The present invention allows remote antenna units for radio frequency signal transmission and receipt to operate without the requirement for remote electrical power supplies or for connecting cables that incorporate electrical conductors. According to an aspect of the present invention, an optical communications system employing radio frequency signals comprises a central unit; at least one remote unit having at least one optoelectronic transducer for converting optical data signals to radio frequency signals and converting radio signals to optical signals and at least one antenna to receive and send radio frequency signals; at least one optical fiber data link between the central unit and the remote unit for transmitting optical data signals therebetween; and at least one optical fiber power link between the central unit and the remote unit for providing electrical power at the remote unit.
|
19. An optical communications system employing radio frequency signals, the system comprising:
a plurality of base stations in a cellular wireless communications network;
a central unit comprising a plurality of optical transceiver units and a radio frequency splitter-combiner, the radio frequency splitter-combiner is operatively provided between the plurality of optical transceiver units and the plurality of base stations;
a plurality of remote units which are remote from the central unit, each remote unit provides a radio connection point for mobile terminals in an associated coverage area, the plurality of remote units transmit forward link radio frequency signals to mobile terminals via respective antennas and receive reverse link radio frequency signals from mobile terminals via respective antennas, each remote unit is associated with a different one of the optical transceiver units; and
a different optical fiber data link and a different optical fiber power link between each remote unit and its associated optical transceiver unit.
16. An optical communications system employing radio frequency signals, the system comprising:
a central unit;
at least one remote unit, which is remote from the central unit, the at least one remote unit provides a radio connection point for mobile terminals in an associated coverage area, said at least one remote unit having first means for converting optical data signals to radio frequency signals and converting radio frequency signals to optical data signals, second means for converting optical data signals into baseband digital signals and converting baseband digital signals to optical data signals, and at least one antenna to receive and send radio frequency signals, the second means communicates with a local area network;
at least one optical fiber data link between the central unit and the at least one remote unit, and associated with the first means, for transmitting optical data signals;
at least one optical fiber data link between the central unit and the at least one remote unit, and associated with the second means, for transmitting optical data signals; and
at least one optical fiber power link between the central unit and the at least one remote unit for providing electrical power at the at least one remote unit.
1. An optical communications system employing radio frequency signals, the system comprising:
a plurality of optical transceiver units including at least one optical transceiver unit in communication with at least one base station of a plurality of base stations in a cellular wireless communications network, the at least one optical transceiver unit communicates reverse link radio frequency signals to the at least one base station and receives forward link radio frequency signals from the at least one base station;
at least one remote unit which is remote from the at least one optical transceiver unit, the at least one remote unit provides a radio connection point for mobile terminals in an associated coverage area, the at least one remote unit comprising at least one optoelectronic transducer for converting optical data signals to radio frequency signals and converting radio signals to optical signals, and at least one antenna to receive and send radio frequency signals;
at least one optical fiber data link between the at least one optical transceiver unit and the at least one remote unit for transmitting optical data signals therebetween;
at least one optical fiber power link between the at least one optical transceiver unit and the at least one remote unit for providing electrical power at the at least one remote unit;
a radio frequency combiner between the plurality of optical transceiver units and the plurality of base stations which combines reverse link radio frequency signals which are received from the plurality of optical transceiver units; and
a radio frequency splitter which splits the combined reverse link radio frequency signals, the radio frequency splitter is in communication with the plurality of base stations and is associated with the radio frequency combiner.
23. An optical communications system employing radio frequency signals, the system comprising:
a plurality of optical transceiver units including at least one optical transceiver unit in communication with at least one base station of a plurality of base stations in a cellular wireless communications network, the at least one optical transceiver unit communicates reverse link radio frequency signals to the at least one base station and receives forward link radio frequency signals from the at least one base station;
a plurality of respective remote units including at least one remote unit which is remote from the at least one optical transceiver unit, the at least one remote unit provides a radio connection point for mobile terminals in an associated coverage area, the at least one remote unit comprising at least one optoelectronic transducer for converting optical data signals to radio frequency signals and converting radio signals to optical signals, and at least one antenna to receive and send radio frequency signals;
at least one optical fiber data link between the at least one optical transceiver unit and the at least one remote unit for transmitting optical data signals therebetween;
at least one optical fiber power link between the at least one optical transceiver unit and the at least one remote unit for providing electrical power at the at least one remote unit;
a radio frequency combiner between the plurality of optical transceiver units and the plurality of base stations which combines reverse link radio frequency signals which are received from the plurality of optical transceiver units;
the plurality of respective remote units provide respective radio connection points for mobile terminals in associated respective coverage areas, each respective remote unit is in communication with a different respective optical transceiver unit of the plurality of optical transceiver units;
a different optical fiber data link between each respective optical transceiver unit and its respective remote unit for transmitting optical data signals therebetween; and
a different optical fiber power link between each respective optical transceiver unit and its respective remote unit for providing electrical power at the respective remote unit.
2. The optical communications system according to
3. The optical communications system according to
4. The optical communications system according to
5. The optical communications system according to
6. The optical communications system according to
7. The optical communications system according to
the radio frequency combiner combines forward link radio frequency signals which are received from the plurality of base stations.
8. The optical communications system according to
9. The optical communications system according to
10. The optical communications system according to
the at least one remote unit comprises a photovoltaic converter for converting optical power from the at least one optical fiber power link into electrical power, and an amplifier coupled between the at least one optoelectronic transducer and the at least one antenna, the amplifier amplifies the radio frequency signals obtained by the converting of the optical data signals for transmission to the mobile terminals, the amplifier is coupled to the photovoltaic converter for receiving the electrical power.
11. The optical communications system according to
the at least one remote unit comprises at least one active component, a photovoltaic converter for converting optical power from the at least one optical fiber power link into electrical power, and a regulator for converting the electrical power into a constant voltage or a constant current form that is required to power the at least one active component.
12. The optical communications system according to
the at least one optical transceiver unit comprises a first, high power laser diode coupled to the at least one optical fiber power link and a second laser diode coupled to the at least one optical fiber data link.
13. The optical communications system according to
the high power laser diode provides radiation on the at least one optical fiber power link with a power of about 500 mW.
14. The optical communications system according to
the high power laser diode provides radiation on the at least one optical fiber power link with a power of at least 2 W.
15. The optical communications system according to
a plurality of remote units, each providing a radio connection point for mobile terminals in associated coverage areas;
at least one optical fiber data link between the at least one optical transceiver unit and each of the remote units for transmitting optical data signals therebetween; and
at least one optical fiber power link between the at least one optical transceiver unit and each of the remote units for providing electrical power at each of the remote units.
17. The optical communications system according to
18. The optical communications system according to
20. The optical communications system according to
the radio frequency splitter-combiner combines forward link radio frequency signals which are received from the plurality of base stations.
21. The optical communications system according to
the radio frequency splitter-combiner combines reverse link radio frequency signals which are received from the plurality of optical transceiver units.
22. The optical communications system according to
the radio frequency splitter-combiner splits the combined reverse link radio frequency signals.
|
1. Field of the Invention
The present invention relates to optical fiber communications methods, systems and terminals for use in such systems and to cellular and radio distribution points.
2. Description of the Related Art
The use of analog optical fiber transmission links to distribute cellular and other radio communications signals from a central location (where the radio base stations are situated) to one or more remote locations (where the antenna points are situated) is a well established technique commonly known as “radio over fiber.” Radio over fiber makes use of the broad bandwidth and low attenuation characteristics of optical fiber, which allows these systems to be deployed over very long spans for applications such as shopping malls and airports in the case of cellular radio. The remote antenna units in these systems comprise an optical transmitter (laser), an optical receiver (photodiode) and various electrical components such as amplifiers and filters. Most of these components are active and therefore need an electrical power supply in order to function. This electrical power supply is either provided locally (for example through a tap to a power outlet) or centrally using copper conductors in the cable linking the remote antenna units to the central unit where the electrical power supply is located (power over copper).
There are drawbacks to both ways of providing remote electrical power. Local electrical power supplies can be expensive or impractical to install, depending on the circumstances of the remote locations. Composite cable (containing mixed fiber and copper) is not a preferred cable type within the cabling industry and also has a relatively short reach capability due to ohmic losses in the copper. Furthermore, there are special situations, such as hazardous explosive environments and military applications, where electrical isolation and/or the avoidance of radio frequency interference or other undesired emissions from copper cable are critically important.
There are two approaches for eliminating a remote electrical power supply. The first approach is to have a remote unit that does not require a power supply at all. U.S. Pat. No. 6,525,855 discloses a remote antenna unit that requires no electrical power supply. The remote antenna unit relies, instead, on the use of an unbiased electroabsorption modulator as an optical detector and as an optical modulator, i.e., as an optical transceiver that requires no electrical power supply. If no electrical amplifiers or other active components are used in the remote antenna unit, then no electrical power supply is required at all.
This approach, however, has limited appeal in certain situations. First, only low radio frequency power is available, which limits the radio range to a few meters, depending on radio system and propagation environment. Second, electrical amplifiers are generally required in the remote antenna unit in order to boost the radio frequency power to levels required for acceptable radio range (typical amplifier gains required are in the range 20-30 dB depending on the application).
The second approach for eliminating a remote electrical power supply is to provide power through the optical fiber. “Power over fiber” is a technique that uses a high power laser at a central location, a photovoltaic converter at a remote location and an optical fiber linking the two sites for transmission of the optical power. The photovoltaic converter provides an electrical power output from the optical power input. For example, Banwell et al., “Powering the fiber loop optically—a cost analysis”, J. Lightwave Tech., vol.11, pp. 481-494, 1993 discloses the use of power over fiber to provide power to a subscriber's telephone equipment. Aside from this limited application, Banwell only considers power over fiber to be practical for low data rate telephony.
Carson, “Modular photonic power and VCSEL-based data links for aerospace and military applications”, proc. IEEE Aerospace Conference, vol.3, pp. 197-210, 1997, discusses power over fiber in the context of aerospace and military applications. In such applications, electrical shielding of the remote module is typically required. The remote unit disclosed by Carson, for example, is in a Faraday Cage Wall. To allow for such electrical shielding, the remote unit receives its power over fiber with the use of a photovoltaic converter. Carson explains that the use of photovoltaic converter demands low power consumption which, in turn, requires low data rate. The disclosed design is thus limited to ultra-low power consumption and low data rates under 10 kb/s. Carson notes that such a design is applicable when the photonic channels are not required to transmit analog radio frequency data.
An object of the present invention is to provide a means of deploying remote antenna units for radio frequency signal transmission without the requirement for remote electrical power supplies or for connecting cables that incorporate electrical conductors.
According to a first aspect of the present invention, an optical communications system employing radio frequency signals comprises: a central unit; at least one remote unit, said remote unit having at least one optoelectronic transducer for converting optical data signals to radio frequency signals and converting radio signals to optical signals and at least one antenna to receive and send radio frequency signals; at least one optical fiber data link between the central unit and the remote unit for transmitting optical data signals therebetween; and at least one optical fiber power link between the central unit and the remote unit for providing electrical power at the remote unit.
The present invention is based on the inventors' realization that, surprisingly, the use of power transmission over fiber optic cables, in combination with low power consumption component architectures, can provide sufficient electrical power at a remote site to meet the requirements of optical fiber fed antenna units for radio frequency signal transmission. Thus a combined power over fiber and radio over fiber system can be used to deploy remote antenna units for applications where remote electrical power supplies or cables containing electrical conductors are either impractical or difficult to provide, or where health and safety will be compromised. In the latter case, electrical isolation and immunity to electromagnetic interference are often mandatory. Such situations can be encountered for example in antenna installations around petrochemical plants.
Preferably, the data link optical components at the remote antenna unit will have low power consumption. Examples of these components include vertical cavity surface emitting lasers (VCSELs), electroabsorption transceivers (EATs) and PIN photodiodes. VCSELs are known to operate at low bias currents, typically 10-15 mA, which is four or five times lower than conventional edge-emitting lasers. EATs operate with even lower power consumption requirements since in this architecture the optical energy for the reverse link is derived from a centrally-located laser.
The preferred option for the data laser at the central unit is an edge-emitting laser (either Fabry Perot or Distributed Feedback types) that can tolerate high RF input power without introducing unacceptable distortion. By this means, the RF power produced from the remote data link photodiode will be correspondingly high (for a given gain, the more power put in to the optical data link, the more power will be available at its output), which means less amplification will be required from the forward link power amplifier to achieve the required RF output power. Of course, the data laser at the central unit can also be a low power consumption device as discussed above.
The present invention as described above uses separate optical fibers for the power and data links. In some situations it is beneficial to save the number of fibers required in the connecting cable between central and remote units. In these situations wavelength division multiplexing (WDM) may be used to combine optical energy from the power laser and data laser at the central unit over a single optical fiber. A WDM combiner at the central unit and a WDM splitter at the remote unit would be used to facilitate this arrangement.
The radio frequency signals sent or radiated from the remote antenna unit may be those of commercial wireless systems such as cellular and wireless LAN networks including ultra wideband radio, or for applications such as radar, radio tagging and identification, broadcast wireless, satellite repeaters or radio surveillance. The radio frequency signals in a wireless communications system can comprise multiple radio carriers within multiple frequency bands with multiple protocols. It should be noted that some of these potential applications require a bidirectional data link (such as for cellular networks), while others require unidirectional data links (either to or from the remote unit). The present invention includes radio frequency signals that may support any one or more of the applications given above.
The radio frequency signals transmitted between the central and remote units will usually be those of conventional analog RF. In some circumstances it may be preferable to transmit the RF signals in digital form in order to avoid noise and distortion penalties. This type of signal is commonly known as ‘digital RF’, where the analog RF signal is converted to digital form using a fast analog to digital converter (ADC) and back again to analog after transmission using a digital to analog converter (DAC). This aspect of the invention relates to both analog and digital RF.
According to a second aspect of the present invention, an optical communications system employing radio frequency signals comprises: a central unit; at least one remote unit, said remote unit having a means for converting optical data signals to radio frequency signals and converting radio signals to optical signals, a means for converting optical data signals into baseband digital signals and converting baseband digitals signals to optical data signals and at least one antenna to receive and send radio frequency signals; at least one optical fiber data link between the central unit and the remote unit for transmitting optical data signals therebetween; and at least one optical fiber power link between the central unit and the remote unit for providing electrical power at the remote unit.
This second aspect realizes that there are situations where it is useful to transmit mixed analog and digital data signals, for example to provide Ethernet ports at the remote units in addition to the radio frequency connections to the antennas.
According to a third aspect of the present invention, a method for communicating between a central unit and at least one remote unit, said method comprising: transmitting an optical data signal from the central unit to the remote unit through an optical fiber data link and transmitting radiation from the central unit to the remote unit through an optical fiber power link to electrically power the remote unit; converting the optical data signal to a radio frequency signal at the remote unit through an optoelectronic transducer; and sending the radio frequency signal into free space through an antenna connected to the remote unit.
This aspect of the present invention can be employed by the optical communications systems disclosed herein.
According to a fourth aspect of the present invention, a method for communicating between a central unit and at least one remote unit, said method comprising: transmitting radiation from the central unit to the remote unit through an optical fiber power link to electrically power the remote unit; receiving a radio frequency signal from an antenna connected to the remote unit; converting the radio frequency signal to an optical data signal at the remote unit through an optoelectronic transducer; and transmitting the optical data signal to the central unit through an optical fiber data link.
This aspect of the present invention can be employed by the optical communications systems disclosed herein.
According to a fifth aspect of the present invention, a remote terminal in an optical communications system employing radio frequency signals, said remote terminal connected with a central unit via at least one optical fiber and comprising: at least one antenna to receive and send radio frequency signals; at least one optoelectronic transducer for converting optical data signals to radio frequency signals from the antenna and for converting radio signals to optical signals for transmission to the central unit; and a means for converting radiation transmitted from the central unit to electrically power the remote unit.
These and other features and advantages of embodiments of the present invention will be apparent to those skilled in the art from the following detailed description of the embodiments of the invention, when read with the drawings and the appended claims.
In the following description of preferred embodiments, reference is made to accompanying drawings which form a part hereof and in which is shown by way of illustration specific embodiments in which the invention may be practiced. It is to be understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the preferred embodiments of the present invention.
The reverse optical fiber data path or link comprises of a laser diode 5 in the RU and a photodiode 6 in the COT also linked using an optical fiber 21b. The laser diode 5 converts radio signals received from the antenna (not illustrated) to optical data signals to be sent to the COT. The photodiode 4 and laser diode 5 of the RU are optoelectronic transducers. Although
Forward 7 and reverse 8 amplifiers are used in the RU to bring the data signals to a level suitable for onward transmission. Forward 9 and reverse 10 band pass filters are used in the RU to limit the power of the out of band signals entering or leaving the transmission system. The forward and reverse data signals are radio frequency carriers, for example for either wireless communications or radar applications.
It should be noted that the COT 1 and the RU 2 are connected by a plurality of optical fibers 21a, 21b and 21c in
In conventional radio frequency (RF) over fiber transmission systems, the RU derives its electrical power requirements (for the optical components and amplifiers) from either a remote electricity supply or from a power supply unit in the COT via conductive cables. In the present invention, the power requirements for the RU are provided from a power supply 11 in the COT via optical fiber cable. This is accomplished using a high power laser diode (HPLD) 12 in the COT, linked using optical fiber 21c to a photovoltaic converter (PVC) 13 in the RU. The PVC converts the optical power from the HPLD into electrical power. A regulator 14 converts the electrical power from the PVC into a form (either constant voltage or constant current) that is required by the active components in the RU.
In the wireless communications system example, the RF data signals are radio carriers pertaining to cellular networks such as GSM and CDMA2000. In this example, the RF input and output terminals of the COT connect to cellular base station equipment and the RF input and output terminals of the RU connect to antennas (not shown in
Electrical power requirements for the RU vary widely depending on the RF power requirements of the cellular system. Given the limitations of electrical power available from optical transmission, it is prudent to use this technique for applications requiring short range radio coverage such as in-building cellular systems. Many short range applications require RF power per radio carrier of around 0 dBm. For 4 radio carriers for example, the total RF power required will be 6 dBm. If we take GSM900 as a typical cellular system to be used with this technique, then a power amplifier with an output power capability of +15 dBm is required, taking into account the back-off required to achieve acceptably low distortion of the GSM signals. An example of a suitable low power consumption power amplifier is the SGA-4563, which is a silicon-germanium amplifier produced by Sirenza Microdevices. This amplifier has a power consumption of only 160 mW. Adding a low noise amplifier and photodiode for the remaining forward link active components gives a total forward link power consumption of 190 mW.
The preferred type of data laser in the RU is a vertical cavity surface emitting laser (VCSEL). VCSELs have lower power consumption than conventional edge-emitting lasers and add around 30 mW to the RU power budget. Combining the power consumption of this laser with a reverse link low noise amplifier gives a total reverse link power consumption of 60 mW. Total RU power consumption for this example (4×GSM900 carriers at 0 dBm/carrier) is therefore 250 mW.
Photovoltaic converters have an efficiency of around 40% at an optical wavelength of between 800 and 850 nm. Therefore the optical power required from the high power laser diode in the COT is around 500 mW. Fortunately, this optical power is routinely available from lasers at this wavelength at reasonable cost. In fact, powers of at least 2 W are practical for this application, which allows the possibility of either optical power sharing between a number of RUs (thereby reducing the cost per RU substantially) or increasing the power available at the RU to provide more RF power (either power per radio carrier or total number of radio carriers). If even more RF power is required at the RU, then the possibility exists of using two or more parallel power transmission links per RU.
Power transmission using the HPLD and PVC described above requires multimode optical fiber (MMF) to function efficiently. There are, however, alternative HPLDs and PVCs that function efficiently over single mode optical fiber (SMF). The optical data links (forward and reverse) can function using either MMF or SMF.
Although the present invention has been fully described in connection with the preferred embodiments thereof with reference to the accompanying drawings, it is to be noted that various changes and modifications will become apparent to those skilled in the art. Such changes and modifications are to be understood as being included within the scope of the present invention as defined by the appended claims.
Patent | Priority | Assignee | Title |
10009094, | Apr 15 2015 | Corning Optical Communications LLC | Optimizing remote antenna unit performance using an alternative data channel |
10014944, | Aug 16 2010 | Corning Optical Communications LLC | Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units |
10045288, | Oct 13 2010 | Corning Optical Communications LLC | Power management for remote antenna units in distributed antenna systems |
10063287, | Jul 11 2011 | OUTDOOR WIRELESS NETWORKS LLC | Base station router for distributed antenna systems |
10096909, | Nov 03 2014 | Corning Optical Communications LLC | Multi-band monopole planar antennas configured to facilitate improved radio frequency (RF) isolation in multiple-input multiple-output (MIMO) antenna arrangement |
10104610, | Oct 13 2010 | Corning Optical Communications LLC | Local power management for remote antenna units in distributed antenna systems |
10110308, | Dec 18 2014 | Corning Optical Communications LLC | Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs) |
10128951, | Feb 03 2009 | Corning Optical Communications LLC | Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof |
10135533, | Nov 13 2014 | Corning Optical Communications LLC | Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals |
10135561, | Dec 11 2014 | Corning Optical Communications LLC | Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting |
10136200, | Apr 25 2012 | Corning Optical Communications LLC | Distributed antenna system architectures |
10141959, | Mar 23 2012 | Corning Optical Communications LLC | Radio-frequency integrated circuit (RFIC) chip(s) for providing distributed antenna system functionalities, and related components, systems, and methods |
10142036, | Sep 15 2011 | Andrew Wireless Systems GmbH | Configuration sub-system for telecommunication systems |
10148347, | Apr 29 2011 | Corning Optical Communications LLC | Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems |
10153841, | Feb 03 2009 | Corning Optical Communications LLC | Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof |
10181911, | Sep 15 2011 | Andrew Wireless Systems GmbH | Configuration sub-system for telecommunication systems |
10182409, | Sep 14 2012 | Andrew Wireless Systems GmbH | Uplink path integrity detection in distributed antenna systems |
10187151, | Dec 18 2014 | Corning Optical Communications LLC | Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs) |
10205538, | Feb 21 2011 | Corning Optical Communications LLC | Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods |
10236924, | Mar 31 2016 | Corning Optical Communications LLC | Reducing out-of-channel noise in a wireless distribution system (WDS) |
10256879, | Jul 30 2014 | Corning Optical Communications, LLC | Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods |
10257056, | Nov 28 2012 | Corning Optical Communications LLC | Power management for distributed communication systems, and related components, systems, and methods |
10291322, | Aug 25 2014 | Corning Optical Communications LLC | Supporting an add-on remote unit (RU) in an optical fiber-based distributed antenna system (DAS) over an existing optical fiber communications medium using radio frequency (RF) multiplexing |
10292056, | Jul 23 2013 | Corning Optical Communications LLC | Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs) |
10292114, | Feb 19 2015 | Corning Optical Communications LLC | Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS) |
10313030, | Sep 15 2011 | Andrew Wireless Systems GmbH | Configuration sub-system for telecommunication systems |
10349156, | Apr 25 2012 | Corning Optical Communications LLC | Distributed antenna system architectures |
10361782, | Nov 30 2012 | Corning Optical Communications LLC | Cabling connectivity monitoring and verification |
10361783, | Dec 18 2014 | Corning Optical Communications LLC | Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs) |
10397929, | Aug 29 2014 | Corning Optical Communications LLC | Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit |
10412595, | Oct 05 2012 | Andrew Wireless Systems GmbH | Capacity optimization sub-system for distributed antenna system |
10419134, | Sep 15 2011 | Andrew Wireless Systems GmbH | Configuration sub-system for telecommunication systems |
10420025, | Oct 13 2010 | Corning Optical Communications LLC | Local power management for remote antenna units in distributed antenna systems |
10425891, | Oct 13 2010 | Corning Optical Communications LLC | Power management for remote antenna units in distributed antenna systems |
10454270, | Nov 24 2010 | Corning Optical Communicatons LLC | Power distribution module(s) capable of hot connection and/or disconnection for wireless communication systems, and related power units, components, and methods |
10455497, | Nov 26 2013 | Corning Optical Communications LLC | Selective activation of communications services on power-up of a remote unit(s) in a wireless communication system (WCS) based on power consumption |
10523326, | Nov 13 2014 | Corning Optical Communications LLC | Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals |
10523327, | Dec 18 2014 | Corning Optical Communications LLC | Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs) |
10530480, | Aug 25 2014 | Corning Optical Communications LLC | Supporting an add-on remote unit (RU) in an optical fiber-based distributed antenna system (DAS) over an existing optical fiber communications medium using radio frequency (RF) multiplexing |
10530670, | Nov 28 2012 | Corning Optical Communications LLC | Power management for distributed communication systems, and related components, systems, and methods |
10560214, | Sep 28 2015 | Corning Optical Communications LLC | Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS) |
10608830, | Feb 06 2017 | MH GOPOWER COMPANY LIMITED | Power over fiber enabled sensor system |
10659163, | Sep 25 2014 | Corning Optical Communications LLC | Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors |
10659970, | Jan 31 2002 | CommScope Technologies LLC | Communication system having a community wireless local area network for voice and high speed data communication |
10705297, | Nov 23 2010 | Stone Aerospace, Inc. | Method of launching a spacecraft into low earth orbit using a non-line-of-sight optical power transfer system |
10798652, | Dec 04 2018 | OUTDOOR WIRELESS NETWORKS LLC | Distributed antenna system for use along train track |
10833780, | Sep 15 2011 | Andrew Wireless Systems GmbH | Configuration sub-system for telecommunication systems |
10840976, | Aug 29 2011 | OUTDOOR WIRELESS NETWORKS LLC | Configuring a distributed antenna system |
10849064, | Oct 13 2010 | Corning Optical Communications LLC | Power management for remote antenna units in distributed antenna systems |
10938450, | Jul 11 2011 | OUTDOOR WIRELESS NETWORKS LLC | Base station router for distributed antenna systems |
10992484, | Aug 28 2013 | Corning Optical Communications LLC | Power management for distributed communication systems, and related components, systems, and methods |
10999166, | Nov 28 2012 | Corning Optical Communications LLC | Power management for distributed communication systems, and related components, systems, and methods |
11114852, | Nov 24 2010 | Corning Optical Communications LLC | Power distribution module(s) capable of hot connection and/or disconnection for wireless communication systems, and related power units, components, and methods |
11139892, | Oct 01 2018 | OUTDOOR WIRELESS NETWORKS LLC | Systems and methods for a passive-active distributed antenna architecture |
11178609, | Oct 13 2010 | Corning Optical Communications LLC | Power management for remote antenna units in distributed antenna systems |
11212745, | Oct 13 2010 | Corning Optical Communications LLC | Power management for remote antenna units in distributed antenna systems |
11224014, | Oct 13 2010 | Corning Optical Communications LLC | Power management for remote antenna units in distributed antenna systems |
11291001, | Jun 12 2013 | Corning Optical Communications LLC | Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs) |
11296504, | Nov 24 2010 | Corning Optical Communications LLC | Power distribution module(s) capable of hot connection and/or disconnection for wireless communication systems, and related power units, components, and methods |
11412395, | Sep 16 2011 | Andrew Wireless Systems GmbH | Integrated intermodulation detection sub-system for telecommunications systems |
11516030, | Aug 28 2013 | Corning Optical Communications LLC | Power management for distributed communication systems, and related components, systems, and methods |
11665069, | Nov 28 2012 | Corning Optical Communications LLC | Power management for distributed communication systems, and related components, systems, and methods |
11671914, | Oct 13 2010 | Corning Optical Communications LLC | Power management for remote antenna units in distributed antenna systems |
11715949, | Nov 24 2010 | Corning Optical Communications LLC | Power distribution module(s) capable of hot connection and/or disconnection for wireless communication systems, and related power units, components, and methods |
11792776, | Jun 12 2013 | Corning Optical Communications LLC | Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs) |
7590354, | Jun 16 2006 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Redundant transponder array for a radio-over-fiber optical fiber cable |
7627250, | Aug 16 2006 | Corning Optical Communications LLC | Radio-over-fiber transponder with a dual-band patch antenna system |
7787823, | Sep 15 2006 | Corning Optical Communications LLC | Radio-over-fiber (RoF) optical fiber cable system with transponder diversity and RoF wireless picocellular system using same |
7848654, | Sep 28 2006 | Corning Optical Communications LLC | Radio-over-fiber (RoF) wireless picocellular system with combined picocells |
8111998, | Feb 06 2007 | Corning Optical Communications LLC | Transponder systems and methods for radio-over-fiber (RoF) wireless picocellular systems |
8175459, | Oct 12 2007 | Corning Optical Communications LLC | Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same |
8184603, | Jan 31 2002 | CommScope EMEA Limited; CommScope Technologies LLC | Communication system having a community wireless local area network for voice and high speed data communication |
8275265, | Feb 15 2010 | Corning Optical Communications LLC | Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods |
8326156, | Jul 07 2009 | FIBER-SPAN, INC | Cell phone/internet communication system for RF isolated areas |
8548330, | Jul 31 2009 | Corning Optical Communications LLC | Sectorization in distributed antenna systems, and related components and methods |
8644844, | Dec 20 2007 | Corning Optical Communications Wireless Ltd | Extending outdoor location based services and applications into enclosed areas |
8718478, | Oct 12 2007 | Corning Optical Communications LLC | Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same |
8718483, | Oct 31 2007 | BAE Systems Australia Ltd | Deployable photonic link and interface module |
8831428, | Feb 15 2010 | Corning Optical Communications LLC | Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods |
8831593, | Sep 15 2011 | Andrew Wireless Systems GmbH | Configuration sub-system for telecommunication systems |
8867919, | Jul 24 2007 | Corning Optical Communications LLC | Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems |
8873585, | Dec 19 2006 | Corning Optical Communications LLC | Distributed antenna system for MIMO technologies |
8897215, | Feb 08 2009 | Corning Optical Communications LLC | Communication system using cables carrying ethernet signals |
8913892, | Oct 28 2010 | Corning Optical Communications LLC | Sectorization in distributed antenna systems, and related components and methods |
9036486, | Sep 16 2011 | Andrew Wireless Systems GmbH; ANDREW WIRELESS SYSTEMS, GMBH | Integrated intermodulation detection sub-system for telecommunications systems |
9037143, | Aug 16 2010 | Corning Optical Communications LLC | Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units |
9042732, | May 02 2010 | Corning Optical Communications LLC | Providing digital data services in optical fiber-based distributed radio frequency (RF) communication systems, and related components and methods |
9112611, | Feb 03 2009 | Corning Optical Communications LLC | Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof |
9130613, | Dec 19 2006 | Corning Optical Communications LLC | Distributed antenna system for MIMO technologies |
9178635, | Jan 03 2014 | Corning Optical Communications LLC | Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference |
9184843, | Apr 29 2011 | Corning Optical Communications LLC | Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods |
9184960, | Sep 25 2014 | Corning Optical Communications LLC | Frequency shifting a communications signal(s) in a multi-frequency distributed antenna system (DAS) to avoid or reduce frequency interference |
9219879, | Nov 13 2009 | Corning Optical Communications LLC | Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication |
9240835, | Apr 29 2011 | Corning Optical Communications LLC | Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems |
9247543, | Jul 23 2013 | Corning Optical Communications LLC | Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs) |
9253003, | Sep 25 2014 | Corning Optical Communications LLC | Frequency shifting a communications signal(S) in a multi-frequency distributed antenna system (DAS) to avoid or reduce frequency interference |
9258052, | Mar 30 2012 | Corning Optical Communications LLC | Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods |
9270374, | May 02 2010 | Corning Optical Communications LLC | Providing digital data services in optical fiber-based distributed radio frequency (RF) communications systems, and related components and methods |
9319138, | Feb 15 2010 | Corning Optical Communications LLC | Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods |
9325429, | Feb 21 2011 | Corning Optical Communications LLC | Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods |
9338823, | Mar 23 2012 | Corning Optical Communications LLC | Radio-frequency integrated circuit (RFIC) chip(s) for providing distributed antenna system functionalities, and related components, systems, and methods |
9357551, | May 30 2014 | Corning Optical Communications LLC | Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems |
9369222, | Apr 29 2011 | Corning Optical Communications LLC | Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods |
9385810, | Sep 30 2013 | Corning Optical Communications LLC | Connection mapping in distributed communication systems |
9398464, | Jul 11 2011 | OUTDOOR WIRELESS NETWORKS LLC | Base station router for distributed antenna systems |
9419712, | Oct 13 2010 | Corning Optical Communications LLC | Power management for remote antenna units in distributed antenna systems |
9420542, | Sep 25 2014 | Corning Optical Communications LLC | System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units |
9455784, | Oct 31 2012 | Corning Optical Communications LLC | Deployable wireless infrastructures and methods of deploying wireless infrastructures |
9485022, | Nov 13 2009 | Corning Optical Communications LLC | Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication |
9497706, | Feb 20 2013 | Corning Optical Communications LLC | Power management in distributed antenna systems (DASs), and related components, systems, and methods |
9509133, | Jun 27 2014 | Corning Optical Communications LLC | Protection of distributed antenna systems |
9515855, | Sep 25 2014 | Corning Optical Communications LLC | Frequency shifting a communications signal(s) in a multi-frequency distributed antenna system (DAS) to avoid or reduce frequency interference |
9525472, | Jul 30 2014 | Corning Incorporated | Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods |
9525488, | May 02 2010 | Corning Optical Communications LLC | Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods |
9526020, | Jul 23 2013 | Corning Optical Communications LLC | Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs) |
9531452, | Nov 29 2012 | Corning Optical Communications LLC | Hybrid intra-cell / inter-cell remote unit antenna bonding in multiple-input, multiple-output (MIMO) distributed antenna systems (DASs) |
9549301, | Jun 20 2008 | Corning Optical Communications LLC | Method and system for real time control of an active antenna over a distributed antenna system |
9565596, | Aug 29 2011 | OUTDOOR WIRELESS NETWORKS LLC | Configuring a distributed antenna system |
9602210, | Sep 24 2014 | Corning Optical Communications LLC | Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS) |
9621293, | Aug 07 2012 | Corning Optical Communications LLC | Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods |
9647758, | Nov 30 2012 | Corning Optical Communications LLC | Cabling connectivity monitoring and verification |
9653861, | Sep 17 2014 | Corning Optical Communications LLC | Interconnection of hardware components |
9661781, | Jul 31 2013 | Corning Optical Communications LLC | Remote units for distributed communication systems and related installation methods and apparatuses |
9673904, | Feb 03 2009 | Corning Optical Communications LLC | Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof |
9681313, | Apr 15 2015 | Corning Optical Communications LLC | Optimizing remote antenna unit performance using an alternative data channel |
9685782, | Nov 24 2010 | Corning Optical Communications LLC | Power distribution module(s) capable of hot connection and/or disconnection for distributed antenna systems, and related power units, components, and methods |
9699723, | Oct 13 2010 | Corning Optical Communications LLC | Local power management for remote antenna units in distributed antenna systems |
9715157, | Jun 12 2013 | Corning Optical Communications LLC | Voltage controlled optical directional coupler |
9729238, | Nov 13 2009 | Corning Optical Communications LLC | Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication |
9729251, | Jul 31 2012 | Corning Optical Communications LLC | Cooling system control in distributed antenna systems |
9729267, | Dec 11 2014 | Corning Optical Communications LLC | Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting |
9730228, | Aug 29 2014 | Corning Optical Communications LLC | Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit |
9735843, | Jul 11 2011 | OUTDOOR WIRELESS NETWORKS LLC | Base station router for distributed antenna systems |
9775123, | Mar 28 2014 | Corning Optical Communications LLC | Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power |
9785175, | Mar 27 2015 | Corning Optical Communications LLC | Combining power from electrically isolated power paths for powering remote units in a distributed antenna system(s) (DASs) |
9788279, | Sep 25 2014 | Corning Optical Communications LLC | System-wide uplink band gain control in a distributed antenna system (DAS), based on per-band gain control of remote uplink paths in remote units |
9806797, | Apr 29 2011 | Corning Optical Communications LLC | Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems |
9807700, | Feb 19 2015 | Corning Optical Communications LLC | Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS) |
9807722, | Apr 29 2011 | Corning Optical Communications LLC | Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods |
9807772, | May 30 2014 | Corning Optical Communications LLC | Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCs), including in distributed antenna systems |
9813127, | Mar 30 2012 | Corning Optical Communications LLC | Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods |
9813164, | Feb 21 2011 | Corning Optical Communications LLC | Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods |
9813229, | Oct 22 2007 | Corning Optical Communications LLC | Communication system using low bandwidth wires |
9853732, | May 02 2010 | Corning Optical Communications LLC | Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods |
9894623, | Sep 14 2012 | Andrew Wireless Systems GmbH | Uplink path integrity detection in distributed antenna systems |
9900097, | Feb 03 2009 | Corning Optical Communications LLC | Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof |
9913147, | Oct 05 2012 | Andrew Wireless Systems GmbH | Capacity optimization sub-system for distributed antenna system |
9929786, | Jul 30 2014 | Corning Optical Communications, LLC | Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods |
9929810, | Sep 24 2014 | Corning Optical Communications LLC | Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS) |
9948329, | Mar 23 2012 | Corning Optical Communications LLC | Radio-frequency integrated circuit (RFIC) chip(s) for providing distributed antenna system functionalities, and related components, systems, and methods |
9948349, | Jul 17 2015 | Corning Optical Communications LLC | IOT automation and data collection system |
9967754, | Jul 23 2013 | Corning Optical Communications LLC | Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs) |
9973968, | Aug 07 2012 | Corning Optical Communications LLC | Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods |
9974074, | Jun 12 2013 | Corning Optical Communications LLC | Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs) |
Patent | Priority | Assignee | Title |
5664035, | Apr 08 1994 | FUJI ELECTRIC CO , LTD | Bidirectional optically powered signal transmission apparatus |
5949564, | Mar 01 1993 | NEXTG NETWORKS, INC | Transducer |
6362906, | Jul 28 1998 | Raytheon Company | Flexible optical RF receiver |
6414958, | Nov 30 1998 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Four-port secure ethernet VLAN switch supporting SNMP and RMON |
6525855, | Jul 19 1996 | NEXTG NETWORKS, INC | Telecommunications system simultaneously receiving and modulating an optical signal |
20030118280, | |||
20040047313, | |||
20070117592, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 09 2004 | NEXTG Networks, Inc. | (assignment on the face of the patent) | / | |||
Jun 29 2004 | WEBSTER, MATTHEW | MICROWAVE PHOTONICS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014864 | /0294 | |
Jul 07 2004 | WAKE, DAVID | MICROWAVE PHOTONICS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014864 | /0294 | |
Apr 13 2005 | MICROWAVE PHOTONICS, INC | NEXTG NETWORKS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015908 | /0085 | |
Jan 10 2007 | NEXTG NETWORKS OF ILLINOIS, INC | UNITED COMMERCIAL BANK | SECURITY AGREEMENT | 020353 | /0867 | |
Jan 10 2007 | NEXTG NETWORKS OF NY, INC | UNITED COMMERCIAL BANK | SECURITY AGREEMENT | 020353 | /0867 | |
Jan 10 2007 | NEXTG NETWORKS OF CALIFORNIA, INC | UNITED COMMERCIAL BANK | SECURITY AGREEMENT | 020353 | /0867 | |
Jan 10 2007 | NEXTG NETWORKS, INC | UNITED COMMERCIAL BANK | SECURITY AGREEMENT | 020353 | /0867 | |
Jan 10 2007 | NEXTG NETWORKS ATLANTIC, INC | UNITED COMMERCIAL BANK | SECURITY AGREEMENT | 020353 | /0867 | |
Jun 04 2009 | UNITED COMMERCIAL BANK, AS AGENT | NEXTG NETWORKS OF NY, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 022783 | /0078 | |
Jun 04 2009 | UNITED COMMERCIAL BANK, AS AGENT | NEXTG NETWORKS OF ILLINOIS, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 022783 | /0078 | |
Jun 04 2009 | UNITED COMMERCIAL BANK, AS AGENT | NEXTG NETWORKS OF CALIFORNIA, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 022783 | /0078 | |
Jun 04 2009 | UNITED COMMERCIAL BANK, AS AGENT | NEXTG NETWORKS, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 022783 | /0078 | |
Jun 04 2009 | UNITED COMMERCIAL BANK, AS AGENT | NEXTG NETWORKS ATLANTIC, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 022783 | /0078 | |
Aug 27 2009 | NEXTG NETWORKS, INC | OAK INVESTMENT PARTNERS XI, L P , AS AGENT | SECURITY AGREEMENT | 023163 | /0545 | |
Oct 08 2010 | OAK INVESTMENT PARTNERS XI, L P , INC | NEXTG NETWORKS, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 025114 | /0462 |
Date | Maintenance Fee Events |
May 22 2012 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Apr 29 2016 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
May 20 2020 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Dec 23 2011 | 4 years fee payment window open |
Jun 23 2012 | 6 months grace period start (w surcharge) |
Dec 23 2012 | patent expiry (for year 4) |
Dec 23 2014 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 23 2015 | 8 years fee payment window open |
Jun 23 2016 | 6 months grace period start (w surcharge) |
Dec 23 2016 | patent expiry (for year 8) |
Dec 23 2018 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 23 2019 | 12 years fee payment window open |
Jun 23 2020 | 6 months grace period start (w surcharge) |
Dec 23 2020 | patent expiry (for year 12) |
Dec 23 2022 | 2 years to revive unintentionally abandoned end. (for year 12) |