTE component with wire bond interconnects
9659848, Nov 18 2015 Invensas Corporation Stiffened wires for offset BVA
9673192, Nov 27 2013 Altera Corporation Semiconductor device including a resistor metallic layer and method of forming the same
9680008, Jan 29 2004 TAHOE RESEARCH, LTD Laterally diffused metal oxide semiconductor device and method of forming the same
9685365, Aug 08 2013 Invensas Corporation Method of forming a wire bond having a free end
9691679, Feb 24 2012 Invensas Corporation Method for package-on-package assembly with wire bonds to encapsulation surface
9691731, May 03 2011 Tessera, Inc. Package-on-package assembly with wire bonds to encapsulation surface
9716075, Dec 21 2010 Tessera, Inc. Semiconductor chip assembly and method for making same
9728527, Nov 22 2013 Invensas Corporation Multiple bond via arrays of different wire heights on a same substrate
9735084, Dec 11 2014 Invensas Corporation Bond via array for thermal conductivity
9761554, May 07 2015 Invensas Corporation Ball bonding metal wire bond wires to metal pads
9761558, Oct 17 2011 Invensas Corporation Package-on-package assembly with wire bond vias
9773685, Nov 10 2003 STATS CHIPPAC PTE LTE Solder joint flip chip interconnection having relief structure
9793877, Dec 17 2013 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Encapsulated bulk acoustic wave (BAW) resonator device
9812402, Oct 12 2015 ADEIA SEMICONDUCTOR TECHNOLOGIES LLC Wire bond wires for interference shielding
9812433, Mar 31 2014 Invensas Corporation Batch process fabrication of package-on-package microelectronic assemblies
9818713, Jul 10 2015 Invensas Corporation Structures and methods for low temperature bonding using nanoparticles
9837330, Jan 17 2014 Invensas Corporation Fine pitch BVA using reconstituted wafer with area array accessible for testing
9842745, Feb 17 2012 Invensas Corporation Heat spreading substrate with embedded interconnects
9852969, Nov 22 2013 Invensas Corporation Die stacks with one or more bond via arrays of wire bond wires and with one or more arrays of bump interconnects
9865556, Nov 10 2003 STATS ChipPAC Pte Ltd. Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask
9888579, Mar 05 2015 Invensas Corporation Pressing of wire bond wire tips to provide bent-over tips
9893033, Nov 12 2013 Invensas Corporation Off substrate kinking of bond wire
9899286, Nov 10 2003 STATS ChipPAC Pte. Ltd. Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask
9911718, Nov 17 2015 Invensas Corporation ‘RDL-First’ packaged microelectronic device for a package-on-package device
9917073, Jul 31 2012 Invensas Corporation Reconstituted wafer-level package dram with conductive interconnects formed in encapsulant at periphery of the package
9922915, Nov 10 2003 STATS CHIPPAC PTE LTE Bump-on-lead flip chip interconnection
9935075, Jul 29 2016 Invensas Corporation Wire bonding method and apparatus for electromagnetic interference shielding
9947641, May 30 2014 Invensas Corporation Wire bond support structure and microelectronic package including wire bonds therefrom
9953914, May 22 2012 Invensas Corporation Substrate-less stackable package with wire-bond interconnect
9984901, Dec 23 2005 Tessera, Inc. Method for making a microelectronic assembly having conductive elements
9984992, Dec 30 2015 Invensas Corporation Embedded wire bond wires for vertical integration with separate surface mount and wire bond mounting surfaces
RE46466, Sep 01 2005 Texas Instruments Incorporated Method for fabricating low resistance, low inductance interconnections in high current semiconductor devices
RE46618, Sep 01 2005 Texas Instruments Incorporated Method for fabricating low resistance, low inductance interconnections in high current semiconductor devices
RE47600, Nov 10 2003 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming electrical interconnect with stress relief void
RE48420, Sep 01 2005 Texas Instruments Incorporated Method for fabricating low resistance, low inductance interconnections in high current semiconductor devices
Patent Priority Assignee Title
4914814, May 04 1989 International Business Machines Corporation Process of fabricating a circuit package
5634268, Jun 07 1995 International Business Machines Corporation Method for making direct chip attach circuit card
5640052, Mar 10 1993 NEC Corporation Interconnection structure of electronic parts
5723904, Mar 10 1993 SUMITOMO ELECTRIC INDUSTRIES, LTD Packaged semiconductor device suitable to be mounted and connected to microstrip line structure board
5747101, Feb 02 1994 GLOBALFOUNDRIES Inc Direct chip attachment (DCA) with electrically conductive adhesives
5796591, Jun 07 1995 International Business Machines Corporation Direct chip attach circuit card
5889326, Feb 27 1996 Godo Kaisha IP Bridge 1 Structure for bonding semiconductor device to substrate
6011313, Jun 23 1997 Visteon Global Technologies, Inc Flip chip interconnections on electronic modules
6024275, Jun 17 1997 National Semiconductor Corporation Method of making flip chip and BGA interconnections
6082610, Jun 23 1997 Visteon Global Technologies, Inc Method of forming interconnections on electronic modules
6107180, Jan 30 1998 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Method for forming interconnect bumps on a semiconductor die
6114187, Jan 08 1998 MICROFAB TECHNOLOGIES, INC Method for preparing a chip scale package and product produced by the method
6165885, Aug 02 1995 International Business Machines Corporation Method of making components with solder balls
6177636, Dec 29 1994 Tessera, Inc. Connection components with posts
6196443, Jul 22 1997 International Business Machines Corporation Pb-In-Sn tall C-4 for fatigue enhancement
6250541, Jun 23 1997 Visteon Global Technologies, Inc Method of forming interconnections on electronic modules
6303872, Jun 25 1997 WILMINGTON TRUST FSB, AS ADMINISTRATIVE AGENT Anti-tombstoning solder joints
6337445, Mar 16 1998 Texas Instruments Incorporated Composite connection structure and method of manufacturing
6344234, Jun 07 1995 ULTRATECH, INC Method for forming reflowed solder ball with low melting point metal cap
6350668, Jun 07 1999 Low cost chip size package and method of fabricating the same
6363295, Jun 06 1997 Micron Technology, Inc. Method for using data regarding manufacturing procedures integrated circuits (IC's) have undergone, such as repairs, to select procedures the IC's will undergo, such as additional repairs
6372624, Aug 04 1997 Micron Technology, Inc. Method for fabricating solder bumps by wave soldering
6380555, Dec 24 1999 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Bumped semiconductor component having test pads, and method and system for testing bumped semiconductor components
6395097, Dec 16 1999 Bell Semiconductor, LLC Method and apparatus for cleaning and removing flux from an electronic component package
EP1080889,
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jul 30 2001QUESTECH SOLUTIONS PTE LTDAdvanpack Solutions Pte LtdCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0129750310 pdf
Aug 21 2001Advanpack Solutions Pte Ltd(assignment on the face of the patent)
Oct 02 2001CHEW, JIMMY HWEE SENGQUESTECH SOLUTIONS PTE LTDASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0124860194 pdf
Oct 02 2001TAN, KIM HWEEQUESTECH SOLUTIONS PTE LTDASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0124860194 pdf
Date Maintenance Fee Events
Aug 04 2006ASPN: Payor Number Assigned.
Sep 19 2006M2551: Payment of Maintenance Fee, 4th Yr, Small Entity.
Oct 18 2010M2552: Payment of Maintenance Fee, 8th Yr, Small Entity.
Sep 25 2014M2553: Payment of Maintenance Fee, 12th Yr, Small Entity.


Date Maintenance Schedule
Apr 22 20064 years fee payment window open
Oct 22 20066 months grace period start (w surcharge)
Apr 22 2007patent expiry (for year 4)
Apr 22 20092 years to revive unintentionally abandoned end. (for year 4)
Apr 22 20108 years fee payment window open
Oct 22 20106 months grace period start (w surcharge)
Apr 22 2011patent expiry (for year 8)
Apr 22 20132 years to revive unintentionally abandoned end. (for year 8)
Apr 22 201412 years fee payment window open
Oct 22 20146 months grace period start (w surcharge)
Apr 22 2015patent expiry (for year 12)
Apr 22 20172 years to revive unintentionally abandoned end. (for year 12)