A communications system is disclosed that includes at least one remote expansion unit (RXU) that is operatively coupled to at least one remote unit (RU). The at least one RU is configured to receive a first and a second downlink optical radio frequency (rf) communications signal. The at least one RU comprises at least one optical-to-electrical (O/E) converter configured to convert the first and second downlink optical rf communications signals to respective first and second downlink electrical rf communications signals. The at least one RXU is configured to receive the second downlink electrical rf communications signal from the at least one RU. The RU may comprise selection circuitry configured to identify which of the downlink electrical communications signals are sent to the RXU. The RXU may be configured to provide an uplink electrical rf communications signal received from a client device to the RU.

Patent
   10148347
Priority
Apr 29 2011
Filed
Sep 29 2017
Issued
Dec 04 2018
Expiry
Apr 25 2032

TERM.DISCL.
Assg.orig
Entity
Large
1
1046
currently ok
14. A communications system, comprising:
at least one remote unit (RU) configured to receive a plurality of downlink optical communications signals; and
at least one remote expansion unit (RXU) operatively coupled to the at least one RU and comprising at least one antenna configured to communicate with one or more client devices,
wherein the at least one RU comprises:
at least one optical-to-electrical (O/E) converter configured to convert the plurality of downlink optical communications signals to a respective plurality of downlink electrical communications signals;
at least one electrical-to-optical (E/O) converter configured to convert an uplink electrical communications signal to an uplink optical communications signal; and
selection circuitry configured to identify selected signals from the plurality of downlink electrical communications signals to be sent to the at least one RXU.
1. A communications system, comprising:
at least one remote unit (RU) configured to receive a first downlink optical radio frequency (rf) communications signal and a second downlink optical rf communications signal, wherein the at least one RU comprises:
at least one optical-to-electrical (O/E) converter configured to convert the first downlink optical rf communications signal and the second downlink optical rf communications signal to a respective first downlink electrical rf communications signal and a second downlink electrical rf communications signal; and
at least one electrical-to-optical (E/O) converter configured to convert an uplink electrical rf communications signal to an uplink optical rf communications signal; and
at least one remote expansion unit (RXU) operatively coupled to the at least one RU and comprising at least one antenna, the at least one RXU configured to receive the second downlink electrical rf communications signal from the at least one RU.
2. The communications system of claim 1, wherein the at least one RXU is configured to receive at least one electrical rf communications signal from at least one client device via the at least one antenna.
3. The communications system of claim 1, wherein the at least one RXU is configured to provide an uplink electrical rf communications signal received from a client device to the at least one RU.
4. The communications system of claim 3, wherein the at least one RXU further comprises at least one frequency conversion interface configured to frequency convert the uplink electrical rf communications signal.
5. The communications system of claim 1, wherein the first and second downlink optical rf communications signals are in a first frequency band, and the at least one RXU is configured to receive the second downlink electrical rf communications signal in the first frequency band from the at least one RU.
6. The communications system of claim 5, wherein the at least one RXU is configured to receive an uplink rf communications signal in the first frequency band.
7. The communications system of claim 1, wherein at least one of the at least one RU and the at least one RXU further comprises a detector configured to provide a signal indicative of a total power of an rf signal received by the at least one of the at least one RU or the at least one RXU.
8. The communications system of claim 1, wherein the at least one RU is configured to receive the first downlink optical rf communications signal and the second downlink optical rf communications signal from a first service provider among a plurality of service providers, and the at least one RXU is configured to receive the second downlink electrical rf communications signal from the at least one RU.
9. The communications system of claim 1, further comprising a plurality of RUs and a plurality of RXUs, each of the plurality of RXUs operatively coupled with at least one of the plurality of RUs, wherein:
at least one of the plurality of RUs is configured to receive the first downlink optical rf communications signal and the second downlink optical rf communications signal in a second frequency band; and
at least one of the plurality of RXUs is configured to receive the second downlink electrical rf communications signal in the second frequency band from at least one RU among the plurality of RUs.
10. The communications system of claim 1, wherein the first downlink optical rf communications signal is comprised of a first rf multiple-input, multiple-output (MIMO) signal for a MIMO communications service, and the second downlink optical rf communications signal is comprised of a second rf MIMO signal for the MIMO communications service.
11. The communications system of claim 10, wherein the at least one O/E converter is configured to convert the first rf MIMO signal and the second rf MIMO signal to a first electrical rf MIMO signal and a second electrical rf MIMO signal; and
wherein the first electrical rf MIMO signal is of a first frequency, and the second electrical rf MIMO signal received by the at least one RXU is of a second frequency different from the first frequency.
12. The communications system of claim 11, wherein the at least one RXU is further configured to frequency shift the second electrical rf MIMO signal to the first frequency.
13. The communications system of claim 1, wherein the first downlink optical rf communications signal is comprised of a first rf digital signal, and the second downlink optical rf communications signal is comprised of a second rf digital signal.
15. The communications system of claim 14, wherein the at least one RXU is configured to provide an uplink electrical communications signal received from a client device to the at least one RU.
16. The communications system of claim 15, wherein the at least one E/O converter is configured to convert the uplink electrical communications signal received from the at least one RXU to an uplink optical communications signal.
17. The communications system of claim 15, wherein the at least one RXU comprises at least one frequency conversion interface configured to frequency convert the uplink electrical communications signal.
18. The communications system of claim 14, wherein at least one of the at least one RU and the at least one RXU further comprises a detector configured to provide a signal indicative of a total power of a signal received by the at least one of the at least one RU or the at least one RXU.
19. The communications system of claim 14, wherein at least one of the at least one RU and the at least one RXU further comprises an rf communications module configured to provide rf communications services to and/or from the one or more client devices.
20. The communications system of claim 14, wherein the at least one RU further comprises a digital data services (DDS) module configured to provide media conversion and to route digital data service signals received from a digital data services switch to the one or more client devices communicatively coupled to the at least one RU and configured to receive digital data services.

This application is a continuation of U.S. patent application Ser. No. 14/862,635 filed on Sep. 23, 2015, now issued as U.S. Pat. No. 9,806,797, which is a continuation of U.S. patent application Ser. No. 14/063,245 filed on Oct. 25, 2013, now issued as U.S. Pat. No. 9,240,835, which claims the benefit of priority under 35 U.S.C. § 365 of International Patent Application No. PCT/US12/34855, filed on Apr. 25, 2012, designating the United States of America, the contents of which are incorporated herein by reference in their entireties.

This application also claims the benefit of priority under 35 U.S.C. § 119 of U.S. Provisional Application No. 61/480,684, filed on Apr. 29, 2011, the content of which is incorporated herein by reference in its entirety.

The technology of the disclosure relates to increasing power of radio frequency (RF) signals distributed to remote antenna units in a distributed antenna system.

Wireless communication is rapidly growing, with ever-increasing demands for high-speed mobile data communication. As an example, so-called “wireless fidelity” or “WiFi” systems and wireless local area networks (WLANs) are being deployed in many different types of areas (e.g., coffee shops, airports, libraries, etc.). Distributed antenna systems communicate with wireless devices called “clients,” which must reside within the wireless range or “cell coverage area” in order to communicate with an access point device.

One approach to deploying a distributed antenna system involves the use of radio frequency (RF) antenna coverage areas, also referred to as “antenna coverage areas.” The antenna coverage areas are provided by remote antenna units in the distributed antenna system. Remote antenna units can provide antenna coverage areas having radii in the range from a few meters up to twenty (20) meters as an example. If the antenna coverage areas provided each cover a small area, there are typically only a few users (clients) per antenna coverage area. This allows for minimizing the amount of RF bandwidth shared among the wireless system users. It may be desirable to provide antenna coverage areas in a building or other facility to provide indoor distributed antenna system access to clients within the building or facility. It may also be desirable to employ optical fiber to distribute RF communications signals to provide an optical fiber-based distributed antenna system. Distribution of RF communications signals over optical fiber can include Radio-over-Fiber (RoF) distribution. Benefits of optical fiber include increased bandwidth.

Remote antenna units may contain power-consuming circuits and other components that are involved in processing RF communications signals. For example, remote antenna units provided in an optical-fiber based distributed antenna system may include electrical-to-optical (E/O) converters and optical-to-electrical (O/E) converters that require power to operate. The E/O and O/E converters convert downlink optical RF communications signals to downlink electrical RF communications signals and uplink electrical RF communications signals to uplink optical RF communications signals, respectively. Other power-consuming components may be included in the remote antenna unit. A local power source can be provided at the remote antenna units to supply power to power-consuming components in the remote antenna units. Alternatively, to avoid providing a local power source, a remote power source can be provided that provides power over power lines routed to the remote antenna units. The power lines may be provided in separate cabling or bundled in a hybrid cable with communications lines routed to the remote antenna units.

A distributed antenna system may provide an allocated amount of composite RF power per each supported frequency band. For purposes of this specification, RF power is considered to be the power of the RF communications signals received from an antenna. As an example, fourteen (14) decibels per milliwatt (dBm) of composite power may be available for each band within the distributed antenna system. The fourteen (14) dBm per band needs to be shared between all channels within the band. The typical coverage area per remote module in each particular band heavily depends on power per channel and frequently becomes a limiting factor when multiple channels need to be supported. In the case where multiple service providers or operators are on the distributed antenna system supporting multiple channels within a single band, the coverage area of an antenna is significantly decreased. As an example, if eight (8) channels are used in a given band, the power per channel is five (5) dBm. As another example, if twelve channels are used in a given band, perhaps because multiple service providers or operators are operating within the same band, the power per channel is reduced to 3.2 dBm.

Embodiments disclosed in the detailed description include a system for increasing an output power of a frequency band in a distributed antenna system, and related methods and devices. The distributed antenna system may distribute radio frequency (RF) communications signals to one or more remote antenna unit (RAU) modules for communicating to client devices. As a non-limiting example, the distributed antenna system may be an optical fiber-based distributed antenna system. The distributed antenna system may further include one or more remote expansion unit (RXU) modules that are operatively coupled to at least one RAU module. The RXU module(s) may be configured to increase the output RF power, and thus the coverage area, of a first frequency band in the distributed antenna system when a plurality of channels are being used in a first frequency band supported by the distributed antenna system. In one embodiment, a first group of the plurality of channels within a first frequency band is allocated to the RAU module(s) and a second group of the plurality of the channels within the first frequency band is allocated to the RXU module(s).

In this regard in one embodiment, the RAU module(s) may be configured to receive RF signals from the first group of the plurality of channels being used in the first frequency band. The RXU module(s) may be configured to receive RF signals from the second group of the plurality of channels being used in the first frequency band. In this manner, the amount of composite power per channel is increased since the RXU module can deliver additional, higher power than the RAU module may be able to provide alone, and the power allocated to each channel in the frequency band may not have to be split.

In another embodiment, a method of providing increased power of a frequency band in a distributed antenna system is provided. This method comprises providing at least one RAU module and at least one RXU module operatively coupled to the at least one RAU module in a distributed antenna system, wherein a plurality of channels are being used in a first frequency band supported by the distributed antenna system. This method may also include allocating a first group of the plurality of channels within the first frequency band to the at least one RAU module and allocating a second group of the plurality of the channels within the first frequency band to the at least one RXU module. In one embodiment, at least a first portion of the RF signals within the first frequency band may then be transmitted over the first group of the plurality of channels to the at least one RAU module, and at least a second portion of the RF signals within the first frequency band may then be transmitted over the second group of the plurality of channels to the at least one RXU module.

By using the systems, methods, and devices disclosed herein, increased coverage per antenna may be achieved due to the increased output power at the RAU module and RXU module. This means that service providers or operators within a band may not need to share a power amplifier of the RAU module. The systems, methods, and devices disclosed herein can also allow more flexible and more balanced power allocation. The increased output power achieved by providing the RXU module and distributing the channels between the RAU module and the RXU module increases the coverage of a given band without the need to run parallel cabling and/or additional active equipment.

Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the embodiments as described herein, including the detailed description that follows, the claims, as well as the appended drawings.

It is to be understood that both the foregoing general description and the following detailed description present embodiments, and are intended to provide an overview or framework for understanding the nature and character of the disclosure. The accompanying drawings are included to provide a further understanding, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments, and together with the description serve to explain the principles and operation of the concepts disclosed.

FIG. 1 is a schematic diagram of an exemplary distributed antenna system;

FIG. 2 is a more detailed schematic diagram of exemplary head-end equipment and a remote antenna unit (RAU) that can be deployed in the distributed antenna system of FIG. 1;

FIG. 3 is a partially schematic cut-away diagram of an exemplary building infrastructure in which the distributed antenna system in FIG. 1 can be employed;

FIG. 4 is a schematic diagram of another exemplary distributed antenna system;

FIG. 5 is a schematic diagram of an exemplary embodiment of providing digital data services to RAUs in a distributed antenna system;

FIG. 6 is a schematic diagram of an exemplary RAU configured with power-consuming components for providing radio frequency (RF) communications services, digital data services, external power to digital data service devices, and a remote expansion unit;

FIG. 7 is a schematic diagram of an exemplary distributed antenna system where the RF signals for multiple service providers in a given band are combined and transmitted to an exemplary RAU and the available power is split among a plurality of channels within the given band;

FIG. 8 is a schematic diagram of an exemplary distributed antenna system that includes an exemplary remote expansion unit (RXU) configured to increase the power of a given band, where the RF signals for multiple service providers in a given band are combined;

FIG. 9 is a schematic diagram of an exemplary distributed antenna system where an exemplary RXU provides a power upgrade to the PCS band;

FIG. 10 is a block diagram of an exemplary radio interface module (RIM) configured for use in an exemplary distributed antenna system;

FIG. 11 is a block diagram of an exemplary RIM that includes a frequency conversion interface configured for use in an exemplary distributed antenna system with an exemplary RXU;

FIG. 12 is a high level block diagram of an exemplary RAU configured for use in an exemplary distributed antenna system with an exemplary RXU; and

FIG. 13 is a high level block diagram of an exemplary RXU that includes a frequency conversion interface configured for use in an exemplary distributed antenna system.

Reference will now be made in detail to the embodiments, examples of which are illustrated in the accompanying drawings, in which some, but not all embodiments are shown. Indeed, the concepts may be embodied in many different forms and should not be construed as limiting herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Whenever possible, like reference numbers will be used to refer to like components or parts.

Embodiments disclosed in the detailed description include a system for increasing an output power of a frequency band in a distributed antenna system, and related methods and devices. The distributed antenna system may distribute radio frequency (RF) communications signals to one or more remote antenna unit (RAU) modules for communicating to client devices. As a non-limiting example, the distributed antenna system may be an optical fiber-based distributed antenna system. The distributed antenna system may further include one or more remote expansion unit (RXU) modules that are operatively coupled to at least one RAU module. The RXU module(s) may be configured to increase the output RF power, and thus the coverage area, of a first frequency band in the distributed antenna system when a plurality of channels are being used in a first frequency band supported by the distributed antenna system. In one embodiment, a first group of the plurality of channels within a first frequency band is allocated to the RAU module(s) and a second group of the plurality of the channels within the first frequency band is allocated to the RXU module(s).

In this regard in one embodiment, the RAU module(s) may be configured to receive RF signals from the first group of the plurality of channels being used in the first frequency band. The RXU module(s) may be configured to receive RF signals from the second group of the plurality of channels being used in the first frequency band. In this manner, the amount of composite power per channel is increased since the RXU module can deliver additional, higher power than the RAU module may be able to provide alone, and the power allocated to each group of channels in the frequency band may not have to be split.

Before discussing the systems, methods, and devices for increasing output power in distributed antenna systems, and related methods and devices starting at FIG. 7, FIGS. 1-6 are provided and first discussed below. FIGS. 1-6 provide examples of distributed antenna systems, including those according to the embodiments described herein, as well as an exemplary RAU and an exemplary RXU in distributed antenna system, wherein the RAU is configured with power-consuming components for providing RF communications services, digital data services, and external power to digital data service devices.

A distributed antenna system, as described more fully below with respect to FIGS. 1-6, may be designed to distribute analog radio signals within buildings. This is done by converting the electrical radio signal into an optical RF signal at a head-end unit (HEU) or at an optical interface unit (OIU), distributing the signal on an optical cabling infrastructure to a number of remote antenna units (RAUs), converting the optical RF signals back into an electrical radio signal at the RAU, and transmitting the electrical radio signals to wireless units via an antenna. The structured cabling solution may include one or more copper pair(s) to provide power to active devices in the system as necessary.

The distributed antenna system may also have a remote expansion unit (RXU) that connects to the RAU, as described more fully below in FIG. 6. The RXU may provide an additional RF communications band or bands, or the RXU may provide multiple-input, multiple-output (MIMO) support within a band contained in the RAU. These additional services are provided without the need for additional optical fiber or cabling.

FIG. 1 is a schematic diagram of an exemplary distributed antenna system. In this embodiment, the distributed antenna system is an optical fiber-based distributed antenna system 10; however, other types of distributed antenna systems are also possible. The optical fiber-based distributed antenna system 10 is configured to create one or more antenna coverage areas for establishing communications with wireless client devices located in the RF range of the antenna coverage areas. The optical fiber-based distributed antenna system 10 provides RF communications services (e.g., cellular services). In this embodiment, the optical fiber-based distributed antenna system 10 includes head end equipment in the form of a head-end unit (HEU) 12, one or more remote antenna units (RAUs) 14, and an optical fiber 16 that optically couples the HEU 12 to the RAU 14. The HEU 12 is configured to receive communications over downlink electrical RF communications signals 18D from a source or sources, such as a network or carrier as examples, and provide such communications to the RAU 14. The HEU 12 is also configured to return communications received from the RAU 14, via uplink electrical RF communications signals 18U, back to the source or sources. In this regard in this embodiment, the optical fiber 16 includes at least one downlink optical fiber 16D to carry signals communicated from the HEU 12 to the RAU 14 and at least one uplink optical fiber 16U to carry signals communicated from the RAU 14 back to the HEU 12. Alternatively, a single optical fiber could be used to carry signals communicated from the HEU 12 to the RAU 14 and at least one uplink optical fiber 16U to carry signals communicated from the RAU 14 back to the HEU 12.

The optical fiber-based distributed antenna system 10 has an antenna coverage area 20 that can be substantially centered about the RAU 14. The antenna coverage area 20 of the RAU 14 forms an RF coverage area 21. The HEU 12 is adapted to perform or to facilitate any one of a number of Radio-over-Fiber (RoF) applications, such as radio frequency identification (RFID), wireless local-area network (WLAN) communication, or cellular phone service. Shown within the antenna coverage area 20 is a client device 24 in the form of a mobile device as an example, which may be a cellular telephone as an example. The client device 24 can be any device that is capable of receiving RF communications signals. The client device 24 includes an antenna 26 (e.g., a wireless card) adapted to receive and/or send electromagnetic RF communications signals.

With continuing reference to FIG. 1, to communicate the electrical RF communications signals over the downlink optical fiber 16D to the RAU 14, to in turn be communicated to the client device 24 in the antenna coverage area 20 formed by the RAU 14, the HEU 12 includes an electrical-to-optical (E/O) converter 28. The E/O converter 28 converts the downlink electrical RF communications signals 18D to downlink optical RF communications signals 22D to be communicated over the downlink optical fiber 16D. The RAU 14 includes an optical-to-electrical (O/E) converter 30 to convert received downlink optical RF communications signals 22D back to electrical RF communications signals to be communicated wirelessly through an antenna 32 of the RAU 14 to client devices 24 located in the antenna coverage area 20.

Similarly, the antenna 32 is also configured to receive wireless RF communications from client devices 24 in the antenna coverage area 20. In this regard, the antenna 32 receives wireless RF communications from client devices 24 and communicates electrical RF communications signals representing the wireless RF communications to an E/O converter 34 in the RAU 14. The E/O converter 34 converts the electrical RF communications signals into uplink optical RF communications signals 22U to be communicated over the uplink optical fiber 16U. An O/E converter 36 provided in the HEU 12 converts the uplink optical RF communications signals 22U into uplink electrical RF communications signals, which can then be communicated as uplink electrical RF communications signals 18U back to a network or other source.

FIG. 2 is a more detailed schematic diagram of the exemplary optical fiber-based distributed antenna system 10 of FIG. 1 that provides electrical RF service signals for a particular RF service or application. In an exemplary embodiment, the HEU 12 includes a service unit 37 that provides electrical RF service signals by passing (or conditioning and then passing) such signals from one or more outside networks 38 via a network link 39. In a particular example embodiment, this includes providing WLAN signal distribution as specified in the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard, i.e., in the frequency range from 2.4 to 2.5 GigaHertz (GHz) and from 5.0 to 6.0 GHz. Any other electrical RF communications signal frequencies are possible. In another exemplary embodiment, the service unit 37 provides electrical RF service signals by generating the signals directly. In another exemplary embodiment, the service unit 37 coordinates the delivery of the electrical RF service signals between client devices 24 within the antenna coverage area 20.

With continuing reference to FIG. 2, the service unit 37 is electrically coupled to the E/O converter 28 that receives the downlink electrical RF communications signals 18D from the service unit 37 and converts them to corresponding downlink optical RF communications signals 22D. In an exemplary embodiment, the E/O converter 28 includes a laser suitable for delivering sufficient dynamic range for the RoF applications described herein, and optionally includes a laser driver/amplifier electrically coupled to the laser. Examples of suitable lasers for the E/O converter 28 include, but are not limited to, laser diodes, distributed feedback (DFB) lasers, Fabry-Perot (FP) lasers, and vertical cavity surface emitting lasers (VCSELs).

With continuing reference to FIG. 2, the HEU 12 also includes the O/E converter 36, which is electrically coupled to the service unit 37. The O/E converter 36 receives the uplink optical RF communications signals 22U and converts them to corresponding uplink electrical RF communications signals 18U. In o embodiment, the O/E converter 36 is a photodetector, or a photodetector electrically coupled to a linear amplifier. The E/O converter 28 and the O/E converter 36 constitute a “converter pair” 35, as shown in FIG. 2.

In accordance with an exemplary embodiment, the service unit 37 in the HEU 12 can include an RF communications signal conditioner unit 40 for conditioning the downlink electrical RF communications signals 18D and the uplink electrical RF communications signals 18U, respectively. The service unit 37 can include a digital signal processing unit (“digital signal processor”) 42 for providing to the RF communications signal conditioner unit 40 an electrical signal that is modulated onto an RF carrier to generate a desired downlink electrical RF communications signal 18D. The digital signal processor 42 is also configured to process a demodulation signal provided by the demodulation of the uplink electrical RF communications signal 18U by the RF communications signal conditioner unit 40. The service unit 37 in the HEU 12 can also include an optional head-end unit controller (HEC) 44 (or “controller 44”) for processing data and otherwise performing logic and computing operations, and a memory unit 46 for storing data, such as data to be transmitted over a WLAN or other network for example.

With continuing reference to FIG. 2, the RAU 14 also includes a converter pair 48 comprising the O/E converter 30 and the E/O converter 34. The O/E converter 30 converts the received downlink optical RF communications signals 22D from the HEU 12 back into downlink electrical RF communications signals 50D. The E/O converter 34 converts uplink electrical RF communications signals 50U received from the client device 24 into the uplink optical RF communications signals 22U to be communicated to the HEU 12. The O/E converter 30 and the E/O converter 34 are electrically coupled to the antenna 32 via an RF signal-directing element 52, such as a circulator for example. The RF signal-directing element 52 serves to direct the downlink electrical RF communications signals 50D and the uplink electrical RF communications signals 50U, as discussed below. In accordance with an exemplary embodiment, the antenna 32 can include any type of antenna, including but not limited to one or more patch antennas, such as disclosed in U.S. patent application Ser. No. 11/504,999, filed Aug. 16, 2006, entitled “Radio-over-Fiber Transponder With A Dual-Band Patch Antenna System,” now issued as U.S. Pat. No. 7,627,250, and U.S. patent application Ser. No. 11/451,553, filed Jun. 12, 2006, entitled “Centralized Optical Fiber-based Wireless Picocellular Systems and Methods,” published as U.S. Patent Application Publication No. 2007/0286599, now abandoned, both of which are incorporated herein by reference in their entireties.

With continuing reference to FIG. 2, the optical fiber-based distributed antenna system 10 also includes a power supply 54 that provides an electrical power signal 56. The power supply 54 is electrically coupled to the HEU 12 for powering the power-consuming elements therein. In an exemplary embodiment, an electrical power line 58 runs through the HEU 12 and over to the RAU 14 to power the O/E converter 30 and the E/O converter 34 in the converter pair 48, the optional RF signal-directing element 52 (unless the RF signal-directing element 52 is a passive device such as a circulator for example), and any other power-consuming elements provided. In an exemplary embodiment, the electrical power line 58 includes two wires 60 and 62 that carry a single voltage and that are electrically coupled to a DC power converter 64 at the RAU 14. The DC power converter 64 is electrically coupled to the O/E converter 30 and the E/O converter 34 in the converter pair 48, and changes the voltage or levels of the electrical power signal 56 to the power level(s) required by the power-consuming components in the RAU 14. In an exemplary embodiment, the DC power converter 64 is either a DC/DC power converter or an AC/DC power converter, depending on the type of electrical power signal 56 carried by the electrical power line 58. In another example embodiment, the electrical power line 58 (dashed line) runs directly from the power supply 54 to the RAU 14 rather than from or through the HEU 12. In another example embodiment, the electrical power line 58 includes more than two wires and may carry multiple voltages.

To provide further exemplary illustration of how an optical fiber-based distributed antenna system can be deployed indoors, FIG. 3 is provided. FIG. 3 is a partially schematic cut-away diagram of a building infrastructure 70 employing an optical fiber-based distributed antenna system. The system may be the optical fiber-based distributed antenna system 10 of FIGS. 1 and 2. The building infrastructure 70 generally represents any type of building in which the optical fiber-based distributed antenna system 10 can be deployed. As previously discussed with regard to FIGS. 1 and 2, the optical fiber-based distributed antenna system 10 incorporates the HEU 12 to provide various types of communications services to coverage areas within the building infrastructure 70, as an example. For example, as discussed in more detail below, the optical fiber-based distributed antenna system 10 in this embodiment is configured to receive wireless RF communications signals and convert the RF communications signals into RoF signals to be communicated over the optical fiber 16 to multiple RAUs 14. The optical fiber-based distributed antenna system 10 in this embodiment can be, for example, an indoor distributed antenna system (IDAS) to provide wireless service inside the building infrastructure 70. These wireless signals can include cellular service, wireless services such as RFID tracking, Wireless Fidelity (WiFi), local area network (LAN), WLAN, and combinations thereof, as examples.

With continuing reference to FIG. 3, the building infrastructure 70 in this embodiment includes a first (ground) floor 72, a second floor 74, and a third floor 76. The floors 72, 74, 76 are serviced by the HEU 12 through a main distribution frame 78 to provide antenna coverage areas 80 in the building infrastructure 70. Only the ceilings of the floors 72, 74, 76 are shown in FIG. 3 for simplicity of illustration. In the example embodiment, a main cable 82 has a number of different sections that facilitate the placement of a large number of RAUs 14 in the building infrastructure 70. Each RAU 14 in turn services its own coverage area in the antenna coverage areas 80. The main cable 82 can include, for example, a riser cable 84 that carries all of the downlink and uplink optical fibers 16D, 16U to and from the HEU 12. The riser cable 84 may be routed through an interconnect unit (ICU) 85. The ICU 85 may be provided as part of or separate from the power supply 54 in FIG. 2. The ICU 85 may also be configured to provide power to the RAUs 14 via the electrical power line 58, as illustrated in FIG. 2 and discussed above, provided inside an array cable 87, or tail cable or home-run tether cable as other examples, and distributed with the downlink and uplink optical fibers 16D, 16U to the RAUs 14. The main cable 82 can include one or more multi-cable (MC) connectors adapted to connect select downlink and uplink optical fibers 16D, 16U, along with an electrical power line, to a number of optical fiber cables 86.

The main cable 82 enables the multiple optical fiber cables 86 to be distributed throughout the building infrastructure 70 (e.g., fixed to the ceilings or other support surfaces of each floor 72, 74, 76) to provide the antenna coverage areas 80 for the first, second, and third floors 72, 74, and 76. In an example embodiment, the HEU 12 is located within the building infrastructure 70 (e.g., in a closet or control room), while in another example embodiment, the HEU 12 may be located outside of the building infrastructure 70 at a remote location. A base transceiver station (BTS) 88, which may be provided by a second party such as a cellular service provider, is connected to the HEU 12, and can be co-located or located remotely from the HEU 12. A BTS is any station or source that provides an input signal to the HEU 12 and can receive a return signal from the HEU 12. In a typical cellular system, for example, a plurality of BTSs are deployed at a plurality of remote locations to provide wireless telephone coverage. Each BTS serves a corresponding cell, and when a mobile client device enters the cell, the BTS communicates with the mobile client device. Each BTS can include at least one radio transceiver for enabling communication with one or more subscriber units operating within the associated cell. As another example, wireless repeaters or bi-directional amplifiers could also be used to serve a corresponding cell in lieu of a BTS. Alternatively, radio input could be provided by a repeater or picocell as other examples.

The optical fiber-based distributed antenna system 10 in FIGS. 1-3 and described above provides point-to-point communications between the HEU 12 and the RAU 14. Each RAU 14 communicates with the HEU 12 over a distinct downlink and uplink optical fiber pair to provide the point-to-point communications. Whenever an RAU 14 is installed in the optical fiber-based distributed antenna system 10, the RAU 14 is connected to a distinct downlink and uplink optical fiber pair connected to the HEU 12. The downlink and uplink optical fibers 16U, 16D may be provided in a fiber optic cable. Multiple downlink and uplink optical fiber pairs can be provided in a fiber optic cable to service multiple RAUs 14 from a common fiber optic cable. For example, with reference to FIG. 3, RAUs 14 installed on a given floor 72, 74, or 76 may be serviced from the same optical fiber 16. In this regard, the optical fiber 16 may have multiple nodes where distinct downlink and uplink optical fiber pairs can be connected to a given RAU 14. One downlink optical fiber 16 could be provided to support multiple channels each using wavelength-division multiplexing (WDM), as discussed in U.S. patent application Ser. No. 12/892,424 entitled “Providing Digital Data Services in Optical Fiber-based Distributed Radio Frequency (RF) Communications Systems, And Related Components and Methods,” published as U.S. Patent Application Publication No. 2011/0268446, now abandoned, incorporated herein by reference in its entirety. Other options for WDM and frequency-division multiplexing (FDM) are also disclosed in U.S. patent application Ser. No. 12/892,424, published as U.S. Patent Application Publication No. 2011/0268446, now abanonded, any of which can be employed in any of the embodiments disclosed herein.

FIG. 4 is a schematic diagram of another exemplary distributed antenna system 90. In this embodiment, the distributed antenna system 90 is an optical fiber-based distributed antenna system comprised of three main components. One or more radio interfaces provided in the form of radio interface modules (RIMs) 92(1)-92(M) in this embodiment are provided in an HEU 94 to receive and process downlink electrical RF communications signals 96(1)-96(R) prior to optical conversion into downlink optical RF communications signals. The processing of the downlink electrical RF communications signals 96(1)-96(R) can include any of the processing previously described above in the HEU 12 in FIG. 2. The notations “1-R” and “1-M” indicate that any number of the referenced component, 1-R and 1-M, respectively, may be provided. As will be described in more detail below, the HEU 94 is configured to accept a plurality of RIMs 92(1)-92(M) as modular components that can easily be installed and removed or replaced in the HEU 94. In one embodiment, the HEU 94 is configured to support up to four (4) RIMs 92(1)-92(M).

Each RIM 92(1)-92(M) can be designed to support a particular type of radio source or range of radio sources (i.e., frequencies) to provide flexibility in configuring the HEU 94 and the optical fiber-based distributed antenna system 90 to support the desired radio sources. For example, one RIM 92 may be configured to support the Personal Communication Services (PCS) radio band. Another RIM 92 may be configured to support the 700 MHz radio band. In this example, by inclusion of these RIMs 92, the HEU 94 would be configured to support and distribute RF communications signals on both PCS and LTE 700 radio bands. RIMs 92 may be provided in the HEU 94 that support any frequency bands desired, including but not limited to US Cellular band, Personal Communication Services (PCS) band, Advanced Wireless Services (AWS) band, 700 MHz band, Global System for Mobile communications (GSM) 900, GSM 1800, and UMTS. RIMs 92 may be provided in the HEU 94 that support any wireless technologies desired, including but not limited to Code Division Multiple Access (CDMA), CDMA200, 1×RTT, Evolution-Data Only (EV-DO), Universal Mobile Telecommunication System (UMTS), High-speed Packet Access (HSPA), GSM, General Packet Radio Services (GPRS), Enhanced Data GSM Environment (EDGE), Time Division Multiple Access (TDMA), Long Term Evolution (LTE), iDEN, and Cellular Digital Packet Data (CDPD).

RIMs 92 may be provided in the HEU 94 that are configured or pre-configured to support any frequencies desired, including but not limited to US FCC and Industry Canada frequencies (824-849 MHz on uplink and 869-894 MHz on downlink), US FCC and Industry Canada frequencies (1850-1915 MHz on uplink and 1930-1995 MHz on downlink), US FCC and Industry Canada frequencies (1710-1755 MHz on uplink and 2110-2155 MHz on downlink), US FCC frequencies (698-716 MHz and 776-787 MHz on uplink and 728-746 MHz on downlink). EU R & TTE frequencies (880-915 MHz on uplink and 925-960 MHz on downlink), EU R & TTE frequencies (1710-1785 MHz on uplink and 1805-1880 MHz on downlink), EU R & TTE frequencies (1920-1980 MHz on uplink and 2110-2170 MHz on downlink), US FCC frequencies (806-824 MHz on uplink and 851-869 MHz on downlink), US FCC frequencies (896-901 MHz on uplink and 929-941 MHz on downlink), US FCC frequencies (793-805 MHz on uplink and 763-775 MHz on downlink), and US FCC frequencies (2495-2690 MHz on uplink and downlink).

The downlink electrical RF communications signals 96(1)-96(R) are provided to a plurality of optical interfaces provided in the form of optical interface modules (OIMs) 98(1)-98(N) in this embodiment to convert the downlink electrical RF communications signals 96(1)-96(N) into downlink optical signals 100(1)-100(R). The notation “1-N” indicates that any number of the referenced component 1-N may be provided. The OIMs 98 may be configured to provide one or more optical interface components (OICs) that contain O/E and E/O converters, as will be described in more detail below. The OIMs 98 support the radio bands that can be provided by the RIMs 92, including the examples previously described above. Thus, in this embodiment, the OIMs 98 may support a radio band range from 400 MHz to 2700 MHz, as an example, so providing different types or models of OIMs 98 for narrower radio bands to support possibilities for different radio band-supported RIMs 92 provided in the HEU 94 is not required. Further, as an example, the OIMs 98s may be optimized for sub-bands within the 400 MHz to 2700 MHz frequency range, such as 400-700 MHz, 700 MHz-1 GHz, 1 GHz-1.6 GHz, and 1.6 GHz-2.7 GHz, as examples.

The OIMs 98(1)-98(N) each include E/O converters to convert the downlink electrical RF communications signals 96(1)-96(R) to downlink optical signals 100(1)-100(R). The downlink optical signals 100(1)-100(R) are communicated over downlink optical fiber(s) 103D to a plurality of RAUs 102(1)-102(P). The notation “1-P” indicates that any number of the referenced component 1-P may be provided. O/E converters provided in the RAUs 102(1)-102(P) convert the downlink optical signals 100(1)-100(R) back into downlink electrical RF communications signals 96(1)-96(R), which are provided over links 104(1)-104(P) coupled to antennas 106(1)-106(P) in the RAUs 102(1)-102(P) to client devices in the reception range of the antennas 106(1)-106(P).

E/O converters are also provided in the RAUs 102(1)-102(P) to convert uplink electrical RF communications signals 105(1)-105(P) received from client devices through the antennas 106(1)-106(P) into uplink optical signals 108(1)-108(R) to be communicated over uplink optical fibers 103U to the OIMs 98(1)-98(N). The OIMs 98(1)-98(N) include O/E converters that convert the uplink optical signals 108(1)-108(R) into uplink electrical RF communications signals 110(1)-110(R) that are processed by the RIMs 92(1)-92(M) and provided as uplink electrical RF communications signals 112(1)-112(R).

It may be desirable to provide both digital data services and RF communications services for client devices. For example, it may be desirable to provide digital data services and RF communications services in the building infrastructure 70 (FIG. 3) to client devices located therein. Wired and wireless devices may be located in the building infrastructure 70 that are configured to access digital data services. Examples of digital data services include, but are not limited to, Ethernet, WLAN, WiMax, WiFi, Digital Subscriber Line (DSL), and LTE, etc. Ethernet standards could be supported, including but not limited to 100 Megabits per second (Mbs) (i.e., fast Ethernet) or Gigabit (Gb) Ethernet, or ten Gigabit (10 G) Ethernet. Examples of digital data devices include, but are not limited to, wired and wireless servers, wireless access points (WAPs), gateways, desktop computers, hubs, switches, remote radio heads (RRHs), baseband units (BBUs), and femtocells. A separate digital data services network can be provided to provide digital data services to digital data devices.

FIG. 5 is a schematic diagram of an exemplary embodiment of providing digital data services over separate downlink and uplink optical fibers from RF communications services to RAUs in an optical fiber-based distributed antenna system 120. The optical fiber-based distributed antenna system 120 is described as including some components provided in the optical fiber-based distributed antenna system 10 of FIGS. 1-3. These common components are illustrated in FIG. 5 with common element numbers with FIGS. 1-3. However, note that the optical fiber-based distributed antenna system 120 could also employ other components, including those in the optical fiber-based distributed antenna system 90 in FIG. 4.

As illustrated in FIG. 5, the HEU 12 is provided. The HEU 12 receives the downlink electrical RF communications signals 18D from the BTS 88. As previously discussed, the HEU 12 converts the downlink electrical RF communications signals 18D to downlink optical RF communications signals 22D to be distributed to the RAUs 14. The HEU 12 is also configured to convert the uplink optical RF communications signals 22U received from the RAUs 14 into uplink electrical RF communications signals 18U to be provided to the BTS 88 and onto a network 122 connected to the BTS 88. A patch panel 123 may be provided to receive the downlink and uplink optical fibers 16D, 16U configured to carry the downlink and uplink optical RF communications signals 22D, 22U. The downlink and uplink optical fibers 16D, 16U may be bundled together in one or more riser cables 84 and provided to one or more ICUs 85, as previously discussed and illustrated in FIG. 3.

To provide digital data services in the optical fiber-based distributed antenna system 120 in this embodiment, a digital data services controller (also referred to as “DDS controller”) 124 in the form of a media converter in this example is provided. The DDS controller 124 can include only a media converter for provision media conversion functionality or can include additional functionality to facilitate digital data services. The DDS controller 124 is configured to provide digital data services over a communications link, interface, or other communications channel or line, which may be either wired, wireless, or a combination of both. The DDS controller 124 may include a housing configured to house digital media converters (DMCs) 126 to interface to a DDS switch 127 to support and provide digital data services. For example, the DDS switch 127 could be an Ethernet switch. The DDS switch 127 may be configured to provide Gigabit (Gb) Ethernet digital data service as an example. The DMCs 126 are configured to convert electrical digital signals to optical digital signals, and vice versa. The DMCs 126 may be configured for plug and play installation (i.e., installation and operability without user configuration required) into the DDS controller 124. For example, the DMCs 126 may include Ethernet input connectors or adapters (e.g., RJ-45) and optical fiber output connectors or adapters (e.g., LC, SC, ST, MTP).

With continuing reference to FIG. 5, the DDS controller 124 (via the DMCs 126) in this embodiment is configured to convert downlink electrical digital signals (or downlink electrical digital data services signals) 128D over digital line cables 129 from the DDS switch 127 into downlink optical digital signals (or downlink optical digital data services signals) 130D that can be communicated over downlink optical fiber 135D to RAUs 14. The DDS controller 124 (via the DMCs 126) is also configured to receive uplink optical digital signals 130U from the RAUs 14 via the uplink optical fiber 135U and convert the uplink optical digital signals 130U into uplink electrical digital signals 128U to be communicated to the DDS switch 127. In this manner, the digital data services can be provided over optical fiber as part of the optical fiber-based distributed antenna system 120 to provide digital data services in addition to RF communication services. Client devices located at the RAUs 14 can access these digital data services and/or RF communications services depending on their configuration. Exemplary digital data services include Ethernet, WLAN, WiMax, WiFi, Digital Subscriber Line (DSL), and LTE, etc. Ethernet standards could be supported, including but not limited to 100 Megabits per second (Mbs) (i.e., fast Ethernet) or Gigabit (Gb) Ethernet, or ten Gigabit (10 G) Ethernet.

With continuing reference to FIG. 5, in this embodiment, downlink and uplink optical fibers 132D, 132U are provided in a fiber optic cable 134 that is interfaced to the ICU 85. The ICU 85 provides a common point in which the downlink and uplink optical fibers 132D, 132U carrying digital optical signals can be bundled with the downlink and uplink optical fibers 16U, 16D carrying optical RF communications signals. One or more of the fiber optic cables 134, also referenced herein as array cables 134, can be provided containing the downlink and uplink optical fibers 135D, 135U for RF communications services and digital data services to be routed and provided to the RAUs 14. Any combination of services or types of optical fibers can be provided in the array cable 134. For example, the array cable 134 may include single mode and/or multi-mode optical fibers for RF communication services and/or digital data services.

Examples of ICUs that may be provided in the optical fiber-based distributed antenna system 120 to distribute both downlink and uplink optical fibers 135D, 135U for RF communications services and digital data services are described in U.S. patent application Ser. No. 12/466,514, filed on May 15, 2009, entitled “Power Distribution Devices, Systems, and Methods For Radio-Over-Fiber (RoF) Distributed Communication,” now issued as a U.S. Pat. No. 8,155,525, and U.S. Provisional Patent Application Ser. No. 61/330,385, filed on May 2, 2010, entitled “Power Distribution in Optical Fiber-based Distributed Communication Systems Providing Digital Data and Radio-Frequency (RF) Communication Services, and Related Components and Methods,” both of which are incorporated herein by reference in their entireties.

With continuing reference to FIG. 5, some RAUs 14 can be connected to access units (AUs) 138, which may be access points (APs) or other devices supporting digital data services. AUs 138 can also be connected directly to the HEU 12. AUs 138 are illustrated, but the AUs 138 could be any other device supporting digital data services. In the example of AUs, the AUs 138 provide access to the digital data services provided by the DDS switch 127. This is because the downlink and uplink optical fibers 135D, 135U carrying downlink and uplink optical digital signals 130D, 130U converted from downlink and uplink electrical digital signals 128D, 128U from the DDS switch 127 are provided to the AUs 138 via the array cables 134 and RAUs 14. Digital data client devices can access the AUs 138 to access digital data services provided through the DDS switch 127. The AUs 138 may also each include an antenna 140 to provide wireless access to digital data services provided through the DDS switch 127.

As will be described in more detail below, providing RF communications services and digital data services involves providing RF communications modules and DDS modules in the RAUs 14 and/or AUs 138 in the example of FIG. 5. These modules are power-consuming modules that require power to operate. Power distributed to the RAUs can also be used to provide access to power for DDS modules, as opposed to providing separate power sources for DDS modules and RF communications modules. For example, power distributed to the RAUs 14 in FIG. 5 by or through the ICUs 85 can also be used to provide power to the AUs 138 located at the RAUs 14 in the optical fiber-based distributed antenna system 120. In this regard, the ICUs 85 may be configured to provide power for both RAUs 14 and the AUs 138 over an electrical power line 142, as illustrated in FIG. 5. As will also be described in more detail below, the RAUs 14 and/or AUs 138 may also be configured with powered ports to provide power to external client devices connected to the powered ports, such as IEEE 802.3af Power-over-Ethernet (PoE) compatible devices as an example. However, referring to FIG. 5 as an example, the power made available to the RAUs 14 and AUs 138 may not be sufficient to power all of the modules provided and external devices connected to the RAUs 14 and AUs 138.

In this regard, embodiments disclosed below include power management for an RAU(s) in a distributed antenna system, and related devices, systems, methods, and computer-readable media. Power can be managed for an RAU configured to power modules and devices that may require more power to operate than power available to the RAU. For example, the RAU may be configured to include power-consuming RAU modules to provide distributed antenna system-related services. As another example, the RAU may be configured to provide power through powered ports in the RAU to external power-consuming devices. Depending on the configuration of the RAU, the power-consuming RAU modules and/or external power-consuming devices may demand more power than is available at the RAU. In this instance, the power available at the RAU can be distributed to the power-consuming modules and devices based on the priority of services desired to be provided by the RAU.

FIG. 6 is a schematic diagram of an exemplary RAU 14 configured with power-consuming components. The RAU 14 is configured to receive power over a power line 150 routed to the RAU 14 from either a local power source or a remote power source to make power available for power-consuming components associated with the RAU 14. As a non-limiting example, the power line 150 may provide a voltage of between forty-eight (48) and sixty (60) Volts at a power rating of between eighty (80) to one hundred (100) Watts. In this example, the RAU 14 includes an RF communications module 152 for providing RF communications services. The RF communications module 152 requires power to operate in this embodiment and receives power from the power line 150. Power from the power line 150 may be routed directly to the RF communications module 152, or indirectly through another module. The RF communications module 152 may include any of the previously referenced components to provide RF communications services, including O/E and E/O conversion.

With continuing reference to FIG. 6, the RAU 14 may also include a DDS module 154 to provide media conversion (e.g., O/E and E/O conversions) and route digital data services received from the DDS switch 127 in FIG. 5 to externally connected power-consuming devices (PDs) 156(1)-156(Q) configured to receive digital data services. Power from the power line 150 may be routed to the RF communications module 152, and from the RF communications module 152 to the DDS module 154. With reference to FIG. 6, the digital data services are routed by the DDS module 154 through communications ports 158(1)-158(Q) provided in the RAU 14. As a non-limiting example, the communications ports 158(1)-158(Q) may be RJ-45 connectors. The communications ports 158(1)-158(Q) may be powered, meaning that a portion of the power from the power line 150 is provided to the powered communications ports 158(1)-158(Q). In this manner, PDs 156(1)-156(Q) configured to receive power through a powered communications port 158 can be powered from power provided to the RAU 14 when connected to the powered communications port 158. In this manner, a separate power source is not required to power the PDs 156(1)-156(Q). For example, the DDS module 154 may be configured to route power to the powered communications ports 158(1)-158(Q) as described in the PoE standard.

With continuing reference to FIG. 6, one or more remote expansion units (RXUs) 160 may also be connected to the RAU 14. The RXUs 160 can be provided to provide additional RF communications services through the RAU 14, but remotely from the RAU 14. For example, if additional RF communications bands are needed and there are no additional bands available in a distributed antenna system, the RF communications bands of an existing RAU 14 can be expanded without additional communications bands by providing the RXUs 160. The RXUs 160 are connected to the distributed antenna system through the RAU 14. The RXUs 160 can include the same or similar components provided in the RF communications module 152 to receive downlink RF communications signals 162D and to provide received uplink RF communications signals 162U from client devices to the distributed antenna system through the RAU 14. The RXUs 160 are also power-consuming modules, and thus in this embodiment, power from the power line 150 is routed by the RAU 14 to the RXUs 160 over a power line 164.

The power provided on the power line 150 in FIG. 6 may not be sufficient to provide power for the modules 152, 154, 160 and external PDs 156(1)-156(Q) provided in the RAU 14. For example, eighty (80) Watts of power may be provided on the power line 150 in FIG. 6. However, the RF communications module 152 may consume thirty (30) Watts of power, the RXUs 160 may consume twenty (20) Watts of power, and the DDS module 154 may consume five (5) Watts of power. This is a total of fifty-five (55) Watts. In this example, twenty-five (25) Watts are available to be shared among the powered communications ports 158(1)-158(Q). However, the PDs 156(1)-156(Q) may be configured to require more power than twenty-five (25) Watts. For example, if the PDs 156(1)-156(Q) are configured according to the PoE standard, power source equipment (PSE) provided in the RAU 14 to provide power to the powered communications ports 158(1)-158(Q) may be required to provide up to 15.4 Watts of power to each powered communications port 158(1)-158(Q). In this example, if more than one powered communications port 158(1)-158(Q) is provided, there will not be sufficient power to power each of the powered communications ports 158(1)-158(Q) at 30 Watts (i.e., a PoE Class 4 device).

Thus, to ensure proper operation of the maximum power consuming modules 152, 154, 160 possible in an RAU 14, less power could be provided to the powered communications ports 158(1)-158(Q) or only one powered communications port 158(1)-158(Q) could be enabled with power. However, if one of the other modules 152, 154, 160 was not present, sufficient power may be available to be provided to each of the powered communications ports 158(1)-158(Q) provided. Further, if a PD 156 connected to a powered communication port 158 is a lower class device that does not require thirty (30) Watts of power, there may be sufficient power available to power the PDs 156(1)-156(Q) connected to each of the powered communications ports 158(1)-158(Q).

A distributed antenna system of the type shown in FIGS. 1-6 may also provide an allocated composite power per each supported frequency band. This may be beneficial if the coverage area of a given band could be increased when multiple channels are being used by increasing the output power for the band. This could be especially useful when multiple service providers or operators are operating within the same band. In this regard, FIG. 7 provides a schematic diagram of an exemplary distributed antenna system where the RF signals for multiple service providers in a given band are combined and transmitted to an exemplary RAU and the available power is split among a plurality of channels within the given band. In this embodiment, the distributed antenna system may be an optical fiber-based distributed antenna system similar to the distributed antenna system 90 in FIG. 4. One or more radio interfaces provided in the form of radio interface modules (RIMs) 92(1)-92(5) in this embodiment are provided in an HEU 168 to receive and process downlink electrical RF communications signals 166(1)-166(5) prior to optical conversion into downlink optical RF communications signals. The downlink electrical RF communications signals 166(1)-166(5) may come from various service providers.

Each RIM 92(1)-92(5) can be designed to support a particular type of radio source or range of radio sources (i.e., frequencies) to provide flexibility in configuring the HEU 168 and the optical fiber-based distributed antenna system 90 to support the desired radio sources. For example, one RIM 92 may be configured to support the Personal Communication Services (PCS) radio band. Another RIM 92 may be configured to support the 700 MHz radio band. In this example, by inclusion of these RIMs 92, the HEU 168 would be configured to support and distribute RF communications signals on both PCS and LTE 700 radio bands. RIMs 92 may be provided in the HEU 168 that support any frequency bands desired, including but not limited to US Cellular band, Personal Communication Services (PCS) band, Advanced Wireless Services (AWS) band, 700 MHz band, Global System for Mobile communications (GSM) 900, GSM 1800, and Universal Mobile Telecommunication System (UMTS). RIMs 92 may be provided in the HEU 168 that support any wireless technologies desired, including but not limited to Code Division Multiple Access (CDMA), CDMA200, 1×RTT, Evolution-Data Only (EV-DO), UMTS, High-speed Packet Access (HSPA), GSM, General Packet Radio Services (GPRS), Enhanced Data GSM Environment (EDGE), Time Division Multiple Access (TDMA), Long Term Evolution (LTE), iDEN, and Cellular Digital Packet Data (CDPD).

Although five (5) groups of downlink electrical RF communications signals 166(1)-166(5) are shown in FIG. 7, in other embodiments, any number of downlink electrical RF communications signals from any number of service providers and in any frequency band may be supported by the distributed antenna system. For example, in FIG. 7, the downlink electrical RF communications signals 166(1) may be from a first service provider such as AT&T operating in the PCS band. The downlink electrical RF communications signals 166(2) may be from a second service provider such as Verizon Wireless also operating in the PCS band. The downlink electrical RF communications signals 166(3) may be from a service provider operating in the cellular band. The downlink electrical RF communications signals 166(4) may be from a service provider operating in the AWS band, and the downlink electrical RF communications signals 166(5) may be from a service provider operating in the LTE 700 band. In other embodiments, there may be more or less frequency bands, and there may be more or less service providers operating in each frequency band.

With continuing reference to FIG. 7, the downlink electrical RF communications signals 166(1) and 166(2) are provided to an optical interface in an optical interface unit (OIU) 170, which may include one or more optical interface modules (OIMs) 98(1). Although the OIU 170 is shown as a separate unit in FIG. 7, in other embodiments, it may be part of or co-located with the HEU 168 (see FIG. 4). In FIG. 7, only the OIM 98(1) for the PCS band is shown, but any number of OIMs may be used in other embodiments (see FIG. 4). In one embodiment, the OIM 98(1) converts the downlink electrical RF communications signals 166(1) and 166(2) into downlink optical signals. The OIM 98(1) supports the radio bands that can be provided by the RIMs 92, including the examples previously described above. Thus, in this embodiment, the OIM 98(1) supports the PCS band. In other embodiments, the OIM 98(1) may support other frequency bands, including but not limited to the ones discussed above. Further, as an example, the OIM 98(1) may be optimized for sub-bands within the 400 MHz to 2700 MHz frequency range, such as 400-700 MHz, 700 MHz-1 GHz, 1 GHz-1.6 GHz, and 1.6 GHz-2.7 GHz, as examples.

The OIM 98(1) includes E/O converters to convert the downlink electrical RF communications signals 166(1) and 166(2) to downlink optical signals. The downlink optical signals are communicated over downlink optical fiber(s) to one or more RAUs 102. In one embodiment, as shown in FIG. 7, the downlink optical signals may be communicated over one or more fiber jumpers 172 and/or through a fiber management module 174. Further, in one embodiment, an ICU 85 may also be included as part of the distributed antenna system. The ICU 85 may be provided as part of or separate from a DC power supply, such as the power supply 54 in FIG. 2. The ICU 85 may also be configured to provide power to the RAUs 102 via an electrical power line, such as the electrical power line 58, as illustrated in FIG. 2 and discussed above. In the embodiment shown in FIG. 7, an electrical power line 178 provides power to the ICU 85. The electrical power line 178 may provide power from a separate DC power supply in one embodiment. In other embodiments, electrical power may be provided inside an array cable, such as the array cable 87 in FIG. 2, or tail cable or home-run tether cable as other examples, and distributed with the downlink and uplink optical fibers to the RAU 102. For example, in FIG. 7, the electrical power may be provided to the RAU 102 via a tether cable 180.

O/E converters provided in the RAU 102 convert the downlink optical signals back into downlink electrical RF communications signals 166(1) and 166(2), which are provided over the antenna 106 to client devices in the reception range of the antenna 106. Once again, though only one RAU 102 with one antenna 106 is shown in FIG. 7, any number of RAUs 102 and antennas 106 may be implemented.

E/O converters are also provided in the RAU 102 to convert uplink electrical RF communications signals received from client devices through the antenna 106 into uplink optical signals to be communicated over uplink optical fibers to the OIM 98(1). The OIM 98(1) includes O/E converters that convert the uplink optical signals into uplink electrical RF communications signals that are processed by the RIMs 92 and provided as uplink electrical RF communications signals back to the service providers.

Now that an exemplary distributed antenna system has been described, systems, methods, and devices for increasing output power in these distributed antenna systems will be discussed. With continued reference to FIG. 7, in one embodiment, the distributed antenna system of the type may provide an allocated composite power per each supported frequency band. As one non-limiting example, fourteen (14) decibels per milliwatt (dBm) of composite power may be available for each band within the distributed antenna system. In one embodiment, this 14 dBm is available for up to four (4) bands on an RAU or for any combination of up to five (5) active bands if an RXU is added to the RAU over the same optical fiber (see FIG. 6). However, the fourteen (14) dBm per band needs to be shared between all channels within the band. The typical coverage area per remote module in each particular band heavily depends on power per channel and frequently becomes a limiting factor when multiple channels need to be supported. The formula for calculating the power available per channel is as follows:
Power per Channel=Total Power−10*log(# of channels).

In the case where multiple service providers or operators are on the distributed antenna system supporting a plurality of channels within a single band, the coverage area of an antenna is significantly decreased. As a non-limiting example, if eight (8) channels are used in a given band, the power per channel is five (5) dBm. If, for example, twelve (12) channels are used in a given band, perhaps because multiple service providers or operators are operating within the same band, the power per channel is 3.2 dBm. So, for example, looking again at FIG. 7, two (2) service providers may have PCS (1900 MHz) repeaters. These two service providers are both providing the downlink electrical RF communications signals 166(1) and 166(2) within the PCS band. The downlink electrical RF communications signals 166(1) and 166(2) are combined and are transmitted to the RAU 102 in a similar manner as discussed above with respect to FIG. 4. If the two service providers are using twelve (12) channels, using the formula disclosed above for calculating the power available per channel, each channel only gets 3.2 dBm of power.

As seen below in FIG. 8, an RXU 184 having an antenna 186 provided as part of the distributed antenna system can be used to increase the output power of a frequency band or bands already contained in the distributed antenna system. By using the RXU 184 to provide additional power, the coverage area of a specific frequency band can be increased in a cost effective manner since no additional optical fibers or cabling are needed. In addition, the RXU 184 creates additional flexibility of the system by providing a dedicated power amplifier per service provider in a critical or heavily loaded frequency band or bands.

The RXU 184 is operatively coupled to the RAU 102. DC power for the RXU 184 may be provided from the RAU 102 via a power line 187 between the RAU 102 and the RXU 184.

The RXU 184 can be used to increase the coverage area of a given band when multiple channels are being used. This is especially useful when multiple operators are operating within the same band. Adding the RXU 184 to the RAU 102 to allow more efficient distribution of channels between the RAU 102 and the RXU 184 leads to a more cost effective system deployment.

Referring again to FIG. 8, in one embodiment, the twelve (12) channels could be allocated as follows:

In other embodiments, the number of channels respectively allocated to each of the RAU 102 and the RXU 184 may vary and any combination may be used.

In one embodiment, the RXU 184 will be able to deliver higher power (17 dBm). Using the equation disclosed above for calculating the power available per channel, adding the RXU 184 allows 8 dBm per channel for the first service provider in the PCS band and 8 dBm per channel for the second service provider in the PCS band as compared to 3.2 dBm per service provider if the channels are all on a single RAU 102.

Thus, in one embodiment, as shown in FIG. 8, adding the RXU 184 to the distributed antenna system increases the power of the PCS band. The addition of the RXU 184 eliminates the need to split the power of the PCS band between the two service providers. This allows both service providers to maximize the power per channel, which in the described embodiment is 8 dBm for each service provider. This is an increase in the link budget of nearly an additional dB.

Although FIG. 8 was discussed above with respect to having multiple service providers in the PCS band, a similar benefit could be achieved in any of the other frequency bands by adding an RXU where there are multiple service providers or operators 182(1)-182(5) in the same frequency band. In this regard, even though FIG. 8 shows only a single RAU 102 and a single RXU 184, any number of RAUs 102 and RXUs 184 can be implemented.

FIG. 9 is a schematic diagram of an exemplary distributed antenna system where an exemplary RXU provides a power upgrade to the PCS band. The distributed antenna system of FIG. 9 is similar to that of FIG. 8. The HEU 168 contains a number of RIMs 92(1)-92(M). Each RIM 92(1)-92(M) can be designed to support a particular type of radio source or range of radio sources (i.e., frequencies) as discussed above to provide flexibility in configuring the HEU 168 and the optical fiber-based distributed antenna system 90 to support the desired radio sources. The RIMs 92(1)-92(M) support the respective radio bands for the electrical RF communications signals that are sent to the RAU 102. The HEU 168 of FIG. 9 also includes an RIM 188 that supports a particular radio band for the RXU 184. The RIM 188 supports the respective radio bands for the electrical RF communications signals that are sent to the RXU 184. For example, in the embodiment discussed above with respect to FIG. 8, the RIM 188 may support the channels in the PCS band for the RXU 184. Though only one RIM 188 is shown in FIG. 9, in other embodiments, there may be a plurality of RIMs 188 in the HEU 168, one RIM 188 for each radio band that the RXU 184 supports. The RIM 188 is based on frequency conversion, as discussed more fully below.

The HEU 168 and the OIU 170 each contains respective radio distribution cards (RDCs) 190, 192, respectively. The RDCs 190, 192 provide combining and splitting of the electrical RF communications signals. For example, in one embodiment, the RDC 190 in the HEU 168 combines all downlink electrical RF communications signals coming from the RIMs 92 and 188 and passes a combined downlink electrical RF communications signal to the OIU 170 for communication toward the RAU 102 and RXU 184. The RDC 190 in the HEU 168 also receives a common uplink electrical RF communications signal from the RAU 102 and/or the RXU 184 and splits the common uplink electrical RF communications signal into multiple uplink electrical RF communications signals to be provided back to the RIMs 92 and 188 and back to the service providers. In one embodiment, there is an RDC 190 and an RDC 192 for each sector within a given frequency band. For example, if the given radio band has three sectors, then there will be three RDCs 190, 192.

FIG. 10 is a block diagram of an exemplary RIM 92 configured for use in an exemplary distributed antenna system. The RIM 92 in FIG. 10 is used for native RF communications, as discussed above with respect to FIGS. 4 and 7. Referring back to FIG. 10, the RIM 92 may receive and process the downlink electrical RF communications signal 96(1). The processing may include passing the downlink electrical RF communications signal 96 through a filter 194 and an attenuator 196. In one embodiment, the filter 194 may be a bandpass filter. The attenuated electrical RF communications signal is then passed through another filter 198 (which may be a bandpass filter in one embodiment) and provided to sector selection circuitry 200D, which selects which sector within the frequency band the downlink electrical RF communications signal 96 will be transmitted. The downlink electrical RF communications signal 96 is then provided to the OIM 98(1) in the OIU 170 for downstream transmission to the RAU 102, as discussed above with respect to FIG. 7.

The RIM 92 also receives the uplink electrical RF communications signals 112 from the RAU 102, as discussed above with respect to FIG. 4. After being received at the RIM 92, the uplink electrical RF communications signals 112 pass through sector selection circuitry 200U, which determines in which sector of the frequency band the uplink electrical RF communications signals 112 reside. The uplink electrical RF communications signals 112 are then provided to a filter 202 (which may be a bandpass filter in one embodiment) and an attenuator 204. The attenuated electrical RF communications signals 112 are then passed through another filter 206 (which may be a bandpass filter in one embodiment) and provided back to the service providers.

FIG. 11 is a block diagram of an exemplary RIM 188 that includes a frequency conversion interface configured for use in an exemplary distributed antenna system with an exemplary RXU 184. The RIM 188 is configured to support the channels allocated to the RXU 184, as discussed above with respect to FIG. 8. The RIM 188 is similar to the RIM 92 in FIG. 10. However, the RIM 188 is based on frequency conversion so that the electrical RF communications signals that come from the channels allocated to the RXU 184 are distinguished from the electrical RF communications signals for the channels allocated to the RAU 102. Thus, the RIM 188 has a downlink frequency conversion interface 208 and an uplink frequency conversion interface 210 for converting the frequency of the respective RF communications signals.

FIG. 12 is a high level block diagram of an exemplary RAU 102 configured for use in an exemplary distributed antenna system with an exemplary RXU 184. The RAU 102 in one embodiment has a receive optical subassembly (ROSA) 212 configured to receive downlink RF optical signals 100, as discussed above with respect to FIG. 4. The ROSA 212 converts the downlink RF optical signals 100 into downlink electrical RF communications signals 96. In one embodiment, the ROSA 212 may include one or more O/E converters. Sector selection circuitry 214 detects the sector of the frequency band. The downlink electrical RF communications signals 96 from the communication channels allocated to the RAU 102 are passed to a duplexer 216 and then through amplifiers 218 and 220. In one embodiment, the amplifier 218 may be a variable gain amplifier, and the amplifier 220 may be a power amplifier. A power detector 222 may be used to detect the power of the downlink electrical RF communications signals 96. The downlink electrical RF communications signals 96 are then provided to a duplexer 224 and combined to be input into a frequency multiplexer 226 and transmitted over the antenna 106 to client devices in the reception range of the antenna 106.

Uplink electrical RF communications signals 105 may be received by the RAU 102 from client devices through the antenna 106. These uplink electrical RF communications signals 105 will pass through the frequency multiplexer 226 and the duplexer 224 and be provided to a limiter 228. The uplink electrical RF communications signals 105 may be further processed in one embodiment via an amplifier 230 and a filter 232. In one embodiment, the amplifier 230 may be a low noise amplifier and the filter 232 may be a bandpass filter. The uplink electrical RF communications signals 105 are then passed through an amplifier 234 and provided to a duplexer 236. In one embodiment, the amplifier 234 may be a variable gain amplifier. The uplink electrical RF communications signals 105 are then passed to sector selection circuitry 238 to determine in which sector of the frequency band these signals reside. The uplink electrical RF communications signals 105 are then converted into uplink optical signals 108 by a transmit optical subassembly (TOSA) 240 to be communicated over uplink optical fibers to the OIMs 98. In one embodiment, the TOSA 240 includes one or more E/O converters. The OIMs 98 may include O/E converters that convert the uplink optical signals 108 into uplink electrical RF communications signals 110 that are processed by the RIMs 92 and provided as uplink electrical RF communications signals 112 to the service providers.

Referring back to FIG. 12, if the sector selection circuitry 214 determines that the downlink electrical RF communications signals 96 are from the communications channels allocated to the RXU 184, those signals are sent to an expansion port 242D for transmission to the RXU 184. An expansion port 242U is configured to receive uplink electrical RF communications signals 105 from the RXU 184 that are received from client devices within the range of the RXU 184.

FIG. 13 is a high level block diagram of an exemplary RXU 184 that includes a frequency conversion interface configured for use in an exemplary distributed antenna system. The RXU 184 is configured to receive downlink electrical RF communications signals 96 from the RAU 102 if the band selection circuitry 214 (FIG. 12) in the RAU 102 determines that the downlink electrical RF communications signals 96 are from the communication channels allocated to the RXU 184. The downlink electrical RF communications signals 96 from the communications channels allocated to the RXU 184 are passed through an amplifier 244 and a frequency conversion interface 246. The frequency converted downlink electrical RF communications signals 96 are provided to a duplexer 248 and then through amplifiers 250 and 252. In one embodiment, the amplifier 250 may be a variable gain amplifier, and the amplifier 252 may be a power amplifier. A power detector 255 may be used to detect the power of the downlink electrical RF communications signals 96. The downlink electrical RF communications signals 96 are then provided to a duplexer 256 and transmitted over the antenna 186 to client devices in the reception range of the antenna 186.

Uplink electrical RF communications signals 189 may be received by the RXU 184 from client devices through the antenna 186. These uplink electrical RF communications signals 189 will pass through the duplexer 256 and be provided to a limiter 258. The uplink electrical RF communications signals 189 may be further processed in one embodiment via an amplifier 260 and a filter 262. In one embodiment, the amplifier 260 may be a low noise amplifier and the filter 262 may be a bandpass filter. The uplink electrical RF communications signals 189 are then passed through an amplifier 264 and provided to a duplexer 266. In one embodiment, the amplifier 264 may be a variable gain amplifier. The uplink electrical RF communications signals 189 are then passed to frequency conversion interface 268 to provide frequency conversion of the uplink electrical RF communications signals 189. The converted uplink electrical RF communications signals 189 are then passed through an amplifier 270 and transmitted to the expansion port 242U (FIG. 12) in the RAU 102. The uplink electrical RF communications signals 189 are passed to the band selection circuitry 238 to determine in which sector of the frequency band these signals reside. The uplink electrical RF communications signals 189 are then converted along with the uplink electrical RF communications signals 106 from the RAU 102 into uplink optical signals 108 by the TOSA 240 to be communicated over uplink optical fibers to the OIMs 98. In this manner, uplink electrical RF communications signals from both the RAU 102 (which has been allocated a first plurality of channels within a given frequency band) and the RXU 184 (which has been allocated a second plurality of channels within a given frequency band) can be sent back to the HEU 168 over the same set of optical fibers. This allows increased coverage per antenna due to the increased output power at the RAU 102 and RXU 184. This means that service providers or operators within a band do not need to share a power amplifier of the RAU 102. The increased output power achieved by providing the RXU 184 and distributing the channels between the RAU 102 and the RXU 184 increases the coverage of a given band without the need to run parallel cabling and/or additional active equipment.

The embodiments disclosed herein include various steps. The steps of the embodiments disclosed herein may be performed by hardware components or may be embodied in machine-executable instructions, which may be used to cause a general-purpose or special-purpose processor programmed with the instructions to perform the steps. Alternatively, the steps may be performed by a combination of hardware and software.

The embodiments disclosed herein may be provided as a computer program product, or software, that may include a machine-readable medium (or computer-readable medium) having stored thereon instructions, which may be used to program a computer system (or other electronic devices) to perform a process according to the embodiments disclosed herein. A machine-readable medium includes any mechanism for storing or transmitting information in a form readable by a machine (e.g., a computer). For example, a machine-readable medium includes a machine-readable storage medium (e.g., read only memory (“ROM”), random access memory (“RAM”), magnetic disk storage media, optical storage media, flash memory devices, etc.), a machine-readable transmission medium (electrical, optical, acoustical or other form of propagated signals (e.g., carrier waves, infrared signals, digital signals, etc.)), etc.

Those of skill in the art would further appreciate that the various illustrative logical blocks, modules, circuits, and algorithms described in connection with the embodiments disclosed herein may be implemented as electronic hardware, instructions stored in memory or in another computer-readable medium and executed by a processor or other processing device, or combinations of both. The components of the distributed antenna systems described herein may be employed in any circuit, hardware component, integrated circuit (IC), or IC chip, as examples. Memory disclosed herein may be any type and size of memory and may be configured to store any type of information desired. To clearly illustrate this interchangeability, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. How such functionality is implemented depends upon the particular application, design choices, and/or design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present invention.

The various illustrative logical blocks, modules, and circuits described in connection with the embodiments disclosed herein may be implemented or performed with a processor, a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A controller may be a processor. A processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.

The embodiments disclosed herein may be embodied in hardware and in instructions that are stored in hardware, and may reside, for example, in Random Access Memory (RAM), flash memory, Read Only Memory (ROM), Electrically Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), registers, a hard disk, a removable disk, a CD-ROM, or any other form of computer-readable medium known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a remote station. In the alternative, the processor and the storage medium may reside as discrete components in a remote station, base station, or server.

Further, as used herein, it is intended that the terms “fiber optic cables” and/or “optical fibers” include all types of single mode and multi-mode light waveguides, including one or more optical fibers that may be upcoated, colored, buffered, ribbonized and/or have other organizing or protective structures in a cable such as one or more tubes, strength members, jackets or the like. The optical fibers disclosed herein can be single mode or multi-mode optical fibers. Likewise, other types of suitable optical fibers include bend-insensitive optical fibers, or any other expedient of a medium for transmitting light signals. An example of a bend-insensitive, or bend resistant, optical fiber is ClearCurve® Multimode fiber commercially available from Corning Incorporated. Suitable fibers of this type are disclosed, for example, in U.S. Patent Application Publication Nos. 2008/0166094, now issued as U.S. Pat. No. 7,787,731, and 2009/0169163, now abandoned, the disclosures of which are incorporated herein by reference in their entireties.

Many modifications and other embodiments of the embodiments set forth herein will come to mind to one skilled in the art to which the embodiments pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings.

Cune, William Patrick, Greene, Jason Elliott, Berlin, Igor

Patent Priority Assignee Title
10742270, Mar 04 2019 ADVANCED RF TECHNOLOGIES, INC. Distributed antenna system for commercial telephone and Wi-Fi service
Patent Priority Assignee Title
4365865, Jan 30 1981 Sea-Log Corporation Hybrid cable construction
4449246, May 02 1980 Harris Corporation Orderwire communication system
4573212, Nov 21 1983 TRACOR AEROSPACE ELECTRONIC SYSTEMS, INC Integrated receiver antenna device
4665560, May 20 1985 Texas Instruments Incorporated Wide band automatic gain control with limiting amplifiers
4867527, Mar 31 1987 Prysmian Cavi E Sistemi Energia SRL Combined electrical power and optical fiber cable
4889977, Dec 21 1987 SOUTHWESTERN BELL TELEPHONE COMPANY, A CORP OF MO Method of identifying the disposition of plug-in units at a warehouse
4896939, Oct 30 1987 D. G. O'Brien, Inc. Hybrid fiber optic/electrical cable and connector
4916460, Jan 29 1988 ALLEN TELECOM INC , A DELAWARE CORPORATION Distributed antenna system
4939852, Jan 02 1987 Elastic foot support to be built-in or inserted in shoes
4972346, Mar 24 1987 MITSUBISHI DENKI KABUSHIKI KAISHA, A CORP OF JAPAN High-frequency signal booster
5039195, May 29 1990 Fitel USA Corporation Composite cable including portions having controlled flexural rigidities
5042086, Nov 16 1988 Cisco Technology, Inc Method and means for transmitting large dynamic analog signals in optical fiber systems
5056109, Nov 07 1989 Qualcomm, INC Method and apparatus for controlling transmission power in a CDMA cellular mobile telephone system
5059927, Aug 28 1989 AIL Systems, Inc. Microwave oscillator with reduced phase noise
5125060, Apr 05 1991 ALCATEL NA CABLE SYSTEMS, INC Fiber optic cable having spliceless fiber branch and method of making
5187803, Jan 18 1990 Andrew Corporation Regenerative RF bi-directional amplifier system
5189718, Apr 02 1991 SIECOR TECHNOLOGY, INC Composite cable containing light waveguides and electrical conductors
5189719, May 26 1989 COLEMAN CABLE, INC , A DELAWARE CORPORATION Metallic sheath cable
5206655, Mar 09 1990 Alcatel Espace High-yield active printed-circuit antenna system for frequency-hopping space radar
5208812, Jan 27 1989 LUCENT TECHNOLOGIES WIRELESS LIMITED CAPITAL HOUSE Telecommunications system
5210812, Apr 05 1991 ALCATEL NA CABLE SYSTEMS, INC , A CORP OF DELAWARE Optical fiber cable having spliced fiber branch and method of making the same
5260957, Oct 29 1992 The Charles Stark Draper Laboratory, Inc. Quantum dot Laser
5263108, Nov 02 1990 Hitachi, Ltd. Electrical circuit apparatus
5267122, Jun 15 1992 ALCATEL NETWORK SYSTEMS, INC Optical network unit
5268971, Nov 07 1991 Alcatel NA Cable Systems, Inc. Optical fiber/metallic conductor composite cable
5278690, May 16 1991 Apparatus and method for synchronizing a plurality of remote transmission and receiving stations and providing automatic gain control of the synchronizing signal
5278989, Jan 18 1990 Andrew Corporation Distributed amplifier network management system
5280472, Dec 07 1990 Qualcomm Incorporated CDMA microcellular telephone system and distributed antenna system therefor
5297225, Jun 04 1992 Focal Technologies Corporation Off-axis optical rotary joint
5299947, Apr 18 1990 Rachael, Barnard Utility raceway
5301056, Dec 16 1991 Motorola, Inc. Optical distribution system
5325223, Dec 19 1991 Rockstar Consortium US LP Fiber optic telephone loop network
5339058, Oct 22 1992 TRILOGY COMMUNICATIONS, INC Radiating coaxial cable
5339184, Jun 15 1992 Verizon Patent and Licensing Inc Fiber optic antenna remoting for multi-sector cell sites
5343320, Aug 03 1992 AT&T SUBMARINE SYSTEMS INC Pump laser control circuit for an optical transmission system
5377035, Sep 28 1993 Hughes Electronics Corporation Wavelength division multiplexed fiber optic link for RF polarization diversity receiver
5379455, Feb 28 1991 Koninklijke Philips Electronics N V Modular distributed antenna system
5381459, Jul 29 1991 Cable Television Laboratories, Inc. System for distributing radio telephone signals over a cable television network
5396224, Nov 22 1991 Agilent Technologies Inc Telemetered patient location system and method
5400391, Sep 17 1990 NEC Corporation Mobile communication system
5420863, Jul 09 1992 NEC Corporation Mobile communication system with cell-site switching for intra-cell handoff
5424864, Oct 24 1991 NEC Corporation Microcellular mobile communication system
5444564, Feb 09 1994 OL SECURITY LIMITED LIABILITY COMPANY Optoelectronic controlled RF matching circuit
5457557, Jan 21 1994 AGERE Systems Inc Low cost optical fiber RF signal distribution system
5459727, Feb 28 1991 AT&T IPM Corp Wireless telecommunication system
5469523, Jun 10 1994 COMMSCOPE, INC OF NORTH CAROLINA Composite fiber optic and electrical cable and associated fabrication method
5519830, Jun 10 1993 ADC Telecommunications, Inc Point-to-multipoint performance monitoring and failure isolation system
5543000, Oct 22 1992 TRILOGY COMMUNICATIONS, INC Method of forming radiating coaxial cable
5546443, Oct 26 1992 ERICSSON GE MOBILE COMMUNICATIONS INC Communication management technique for a radiotelephone system including microcells
5557698, Aug 19 1994 Belden Wire & Cable Company Coaxial fiber optical cable
5574815, Jan 28 1991 Combination cable capable of simultaneous transmission of electrical signals in the radio and microwave frequency range and optical communication signals
5598288, Jul 31 1995 Northrop Grumman Systems Corporation RF fiber optic transmission utilizing dither
5606725, Nov 29 1994 XEL Communications, Inc. Broadband network having an upstream power transmission level that is dynamically adjusted as a function of the bit error rate
5615034, Nov 25 1994 NEC Corporation Optical micro cell transmission system
5627879, Sep 17 1992 ADC Telecommunications Cellular communications system with centralized base stations and distributed antenna units
5640678, Dec 10 1992 KDDI Corporation Macrocell-microcell communication system with minimal mobile channel hand-off
5642405, Sep 17 1992 ADC Telecommunications, Inc. Cellular communications system with centralized base stations and distributed antenna units
5644622, Sep 17 1992 ADC Telecommunications, Inc. Cellular communications system with centralized base stations and distributed antenna units
5648961, Nov 21 1994 Meisei Electric Co., Ltd. Radio telephone system and antenna device and base station for the same
5651081, Jun 10 1994 COMMSCOPE, INC OF NORTH CAROLINA Composite fiber optic and electrical cable and associated fabrication method
5657374, Sep 17 1992 ADC Telecommunications, Inc. Cellular communications system with centralized base stations and distributed antenna units
5668562, Apr 19 1996 CommScope EMEA Limited; CommScope Technologies LLC Measurement-based method of optimizing the placement of antennas in a RF distribution system
5677974, Aug 28 1995 SNET PROPERTIES, INC ; SBC HOLDINGS PROPERTIES, L P ; SBC PROPERTIES, L P Hybrid communications and power cable and distribution method and network using the same
5682256, Nov 11 1988 NEXTG NETWORKS, INC Communications system
5694232, Dec 06 1995 Ericsson Inc Full duplex optical modem for broadband access network
5703602, Jun 14 1996 Google Inc Portable RF antenna
5708681, Apr 23 1996 NYTELL SOFTWARE LLC Hybrid analog/digital method and apparatus for controlling the transmission power level of a radio transceiver
5726984, Jan 31 1989 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
5765099, Apr 19 1996 CommScope EMEA Limited; CommScope Technologies LLC Distribution of radio-frequency signals through low bandwidth infrastructures
5790536, Jan 31 1989 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Hierarchical communication system providing intelligent data, program and processing migration
5790606, Jan 11 1994 Ericsson, Inc Joint demodulation using spatial maximum likelihood
5793772, Nov 29 1995 Motorola, Inc.; Motorola, Inc Method and apparatus for synchronizing timing of components of a telecommunication system
5802173, Jan 15 1991 Rogers Cable Systems Limited Radiotelephony system
5802473, Jun 10 1994 Apple Automatic determination and tuning of pico-cell topology for low-power wireless systems
5805975, Feb 22 1995 GLOBAL COMMUNICATIONS, INC Satellite broadcast receiving and distribution system
5805983, Jul 18 1996 Unwired Planet, LLC System and method for equalizing the delay time for transmission paths in a distributed antenna network
5809395, Jan 15 1991 Rogers Cable Systems Limited Remote antenna driver for a radio telephony system
5809431, Dec 06 1995 ALCATEL USA SOURCING, L P Local multipoint distribution system
5812296, Aug 23 1995 NTT Mobile Communications Networks Inc. Fiber optics transmission system
5818619, Jun 15 1995 JOLT LTD Wireless communication system
5818883, Dec 29 1994 Google Technology Holdings LLC Multi-channel digital transceiver and method
5821510, Dec 22 1994 Fitel USA Corporation Labeling and tracing system for jumper used in an exchange
5825651, Sep 03 1996 VERSATA DEVELOPMENT GROUP, INC Method and apparatus for maintaining and configuring systems
5838474, Sep 08 1995 Siemens Aktiengesellschaft Process and circuit arrangement for transmitting received signals from an antenna to a base station of a radio system
5839052, Feb 08 1996 Qualcomm Incorporated Method and apparatus for integration of a wireless communication system with a cable television system
5852651, Sep 17 1992 CommScope EMEA Limited; CommScope Technologies LLC Cellular communications system with sectorization
5854986, May 19 1995 Apple Inc Cellular communication system having device coupling distribution of antennas to plurality of transceivers
5859719, Oct 15 1996 THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT Photogenerator for lightwave networks
5862460, Sep 13 1996 Motorola, Inc.; Motorola, Inc Power control circuit for a radio frequency transmitter
5867485, Jun 14 1996 BELLSOUTH INTELLECTUAL PROPERTY GROUP, INC ; Bellsouth Intellectual Property Corporation Low power microcellular wireless drop interactive network
5867763, Feb 08 1996 Qualcomm Incorporated Method and apparatus for integration of a wireless communication system with a cable T.V. system
5875211, Oct 26 1995 Ericsson Inc.; Research Triangle Park Multisite radio system with false mobile radio signalling detection
5881200, Sep 29 1994 IPG Photonics Corporation Optical fibre with quantum dots
5883882, Jan 30 1997 CommScope EMEA Limited; CommScope Technologies LLC Fault detection in a frequency duplexed system
5896568, Sep 06 1996 Apple Inc Wireless architecture having redistributed access functions
5903834, Oct 06 1995 TELEFONAKTIEBOLAGET L M ERICSSON PUBL Distributed indoor digital multiple-access cellular telephone system
5910776, Oct 24 1994 Round Rock Research, LLC Method and apparatus for identifying locating or monitoring equipment or other objects
5913003, Jan 10 1997 Fitel USA Corporation Composite fiber optic distribution cable
5917636, Jul 29 1994 British Telecommunications public limited company Generation of radio frequency modulated optical radiation
5930682, Apr 19 1996 CommScope EMEA Limited; CommScope Technologies LLC Centralized channel selection in a distributed RF antenna system
5936754, Dec 02 1996 AT&T Corp Transmission of CDMA signals over an analog optical link
5943372, Nov 30 1993 THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT Orthogonal polarization and time varying offsetting of signals for digital data transmission or reception
5946622, Nov 19 1996 Unwired Planet, LLC Method and apparatus for providing cellular telephone service to a macro-cell and pico-cell within a building using shared equipment
5949564, Mar 01 1993 NEXTG NETWORKS, INC Transducer
5953670, May 02 1995 RPX CLEARINGHOUSE LLC Arrangement for providing cellular communication via a CATV network
5959531, Jul 24 1998 CHECKPOINT SYSTEMS, INC ; Mitsubishi Material Corporation Optical interface between receiver and tag response signal analyzer in RFID system for detecting low power resonant tags
5960344, Jun 27 1997 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Local area network having multiple channel wireless access
5969837, Dec 15 1996 Corning Optical Communications Wireless Ltd Communications system
5983070, Apr 19 1996 CommScope EMEA Limited; CommScope Technologies LLC Method and system providing increased antenna functionality in a RF distribution system
5987303, May 29 1996 AT&T Corp. Wireless transmission using fiber link
6005884, Nov 06 1995 EMS Technologies, Inc. Distributed architecture for a wireless data communications system
6006069, Nov 28 1994 Cisco Systems, Inc; CISCO TECHNOLOGY, INC , A CORPORATION OF CALIFORNIA Point-to-multipoint communications system
6006105, Aug 02 1996 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Multi-frequency multi-protocol wireless communication device
6011980, Aug 21 1996 Oki Electric Industry Co., Ltd. Wireless telecommunication equipment
6014546, Apr 19 1996 CommScope EMEA Limited; CommScope Technologies LLC Method and system providing RF distribution for fixed wireless local loop service
6016426, Oct 10 1996 MVS, Incorporated Method and system for cellular communication with centralized control and signal processing
6023625, Feb 18 1997 Ericsson Inc. System and method for reducing multicast interference in a distributed antenna network
6037898, Oct 10 1997 Intel Corporation Method and apparatus for calibrating radio frequency base stations using antenna arrays
6061161, Jun 20 1997 OCP ASIA, INC Distortion-compensation circuit for wideband optical-fiber communication systems
6069721, Nov 21 1996 LG Information & Communications, Ltd Radio frequency control circuit of base station of mobile communications systems
6088381, Dec 23 1997 Ericsson Inc. System for transporting frequency hopping signals
6118767, Nov 19 1997 KATHREIN-WERKE KG Interference control for CDMA networks using a plurality of narrow antenna beams and an estimation of the number of users/remote signals present
6122529, Mar 17 1998 CommScope EMEA Limited; CommScope Technologies LLC Simulcast with hierarchical cell structure overlay
6127917, Feb 27 1997 Round Rock Research, LLC System and method for locating individuals and equipment, airline reservation system, communication system
6128470, Jul 18 1996 Unwired Planet, LLC System and method for reducing cumulative noise in a distributed antenna network
6128477, Aug 07 1998 Ericsson Inc. System for improving the dynamic range of transmitter power measurement in a cellular telephone
6148041, Jan 11 1994 Ericsson Inc. Joint demodulation using spatial maximum likelihood
6150921, Oct 17 1996 RF TECHNOLOGIES Article tracking system
6157810, Apr 19 1996 CommScope EMEA Limited; CommScope Technologies LLC Distribution of radio-frequency signals through low bandwidth infrastructures
6192216, Dec 24 1997 CommScope EMEA Limited; CommScope Technologies LLC Remotely controlled gain control of transceiver used to inter-connect wireless telephones to a broadband network
6194968, May 10 1999 Macom Technology Solutions Holdings, Inc Temperature and process compensating circuit and controller for an RF power amplifier
6212397, Dec 22 1997 Texas Instruments Incorporated Method and system for controlling remote multipoint stations
6222503, Jan 10 1997 System and method of integrating and concealing antennas, antenna subsystems and communications subsystems
6223201, Aug 27 1996 International Business Machines Corporation Data processing system and method of task management within a self-managing application
6232870, Aug 14 1998 3M Innovative Properties Company Applications for radio frequency identification systems
6236789, Dec 22 1999 Prysmian Communications Cables and Systems USA, LLC Composite cable for access networks
6236863, Mar 31 1997 Canon Kabushiki Kaisha Comprehensive transmitter power control system for radio telephones
6240274, Apr 21 1999 HRL Laboratories, LLC High-speed broadband wireless communication system architecture
6246500, Sep 18 1998 Massachusetts Institute of Technology Linearization of a broadband analog optical link using two wavelengths
6268946, Jul 01 1998 WSOU Investments, LLC Apparatus for communicating diversity signals over a transmission medium
6275990, Feb 06 1995 HTC Corporation Transport of payload information and control messages on multiple orthogonal carriers spread throughout substantially all of a frequency bandwith
6279158, Sep 26 1994 HTC Corporation Dynamic bandwidth allocation
6286163, Sep 21 2000 Fitted sheet construction
6292673, Jun 11 1999 Matsushita Electric Industrial Co., Ltd. Radio signal transmitter
6295451, Nov 21 1997 Kabushiki Kaisha Toshiba Mobile communication system, base station, and base station controller
6301240, Feb 19 1998 CommScope EMEA Limited; CommScope Technologies LLC Centrally located equipment for wireless telephone system
6307869, Jul 07 1998 WSOU Investments, LLC System and method for phase recovery in a synchronous communication system
6314163, Jan 17 1997 The Regents of the University of California Hybrid universal broadband telecommunications using small radio cells interconnected by free-space optical links
6317599, May 26 1999 Extreme Networks, Inc Method and system for automated optimization of antenna positioning in 3-D
6323980, Mar 05 1998 HANGER SOLUTIONS, LLC Hybrid picocell communication system
6324391, Oct 10 1996 MVS Incorporated Method and system for cellular communication with centralized control and signal processing
6330241, Feb 06 1995 HTC Corporation Multi-point to point communication system with remote unit burst identification
6330244, Sep 05 1996 Symbol Technologies, LLC System for digital radio communication between a wireless lan and a PBX
6334219, Sep 26 1994 HTC Corporation Channel selection for a hybrid fiber coax network
6336021, Mar 26 1999 TOSHIBA TEC KABUSHIKI KAISHA PARTIAL RIGHTS Electrophotographic apparatus including a plurality of developing agent image forming units and a method of forming an electrophotographic image
6336042, Jun 05 1998 CommScope EMEA Limited; CommScope Technologies LLC Reverse link antenna diversity in a wireless telephony system
6337754, Nov 20 1997 Kokusai Electric Co., Ltd. Optical conversion relay amplification system
6340932, Jun 02 1998 RF Code, Inc. Carrier with antenna for radio frequency identification
6353406, Oct 17 1996 RF TECHNOLOGIES, INC Dual mode tracking system
6353600, Apr 29 2000 CommScope EMEA Limited; CommScope Technologies LLC Dynamic sectorization in a CDMA cellular system employing centralized base-station architecture
6359714, Nov 28 1997 Kokusai Electric Co., Ltd. Relay system
6370203, Nov 04 1998 Ericsson Inc. Power control for wireless communications system
6374078, Apr 17 1998 Wahoo Communications Corporation Wireless communication system with multiple external communication links
6374124, Dec 24 1997 CommScope EMEA Limited; CommScope Technologies LLC Dynamic reallocation of transceivers used to interconnect wireless telephones to a broadband network
6389010, Oct 05 1995 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
6400318, Apr 30 1999 Kabushiki Kaisha Toshiba Adaptive array antenna
6400418, Sep 28 1998 NEC-Mitsubishi Electric Visual Systems Corporation Image display device
6404775, Nov 21 1997 Allen Telecom LLC Band-changing repeater with protocol or format conversion
6405018, Jan 11 1999 HANGER SOLUTIONS, LLC Indoor distributed microcell
6405058, May 16 2000 VISLINK TECHNOLOGIES, INC Wireless high-speed internet access system allowing multiple radio base stations in close confinement
6405308, Sep 03 1996 VERSATA DEVELOPMENT GROUP, INC Method and apparatus for maintaining and configuring systems
6414624, Nov 19 1998 Harada Industry Co., Ltd. Antenna apparatus for use in automobiles
6415132, Apr 21 1999 CommScope EMEA Limited; CommScope Technologies LLC Blossom/wilt for dynamic reallocation in a distributed fiber system
6421327, Jun 28 1999 Qualcomm Incorporated Method and apparatus for controlling transmission energy in a communication system employing orthogonal transmit diversity
6438301, Jul 07 1999 Northrop Grumman Systems Corporation Low-torque electro-optical laminated cable and cablewrap
6438371, Apr 23 1998 National Institute of Information and Communications Technology, Incorporated Multimode service radio communication method and apparatus
6448558, Jan 31 2001 The United States of America as represented by the Secretary of the Navy Active infrared signature detection device
6452915, Jul 10 1998 Intellectual Ventures I LLC IP-flow classification in a wireless point to multi-point (PTMP) transmission system
6459519, Apr 09 1997 MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD Optical transmitter-receiver
6459989, Mar 03 2000 SRI International Portable integrated indoor and outdoor positioning system and method
6477154, Aug 14 1997 SK TELECOM CO , LTD Microcellular mobile communication system
6480702, Aug 01 1996 CommScope EMEA Limited; CommScope Technologies LLC Apparatus and method for distributing wireless communications signals to remote cellular antennas
6486907, Jan 07 1997 Foxcom Ltd. Satellite distributed television
6496290, Jan 31 1998 LG Telecom, Inc. Optic repeater system for extending coverage
6501965, May 20 1998 Apple Inc Radio communication base station antenna
6504636, Jun 11 1998 Kabushiki Kaisha Toshiba Optical communication system
6504831, Feb 23 1999 CommScope EMEA Limited; CommScope Technologies LLC Optical simulcast network with centralized call processing
6512478, Dec 22 1999 Skyworks Solutions, Inc Location position system for relay assisted tracking
6519395, May 04 2000 Northrop Grumman Systems Corporation Fiber optic array harness
6519449, Oct 29 1999 Apple Inc Method and apparatus for a signal power control in a wireless communication system
6525855, Jul 19 1996 NEXTG NETWORKS, INC Telecommunications system simultaneously receiving and modulating an optical signal
6535330, Mar 31 2001 Corning Incorporated Dynamic controller for a multi-channel optical amplifier
6535720, Jun 28 2000 Northrop Grumman Systems Corporation Digital power control system for a multi-carrier transmitter
6556551, May 27 1999 CommScope EMEA Limited; CommScope Technologies LLC Multi-frequency pilot beacon for CDMA systems
6577794, Sep 27 1999 Compound optical and electrical conductors, and connectors therefor
6577801, Jul 14 1999 SOUTHAMPTON, UNIVERSITY OF Holey optical fibers
6580402, Jul 26 2001 The Boeing Company Antenna integrated ceramic chip carrier for a phased array antenna
6580905, Jul 02 1996 Ericsson, Inc System and method for controlling the level of signals output to transmission media in a distributed antenna network
6580918, Aug 05 1997 Nokia Mobile Phones Limited Cellular telecommunications system
6583763, Apr 26 1999 CommScope Technologies LLC Antenna structure and installation
6587514, Jul 13 1999 MAXLINEAR ASIA SINGAPORE PTE LTD Digital predistortion methods for wideband amplifiers
6594496, Apr 27 2000 CommScope EMEA Limited; CommScope Technologies LLC Adaptive capacity management in a centralized basestation architecture
6597325, Apr 26 1999 CommScope Technologies LLC Transmit/receive distributed antenna systems
6598009, Feb 01 2001 Method and device for obtaining attitude under interference by a GSP receiver equipped with an array antenna
6606430, Sep 05 2000 Optical Zonu Corporation Passive optical network with analog distribution
6615074, Dec 22 1998 PITTSBURGH, UNIVERSITY OF Apparatus for energizing a remote station and related method
6628732, Jul 17 1998 NEC Corporation Received power calculating method and mobile station
6634811, Nov 30 1999 Emcore Corporation High performance optical link
6636747, Mar 06 1998 National Institute of Information and Communications Technology, Incorporated Multi-mode radio transmission system
6640103, Nov 23 1999 Telefonaktiebolaget LM Ericsson (publ) Method and system for cellular system border analysis
6643437, Nov 23 1998 Samsung Electronics Co., Ltd.; SAMSUNG ELECTRONICS CO , LTD All-dielectric self-supporting optical cable and manufacturing method thereof
6652158, Sep 05 2000 Optical Zonu Corporation Optical networking unit employing optimized optical packaging
6654590, May 01 1998 Intel Corporation Determining a calibration function using at least one remote terminal
6654616, Sep 27 1999 GTE Wireless Incorporated Wireless area network having flexible backhauls for creating backhaul network
6657535, Aug 31 1998 HAWKEYE GLOBAL, INC System for signaling a device at a remote location
6658269, Oct 01 1999 Texas Instruments Incorporated Wireless communications system
6665308, Aug 25 1995 Google Technology Holdings LLC Apparatus and method for equalization in distributed digital data transmission systems
6670930, Dec 05 2001 The Boeing Company Antenna-integrated printed wiring board assembly for a phased array antenna system
6674966, Oct 15 1998 Lucent Technologies Inc Re-configurable fibre wireless network
6675294, Sep 03 1996 VERSATA DEVELOPMENT GROUP, INC Method and apparatus for maintaining and configuring systems
6678509, Dec 24 1998 CLUSTER, LLC; Optis Wireless Technology, LLC Communication receiver having reduced dynamic range by reducing the fixed range of the amplifier and increasing the variable gain via a gain control circuit
6687437, Jun 05 2000 SUPERIOR ESSEX INTERNATIONAL INC Hybrid data communications cable
6690328, Apr 26 1999 CommScope Technologies LLC Antenna structure and installation
6701137, Apr 26 1999 CommScope Technologies LLC Antenna system architecture
6704298, Sep 11 1998 KOKUSAI ELECTRIC CO , LTD Repeater amplifier apparatus
6704545, Jul 19 2000 CommScope EMEA Limited; CommScope Technologies LLC Point-to-multipoint digital radio frequency transport
6710366, Aug 02 2001 SAMSUNG ELECTRONICS CO , LTD Nanocomposite materials with engineered properties
6714800, May 02 2001 Trex Enterprises Corporation Cellular telephone system with free space millimeter wave trunk line
6731880, Jul 19 1996 NEXTG NETWORKS, INC Telecommunications system
6745013, Mar 31 1999 Adaptive Broadband Corporation; AXXCELERA BROADBAND WIRELSS, INC Method and system for controlling transmit power of network nodes
6758558, Feb 07 2002 PRINTECH INTERNATIONAL INC Ink container having a pressure stabilizer module
6758913, Oct 12 2000 General Electric Company Method of cleaning pressurized containers containing anhydrous ammonia
6763226, Jul 31 2002 Computer Science Central, Inc. MULTIFUNCTIONAL WORLD WIDE WALKIE TALKIE, A TRI-FREQUENCY CELLULAR-SATELLITE WIRELESS INSTANT MESSENGER COMPUTER AND NETWORK FOR ESTABLISHING GLOBAL WIRELESS VOLP QUALITY OF SERVICE (QOS) COMMUNICATIONS, UNIFIED MESSAGING, AND VIDEO CONFERENCING VIA THE INTERNET
6771862, Nov 27 2001 Intel Corporation Signaling medium and apparatus
6771933, Mar 26 2001 CommScope EMEA Limited; CommScope Technologies LLC Wireless deployment of bluetooth access points using a distributed antenna architecture
6784802, Nov 04 1999 Nordx/CDT, Inc. Real time monitoring of cable patch panel
6785558, Dec 06 2002 CommScope EMEA Limited; CommScope Technologies LLC System and method for distributing wireless communication signals over metropolitan telecommunication networks
6788666, Jun 13 2000 T-MOBILE INNOVATIONS LLC Hybrid fiber wireless communication system
6801767, Jan 26 2001 CommScope EMEA Limited; CommScope Technologies LLC Method and system for distributing multiband wireless communications signals
6807374, May 14 1999 KOKUSAI ELECTRIC CO , LTD Mobile communication system
6812824, Oct 17 1996 RF TECHNOLOGIES, INC Method and apparatus combining a tracking system and a wireless communication system
6812905, Apr 26 1999 CommScope Technologies LLC Integrated active antenna for multi-carrier applications
6823174, Oct 11 1999 AXIOM MICRODEVICES, INC Digital modular adaptive antenna and method
6826163, Jun 08 2001 NEXTG Networks Method and apparatus for multiplexing in a wireless communication infrastructure
6826164, Jun 08 2001 NEXTG Networks Method and apparatus for multiplexing in a wireless communication infrastructure
6826337, Dec 29 1999 EMC IP HOLDING COMPANY LLC Method and apparatus for transmitting fiber-channel and non-fiber channel signals through a common cable
6836660, Feb 25 1997 CommScope EMEA Limited; CommScope Technologies LLC Methods and systems for communicating in a cellular network
6836673, Dec 22 2000 Intel Corporation Mitigating ghost signal interference in adaptive array systems
6842433, Apr 24 2001 QWIKKER, INC System and method for communicating information from a computerized distributor to portable computing devices
6847856, Aug 29 2003 RPX Corporation Method for determining juxtaposition of physical components with use of RFID tags
6850510, Oct 05 1995 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
6865390, Jun 25 2001 Lucent Technologies Inc. Cellular communications system featuring a central radio pool/traffic router
6871081, Oct 20 2000 Malikie Innovations Limited Broadband wireless access system
6873823, Jun 20 2002 AXELL WIRELESS LTD Repeater with digital channelizer
6876056, Apr 19 2001 INTERUNIVERSITAIR MICROELEKTRONICA CENTRUM IMEC Method and system for fabrication of integrated tunable/switchable passive microwave and millimeter wave modules
6879290, Dec 26 2000 Gula Consulting Limited Liability Company Compact printed “patch” antenna
6882311, Apr 12 2001 CPI MALIBU DIVISION Digital beamforming radar system
6883710, Oct 11 2000 Avante International Technology, Inc Article tracking system and method
6885344, Nov 19 2002 High-frequency antenna array
6885846, Mar 31 1997 Texas Instruments Incorporated Low power wireless network
6889060, Jun 28 2001 Telecommunications Research Laboratories Optical fiber based on wireless scheme for wideband multimedia access
6901061, Sep 05 2000 Cisco Technology, Inc; Cisco Systems, Inc Handoff control in an enterprise division multiple access wireless system
6909399, Dec 31 2003 Symbol Technologies, LLC Location system with calibration monitoring
6915058, Feb 28 2003 Corning Optical Communications LLC Retractable optical fiber assembly
6915529, Feb 27 1998 Sharp Kabushiki Kaisha MILLIWAVE TRANSMITTING DEVICE, MILLIWAVE RECEIVING DEVICE AND MILLIWAVE TRANSMISSION AND RECEPTION SYSTEM CAPABLE OF SIMPLIFYING WIRING OF A RECEIVING SYSTEM OF TERRESTRIAL BROADCASTING SERVICE AND SATELLITE BROADCASTING SERVICE
6919858, Oct 10 2003 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD RF antenna coupling structure
6920330, Mar 26 2002 Oracle America, Inc Apparatus and method for the use of position information in wireless applications
6924997, Sep 25 2000 PANASONIC SEMICONDUCTOR SOLUTIONS CO , LTD Ferroelectric memory and method of operating same
6930987, Jun 29 1999 Sony Corporation Communication device communication method, and communication terminal device
6931183, Mar 29 1996 SEAFORT INTERNATIONAL TRADING, S R L Hybrid electro-optic cable for free space laser antennas
6931659, Aug 05 1999 Sharp Kabushiki Kaisha Cable modem having a wireless communication function
6931813, Aug 02 2002 Tornado and hurricane roof tie
6933849, Jul 09 2002 Automated Tracking Solutions, LLC Method and apparatus for tracking objects and people
6934511, Jul 20 1999 CommScope Technologies LLC Integrated repeater
6934541, Mar 01 2001 HITACHI KOKUSAI ELECTRIC INC. Communication device
6939222, Mar 16 2002 Deer & Company Crop discharge spout arrangement of an agricultural harvesting machine
6941112, Jul 14 2000 LENOVO INNOVATIONS LIMITED HONG KONG Gain control amplification circuit and terminal equipment having the same
6946989, Mar 01 2000 Transponder, including transponder system
6961312, Oct 05 1995 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
6963289, Oct 18 2002 Aeroscout, Ltd Wireless local area network (WLAN) channel radio-frequency identification (RFID) tag system and method therefor
6963552, Mar 27 2000 CommScope EMEA Limited; CommScope Technologies LLC Multi-protocol distributed wireless system architecture
6965718, Feb 20 2004 Hewlett Packard Enterprise Development LP Apparatus and method for supplying power over an optical link
6967347, May 21 2001 REGENTS OF THE UNIVERSITTY OF COLORADO, THE Terahertz interconnect system and applications
6968107, Aug 18 2000 University of Southhampton Holey optical fibres
6970652, Dec 07 2001 Oplink Communications, LLC Auto-setting and optimization of EAM with optical line systems
6973243, Feb 13 2003 Fujikura Ltd. Cable
6974262, Jan 21 2004 Communication cable
6977502, Nov 04 2002 Fonar Corporation Configurable matrix receiver for MRI
7002511, Mar 02 2005 XYTRANS, INC Millimeter wave pulsed radar system
7006465, Dec 15 1999 Kabushiki Kaisha Toshiba Radio communication scheme
7013087, Oct 25 2000 NTT DOCOMO, INC. Communication system using optical fibers
7015826, Apr 02 2002 VeriChip Corporation Method and apparatus for sensing and transmitting a body characteristic of a host
7020473, Feb 07 2003 RPX Corporation Method for finding the position of a subscriber in a radio communications system
7020488, Jul 19 2000 EMBEDDED SYSTEMS PRODUCTS INTELLECTUAL PROPERTY, LLC Communications unit, system and methods for providing multiple access to a wireless transceiver
7024166, Dec 18 2002 Qualcomm Incorporated Transmission diversity systems
7035512, Mar 16 2001 KONINKLIJKE KPN N V Method for providing a broadband infrastructure in a building by means of optical fibers
7039399, Mar 11 2002 CommScope EMEA Limited; CommScope Technologies LLC Distribution of wireless telephony and data signals in a substantially closed environment
7043271, Sep 13 1999 Kabushiki Kaisha Toshiba Radio communication system
7047028, Nov 15 2002 TELEFONAKTIEBOLAGET LM ERICSSON PUBL Optical fiber coupling configurations for a main-remote radio base station and a hybrid radio base station
7050017, Aug 14 2002 Mineral Lassen LLC RFID tire belt antenna system and method
7053838, Apr 26 1999 CommScope Technologies LLC Antenna structure and installation
7054513, Jun 09 2003 Virginia Tech Intellectual Properties, Inc Optical fiber with quantum dots
7069577, Feb 06 1995 HTC Corporation Dynamic bandwidth allocation
7072586, Dec 28 1999 NTT DoCoMo, Inc Radio base station system and central control station with unified transmission format
7082320, Sep 04 2001 TELEFONAKTIEBOLAGET L M ERICSSON PUBL Integration of wireless LAN and cellular distributed antenna
7084769, Jan 23 2002 SENSORMATIC ELECTRONICS, LLC Intelligent station using multiple RF antennae and inventory control system and method incorporating same
7093985, Jul 12 2004 MOOG INC Wall mount fiber optic connector and associated method for forming the same
7103119, Dec 22 2000 Kabushiki Kaisha Toshiba Use of smart antenna in beam formation circuit
7103377, Dec 03 2002 PROCOMM INTERNATIONAL PTE LTD Small signal threshold and proportional gain distributed digital communications
7106252, Feb 26 2002 Apple User terminal antenna arrangement for multiple-input multiple-output communications
7106931, Nov 19 2001 Prysmian Cables & Systems Limited Optical fiber drop cables
7110795, Aug 31 2001 Godo Kaisha IP Bridge 1 Radio apparatus, method for receiving its signal, method for measuring its filter coefficient, and program for measuring its filter coefficient
7114859, May 31 2005 Nokia Technologies Oy Electrical-optical/optical-electrical board to board connector
7127175, Jun 08 2001 NEXTG Networks Method and apparatus for multiplexing in a wireless communication infrastructure
7127176, Jun 26 2002 Oki Electric Industry Co., Ltd. Optical transmission system of radio signal over optical fiber link
7142503, Feb 11 2000 RPX CLEARINGHOUSE LLC Communication system architecture and operating methodology providing a virtual neighborhood network
7142535, Oct 05 1995 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
7142619, Apr 26 2000 Symmetricom, Inc Long subscriber loops using automatic gain control mid-span extender unit
7146506, May 25 1999 Intel Corporation Digital video display system
7160032, Apr 24 2003 Sony Corporation Electro-optical composite connector, electro-optical composite cable, and network devices using the same
7171244, Dec 03 2002 CommScope EMEA Limited; CommScope Technologies LLC Communication system and method with gain control for signals from distributed antennas
7184728, Feb 25 2002 CommScope EMEA Limited; CommScope Technologies LLC Distributed automatic gain control system
7190748, Aug 17 2001 DSP Group Inc Digital front-end for wireless communication system
7194023, Feb 06 2001 CommScope Technologies LLC Loop extender with communications, control, and diagnostics
7199443, Feb 22 2002 Arizona Board of Regents Integration of filters using on-chip transformers for RF and wireless applications
7200305, Nov 21 2002 Bae Systems Information and Electronic Systems Integration INC Electro-optical cable for use in transmission of high voltage and optical signals under extremes of temperature
7200391, Dec 06 2002 ERICSSON EVDO INC Capacity enhancement schemes for forward and reverse links of distributed cellular base stations
7228072, Oct 16 2001 TELEFONAKTIEBOLAGET LM ERICSSON PUBL System and method for integrating a fiber optic fixed access network and a fiber optic radio access network
7254330, Jul 20 2001 TELLABS BEDFORD, INC Single fiber passive optical network wavelength division multiplex overlay
7263293, Jun 10 2002 CommScope Technologies LLC Indoor wireless voice and data distribution system
7269311, Apr 04 2005 Samsung Electronics Co., Ltd. Remote antenna unit and wavelength division multiplexing radio-over-fiber network
7280011, Nov 27 2001 Intel Corporation Waveguide and method of manufacture
7286843, Feb 12 2004 Nokia Siemens Networks Oy Identifying remote radio units in a communication system
7286854, Jun 27 2003 PIRELLI & C S P A Method for configuring a communication network, related network architecture and computer program product therefor
7295119, Jan 22 2003 Extreme Networks, Inc System and method for indicating the presence or physical location of persons or devices in a site specific representation of a physical environment
7310430, Jun 02 2006 SBC Knowledge Ventures; SBC KNOWLEDGE VENTURES A NEVADA PARTNERSHIP Hybrid cables for communication networks
7313415, Nov 01 2004 NEXTG NETWORKS, INC Communications system and method
7315735, Feb 24 2004 P.G. Electronics Ltd. System and method for emergency 911 location detection
7324730, May 19 2004 Schlumberger Technology Corporation Optical fiber cables for wellbore applications
7343164, Nov 30 2001 TELEFONAKTIEBOLAGET LM ERICSSON PUBL Cellular communications system employing wireless optical links
7348843, Apr 21 2005 The United States of America as represented by the Secretary of the Navy Predistortion linearizer using cascaded lower-order linearizers
7349633, Jun 30 2003 Samsung Electronics Co., Ltd. Access point for constructing optical fiber-based high-speed wireless network system
7359408, Jan 30 2003 Samsung Electronics Co., Ltd. Apparatus and method for measuring and compensating delay between main base station and remote base station interconnected by an optical cable
7359674, May 10 2005 Nokia Technologies Oy Content distribution & communication system for enhancing service distribution in short range radio environment
7366150, May 20 2003 Samsung Electronics Co., Ltd. Indoor local area network system using ultra wide-band communication system
7366151, Oct 05 1995 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
7369526, Sep 11 2003 KOHL GROUP, INC , THE Flexible transport system including support for bilateral user access
7379669, Apr 25 2002 SAMSUNG ELECTRONICS CO , LTD Method and apparatus for duplex communication in hybrid fiber-radio systems
7388892, Dec 17 2004 Corning Incorporated System and method for optically powering a remote network component
7392025, Aug 28 2002 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Iterative multi-stage detection technique for a diversity receiver having multiple antenna elements
7392029, Dec 04 2002 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Method and apparatus for true diversity reception with single antenna
7394883, Mar 08 2004 Fujitsu Limited Multiple antenna system
7403156, Oct 30 2003 TELECOM ITALIA S P A ; PIRELLI & C S P A Method and system for performing digital beam forming at intermediate frequency on the radiation pattern of an array antenna
7409159, Jun 29 2001 HRL Laboratories, LLC Wireless wavelength division multiplexed system
7412224, Nov 14 2005 RPX Corporation Portable local server with context sensing
7424228, Mar 31 2003 Lockheed Martin Corporation High dynamic range radio frequency to optical link
7444051, Dec 19 2003 DRAKA COMTEQ B V Conductor module, especially of an optical fibre type, having longitudinal impenetrability and controlled relative slippage, and associated method of production
7450853, Dec 22 2000 LG-ERICSSON CO , LTD Signal transmission apparatus and method for optical base station
7450854, Dec 22 2003 Samsung Electronics Co., Ltd. High-speed wireless LAN system
7451365, May 13 2002 UNWIRED BROADBAND, INC System and method for identifying nodes in a wireless network
7454222, Nov 22 2000 COMS IP HOLDINGS, LLC Apparatus and method for controlling wireless communication signals
7460507, Oct 05 1995 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
7460829, Jul 25 2003 Panasonic Corporation Wireless communication system
7460831, Jun 20 2002 AXELL WIRELESS LTD System and method for excluding narrow band noise from a communication channel
7466925, Mar 19 2004 Emcore Corporation Directly modulated laser optical transmission system
7469105, Apr 09 2004 NEXTG NETWORKS, INC Optical fiber communications method and system without a remote electrical power supply
7477597, Sep 08 2004 Alcatel Lucent Rural broadband hybrid satellite/terrestrial solution
7483504, Feb 12 2007 Corning Optical Communications LLC MIMO-adapted distributed antenna system
7483711, Oct 24 2002 USTA Technology, LLC Spectrum-adaptive networking
7495560, May 08 2006 Corning Optical Communications LLC Wireless picocellular RFID systems and methods
7496070, Jun 30 2004 Extreme Networks, Inc Reconfigureable arrays of wireless access points
7496384, Sep 13 1999 Kabushiki Kaisha Toshiba Radio communication system
7505747, Feb 25 2002 CommScope EMEA Limited; CommScope Technologies LLC Distributed automatic gain control system
7512419, Apr 08 2002 CommScope EMEA Limited; CommScope Technologies LLC Method and apparatus for intelligent noise reduction in a distributed communication system
7522552, Nov 10 2003 GO NET SYSTEMS LTD Improving the performance of a wireless CSMA-based MAC communication system using a spatially selective antenna
7539509, Dec 03 2002 PROCOMM INTERNATIONAL PTE LTD Small signal threshold and proportional gain distributed digital communications
7542452, Apr 09 2004 Sharp Kabushiki Kaisha Systems and methods for implementing an enhanced multi-channel direct link protocol between stations in a wireless LAN environment
7546138, Dec 03 2002 CommScope EMEA Limited; CommScope Technologies LLC Communication system and method with gain control for signals from distributed antennas
7548138, Sep 29 2005 Intel Corporation Compact integration of LC resonators
7548695, Oct 19 2004 NEXTG NETWORKS, INC Wireless signal distribution system and method
7551641, Jul 26 2005 Dell Products L.P. Systems and methods for distribution of wireless network access
7557758, Mar 26 2007 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Very high frequency dielectric substrate wave guide
7565080, Oct 16 2001 Telefonaktiebolaget L M Ericsson (publ) System and method for integrating a fiber optic fixed access network and a fiber optic radio access network
7580384, Oct 05 1995 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
7586861, Oct 05 1995 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
7590354, Jun 16 2006 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Redundant transponder array for a radio-over-fiber optical fiber cable
7593704, Mar 31 2005 Georgia Tech Research Corporation Receiver assembly and method for multi-gigabit wireless systems
7599420, Jul 30 2004 REARDEN, LLC System and method for distributed input distributed output wireless communications
7599672, Jul 29 2003 National Institute of Information and Communications Technology Millimeter-wave-band radio communication method in which both a modulated signal and an unmodulated carrier are transmitted to a system with a receiver having plural receiving circuits
7610046, Apr 06 2006 CommScope EMEA Limited; CommScope Technologies LLC System and method for enhancing the performance of wideband digital RF transport systems
7627250, Aug 16 2006 Corning Optical Communications LLC Radio-over-fiber transponder with a dual-band patch antenna system
7630690, Apr 12 2002 InterDigital Technology Corporation Access burst detector correlator pool
7633934, Oct 05 1995 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
7639982, Jul 19 2000 CommScope EMEA Limited; CommScope Technologies LLC Point-to-multipoint digital radio frequency transport
7646743, Oct 05 1995 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
7646777, Jul 07 2003 AT&T Intellectual Property I, L P Communication environment switchover
7653397, Feb 09 2007 Nokia Technologies Oy Managing unscheduled wireless communication in a multiradio device
7668565, Nov 07 2006 Nokia Technologies Oy Multiradio priority control based on modem buffer load
7672591, Mar 01 2005 System and method for a subscriber-powered network element
7675936, Jul 26 2006 Hitachi, LTD Passive optical network (PON) system
7688811, Oct 05 1995 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
7693486, May 11 2006 Nokia Technologies Oy Distributed multiradio controller
7697467, Oct 05 1995 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
7697574, Oct 17 2001 National Institute of Information and Communications Technology Radio communication apparatus, transmitter apparatus and receiver apparatus
7715375, Oct 05 1995 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
7720510, Nov 15 2004 BAE SYSTEMS PLC Data communications between terminals in a mobile communication system
7751374, Jan 18 2005 MARVELL INTERNATIONAL LTD; CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD WLAN TDM protocol
7751838, Jan 17 2006 Telefonaktiebolaget L M Ericsson (publ) Method and mobile station for synchronizing to a common synchronization channel and obtaining a channel estimate
7760703, Oct 05 1995 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
7761093, Mar 27 2000 CommScope EMEA Limited; CommScope Technologies LLC Multi-protocol distributed antenna system for multiple service provider-multiple air interface co-located base stations
7768951, Oct 05 1995 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
7773573, Feb 16 2006 MARVELL INTERNATIONAL LTD; CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD Dual MAC arbitration
7778603, Oct 26 2006 NOKIA CORPORATION , FINLAND Bandwidth conservation by reallocating unused time scheduled for a radio to another radio
7787823, Sep 15 2006 Corning Optical Communications LLC Radio-over-fiber (RoF) optical fiber cable system with transponder diversity and RoF wireless picocellular system using same
7805073, Apr 28 2006 CommScope EMEA Limited; CommScope Technologies LLC Systems and methods of optical path protection for distributed antenna systems
7809012, Feb 16 2007 Nokia Technologies Oy Managing low-power wireless mediums in multiradio devices
7812766, Sep 09 1996 FineTrak, LLC Locating a mobile station and applications therefor
7812775, Sep 23 2005 California Institute of Technology Mm-wave fully integrated phased array receiver and transmitter with on-chip antennas
7817969, Feb 12 2007 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Limiting audible noise introduction through FM antenna tuning
7835328, Sep 13 2002 AURIX PTE LTD Network access points using multiple devices
7848316, Oct 05 1995 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
7848770, Aug 29 2006 CommScope EMEA Limited; CommScope Technologies LLC Distributed antenna communications system and methods of implementing thereof
7853234, Dec 06 2006 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD RFIC with high power PA
7870321, Feb 06 2008 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Extended computing unit with stand-alone application
7880677, Dec 12 2007 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Method and system for a phased array antenna embedded in an integrated circuit package
7881755, May 26 2005 CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD Wireless LAN power savings
7894423, Oct 05 1995 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
7899007, Oct 05 1995 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
7907972, May 16 2001 Qualcomm Incorporated Method and apparatus for allocating downlink resources in a multiple-input multiple-output (MIMO) communication system
7912043, Oct 05 1995 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
7912506, May 02 2001 Trex Enterprises Corp Wireless millimeter wave communication system with mobile base station
7916706, Oct 05 1995 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
7917177, Dec 03 2002 CommScope EMEA Limited; CommScope Technologies LLC Communication system and method with gain control for signals from distributed antennas
7920553, Oct 05 1995 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
7920858, Mar 27 2000 CommScope EMEA Limited; CommScope Technologies LLC Multiprotocol antenna system for multiple service provider-multiple air interface co-located base stations
7924783, May 06 1994 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Hierarchical communications system
7936713, Oct 05 1995 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
7949364, Oct 03 2006 Nokia Technologies Oy System for managing radio modems
7957777, Jul 12 2005 NXP USA, INC Wake on wireless LAN schemes
7962111, Feb 25 2002 CommScope EMEA Limited; CommScope Technologies LLC Distributed automatic gain control system
7969009, Jun 30 2008 Qualcomm Incorporated Through silicon via bridge interconnect
7969911, Jun 07 1995 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Hierarchical communication system providing intelligent data, program and processing migration
7990925, May 30 2007 Qualcomm Incorporated Method and apparatus for communication handoff
7996020, Dec 28 2006 CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD Locating a WLAN station using signal propagation delay
8018907, Oct 05 1995 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
8023886, Sep 28 2007 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Method and system for repeater with gain control and isolation via polarization
8027656, Sep 24 2007 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Method and system for a distributed transceiver for high frequency applications
8036308, Feb 28 2007 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Method and system for a wideband polar transmitter
8073329, Dec 20 2005 Huawei Technologies Co., Ltd. Passive optical network user terminal and method of power supply control and power supply state reporting for the same
8082353, May 13 2008 AT&T MOBILITY II LLC Reciprocal addition of attribute fields in access control lists and profiles for femto cell coverage management
8086192, Mar 03 2009 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Method and system for power control with optimum power efficiency with a multi-port distributed antenna
8107815, Mar 31 2008 Fujitsu Limited System and method for communicating wireless data utilizing a passive optical network
8135102, Jan 27 2009 PROCOMM INTERNATIONAL PTE LTD Method and apparatus for digitally equalizing a signal in a distributed antenna system
8155525, May 15 2009 Corning Optical Communications LLC Power distribution devices, systems, and methods for radio-over-fiber (RoF) distributed communication
8213401, Jan 13 2009 CommScope EMEA Limited; CommScope Technologies LLC Systems and methods for IP communication over a distributed antenna system transport
8223795, Apr 08 2002 WINTERSPRING DIGITAL LLC Apparatus and method for transmitting LAN signals over a transport system
8228849, Jul 15 2002 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Communication gateway supporting WLAN communications in multiple communication protocols and in multiple frequency bands
8238463, Jun 14 2007 University of South Florida Reception and measurement of MIMO-OFDM signals with a single receiver
8270387, Jan 13 2009 CommScope EMEA Limited; CommScope Technologies LLC Systems and methods for improved digital RF transport in distributed antenna systems
8275262, Nov 10 2008 AT&T Intellectual Property I, L.P.; AT&T Intellectual Property I, L P Methods and apparatus to deploy fiber optic based access networks
8280250, Sep 15 2010 AT&T Intellectual Property I, L.P. Bandwidth provisioning for an entangled photon system
8280259, Nov 13 2009 Corning Optical Communications LLC Radio-over-fiber (RoF) system for protocol-independent wired and/or wireless communication
8290483, Mar 27 2000 CommScope EMEA Limited; CommScope Technologies LLC Multiprotocol antenna system for multiple service provider-multiple air interface co-located base stations
8306563, Jan 29 2009 CommScope EMEA Limited; CommScope Technologies LLC Method and apparatus for muting a digital link in a distributed antenna system
8346278, Jan 13 2009 CommScope EMEA Limited; CommScope Technologies LLC Systems and methods for mobile phone location with digital distributed antenna systems
8351792, Dec 19 2005 APEX NET LLC System and communication method for interconnecting optical network and radio communication network
8374508, Jun 12 2003 Augmenting passive optical networks
8391256, Mar 17 2000 Symbol Technologies, LLC RF port for multiple wireless local area networks
8422883, Jul 29 2009 Industrial Technology Research Institute Head-end circuit and remote antenna unit and hybrid wired/wireless network system and transceiving method using thereof
8428510, Mar 25 2010 CommScope EMEA Limited; CommScope Technologies LLC Automatic gain control configuration for a wideband distributed antenna system
8452178, Dec 20 2005 Huawei Technologies Co., Ltd. Passive optical network user terminal and method of power supply control and power supply state reporting for the same
8462683, Jan 12 2011 CommScope EMEA Limited; CommScope Technologies LLC Distinct transport path for MIMO transmissions in distributed antenna systems
8472409, Jun 20 2008 DATANG MOBILE COMMUNICATIONS EQUIPMENT CO ,LTD Distributed antenna system and its data transmission method and central controller
8472579, Jul 28 2010 CommScope EMEA Limited; CommScope Technologies LLC Distributed digital reference clock
8488966, Dec 05 2007 Huawei Technologies Co., Ltd. Data transmission method of optical access network, and system and device thereof
8509215, Aug 15 2007 CommScope EMEA Limited; CommScope Technologies LLC Delay management for distributed communications networks
8509850, Jun 14 2010 CommScope EMEA Limited; CommScope Technologies LLC Systems and methods for distributed antenna system reverse path summation using signal-to-noise ratio optimization
8526970, Jan 13 2009 CommScope EMEA Limited; CommScope Technologies LLC Systems and methods for mobile phone location with digital distributed antenna systems
8532242, Oct 27 2010 CommScope EMEA Limited; CommScope Technologies LLC Distributed antenna system with combination of both all digital transport and hybrid digital/analog transport
8548330, Jul 31 2009 Corning Optical Communications LLC Sectorization in distributed antenna systems, and related components and methods
8626245, Jun 14 2010 CommScope EMEA Limited; CommScope Technologies LLC Systems and methods for distributed antenna system reverse path summation using signal-to-noise ratio optimization
8639121, Nov 13 2009 Corning Optical Communications LLC Radio-over-fiber (RoF) system for protocol-independent wired and/or wireless communication
8649684, Feb 03 2009 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof
8676214, Feb 12 2009 CommScope EMEA Limited; CommScope Technologies LLC Backfire distributed antenna system (DAS) with delayed transport
8737454, Jan 25 2007 CommScope EMEA Limited; CommScope Technologies LLC Modular wireless communications platform
8743718, Jun 21 2011 CommScope EMEA Limited; CommScope Technologies LLC End-to-end delay management for distributed communications networks
8743756, Jan 12 2011 CommScope EMEA Limited; CommScope Technologies LLC Distinct transport path for MIMO transmissions in distributed antenna systems
8780743, Nov 20 2009 Deutsche Telekom AG Method and system for improving quality of service in distributed wireless networks
8792933, Mar 10 2010 Fujitsu Limited Method and apparatus for deploying a wireless network
8831428, Feb 15 2010 Corning Optical Communications LLC Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods
8837659, Jul 28 2010 CommScope EMEA Limited; CommScope Technologies LLC Distributed digital reference clock
8837940, Apr 14 2010 CommScope EMEA Limited; CommScope Technologies LLC Methods and systems for distributing fiber optic telecommunication services to local areas and for supporting distributed antenna systems
8873585, Dec 19 2006 Corning Optical Communications LLC Distributed antenna system for MIMO technologies
8929288, Jun 29 2011 CommScope EMEA Limited; CommScope Technologies LLC Evolved distributed antenna system
9107086, Jul 20 2012 CommScope EMEA Limited; CommScope Technologies LLC Integration panel
9112547, Aug 31 2007 CommScope EMEA Limited; CommScope Technologies LLC System for and method of configuring distributed antenna communications system
9240835, Apr 29 2011 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
9306682, Jul 20 2012 CommScope EMEA Limited; CommScope Technologies LLC Systems and methods for a self-optimizing distributed antenna system
9485022, Nov 13 2009 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
9525488, May 02 2010 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
9673904, Feb 03 2009 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
9681313, Apr 15 2015 Corning Optical Communications LLC Optimizing remote antenna unit performance using an alternative data channel
20010036163,
20010036199,
20020003645,
20020009070,
20020012336,
20020012495,
20020016827,
20020045518,
20020045519,
20020048071,
20020051434,
20020061763,
20020075906,
20020092347,
20020097564,
20020103012,
20020111149,
20020111192,
20020114038,
20020123365,
20020126967,
20020128009,
20020130778,
20020139064,
20020181668,
20020190845,
20020197984,
20030002604,
20030007214,
20030016418,
20030045284,
20030069922,
20030078074,
20030112826,
20030126294,
20030141962,
20030161637,
20030165287,
20030172257,
20030174099,
20030209601,
20040001719,
20040008114,
20040017785,
20040037565,
20040041714,
20040043764,
20040047313,
20040078151,
20040095907,
20040100930,
20040106435,
20040126068,
20040126107,
20040139477,
20040146020,
20040149736,
20040151164,
20040151503,
20040157623,
20040160912,
20040160913,
20040162084,
20040162115,
20040162116,
20040165573,
20040175173,
20040196404,
20040202257,
20040203703,
20040203704,
20040203846,
20040204109,
20040208526,
20040208643,
20040215723,
20040218873,
20040233877,
20040240884,
20040258105,
20040267971,
20050013612,
20050052287,
20050058451,
20050058455,
20050068179,
20050076982,
20050078006,
20050093679,
20050099343,
20050116821,
20050123232,
20050141545,
20050143077,
20050147067,
20050147071,
20050148306,
20050159108,
20050174236,
20050176458,
20050201323,
20050201761,
20050219050,
20050224585,
20050226625,
20050232636,
20050242188,
20050252971,
20050266797,
20050266854,
20050269930,
20050271396,
20050272439,
20060002326,
20060014548,
20060017633,
20060028352,
20060045054,
20060045524,
20060045525,
20060053324,
20060056327,
20060062579,
20060083512,
20060083520,
20060094470,
20060104643,
20060146755,
20060159388,
20060172775,
20060182446,
20060182449,
20060189354,
20060209745,
20060223439,
20060233506,
20060239630,
20060268738,
20060274704,
20070009266,
20070050451,
20070054682,
20070058978,
20070060045,
20070060055,
20070071128,
20070076649,
20070093273,
20070149250,
20070166042,
20070173288,
20070174889,
20070224954,
20070230328,
20070243899,
20070248358,
20070253714,
20070257796,
20070264009,
20070264011,
20070268846,
20070274279,
20070280370,
20070286599,
20070292143,
20070297005,
20080002652,
20080007453,
20080013909,
20080013956,
20080013957,
20080014948,
20080014992,
20080026765,
20080031628,
20080043714,
20080056167,
20080058018,
20080063397,
20080070502,
20080080863,
20080098203,
20080118014,
20080119198,
20080124086,
20080124087,
20080129634,
20080134194,
20080145061,
20080150514,
20080159744,
20080166094,
20080191682,
20080194226,
20080207253,
20080212969,
20080219670,
20080232305,
20080232799,
20080247716,
20080253280,
20080253351,
20080253773,
20080260388,
20080260389,
20080261656,
20080268766,
20080268833,
20080273844,
20080279137,
20080280569,
20080291830,
20080292322,
20080298813,
20080304831,
20080310464,
20080310848,
20080311876,
20080311944,
20090022304,
20090028087,
20090028317,
20090041413,
20090047023,
20090059903,
20090061796,
20090061939,
20090067363,
20090073916,
20090081985,
20090087179,
20090088071,
20090088072,
20090097855,
20090135078,
20090141780,
20090149221,
20090154621,
20090169163,
20090175214,
20090180407,
20090180426,
20090218407,
20090218657,
20090237317,
20090245084,
20090245153,
20090245221,
20090247109,
20090252136,
20090252139,
20090252205,
20090258652,
20090278596,
20090279593,
20090285147,
20090316608,
20090316609,
20090316611,
20090319909,
20100002626,
20100002661,
20100002662,
20100014494,
20100014868,
20100027443,
20100054746,
20100056200,
20100080154,
20100080182,
20100091475,
20100093391,
20100099451,
20100118864,
20100127937,
20100134257,
20100142598,
20100142955,
20100144285,
20100148373,
20100150556,
20100156721,
20100158525,
20100159859,
20100188998,
20100189439,
20100190509,
20100202326,
20100208656,
20100225413,
20100225520,
20100225556,
20100225557,
20100232323,
20100246558,
20100255774,
20100258949,
20100260063,
20100261501,
20100266287,
20100278530,
20100284323,
20100290355,
20100309049,
20100309752,
20100311472,
20100311480,
20100329161,
20100329166,
20100329680,
20110002687,
20110007724,
20110007733,
20110008042,
20110019999,
20110021146,
20110021224,
20110026932,
20110028161,
20110045767,
20110055875,
20110065450,
20110066774,
20110069668,
20110071734,
20110083152,
20110086614,
20110116393,
20110116572,
20110116794,
20110122912,
20110126071,
20110149879,
20110158298,
20110158649,
20110182230,
20110194475,
20110200325,
20110200328,
20110201368,
20110204504,
20110206383,
20110211439,
20110215901,
20110222415,
20110222434,
20110222619,
20110223961,
20110227795,
20110244887,
20110244914,
20110256878,
20110268033,
20110268446,
20110268449,
20110274021,
20110281536,
20110312340,
20120069880,
20120134673,
20120177026,
20120196611,
20120208581,
20120230695,
20120257893,
20120281565,
20120294208,
20120314665,
20120321305,
20130012195,
20130053050,
20130077580,
20130089332,
20130094439,
20130095871,
20130095873,
20130142054,
20130195467,
20130210490,
20130236180,
20130249292,
20140016583,
20140024402,
20140072064,
20140086082,
20140113671,
20140118464,
20140119735,
20140140225,
20140146692,
20140146797,
20140146905,
20140146906,
20140153919,
20140162664,
20140194135,
20140219140,
20140233435,
20140243033,
20140274184,
20150037041,
20150055954,
20150119079,
20160135184,
20160174345,
20160270032,
20160309340,
20160365897,
20160366587,
20170047998,
20170222691,
AU645192,
AU731180,
CA2065090,
CA2242707,
CN101043276,
CN101340647,
CN101389147,
CN101389148,
CN101547447,
CN1207841,
CN1230311,
CN1980088,
DE10249414,
DE20104862,
EP461583,
EP477952,
EP687400,
EP899976,
EP993124,
EP994582,
EP1037411,
EP1056226,
EP1089586,
EP1179895,
EP1227605,
EP1267447,
EP1347584,
EP1357683,
EP1363352,
EP1391897,
EP1443687,
EP1455550,
EP1501206,
EP1503451,
EP1511203,
EP1530316,
EP1570626,
EP1693974,
EP1742388,
EP1916806,
EP1954019,
EP1968250,
EP2276298,
EP851618,
GB2319439,
GB2323252,
GB2370170,
GB2399963,
GB2428149,
JP11068675,
JP2000152300,
JP2000341744,
JP2002264617,
JP2002353813,
JP2003148653,
JP2003172827,
JP2004172734,
JP2004222297,
JP2004245963,
JP2004247090,
JP2004264901,
JP2004265624,
JP2004317737,
JP2004349184,
JP2005018175,
JP2005087135,
JP2005134125,
JP2007228603,
JP2008172597,
JP4189036,
JP5260018,
JP9083450,
JP9162810,
JP9200840,
KR20010055088,
WO42721,
WO72475,
WO178434,
WO184760,
WO209363,
WO2102102,
WO221183,
WO230141,
WO3024027,
WO3098175,
WO2004030154,
WO2004034098,
WO2004047472,
WO2004056019,
WO2004059934,
WO2004086795,
WO2004093471,
WO2005062505,
WO2005069203,
WO2005073897,
WO2005079386,
WO2005101701,
WO2005111959,
WO2006011778,
WO2006018592,
WO2006019392,
WO2006039941,
WO2006046088,
WO2006051262,
WO2006060754,
WO2006077569,
WO2006105185,
WO2006133609,
WO2006136811,
WO2007048427,
WO2007077451,
WO2007088561,
WO2007091026,
WO2007133507,
WO2008008249,
WO2008027213,
WO2008033298,
WO2008039830,
WO2008116014,
WO20090132824,
WO2010090999,
WO2010132739,
WO2011023592,
WO2011059705,
WO2011100095,
WO2011139939,
WO2011139942,
WO2011152831,
WO2012148938,
WO2012148940,
WO2013122915,
WO9603823,
WO9810600,
/////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Nov 04 2013GREENE, JASON ELLIOTTCorning Cable Systems LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0472780099 pdf
Nov 08 2013CUNE, WILLIAM PATRICKCorning Cable Systems LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0472780099 pdf
Nov 12 2013BERLIN, IGORCorning Cable Systems LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0472780099 pdf
Jan 14 2014Corning Cable Systems LLCCorning Optical Communications LLCCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0472780122 pdf
Sep 29 2017Corning Optical Communications LLC(assignment on the face of the patent)
Date Maintenance Fee Events
Sep 29 2017BIG: Entity status set to Undiscounted (note the period is included in the code).
May 11 2022M1551: Payment of Maintenance Fee, 4th Year, Large Entity.


Date Maintenance Schedule
Dec 04 20214 years fee payment window open
Jun 04 20226 months grace period start (w surcharge)
Dec 04 2022patent expiry (for year 4)
Dec 04 20242 years to revive unintentionally abandoned end. (for year 4)
Dec 04 20258 years fee payment window open
Jun 04 20266 months grace period start (w surcharge)
Dec 04 2026patent expiry (for year 8)
Dec 04 20282 years to revive unintentionally abandoned end. (for year 8)
Dec 04 202912 years fee payment window open
Jun 04 20306 months grace period start (w surcharge)
Dec 04 2030patent expiry (for year 12)
Dec 04 20322 years to revive unintentionally abandoned end. (for year 12)