communication devices, systems, and methods for dynamic cell bonding (DCB) for networks and communication systems are disclosed. In one embodiment, a method of operating a wireless communication system is provided. The method includes determining a first plurality of remote units in a cloud bonded to a communication session, measuring a received signal strength from each of the first plurality of remote units, and measuring a received signal strength from each of a second plurality of remote units in the cloud not bonded to the communication session. One or more of the second plurality of remote units is dynamically bonded to the communication session if the measured received signal strength of the one of the second plurality of remote units is greater than the measured received signal strength of the first plurality of remote units.

Patent
   9319138
Priority
Feb 15 2010
Filed
Aug 21 2014
Issued
Apr 19 2016
Expiry
Feb 15 2030

TERM.DISCL.
Assg.orig
Entity
Large
2
1043
currently ok
1. A method of operating a wireless communication system, comprising:
(a) determining a first plurality of remote units in a cloud bonded to a communication session;
(b) measuring at least one of a received signal strength and a data rate from each of the first plurality of remote units;
(c) measuring at least one of a received signal strength and an estimated data rate from each of a second plurality of remote units in the cloud not bonded to the communication session; and
(d) dynamically bonding one of the second plurality of remote units to the communication session if the at least one of the measured received signal strength and the estimated data rate of the one of the second plurality of remote units is greater than the at least one of the measured received signal strength and the data rate of one of the first plurality of remote units.
8. A controller comprising:
a head-end unit communicatively coupled to and configured to conduct a communication session with a first plurality of remote units and a second plurality of remote units;
where the head-end unit is configured to:
(a) determine the first plurality of remote units in a cloud bonded to a communication session;
(b) measure at least one of a received signal strength and a data rate from each of the first plurality of remote units;
(c) measure at least one of a received signal strength and an estimated data rate from each of the second plurality of remote units in the cloud not bonded to the communication session; and
(d) dynamically bond one of the second plurality of remote units to the communication session if at least one of the measured received signal strength and the estimated data rate of the one of the second plurality of remote units is greater than the at least one of the measured received signal strength and the data rate of one of the first plurality of remote units.
13. A system, comprising:
a plurality of remote units; and
a head-end unit communicatively coupled to and configured to conduct a communication session with a first plurality of remote units and a second plurality of remote units comprising a controller for directing a signal to the plurality of remote units,
wherein the head-end unit is configured to:
(a) determine the first plurality of remote units in a cloud bonded to the communication session;
(b) measure at least one of a received signal strength and a data rate from each of the first plurality of remote units;
(c) measure at least one of a received signal strength and an estimated data rate from each of a second plurality of remote units in the cloud not bonded to the communication session; and
(d) dynamically bond one of the second plurality of remote units to the communication session if at least one of the measured received signal strength and the estimated data rate of the one of the second plurality of remote units is greater than at least one of the measured received signal strength and the data rate of one of the first plurality of remote units.
2. The method of claim 1, further comprising unbonding the one of the first plurality of remote units from the communication session.
3. The method of claim 1, wherein the first plurality of remote units in the cloud are within a line of sight of each other.
4. The method of claim 3, wherein the second plurality of remote units in the cloud are within the line of sight.
5. The method of claim 1, wherein the communication session is comprised of a Multiple Input/Multiple Output (MIMO) session.
6. The method of claim 1, wherein dynamically bonding the one of the second plurality of remote units to the communication session is repeated for each of the second plurality of remote units.
7. The method of claim 2, wherein dynamically bonding the one of the second plurality of remote units and unbonding the one of the first plurality of remote units from the communication session are repeated.
9. The controller of claim 8, wherein the head-end unit is further configured to unbond the one of the first plurality of remote units from the communication session.
10. The controller of claim 8, wherein the communication session is comprised of a Multiple Input/Multiple Output (MIMO) session.
11. The controller of claim 8, wherein the head-end unit is further configured to repeat dynamically bonding the one of the second plurality of remote units to the communication session for each of the second plurality of remote units.
12. The controller of claim 9, wherein the head-end unit is further configured to repeat dynamically bonding the one of the second plurality of remote units to the communication session and unbonding the one of the first plurality of remote units to the communication session.
14. The system of claim 13, wherein the head-end unit is further configured to unbond the one of the first plurality of remote units from the communication session.
15. The system of claim 13, wherein the first plurality of remote units is coupled to a service unit.
16. The system of claim 15, wherein the second plurality of remote units is coupled to the service unit.
17. The system of claim 13, wherein the first plurality of remote units in the cloud are within line of sight of each other.
18. The system of claim 17, wherein the second plurality of remote units in the cloud are within the line of sight.
19. The system of claim 13, wherein the communication session is comprised of a Multiple Input/Multiple Output (MIMO) session.
20. The system of claim 14, wherein the head-end unit is configured to repeat dynamically bonding the one of the second plurality of remote units to the communication session for each of the second plurality of remote units.
21. The system of claim 15, wherein the head-end unit is configured to repeat dynamically bonding the one of the second plurality of remote units to the communication session and unbonding the one of the first plurality of remote units from the communication session.

This application is a continuation of U.S. application Ser. No. 13/592,502, filed Aug. 23, 2012, which is a continuation of U.S. application Ser. No. 12/705,779, filed on Feb. 15, 2010, the contents of which are relied upon and both incorporated herein by reference in their entireties, and the benefit of priority under 35 U.S.C. §120 is hereby claimed.

1. Field of the Disclosure

The technology of the disclosure relates to dynamic cell bonding (DCB) and, more specifically, to the use of DCB to compensate for the bandwidth limitations of multi-mode optical fiber (MMF).

2. Technical Background

Wireless communication is rapidly growing, with ever-increasing demands for high-speed mobile data communication. As an example, so-called “wireless fidelity” or “WiFi” systems and wireless local area networks (WLANs) are being deployed in many different types of areas (coffee shops, airports, libraries, etc.). Wireless communication systems communicate with wireless devices called “clients,” which must reside within the wireless range or “cell coverage area” in order to communicate with the access point device.

One approach to deploying a wireless communication system involves the use of “picocells.” Picocells are radio frequency (RF) coverage areas having a radius in the range from about a few meters up to about 20 meters. Picocells can be provided to provide a number of different services (e.g., WLAN, voice, radio frequency identification (RFID) tracking, temperature and/or light control, etc.). Because a picocell covers a small area, there are typically only a few users (clients) per picocell. Picocells also allow for selective wireless coverage in small regions that otherwise would have poor signal strength when covered by larger cells created by conventional base stations.

In conventional wireless systems, picocells are created by and centered on a wireless access point device connected to a head-end controller or head-end unit. The wireless access point device includes digital information processing electronics, an RF transmitter/receiver, and an antenna operably connected to the RF transmitter/receiver. The size of a given picocell is determined by the amount of RF power transmitted by the access point device, the receiver sensitivity, antenna gain and the RF environment, as well as by the RF transmitter/receiver sensitivity of the wireless client device. Client devices usually have a fixed RF receiver sensitivity, so that the above-mentioned properties of the access point device mainly determine the picocell size.

One problem that can exist with wireless communication systems is the multi-path (fading) nature of signal propagation. This simply means that local maxima and minima of desired signals can exist over a picocell coverage area. A receiver antenna located at a maximum location will have better performance or signal-to-noise ratio (SNR) than a receiver antenna located in a minimum position. In this regard, signal processing techniques can be employed to improve the SNR of wireless data transmission in such wireless communication systems. For example, special diversity can be utilized in instances involving many access points. Other signal processing techniques include Multiple Input/Multiple Output (MIMO) techniques for increasing bit rates or beam forming for SNR, or wireless distance improvement. These techniques involve multiple antennas separated by a distance such that individual RF channels are formed between the transmitter and receiver. This distance can be less than one (1) foot in some instances.

In addition to the factors affecting SNR, variation in bandwidth response distribution among optical fiber links can also impede wireless data transmission. For example, multi-mode optical fibers (MMF) used in providing communications links can have varying distributions of bandwidth responses thus causing varying loss responses. For example, FIGS. 1A-1C illustrate exemplary MMF bandwidth response distributions to highlight the degree to which similar MMFs having similar defined characteristics can vary in loss. FIG. 1A provides a graph 2A illustrating an exemplary bandwidth response of thirteen (13) MMFs having a 62.5 micrometer (μm) core measured in a Radio-over-Fiber (RoF) link with an eight hundred fifty (850) nanometer (nm) vertical-cavity surface-emitting laser (VCSEL) measured over a range of input frequencies extending from zero (0) to six (6) GigaHertz (GHz). An exemplary distribution of the bandwidth response 3A of the thirteen (13) MMFs in the graph 2A at five (5) GHz is also illustrated in FIG. 1A to the right of graph 2A. As illustrated in this example, the loss for all measured MMFs is approximately negative eight (−8) decibels (dB) with a relatively large standard deviation between the MMFs having similar defined characteristics. Thus, if the thirteen (13) MMFs illustrated in FIG. 1A were used in a wireless communication system, the picocells formed by each of the MMFs would have a varying loss, even in the case of equal-length MMFs. This variability results in the unpredictable behavior and operation of such wireless systems.

For comparison purposes, FIG. 1B provides a graph 2B illustrating an exemplary bandwidth response of eight (8) MMFs having a fifty (50) μm core measured in an RoF link with an eight hundred fifty (850) nm VCSEL measured over a range of input frequencies extending from zero (0) to six (6) GHz. An exemplary distribution of the bandwidth response 3B for the eight (8) MMFs at five (5) GHz is also illustrated FIG. 1B to the right of graph 2B. In this example, the bandwidth loss for all measured MMFs is approximately −2.4 dB, with a smaller standard deviation of loss when compared to the standard deviation of loss for the 62.5 μm core MMFs illustrated in FIG. 1A. However, the fifty (50) μm core MMFs provided in the example of FIG. 1B may be more expensive than the 62.5 μm core MMFs provided in the example of FIG. 1A.

Comparing the loss in the 62.5 μm core MMFs in FIG. 1A to the fifty (50) μm core MMFs in FIG. 1B, the loss variation is less pronounced for fifty (50) μm core MMFs than for 62.5 μm core MMFs. Therefore, depending on the MMF, the link loss among MMFs will have a distribution similar to that illustrated in FIG. 1C.

It would be advantageous to counteract the variations in loss caused by variations in bandwidth distribution of optical fibers used as communication links in wireless communication systems. MMFs having larger variations in bandwidth distribution may be less expensive to employ in wireless communication systems, but may result in unpredictable behavior having a deleterious effect on the operation of optical fiber enabled wireless communication systems. Therefore, it would be advantageous to counteract the variations in loss of MMFs having larger variations in bandwidth distribution among optical fibers having similar defined characteristics.

Embodiments disclosed in the detailed description include communication devices, systems, and methods for dynamic cell bonding (DCB) for networks and communication systems. In one embodiment, a method of operating an optical fiber-based wireless communication system is provided. The method comprises determining a first plurality of remote units in a cloud bonded to a communication session, measuring a received signal strength and/or a data rate from each of the first plurality of remote units, measuring a received signal strength and/or an estimated data rate from each of a second plurality of remote units in the cloud not bonded to the communication session, and dynamically bonding one of the second plurality of remote units to the communication session if the measured received signal strength or the estimated data rate of the one of the second plurality of remote units is greater than the measured received signal strength or the data rate of one of the first plurality of remote units.

Alternative embodiments disclosed in the detailed description include a controller for DCB for networks and communication systems. In this embodiment, the controller comprises a head end unit configured to determine a first plurality of remote units in a cloud bonded to a communication session, measure a received signal strength and/or a data rate from each of the first plurality of remote units, measure a received signal strength and/or an estimated data rate from each of a second plurality of remote units in the cloud not bonded to the communication session, and dynamically bond one of the second plurality of remote units to the communication session if the measured received signal strength or the estimated data rate of the one of the second plurality of remote units is greater than the measured received signal strength or the data rate of one of the first plurality of remote units.

Alternative embodiments disclosed in the detailed description include a system for DCB for networks and communication systems. In this embodiment, the system comprises a plurality of remote units, and a head end unit comprising a controller for directing a signal to the plurality of remote units, wherein the controller is configured to determine a first plurality of remote units in a cloud bonded to a communication session, measure a received signal strength and/or a data rate from each of the first plurality of remote units, measure a received signal strength and/or an estimated data rate from each of a second plurality of remote units in the cloud not bonded to the communication session, and dynamically bond one or several of the second plurality of remote units to the communication session if the measured received signal strength or the estimated data rate of the one of the second plurality of remote units is greater than the measured received signal strength or the data rate of one of the first plurality of remote units.

Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the invention as described herein, including the detailed description that follows, the claims, as well as the appended drawings.

It is to be understood that both the foregoing general description and the following detailed description present embodiments, and are intended to provide an overview or framework for understanding the nature and character of the disclosure. The accompanying drawings are included to provide a further understanding, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments, and together with the description serve to explain the principles and operation of the concepts disclosed.

FIGS. 1A-1C are diagrams illustrating exemplary varying bandwidth distributions and losses among multi-mode optical fibers (MMFs) having similarly defined characteristics;

FIG. 2 is a schematic diagram of an exemplary generalized embodiment of an optical fiber-based wireless picocellular system;

FIG. 3 is a more detailed schematic diagram of an exemplary embodiment of the system of FIG. 2;

FIG. 4 is a schematic diagram of an exemplary embodiment of a centralized optical fiber-based wireless picocellular system that includes multiple optical fiber cables optically coupled to a central head-end unit;

FIG. 5 is a “top down” view of the system of FIG. 4, showing an exemplary extended picocellular coverage area formed by using multiple optical fiber cables;

FIGS. 6A-6C are diagrams illustrating exemplary signal strength and bit rate within an exemplary square elementary cell;

FIGS. 7A and 7B are diagrams illustrating exemplary signal strength and bit rate within an exemplary square elementary cell;

FIGS. 8A and 8B are diagrams illustrating signal strength and bit rate within an exemplary square elementary cell employing dynamic cell bonding (DCB);

FIG. 9 is an illustration of a hardware configuration for practicing a two-by-two (2×2) Multiple Input/Multiple Output (MIMO) communication processing scheme in accordance with exemplary embodiments described herein;

FIG. 10 is a flowchart of DCB in accordance with exemplary embodiments described herein;

FIG. 11 is an illustration of a hardware configuration for practicing a four-by-four (4×4) MIMO communication processing scheme in accordance with exemplary embodiments described herein;

FIG. 12 shows a schematic representation (not to scale) of the refractive index profile of a cross-section of the glass portion of an exemplary embodiment of multimode optical fiber disclosed herein wherein the depressed-index annular portion is offset from the core and is surrounded by an outer annular portion; and

FIG. 13 is a schematic representation (not to scale) of a cross-sectional view of the optical waveguide fiber of FIG. 12.

Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings, in which some, but not all embodiments are shown. Indeed, the concepts may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Whenever possible, like reference numbers will be used to refer to like components or parts.

There is described below, in exemplary and non-limiting embodiments, embodiments that include communications devices, systems, and methods for dynamic cell bonding (DCB) for Radio-over-Fiber (RoF)-based networks and communication systems. In one embodiment, a method of operating an optical fiber-based wireless communication system is provided. The method comprises determining a first plurality of remote units in a cloud bonded to a communication session, measuring a received signal strength and/or a data rate from each of the first plurality of remote units, measuring a received signal strength and/or an estimated data rate from each of a second plurality of remote units in the cloud not bonded to the communication session, and dynamically bonding one or several of the second plurality of remote units to the communication session if the measured received signal strength or the estimated data rate of the one of the second plurality of remote units is greater than the measured received signal strength or the data rate of one of the first plurality of remote units.

In accordance with exemplary embodiments disclosed herein, DCB can be employed in a dense (i.e., separated by several meters) grid of antennas to compensate for link loss variation due to the use of multi-mode optical fibers (MMFs) in the system. As discussed more fully below, DCB can equalize link loss for different optical fibers and mitigate fading effects. This can result in an increase in the coverage area with maximum bit rate in a radio-over-multi-mode-fiber picocellular system.

DCB can be performed continually and/or periodically to measure the signal strengths of remote units near to remote units involved in a Multiple Input/Multiple Output (MIMO) communication session. When it is determined that switching the operation of a remote unit currently utilized in a communication session to a nearby unutilized or underutilized remote unit not bonded to the communication session can result in greater signal strength or a faster data rate, the operation of the two remote units is dynamically swapped. This swapping is referred to herein as “dynamic cell bonding” or, more simply, “dynamic bonding.” As a result of the dynamic bonding, the remote unit previously engaged in the MIMO communication session is subsequently unbonded from the MIMO communication session.

More specifically, in accordance with exemplary embodiments described below, a picocell infrastructure can be utilized to achieve wireless transmission gains by combining the separate single antennas (fed by single optical link) at remote units of neighboring cells by signal processing from a central location. Specifically, in a relatively dense grid of antennas, DCB can be utilized to compensate for the bandwidth limitations of MMFs. As discussed more fully below, a network based on low-bandwidth MMF with DCB has even slightly better coverage than a fixed-cell network where only the highest-bandwidth MMFs are used.

Before discussing exemplary embodiments of an MMF network employing DCB, FIGS. 2-5 are provided to discuss examples of an optical fiber-based wireless communication system which may employ the fiber optic array cables and other systems and methods described herein to enable wireless communication.

FIG. 2 illustrates a schematic diagram of an exemplary embodiment of an optical fiber-based wireless picocellular system 10 employing MMF. The optical fiber-based wireless picocellular system 10 is also referred to herein as “system 10.” The system 10 in this embodiment includes a head-end unit 12, a plurality of transponder units or remote antenna units 14, or simply “remote units 14.” At least one optical fiber radio frequency (RF) communication link 16 optically couples the head-end unit 12 to each remote unit 14. The head-end unit 12 may be any type of controller or control system, or any other device or system that can control communications directed to and from the remote units 14, as described in more detail below. As also discussed in detail below, the system 10 facilitates the formation of a picocell 18 substantially centered about remote unit 14 and extending in a generally conical form away from an associated remote unit 14. The plurality of remote units 14 forms a picocellular coverage area 20. While illustrated as covering separate and distinct regions of space, picocellular coverage areas associated with different remote units may intersect and overlap. The head-end unit 12 is adapted to perform or to facilitate any one of a number of RoF applications, such as radio frequency identification (RFID), wireless local area network (WLAN) communication, or cellular phone service, as examples. Shown within the picocell 18 is a client device 22 in the form of a computer. The client device 22 may be any device capable of receiving and transmitting RF communications and signals. The client device 22 includes an antenna system 24 (e.g., a wireless card) adapted to receive and/or send electromagnetic RF signals.

FIG. 3 is a detailed schematic diagram of an exemplary embodiment of system 10 of FIG. 2. In an exemplary embodiment, the head-end unit 12 includes a service unit 26 that provides electrical RF service signals for a particular wireless service or application. In an exemplary embodiment, the service unit 26 provides electrical RF service signals by passing (or conditioning and then passing) such signals from one or more outside networks 28, as described below. In a particular example embodiment, this includes providing WLAN signal distribution as specified in the Institute of Electrical Engineers (IEEE) 802.11 standard, i.e., in the frequency range from 2.4 to 2.5 GigaHertz (GHz) and from 5.0 to 6.0 GHz. In another exemplary embodiment, the service unit 26 provides electrical RF service signals by generating the signals directly. In another exemplary embodiment, the service unit 26 coordinates the delivery of the electrical RF service signals between client devices within the picocellular coverage area 20.

The service unit 26 is electrically coupled to an electrical-to-optical (E/O) converter 30 that receives an electrical RF service signal from the service unit 26 and converts it to a corresponding optical signal, as discussed in greater detail below. In an exemplary embodiment, the E/O converter 30 includes a laser suitable for delivering sufficient dynamic range for the RoF applications described herein, and optionally includes a laser driver/amplifier electrically coupled to the laser. Examples of suitable lasers for the E/O converter 30 include, but are not limited to, laser diodes, distributed feedback (DFB) lasers, Fabry-Perot (FP) lasers, and vertical cavity surface emitting lasers (VCSELs).

The head-end unit 12 also includes an optical-to-electrical (O/E) converter 32 electrically coupled to the service unit 26. The O/E converter 32 receives an optical RF service signal and converts it to a corresponding electrical signal. In an example embodiment, the O/E converter 32 is a photodetector, or a photodetector electrically coupled to a linear amplifier. The E/O converter 30 and the O/E converter 32 constitute a “converter pair” 34.

In accordance with an exemplary embodiment, the service unit 26 includes an RF signal modulator/demodulator unit 36 for modulating/demodulating RF signals, a digital signal processing unit (“digital signal processor”) 38, a central processing unit (CPU) 40 for processing data and otherwise performing logic and computing operations, and a memory unit 42 for storing data, such as data to be transmitted over a WLAN.

The remote unit 14 includes a converter pair 44, wherein the E/O converter 30 and the O/E converter 32 therein are electrically coupled to an antenna system 24 via an RF signal-directing element 46, such as a circulator. The signal-directing element 46 serves to direct the downlink and uplink electrical RF service signals, as discussed below. In accordance with an exemplary embodiment, the antenna system 24 includes one or more patch antennas, such as disclosed in U.S. patent application Ser. No. 11/504,999, filed Aug. 16, 2006 entitled “RADIO-OVER-FIBER TRANSPONDER WITH A DUAL-BAND PATCH ANTENNA SYSTEM,” and U.S. patent application Ser. No. 11/451,553, filed Jun. 12, 2006 entitled “CENTRALIZED OPTICAL-FIBER-BASED WIRELESS PICOCELLULAR SYSTEMS AND METHODS,” both of which are incorporated herein by reference in their entireties.

The optical fiber RF communication link 16 includes a downlink optical fiber 48D having a downlink optical fiber input end 50 and an output end 52, and an uplink optical fiber 48U having an uplink optical fiber input end 54 and an output end 56. The downlink and uplink optical fibers 48D and 48U optically couple the converter pair 34 at the head-end unit 12 to the converter pair 44 at the remote unit 14. Specifically, the downlink optical fiber input end 50 is optically coupled to the E/O converter 30 of the head-end unit 12, while the output end 52 is optically coupled to the O/E converter 32 at the remote unit 14. Similarly, the uplink optical fiber input end 54 is optically coupled to the E/O converter 30 of the remote unit 14, while the output end 56 is optically coupled to the O/E converter 32 at the head-end unit 12.

In accordance with an exemplary embodiment, the optical fiber-based wireless picocellular system 10 employs a known telecommunications wavelength, such as eight hundred fifty (850) nanometers (nm), one thousand three hundred (1300) nm, or one thousand five hundred fifty (1550) nm. In another exemplary embodiment, the system 10 employs other less common but suitable wavelengths such as nine hundred eighty (980) nm.

Exemplary embodiments of the system 10 include using multi-mode optical fiber for downlink and uplink optical fibers 48D and 48U. The particular type of optical fiber depends on the application of the system 10. For many in-building deployment applications, maximum transmission distances typically do not exceed three hundred (300) meters (m). The maximum length for the intended RoF transmission needs to be taken into account when considering using multi-mode optical fibers for the downlink and uplink optical fibers 48D and 48U. For example, it has been shown that a one thousand four hundred (1400) MHz/km multi-mode optical fiber bandwidth-distance product is sufficient for 5.2 GHz transmission up to three hundred (300) m.

In an exemplary embodiment, the system 10 employs fifty (50) μm multi-mode optical fiber (MMF) for the downlink and uplink optical fibers 48D and 48U, and E/O converters 30 that operate at eight hundred fifty (850) nm using commercially available VCSELs.

The system 10 also includes a power supply 58 that generates an electrical power signal 60. The power supply 58 is electrically coupled to the head-end unit 12 for powering the power-consuming elements therein. In an exemplary embodiment, an electrical power line 62 runs through the head-end unit 12 and over to the remote unit 14 to power the E/O converter 30 and the OLE converter 32 in the converter pair 44, the optional RF signal-directing element 46 (unless the RF signal-directing element 46 is a passive device such as a circulator), and any other power-consuming elements (not shown). In an exemplary embodiment, the electrical power line 62 includes two wires 64 and 66 that carry a single voltage and that are electrically coupled to a DC power converter 68 at the remote unit 14. The DC power converter 68 is electrically coupled to the E/O converter 30 and the OLE converter 32 in the converter pair 44, and changes the voltage or levels of the electrical power signal 60 to the power level(s) required by the power-consuming components in the remote unit 14. In an exemplary embodiment, the DC power converter 68 is either a DC/DC power converter, or an AC/DC power converter, depending on the type of electrical power signal 60 carried by the electrical power line 62. In an exemplary embodiment, the electrical power line 62 includes standard electrical-power-carrying electrical wire(s), e.g., 18-26 American Wire Gauge (AWG) used in standard telecommunications and other applications. In another example embodiment, the electrical power line 62 (dashed line) runs directly from the power supply 58 to the remote unit 14 rather than from or through the head-end unit 12. In another example embodiment, the electrical power line 62 includes more than two wires and carries multiple voltages.

In an example embodiment, the head-end unit 12 is operably coupled to one or more outside networks 28 via a network link 72.

With reference to the optical fiber-based wireless picocellular system 10 of FIGS. 2 and 3, the service unit 26 generates an electrical downlink RF service signal SD (also referred to herein as “electrical signal SD”) corresponding to its particular application. In an exemplary embodiment, this is accomplished by the digital signal processor 38 providing the RF signal modulator/demodulator unit 36 with an electrical signal (not shown) that is modulated onto an RF carrier to generate a desired electrical signal SD.

The electrical signal SD is received by the E/O converter 30, which converts this electrical signal into a corresponding optical downlink RF signal SD′ (also referred to herein as “optical signal SD′”), which is then coupled into the downlink optical fiber 48D at the downlink optical fiber input end 50. In an exemplary embodiment, the amount of power provided to antenna system 24 is varied to define the size of the associated picocell 18 (FIG. 2), which in example embodiments range anywhere from about a meter across to about twenty meters across.

The optical signal SD′ travels over the downlink optical fiber 48D to the output end 52, where it is received by the O/E converter 32 in the remote unit 14. The O/E converter 32 converts the optical signal SD′ back into the electrical signal SD, which then travels to the RF signal-directing element 46. The RF signal-directing element 46 then directs the electrical signal SD to the antenna system 24. The electrical signal SD is fed to the antenna system 24, causing it to radiate a corresponding electromagnetic downlink RF signal SD″ (also referred to herein as “electromagnetic signal SD″”). Because the client device 22 is within the picocell 18, the electromagnetic signal SD″ is received by the antenna system 24 of the client device 22, which may be part of a wireless card, or a cell phone antenna, for example. The antenna system 24 converts the electromagnetic signal SD″ into an electrical signal SD in the client device 22 (the electrical signal SD is not shown therein). The client device 22 then processes the electrical signal SD, e.g., stores the signal information in memory, displays the information as an e-mail or text message, etc.

In an exemplary embodiment, the client device 22 generates an electrical uplink RF signal SU (not shown in the client device 22), which is converted into an electromagnetic uplink RF signal SU″ (also referred to herein as “electromagnetic signal SU″”) by the antenna system 24.

Because the client device 22 is located within the picocell 18, the electromagnetic signal SU″ is detected by the antenna system 24 of the remote unit 14, which converts this signal back into the electrical signal SU. The electrical signal SU is directed by the RF signal-directing element 46 to the E/O converter 30, which converts this electrical signal SU into a corresponding optical uplink RF signal SU′ (also referred to herein as “optical signal SU”), which is then coupled into the uplink optical fiber input end 54 of the uplink optical fiber 48U. The optical signal SU′ travels over the uplink optical fiber 48U to the output end 56, where it is received by the OLE converter 32 at the head-end unit 12. The OLE converter 32 converts the optical signal SU′ back into the electrical signal SU, which is then directed to the service unit 26. The service unit 26 receives and processes the electrical signal SU, which in an example embodiment includes one or more of the following: storing the signal information, digitally processing or conditioning the signals, sending the signals on to one or more outside networks 28 via the network links 72, and sending the signals to one or more client devices 22 in the picocellular coverage area 20. In an example embodiment, the processing of the electrical signal SU includes demodulating the electrical signal SU in the RF signal modulator/demodulator unit 36, and then processing the demodulated signal in the digital signal processor 38.

FIG. 4 is a schematic diagram of an exemplary embodiment of an optical fiber-based wireless picocellular system 200 according the disclosure. The optical fiber-based wireless picocellular system 200 is also referred to herein as the “system 200.” The system 200 is similar to the system 10 as described above and illustrated in FIGS. 2 and 3, but includes multiple optical fiber cables 202 optically coupled to a central head-end station 204. The central head-end station 204 includes a number of E/O converter arrays 206 and a corresponding number of O/E converter arrays 208, arranged in pairs in converter array units 210, with one converter array unit 210 optically coupled to one optical fiber cable 202. Likewise, the system 200 includes a number of downlink multiplexers 212 and uplink multiplexers 214, arranged in pairs in multiplexer units 216, with one multiplexer unit 216 electrically coupled to one converter array unit 210. In an exemplary embodiment, a controller 215 is electrically coupled to each multiplexer unit 216 and is adapted to control the operation of the downlink and uplink multiplexers 212 and 214 therein. Here, the term “array” is not intended to be limited to components integrated onto a single chip as is often done in the art, but includes an arrangement of discrete, non-integrated components.

While described above with reference to the operation of a single remote unit 14, in accordance with exemplary embodiments disclosed below, remote units 14 are grouped into clouds of remote units 14 for use in DCB. As used herein, a “cloud” refers to a set comprising all remote units 14 each associated with one another in such a way that each may be counted when determining the number of nodes (NumNodes) available for the purposes of performing DCB. As described more fully below, a cloud may be further defined, for example, as the set of all remote units 14 physically linked to the same access point. For example, a plurality of remote units 14 forming a cloud may be used in combination with diversity antennas on client devices 22 (FIG. 2) to provide a Multiple-Input/Multiple-Output (MIMO) configuration. MIMO is the use of multiple antennas at both the transmitter and receiver to improve communication performance to maximize the performance of a system, such as the system 200. Such an arrangement can be used to achieve an increased bit rate at the same antenna power level. It achieves this by employing higher spectral efficiency (more bits per second per hertz of bandwidth) and link reliability or diversity (reduced fading).

Each E/O converter array 206 is electrically coupled to the downlink multiplexer 212 in the corresponding multiplexer unit 216. Likewise, each O/E converter array 208 is electrically coupled to the uplink multiplexer 214 in the corresponding multiplexer unit 216. Service units 218 are each electrically coupled to both the downlink and uplink multiplexers 212 and 214 within each multiplexer unit 216. Respective downlink and uplink optical fiber cables 220 and 222 optically couple each converter array unit 210 to a corresponding optical fiber cable 202. In an example embodiment, the central head-end station 204 includes connector ports 224 and optical fiber cables 202 include connectors 226 adapted to connect to the connector ports 224. In an exemplary embodiment, the connectors 226 are Mechanical Transfer (MT) connectors, such as the UNICAM™ MTP connector available from Corning Cable Systems LLC, Hickory, N.C. In an example embodiment, the connectors 226 are adapted to accommodate the electrical power line 62 connected to the connector port 224.

FIG. 5 is an illustration of a “top down” view of the system 200, showing an extended picocellular coverage area 20 formed by using multiple optical fiber cables 202 as might, for example, be spread across a floor of a building or other structure in a generally planar manner. A grid 228 is superimposed over the resultant array of remote units 14. In the exemplary embodiment shown, the remote unit 14 is located at each intersection of every two generally orthogonal grid lines to form a regularly distributed array of the remote units 14. In an example embodiment, the system 200 supports anywhere from two remote units 14 to hundreds of remote units 14, to even thousands of remote units 14. The particular number of remote units 14 employed is not fundamentally limited by the design of the system 200, but rather by the particular application.

The system 200 operates in a manner similar to the system 10 as described above, except that instead of the remote units 14 being disposed in a single optical fiber cable 202, they are distributed over two or more optical fiber cables 202 through the use of corresponding two or more converter array units 210. The electrical signals SD from the service units 218 are distributed to each multiplexer unit 216. The downlink multiplexers 212 therein convey electrical signals SD to one, some, or all of the converter array units 210, depending on which remote units 14 are to be addressed by which service unit 218. The electrical signals SD are then processed as described above, with the downlink optical signals SD′ being sent to one, some, or all of remote units 14. The uplink optical signals SU′ generated by the client devices 22 in the corresponding picocells 18 return to the corresponding converter array units 210 at the central head-end station 204. The optical signals SU′ are converted to electrical signals SU at the receiving converter array unit(s) 210 and are then sent to the uplink multiplexers 214 in the corresponding multiplexer unit(s) 216. The uplink multiplexers 214 therein are adapted (e.g., programmed by the controller 215) to direct the electrical signals SU to the service unit(s) 218 that require(s) receiving electrical signals SU. The receiving service units 218 process the electrical signals SU, which as discussed above in an exemplary embodiment includes one or more of: storing the signal information; digitally processing or conditioning the signals; sending the signals on to the one or more outside networks 28 via the network links 72; and sending the signals to one or more client devices 22 in the picocellular coverage area 20.

FIGS. 6-8 discussed below are provided in order to illustrate examples of implementing DCB in a MIMO communication session. In this regard, FIGS. 6A-6C are illustrations of exemplary disparaging that can occur in maximum bit rates achievable by the client device 22 of the system 200 operating within one or more picocells bounded by four remote units 14 forming a square elementary cell 230, as an example. With reference to FIG. 6A, the grid 228 corresponds to the grid 228 of FIG. 5. At each intersection of grid lines is a node 232 corresponding to the position of a remote unit 14. As used herein, references to a “node 232” may be used interchangeably with references to the “remote unit 14” associated with the node 232. For purposes of explanation, nodes 232 active in a communication session are designated as “node 232A.” More specifically, nodes 232 initially active in a MIMO communication session prior to the performance of DCB as described in accordance with reference to exemplary embodiments described herein are referred to as “node 232A”′ (see FIG. 9). Nodes 232 not bonded to a communication session but included in a cloud that includes nodes that are bonded to the communication session are referred to as “node 232C.” Returning to FIG. 6A, the four nodes 232A active in a communication session forming the square elementary cell 230 are surrounded by other adjacent nodes 232C. The eight adjacent nodes 232C are candidate nodes that can be utilized in a DCB scenario. In the simulation illustrated in FIG. 6A, each square elementary cell 230 has an a=five (5) meter (m) period.

FIG. 6B is an illustration showing the maximum bit rate achievable by a client device 22 within an exemplary square elementary cell 230 of a 4×4 MIMO system. In this example, the square elementary cell 230 has a period of a=5 m. There is assumed a path loss exponent of 4.0 and a shadow fading parameter of 3.5 dB. It is further assumed that each client device antenna system 24 is onmidirectional. Gaussian distribution for the fiber loss is assumed with σ=3 dB. Lastly, it is assumed that each MMF utilized to communicate with each remote unit 14 at each node 232A is a 62.5 μm fiber and is selected to be in the top 5% of bandwidth compared to other MMFs having the same characteristics. It is evident that, when utilizing the top five percent (5%) of MMFs from a random distribution of MMFs, up to approximately ninety four percent (94%) of the square elementary cell 230 is covered at the maximum bit rate. This result is further illustrated in FIG. 6C where there is plotted the percentage of the cell area coverage (% of cell area) for each bit rate (bit rate, Mb/s).

FIGS. 7A and 7B illustrate the percentage of coverage at varying bit rates for a square elementary cell 230 having the same dimensions and operating with the same parameters as in FIG. 6B with one exception. Specifically, in this example, each MMF utilized to communicate with each remote unit 14 at each node 232A is randomly selected so as to mirror the distribution of characteristics across all MMFs of the same or similar type. As a result, the MMFs utilized in the present example have a lower-bandwidth on average than do those utilized with reference to FIGS. 6B and 6C. The resulting increased variability in the quality of individual MMFs thus selected is reflected in the decreased percentage of the cell area covered at the maximum bit rate. Specifically, as seen in FIGS. 7A and 7B, the cell area covered at the maximum bit rate drops considerably to less than 80%. Note that in the exemplary embodiments of FIGS. 6A, 6B, 7A, and 7B, the same four (4) nodes 232A bonding the square elementary cell 230 are utilized as bonded to an RoF communication session.

In an exemplary embodiment in accordance with the disclosure, DCB is utilized to increase the percentage of a cell area covered at the maximum bit rate. In accordance with the simulated results illustrated in FIGS. 8A and 8B, it is possible to achieve results superior to those illustrated in FIGS. 6B and 6C even while utilizing the MMFs employed in FIGS. 7A and 7B. As described more fully below, DCB is employed to expand the set of nodes 232 that may be utilized in, for example, the 4×4 MIMO situation illustrated in FIG. 6A. Specifically, instead of merely using remote units 14 associated with the four nodes 232A forming the square elementary cell 230, each of the remote units 14 associated with the eight adjacent nodes 232C may be dynamically swapped, or “bonded”, with one of the four nodes 232A when it is determined that doing so would increase the percentage of the square elementary cell 230 within which the maximum bit rate can be achieved. As described more fully below, in an exemplary embodiment, this determination is made based, in part, upon which remote units 14 associated with nodes 232 belonging to the cloud of nodes 232 including adjacent nodes 232C exhibit the best signal-to-interference (S/I) and S/N ratios.

With continued reference to FIG. 8A, there is illustrated the cell area coverage using a random distribution of MMFs (as in FIGS. 7A and 7B) but employing DCB. The results are illustrated in FIGS. 8A and 8B, where it is demonstrated that the performance of the system when DCB is employed increases such that nearly one hundred percent (100%) of the square elementary cell 230 enjoys a maximum bit rate.

An exemplary embodiment of a method by which DCB can be performed in accordance with the disclosure is described with reference to FIG. 9 and the flowchart of FIG. 10. With reference to FIG. 9, there is illustrated a hardware configuration for a 2×2 MIMO scenario engaged in a communication session with, for example, a client device 22 (not shown), whereby multiple antenna systems 24 each at one of a number of remote units 14 and a corresponding number of antennas at the client device 22 engage in a communication session. In the exemplary illustrated configuration in FIG. 9, the system 200 (FIG. 4) operates to select two (2) of the five (5) nodes 232 each associated with a remote unit 14 exhibiting, for example, the highest measured received signal strength and/or data rate. In exemplary embodiments, all of the nodes 232 are presumed to be distributed in a generally planar manner such as across a floor of a building.

In this example, as illustrated in FIG. 10, the process of DCB begins with a first node 232A′ already selected, though in practice it need not be (block 300). As illustrated, node 232A′, located at center, is hardwired to service unit 26 and remains in a selected state throughout DCB. Next, beginning at N=1, the signal strength at each remote unit 14 corresponding to each of the four (4) other nodes is measured. Note that, in this example, the number of possible nodes from which to chose when performing DCB is five (5). As the node 232A′, located at center, is always selected, there remain four (4) possible other nodes 232 that can be utilized. Node 232A′, at center, is darkened to indicate that it is selected. As a result, the total possible number of nodes (NumNodes) in the present example is four (4) (total number of nodes (5)−number of nodes always activated (1)=4). The process proceeds to measure the signal strength of each of the remaining four (4) nodes 232. To achieve these measurements, a computing device, such as the CPU 40, queries the received signal strength from a client device 22 via the remote unit 14 corresponding to N=1 (block 302). The CPU 40 stores the measured signal strength corresponding to N=1 in memory, such as in memory unit 42 (block 304).

Next, a check is performed to see if N=NumNodes (block 306). As noted above, in the present example, NumNodes=4. As a result the comparison of N, having a value of “1,” does not equal NumNodes (equal to “4”). As a result, N is increased by one (block 308) and the process of measuring the signal strength of the other nonmeasured nodes continues once again (block 302). After three more iterations, it will be determined that N is equal to NumNodes.

Next, processing continues to select those remote units 14 corresponding to measured nodes, numbering NumNodes in total, having the highest signal strength (block 310). Because the present example is a 2×2 MIMO configuration in which only two nodes are utilized at any one time and, further, because the node 232A′, located at center, is always selected, this block requires that only the remote unit 14 corresponding to the node with the single highest associated value be selected. In the present example, the node 232A′ selected is the node directly to the left of center node 232A′. As a result, the CPU 40 instructs the 4×1 switch receiving an input signal from the service unit 26 to direct or otherwise transmit the signal to the node 232A′ at left of center (block 312). As a result, in the present example, the nodes 232C remain as adjacent, unutilized and unbonded nodes.

Next, MIMO signal processing is performed (block 314). During MIMO signal processing, data is transmitted to and received from the client device 22 via the selected remote units 14 having the highest measured signal strength.

Note that thus far there has been described only the first iteration of blocks by which the first number of remote units 14 are selected for use in MIMO processing (block 300 to block 314). After the initial selection of nodes is performed, a decision to perform dynamic cell bonding is made (block 316). Dynamic cell bonding is the process by which the nodes utilized in MIMO communication (e.g., two (2) nodes in 2×2 MIMO processing, four (4) nodes in 4×4 MIMO processing, etc.) are periodically, in a dynamic fashion, reassessed to determine the optimal configuration and utilization of the nodes. In the present example, if a determination is made to perform DCB, the process continues to block 302. As described above, the received signal strengths of all four (4) nodes (not including the central node 232A′) are again measured and, if necessary, a node 232C is chosen to replace the operation of node 232A′. This newly selected node 232C is then dynamically bonded with the communication session to become an active node 232A′ while, in approximate synchronicity, the formerly activated node 232A′ is unbounded from the communication session. If a decision is made to forgo DCB, the process terminates (block 316).

In an alternative exemplary and non-limiting embodiment, a data rate of a remote unit 14 can be used in addition to or in lieu of antenna signal strength in FIG. 10. In this regard, the data rate of remote units 14 proximate to the selected center node 232A′ can be used to provide a MIMO configuration and to determine dynamic cell bonding in FIG. 10. Data rate is another measure of the performance of a remote unit 14. Thus, in the embodiment of FIG. 10, the remote units 14 totaling NumNodes with the highest data rates can be used to provide the active nodes 232A for the MIMO configuration (blocks 302-312 in FIG. 10). Further, the data rate of nodes 232A selected for the MIMO configuration in FIG. 10 can also be used to determine communication performance and thus if an active node 232A should be selected for release in a dynamically bonded communication session. In this regard, the processing at block 316 in FIG. 10 can use the measured data rates of the active nodes 232A to reassess whether any of the active nodes 232A should be replaced with unbounded nodes 232C. In this regard, the measured estimated data rate(s) of nodes 232C, i.e., estimated based on the measured signal strength of nodes 232C, is compared with the data rate(s) of active nodes 232A. An estimated data rate is used to determine the performance of unbonded nodes 232C, because unbonded nodes 232C are not part of the communication session in this embodiment. As used herein, reference to “measured estimated data rate” refers to the process of determining an estimated data rate for an unbonded node 232C. If the estimated data rate(s) of unbonded nodes 232C are greater than the data rate(s) of active nodes 232A, as previously described above, such unbonded node(s) 232C can be chosen to replace the operation of active node(s) 232A and be dynamically bonded with the communication session to become an active node 232A (block 316 in FIG. 10).

FIG. 11 is an illustration of a hardware configuration for a 4×4 MIMO scenario. In the exemplary illustrated configuration, the system 200 (FIG. 4) operates to select four (4) of the best nine (9) nodes each associated with a remote unit 14. Note that, in the example, four nodes 232A′ have been initially chosen as exhibiting the highest signal strength. Once again, the node 232A′, located at center, is always activated so that the total number of nodes available for DCB (NumNodes) is equal to eight (8). Thus, when DCB is performed, N will cycle from one (1) to eight (8) as the signal strength of each node is measured.

The rapidity with which DCB occurs may vary. DCB may be configured to be performed at time intervals ranging from hours to minutes to seconds and even to subsecond intervals. When utilizing MMF at high bandwidths, the transmission quality of the fiber is unstable. In addition, the position of the client device 22 can move thus altering the remote units 14 being utilized for MIMO communication. Further, the temperature of the lasers used and the state of the physical couplings along a MMF can both change over time. As a result, it is beneficial to periodically perform DCB as described in accordance with exemplary embodiments herein.

In addition, the flowchart of FIG. 10 describes the process of DCB for a single client device 22. In practice, it is likely that DCB will be performed in serial fashion for each client device 22 engaged in MIMO communication via the system 200. It is therefore evident that the amount of time required to perform DCB on a plurality of client devices 22 is dependent upon, at least, the number of client devices 22 and the number of nodes (NumNodes) at which a signal strength must be measured. As a result, the degree of periodicity of DCB may be bounded, in part, by factors including, but not limited to, the number of client devices 22 and the number of nodes (NumNodes) at which a signal strength must be measured.

As noted above, a “cloud” refers to a set comprising all remote units 14 each associated with one another in such a way that each may be counted when determining NumNodes for the purposes of performing DCB. In the exemplary embodiments described above with reference to FIGS. 9 and 11, the cloud is defined by the specific nodes physically connected to the service unit 26. Specifically, all nodes physically connected to a single service unit are deemed to be in the same cloud. In other exemplary embodiments, clouds may be defined logically, such as when based upon geographic proximity. In such instances, when nodes are regularly distributed across, for example, floors of a building, nodes which reside on adjacent floors but which are otherwise aligned vertically may be included in the same cloud. In another exemplary embodiment, for any given first node, all other nodes belonging to the same cloud as the first node may be defined as being within the line of sight from the first node where line of sight distance d can be found from the following equation:

P TX + 20 log 10 c 4 π fd 0 + 10 n log 10 d 0 d = P noise
where PTX is the transmitter antenna power in dBm, Pnoise is the thermal noise power (equals −92 dBm for the bandwidth of 16.6 GHz), c is the speed of light, f is the operation radio frequency (e.g. 2.4 or 5.2 GHz), n is the path loss exponent determined experimentally and d0 is a reference distance outside of the Fraunhofer region of the antenna. Typically, d0=1 m is assumed.

Regardless of the manner in which one or more clouds are defined, each cloud and a unique identifier of each remote unit included in the cloud must be determined and recorded. In an exemplary embodiment, a configuration is performed during which information regarding each cloud and a unique identifier of each remote unit included in the cloud is stored, for example, in memory unit 42 and available to CPU 40.

As used herein, it is intended that terms “fiber optic cables” and/or “optical fibers” include all types of single mode and multi-mode light waveguides, including one or more bare optical fibers, loose-tube optical fibers, tight-buffered optical fibers, ribbonized optical fibers, bend-insensitive optical fibers, or any other expedient of a medium for transmitting light signals. An example of a bend-insensitive, or bend resistant, optical fiber is ClearCurve® Multimode fiber commercially available from Corning Incorporated. Suitable fibers of this type are disclosed, for example, in U.S. Patent Application Publication Nos. 2008/0166094 and 2009/0169163.

Bend resistant multimode optical fibers may comprise a graded-index core region and a cladding region surrounding and directly adjacent to the core region, the cladding region comprising a depressed-index annular portion comprising a depressed relative refractive index relative to another portion of the cladding. The depressed-index annular portion of the cladding is preferably spaced apart from the core. Preferably, the refractive index profile of the core has a parabolic or substantially curved shape. The depressed-index annular portion may, for example, comprise a) glass comprising a plurality of voids, or b) glass doped with one or more downdopants such as fluorine, boron, individually or mixtures thereof. The depressed-index annular portion may have a refractive index delta less than about −0.2% and a width of at least about 1 micron, said depressed-index annular portion being spaced from said core by at least about 0.5 microns.

In some embodiments that comprise a cladding with voids, the voids in some preferred embodiments are non-periodically located within the depressed-index annular portion. By “non-periodically located” we mean that when one takes a cross section (such as a cross section perpendicular to the longitudinal axis) of the optical fiber, the non-periodically disposed voids are randomly or non-periodically distributed across a portion of the fiber (e.g. within the depressed-index annular region). Similar cross sections taken at different points along the length of the fiber will reveal different randomly distributed cross-sectional hole patterns, i.e., various cross sections will have different hole patterns, wherein the distributions of voids and sizes of voids do not exactly match for each such cross section. That is, the voids are non-periodic, i.e., they are not periodically disposed within the fiber structure. These voids are stretched (elongated) along the length (i.e. generally parallel to the longitudinal axis) of the optical fiber, but do not extend the entire length of the entire fiber for typical lengths of transmission fiber. It is believed that the voids extend along the length of the fiber a distance less than about 20 meters, more preferably less than about 10 meters, even more preferably less than about 5 meters, and in some embodiments less than 1 meter.

The multimode optical fiber disclosed herein exhibits very low bend induced attenuation, in particular very low macrobending induced attenuation. In some embodiments, high bandwidth is provided by low maximum relative refractive index in the core, and low bend losses are also provided. Consequently, the multimode optical fiber may comprise a graded index glass core; and an inner cladding surrounding and in contact with the core, and a second cladding comprising a depressed-index annular portion surrounding the inner cladding, said depressed-index annular portion having a refractive index delta less than about −0.2% and a width of at least 1 micron, wherein the width of said inner cladding is at least about 0.5 microns and the fiber further exhibits a 1 turn, 10 mm diameter mandrel wrap attenuation increase of less than or equal to about 0.4 dB/turn at 850 nm, a numerical aperture of greater than 0.14, more preferably greater than 0.17, even more preferably greater than 0.18, and most preferably greater than 0.185, and an overfilled bandwidth greater than 1.5 GHz-km at 850 nm.

50 micron diameter core multimode fibers can be made which provide (a) an overfilled (OFL) bandwidth of greater than 1.5 GHz-km, more preferably greater than 2.0 GHz-km, even more preferably greater than 3.0 GHz-km, and most preferably greater than 4.0 GHz-km at an 850 nm wavelength. These high bandwidths can be achieved while still maintaining a 1 turn, 10 mm diameter mandrel wrap attenuation increase at an 850 nm wavelength of less than 0.5 dB, more preferably less than 0.3 dB, even more preferably less than 0.2 dB, and most preferably less than 0.15 dB. These high bandwidths can also be achieved while also maintaining a 1 turn, 20 mm diameter mandrel wrap attenuation increase at an 850 nm wavelength of less than 0.2 dB, more preferably less than 0.1 dB, and most preferably less than 0.05 dB, and a 1 turn, 15 mm diameter mandrel wrap attenuation increase at an 850 nm wavelength, of less than 0.2 dB, preferably less than 0.1 dB, and more preferably less than 0.05 dB. Such fibers are further capable of providing a numerical aperture (NA) greater than 0.17, more preferably greater than 0.18, and most preferably greater than 0.185. Such fibers are further simultaneously capable of exhibiting an OFL bandwidth at 1300 nm which is greater than about 500 MHz-km, more preferably greater than about 600 MHz-km, even more preferably greater than about 700 MHz-km. Such fibers are further simultaneously capable of exhibiting minimum calculated effective modal bandwidth (Min EMBc) bandwidth of greater than about 1.5 MHz-km, more preferably greater than about 1.8 MHz-km and most preferably greater than about 2.0 MHz-km at 850 nm.

Preferably, the multimode optical fiber disclosed herein exhibits a spectral attenuation of less than 3 dB/km at 850 nm, preferably less than 2.5 dB/km at 850 nm, even more preferably less than 2.4 dB/km at 850 nm and still more preferably less than 2.3 dB/km at 850 nm. Preferably, the multimode optical fiber disclosed herein exhibits a spectral attenuation of less than 1.0 dB/km at 1300 nm, preferably less than 0.8 dB/km at 1300 nm, even more preferably less than 0.6 dB/km at 1300 nm.

In some embodiments, the numerical aperture (“NA”) of the optical fiber is preferably less than 0.23 and greater than 0.17, more preferably greater than 0.18, and most preferably less than 0.215 and greater than 0.185.

In some embodiments, the core extends radially outwardly from the centerline to a radius R1, wherein 10≦R1≦40 microns, more preferably 20≦R1≦40 microns. In some embodiments, 22≦R1≦34 microns. In some preferred embodiments, the outer radius of the core is between about 22 to 28 microns. In some other preferred embodiments, the outer radius of the core is between about 28 to 34 microns.

In some embodiments, the core has a maximum relative refractive index, less than or equal to 1.2% and greater than 0.5%, more preferably greater than 0.8%. In other embodiments, the core has a maximum relative refractive index, less than or equal to 1.1% and greater than 0.9%.

In some embodiments, the optical fiber exhibits a 1 turn, 10 mm diameter mandrel attenuation increase of no more than 1.0 dB, preferably no more than 0.6 dB, more preferably no more than 0.4 dB, even more preferably no more than 0.2 dB, and still more preferably no more than 0.1 dB, at all wavelengths between 800 and 1400 nm.

FIG. 12 shows a schematic representation of the refractive index profile of a cross-section of the glass portion of an embodiment of a multimode optical fiber 500 comprising a glass core 420 and a glass cladding 400, the cladding comprising an inner annular portion 430, a depressed-index annular portion 450, and an outer annular portion 460. FIG. 13 is a schematic representation (not to scale) of a cross-sectional view of the optical waveguide fiber of FIG. 12. The core 420 has outer radius R1 and maximum refractive index delta Δ1MAX. The inner annular portion 430 has width W2 and outer radius R2. Depressed-index annular portion 450 has minimum refractive index delta percent Δ3MIN, width W3 and outer radius R3. The depressed-index annular portion 450 is shown offset, or spaced away, from the core 420 by the inner annular portion 430. The annular portion 450 surrounds and contacts the inner annular portion 430. The outer annular portion 460 surrounds and contacts the annular portion 450. The clad layer 400 is surrounded by at least one coating 510, which may in some embodiments comprise a low modulus primary coating and a high modulus secondary coating.

The inner annular portion 430 has a refractive index profile Δ2(r) with a maximum relative refractive index Δ2MAX, and a minimum relative refractive index Δ2MIN, where in some embodiments Δ2MAX=Δ2MIN. The depressed-index annular portion 450 has a refractive index profile Δ3(r) with a minimum relative refractive index Δ3MIN. The outer annular portion 460 has a refractive index profile Δ4(r) with a maximum relative refractive index Δ4MAX, and a minimum relative refractive index Δ4MIN, where in some embodiments Δ4MAX=Δ4MIN. Preferably, Δ1MAX>Δ2MAX>Δ3MIN. In some embodiments, the inner annular portion 430 has a substantially constant refractive index profile, as shown in FIG. 12 with a constant Δ2(r); in some of these embodiments, Δ2(r)=0%. In some embodiments, the outer annular portion 460 has a substantially constant refractive index profile, as shown in FIG. 12 with a constant Δ4(r); in some of these embodiments, Δ4(r)=0%. The core 420 has an entirely positive refractive index profile, where Δ1(r)>0%. R1 is defined as the radius at which the refractive index delta of the core first reaches value of 0.05%, going radially outwardly from the centerline. Preferably, the core 420 contains substantially no fluorine, and more preferably the core 420 contains no fluorine. In some embodiments, the inner annular portion 430 preferably has a relative refractive index profile Δ2(r) having a maximum absolute magnitude less than 0.05%, and Δ2MAX<0.05% and Δ2MIN>−0.05%, and the depressed-index annular portion 450 begins where the relative refractive index of the cladding first reaches a value of less than −0.05%, going radially outwardly from the centerline. In some embodiments, the outer annular portion 460 has a relative refractive index profile Δ4(r) having a maximum absolute magnitude less than 0.05%, and Δ4MAX<0.05% and Δ4MIN>−0.05%, and the depressed-index annular portion 450 ends where the relative refractive index of the cladding first reaches a value of greater than −0.05%, going radially outwardly from the radius where Δ3MIN is found.

Many modifications and other embodiments of the invention set forth herein will come to mind to one skilled in the art to which the invention pertains having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. These modifications include, but are not limited to, extension to MIMO configurations extending beyond 2×2 MIMO or 4×4 MIMO to, for example, 2×3 MIMO, 4×6 MIMO, 8×8 MIMO and the like. Therefore, it is to be understood that the invention is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. It is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.

Sauer, Michael, Kobyakov, Andrey

Patent Priority Assignee Title
10056948, May 31 2017 Corning Research & Development Corporation Distributing multiple-input, multiple-output (MIMO) communications streams to remove units in a distributed communication system (DCS) to support configuration of interleaved MIMO communications services
10382100, May 31 2017 Corning Research & Development Corporation Distributing multiple-input, multiple-output (MIMO) communications streams to remote units in a distributed communication system (DCS) to support configuration of interleaved MIMO communications services
Patent Priority Assignee Title
4365865, Jan 30 1981 Sea-Log Corporation Hybrid cable construction
4449246, May 02 1980 Harris Corporation Orderwire communication system
4573212, Nov 21 1983 TRACOR AEROSPACE ELECTRONIC SYSTEMS, INC Integrated receiver antenna device
4665560, May 20 1985 Texas Instruments Incorporated Wide band automatic gain control with limiting amplifiers
4867527, Mar 31 1987 Prysmian Cavi E Sistemi Energia SRL Combined electrical power and optical fiber cable
4889977, Dec 21 1987 SOUTHWESTERN BELL TELEPHONE COMPANY, A CORP OF MO Method of identifying the disposition of plug-in units at a warehouse
4896939, Oct 30 1987 D. G. O'Brien, Inc. Hybrid fiber optic/electrical cable and connector
4916460, Jan 29 1988 ALLEN TELECOM INC , A DELAWARE CORPORATION Distributed antenna system
4939852, Jan 02 1987 Elastic foot support to be built-in or inserted in shoes
4972346, Mar 24 1987 MITSUBISHI DENKI KABUSHIKI KAISHA, A CORP OF JAPAN High-frequency signal booster
5039195, May 29 1990 Fitel USA Corporation Composite cable including portions having controlled flexural rigidities
5042086, Nov 16 1988 Cisco Technology, Inc Method and means for transmitting large dynamic analog signals in optical fiber systems
5056109, Nov 07 1989 Qualcomm, INC Method and apparatus for controlling transmission power in a CDMA cellular mobile telephone system
5059927, Aug 28 1989 AIL Systems, Inc. Microwave oscillator with reduced phase noise
5125060, Apr 05 1991 ALCATEL NA CABLE SYSTEMS, INC Fiber optic cable having spliceless fiber branch and method of making
5187803, Jan 18 1990 Andrew Corporation Regenerative RF bi-directional amplifier system
5189718, Apr 02 1991 SIECOR TECHNOLOGY, INC Composite cable containing light waveguides and electrical conductors
5189719, May 26 1989 COLEMAN CABLE, INC , A DELAWARE CORPORATION Metallic sheath cable
5206655, Mar 09 1990 Alcatel Espace High-yield active printed-circuit antenna system for frequency-hopping space radar
5208812, Jan 27 1989 LUCENT TECHNOLOGIES WIRELESS LIMITED CAPITAL HOUSE Telecommunications system
5210812, Apr 05 1991 ALCATEL NA CABLE SYSTEMS, INC , A CORP OF DELAWARE Optical fiber cable having spliced fiber branch and method of making the same
5260957, Oct 29 1992 The Charles Stark Draper Laboratory, Inc. Quantum dot Laser
5263108, Nov 02 1990 Hitachi, Ltd. Electrical circuit apparatus
5267122, Jun 15 1992 ALCATEL NETWORK SYSTEMS, INC Optical network unit
5268971, Nov 07 1991 Alcatel NA Cable Systems, Inc. Optical fiber/metallic conductor composite cable
5278690, May 16 1991 Apparatus and method for synchronizing a plurality of remote transmission and receiving stations and providing automatic gain control of the synchronizing signal
5278989, Jan 18 1990 Andrew Corporation Distributed amplifier network management system
5280472, Dec 07 1990 Qualcomm Incorporated CDMA microcellular telephone system and distributed antenna system therefor
5297225, Jun 04 1992 Focal Technologies Corporation Off-axis optical rotary joint
5299947, Apr 18 1990 Rachael, Barnard Utility raceway
5301056, Dec 16 1991 Motorola, Inc. Optical distribution system
5325223, Dec 19 1991 Rockstar Consortium US LP Fiber optic telephone loop network
5339058, Oct 22 1992 TRILOGY COMMUNICATIONS, INC Radiating coaxial cable
5339184, Jun 15 1992 Verizon Patent and Licensing Inc Fiber optic antenna remoting for multi-sector cell sites
5343320, Aug 03 1992 AT&T SUBMARINE SYSTEMS INC Pump laser control circuit for an optical transmission system
5377035, Sep 28 1993 Hughes Electronics Corporation Wavelength division multiplexed fiber optic link for RF polarization diversity receiver
5379455, Feb 28 1991 Koninklijke Philips Electronics N V Modular distributed antenna system
5381459, Jul 29 1991 Cable Television Laboratories, Inc. System for distributing radio telephone signals over a cable television network
5396224, Nov 22 1991 Agilent Technologies Inc Telemetered patient location system and method
5400391, Sep 17 1990 NEC Corporation Mobile communication system
5420863, Jul 09 1992 NEC Corporation Mobile communication system with cell-site switching for intra-cell handoff
5424864, Oct 24 1991 NEC Corporation Microcellular mobile communication system
5444564, Feb 09 1994 OL SECURITY LIMITED LIABILITY COMPANY Optoelectronic controlled RF matching circuit
5457557, Jan 21 1994 AGERE Systems Inc Low cost optical fiber RF signal distribution system
5459727, Feb 28 1991 AT&T IPM Corp Wireless telecommunication system
5469523, Jun 10 1994 COMMSCOPE, INC OF NORTH CAROLINA Composite fiber optic and electrical cable and associated fabrication method
5519830, Jun 10 1993 ADC Telecommunications, Inc Point-to-multipoint performance monitoring and failure isolation system
5543000, Oct 22 1992 TRILOGY COMMUNICATIONS, INC Method of forming radiating coaxial cable
5546443, Oct 26 1992 ERICSSON GE MOBILE COMMUNICATIONS INC Communication management technique for a radiotelephone system including microcells
5557698, Aug 19 1994 Belden Wire & Cable Company Coaxial fiber optical cable
5574815, Jan 28 1991 Combination cable capable of simultaneous transmission of electrical signals in the radio and microwave frequency range and optical communication signals
5598288, Jul 31 1995 Northrop Grumman Systems Corporation RF fiber optic transmission utilizing dither
5606725, Nov 29 1994 XEL Communications, Inc. Broadband network having an upstream power transmission level that is dynamically adjusted as a function of the bit error rate
5615034, Nov 25 1994 NEC Corporation Optical micro cell transmission system
5627879, Sep 17 1992 ADC Telecommunications Cellular communications system with centralized base stations and distributed antenna units
5640678, Dec 10 1992 KDDI Corporation Macrocell-microcell communication system with minimal mobile channel hand-off
5642405, Sep 17 1992 ADC Telecommunications, Inc. Cellular communications system with centralized base stations and distributed antenna units
5644622, Sep 17 1992 ADC Telecommunications, Inc. Cellular communications system with centralized base stations and distributed antenna units
5648961, Nov 21 1994 Meisei Electric Co., Ltd. Radio telephone system and antenna device and base station for the same
5651081, Jun 10 1994 COMMSCOPE, INC OF NORTH CAROLINA Composite fiber optic and electrical cable and associated fabrication method
5657374, Sep 17 1992 ADC Telecommunications, Inc. Cellular communications system with centralized base stations and distributed antenna units
5668562, Apr 19 1996 CommScope EMEA Limited; CommScope Technologies LLC Measurement-based method of optimizing the placement of antennas in a RF distribution system
5677974, Aug 28 1995 SNET PROPERTIES, INC ; SBC HOLDINGS PROPERTIES, L P ; SBC PROPERTIES, L P Hybrid communications and power cable and distribution method and network using the same
5682256, Nov 11 1988 NEXTG NETWORKS, INC Communications system
5694232, Dec 06 1995 Ericsson Inc Full duplex optical modem for broadband access network
5703602, Jun 14 1996 Google Inc Portable RF antenna
5708681, Apr 23 1996 NYTELL SOFTWARE LLC Hybrid analog/digital method and apparatus for controlling the transmission power level of a radio transceiver
5726984, Jan 31 1989 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
5765099, Apr 19 1996 CommScope EMEA Limited; CommScope Technologies LLC Distribution of radio-frequency signals through low bandwidth infrastructures
5774789, Dec 14 1995 Andrew LLC RF communication signal distribution system and method
5790536, Jan 31 1989 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Hierarchical communication system providing intelligent data, program and processing migration
5790606, Jan 11 1994 Ericsson, Inc Joint demodulation using spatial maximum likelihood
5793772, Nov 29 1995 Motorola, Inc.; Motorola, Inc Method and apparatus for synchronizing timing of components of a telecommunication system
5802173, Jan 15 1991 Rogers Cable Systems Limited Radiotelephony system
5802473, Jun 10 1994 Apple Automatic determination and tuning of pico-cell topology for low-power wireless systems
5805975, Feb 22 1995 GLOBAL COMMUNICATIONS, INC Satellite broadcast receiving and distribution system
5805983, Jul 18 1996 Unwired Planet, LLC System and method for equalizing the delay time for transmission paths in a distributed antenna network
5809395, Jan 15 1991 Rogers Cable Systems Limited Remote antenna driver for a radio telephony system
5809422, Mar 08 1996 Cisco Systems, Inc Distributed microcellular communications system
5809431, Dec 06 1995 ALCATEL USA SOURCING, L P Local multipoint distribution system
5812296, Aug 23 1995 NTT Mobile Communications Networks Inc. Fiber optics transmission system
5818619, Jun 15 1995 JOLT LTD Wireless communication system
5818883, Dec 29 1994 Google Technology Holdings LLC Multi-channel digital transceiver and method
5821510, Dec 22 1994 Fitel USA Corporation Labeling and tracing system for jumper used in an exchange
5825651, Sep 03 1996 VERSATA DEVELOPMENT GROUP, INC Method and apparatus for maintaining and configuring systems
5838474, Sep 08 1995 Siemens Aktiengesellschaft Process and circuit arrangement for transmitting received signals from an antenna to a base station of a radio system
5839052, Feb 08 1996 Qualcomm Incorporated Method and apparatus for integration of a wireless communication system with a cable television system
5852651, Sep 17 1992 CommScope EMEA Limited; CommScope Technologies LLC Cellular communications system with sectorization
5854986, May 19 1995 Apple Inc Cellular communication system having device coupling distribution of antennas to plurality of transceivers
5859719, Oct 15 1996 THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT Photogenerator for lightwave networks
5862460, Sep 13 1996 Motorola, Inc.; Motorola, Inc Power control circuit for a radio frequency transmitter
5867485, Jun 14 1996 BELLSOUTH INTELLECTUAL PROPERTY GROUP, INC ; Bellsouth Intellectual Property Corporation Low power microcellular wireless drop interactive network
5867763, Feb 08 1996 Qualcomm Incorporated Method and apparatus for integration of a wireless communication system with a cable T.V. system
5875211, Oct 26 1995 Ericsson Inc.; Research Triangle Park Multisite radio system with false mobile radio signalling detection
5881200, Sep 29 1994 IPG Photonics Corporation Optical fibre with quantum dots
5883882, Jan 30 1997 CommScope EMEA Limited; CommScope Technologies LLC Fault detection in a frequency duplexed system
5896568, Sep 06 1996 Apple Inc Wireless architecture having redistributed access functions
5903834, Oct 06 1995 TELEFONAKTIEBOLAGET L M ERICSSON PUBL Distributed indoor digital multiple-access cellular telephone system
5910776, Oct 24 1994 Round Rock Research, LLC Method and apparatus for identifying locating or monitoring equipment or other objects
5913003, Jan 10 1997 Fitel USA Corporation Composite fiber optic distribution cable
5917636, Jul 29 1994 British Telecommunications public limited company Generation of radio frequency modulated optical radiation
5930682, Apr 19 1996 CommScope EMEA Limited; CommScope Technologies LLC Centralized channel selection in a distributed RF antenna system
5936754, Dec 02 1996 AT&T Corp Transmission of CDMA signals over an analog optical link
5943372, Nov 30 1993 THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT Orthogonal polarization and time varying offsetting of signals for digital data transmission or reception
5946622, Nov 19 1996 Unwired Planet, LLC Method and apparatus for providing cellular telephone service to a macro-cell and pico-cell within a building using shared equipment
5949564, Mar 01 1993 NEXTG NETWORKS, INC Transducer
5953670, May 02 1995 RPX CLEARINGHOUSE LLC Arrangement for providing cellular communication via a CATV network
5959531, Jul 24 1998 CHECKPOINT SYSTEMS, INC ; Mitsubishi Material Corporation Optical interface between receiver and tag response signal analyzer in RFID system for detecting low power resonant tags
5960344, Jun 27 1997 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Local area network having multiple channel wireless access
5969837, Dec 15 1996 Corning Optical Communications Wireless Ltd Communications system
5983070, Apr 19 1996 CommScope EMEA Limited; CommScope Technologies LLC Method and system providing increased antenna functionality in a RF distribution system
5987303, May 29 1996 AT&T Corp. Wireless transmission using fiber link
6005884, Nov 06 1995 EMS Technologies, Inc. Distributed architecture for a wireless data communications system
6006069, Nov 28 1994 Cisco Systems, Inc; CISCO TECHNOLOGY, INC , A CORPORATION OF CALIFORNIA Point-to-multipoint communications system
6006105, Aug 02 1996 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Multi-frequency multi-protocol wireless communication device
6011980, Aug 21 1996 Oki Electric Industry Co., Ltd. Wireless telecommunication equipment
6014546, Apr 19 1996 CommScope EMEA Limited; CommScope Technologies LLC Method and system providing RF distribution for fixed wireless local loop service
6016426, Oct 10 1996 MVS, Incorporated Method and system for cellular communication with centralized control and signal processing
6023625, Feb 18 1997 Ericsson Inc. System and method for reducing multicast interference in a distributed antenna network
6037898, Oct 10 1997 Intel Corporation Method and apparatus for calibrating radio frequency base stations using antenna arrays
6061161, Jun 20 1997 OCP ASIA, INC Distortion-compensation circuit for wideband optical-fiber communication systems
6069721, Nov 21 1996 LG Information & Communications, Ltd Radio frequency control circuit of base station of mobile communications systems
6088381, Dec 23 1997 Ericsson Inc. System for transporting frequency hopping signals
6112086, Feb 25 1997 CommScope EMEA Limited; CommScope Technologies LLC Scanning RSSI receiver system using inverse fast fourier transforms for a cellular communications system with centralized base stations and distributed antenna units
6118767, Nov 19 1997 KATHREIN-WERKE KG Interference control for CDMA networks using a plurality of narrow antenna beams and an estimation of the number of users/remote signals present
6122529, Mar 17 1998 CommScope EMEA Limited; CommScope Technologies LLC Simulcast with hierarchical cell structure overlay
6127917, Feb 27 1997 Round Rock Research, LLC System and method for locating individuals and equipment, airline reservation system, communication system
6128470, Jul 18 1996 Unwired Planet, LLC System and method for reducing cumulative noise in a distributed antenna network
6128477, Aug 07 1998 Ericsson Inc. System for improving the dynamic range of transmitter power measurement in a cellular telephone
6148041, Jan 11 1994 Ericsson Inc. Joint demodulation using spatial maximum likelihood
6150921, Oct 17 1996 RF TECHNOLOGIES Article tracking system
6157810, Apr 19 1996 CommScope EMEA Limited; CommScope Technologies LLC Distribution of radio-frequency signals through low bandwidth infrastructures
6192216, Dec 24 1997 CommScope EMEA Limited; CommScope Technologies LLC Remotely controlled gain control of transceiver used to inter-connect wireless telephones to a broadband network
6194968, May 10 1999 Macom Technology Solutions Holdings, Inc Temperature and process compensating circuit and controller for an RF power amplifier
6212397, Dec 22 1997 Texas Instruments Incorporated Method and system for controlling remote multipoint stations
6222503, Jan 10 1997 System and method of integrating and concealing antennas, antenna subsystems and communications subsystems
6223201, Aug 27 1996 International Business Machines Corporation Data processing system and method of task management within a self-managing application
6232870, Aug 14 1998 3M Innovative Properties Company Applications for radio frequency identification systems
6236789, Dec 22 1999 Prysmian Communications Cables and Systems USA, LLC Composite cable for access networks
6236863, Mar 31 1997 Canon Kabushiki Kaisha Comprehensive transmitter power control system for radio telephones
6240274, Apr 21 1999 HRL Laboratories, LLC High-speed broadband wireless communication system architecture
6246500, Sep 18 1998 Massachusetts Institute of Technology Linearization of a broadband analog optical link using two wavelengths
6268946, Jul 01 1998 WSOU Investments, LLC Apparatus for communicating diversity signals over a transmission medium
6275990, Feb 06 1995 HTC Corporation Transport of payload information and control messages on multiple orthogonal carriers spread throughout substantially all of a frequency bandwith
6279158, Sep 26 1994 HTC Corporation Dynamic bandwidth allocation
6286163, Sep 21 2000 Fitted sheet construction
6292673, Jun 11 1999 Matsushita Electric Industrial Co., Ltd. Radio signal transmitter
6295451, Nov 21 1997 Kabushiki Kaisha Toshiba Mobile communication system, base station, and base station controller
6301240, Feb 19 1998 CommScope EMEA Limited; CommScope Technologies LLC Centrally located equipment for wireless telephone system
6307869, Jul 07 1998 WSOU Investments, LLC System and method for phase recovery in a synchronous communication system
6314163, Jan 17 1997 The Regents of the University of California Hybrid universal broadband telecommunications using small radio cells interconnected by free-space optical links
6317599, May 26 1999 Extreme Networks, Inc Method and system for automated optimization of antenna positioning in 3-D
6323980, Mar 05 1998 HANGER SOLUTIONS, LLC Hybrid picocell communication system
6324391, Oct 10 1996 MVS Incorporated Method and system for cellular communication with centralized control and signal processing
6330241, Feb 06 1995 HTC Corporation Multi-point to point communication system with remote unit burst identification
6330244, Sep 05 1996 Symbol Technologies, LLC System for digital radio communication between a wireless lan and a PBX
6334219, Sep 26 1994 HTC Corporation Channel selection for a hybrid fiber coax network
6336021, Mar 26 1999 TOSHIBA TEC KABUSHIKI KAISHA PARTIAL RIGHTS Electrophotographic apparatus including a plurality of developing agent image forming units and a method of forming an electrophotographic image
6336042, Jun 05 1998 CommScope EMEA Limited; CommScope Technologies LLC Reverse link antenna diversity in a wireless telephony system
6337754, Nov 20 1997 Kokusai Electric Co., Ltd. Optical conversion relay amplification system
6340932, Jun 02 1998 RF Code, Inc. Carrier with antenna for radio frequency identification
6353406, Oct 17 1996 RF TECHNOLOGIES, INC Dual mode tracking system
6353600, Apr 29 2000 CommScope EMEA Limited; CommScope Technologies LLC Dynamic sectorization in a CDMA cellular system employing centralized base-station architecture
6359714, Nov 28 1997 Kokusai Electric Co., Ltd. Relay system
6370203, Nov 04 1998 Ericsson Inc. Power control for wireless communications system
6374078, Apr 17 1998 Wahoo Communications Corporation Wireless communication system with multiple external communication links
6374124, Dec 24 1997 CommScope EMEA Limited; CommScope Technologies LLC Dynamic reallocation of transceivers used to interconnect wireless telephones to a broadband network
6389010, Oct 05 1995 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
6400318, Apr 30 1999 Kabushiki Kaisha Toshiba Adaptive array antenna
6400418, Sep 28 1998 NEC-Mitsubishi Electric Visual Systems Corporation Image display device
6404775, Nov 21 1997 Allen Telecom LLC Band-changing repeater with protocol or format conversion
6405018, Jan 11 1999 HANGER SOLUTIONS, LLC Indoor distributed microcell
6405058, May 16 2000 VISLINK TECHNOLOGIES, INC Wireless high-speed internet access system allowing multiple radio base stations in close confinement
6405308, Sep 03 1996 VERSATA DEVELOPMENT GROUP, INC Method and apparatus for maintaining and configuring systems
6414624, Nov 19 1998 Harada Industry Co., Ltd. Antenna apparatus for use in automobiles
6415132, Apr 21 1999 CommScope EMEA Limited; CommScope Technologies LLC Blossom/wilt for dynamic reallocation in a distributed fiber system
6421327, Jun 28 1999 Qualcomm Incorporated Method and apparatus for controlling transmission energy in a communication system employing orthogonal transmit diversity
6438301, Jul 07 1999 Northrop Grumman Systems Corporation Low-torque electro-optical laminated cable and cablewrap
6438371, Apr 23 1998 National Institute of Information and Communications Technology, Incorporated Multimode service radio communication method and apparatus
6448558, Jan 31 2001 The United States of America as represented by the Secretary of the Navy Active infrared signature detection device
6452915, Jul 10 1998 Intellectual Ventures I LLC IP-flow classification in a wireless point to multi-point (PTMP) transmission system
6459519, Apr 09 1997 MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD Optical transmitter-receiver
6459989, Mar 03 2000 SRI International Portable integrated indoor and outdoor positioning system and method
6477154, Aug 14 1997 SK TELECOM CO , LTD Microcellular mobile communication system
6480702, Aug 01 1996 CommScope EMEA Limited; CommScope Technologies LLC Apparatus and method for distributing wireless communications signals to remote cellular antennas
6486907, Jan 07 1997 Foxcom Ltd. Satellite distributed television
6496290, Jan 31 1998 LG Telecom, Inc. Optic repeater system for extending coverage
6501965, May 20 1998 Apple Inc Radio communication base station antenna
6504636, Jun 11 1998 Kabushiki Kaisha Toshiba Optical communication system
6504831, Feb 23 1999 CommScope EMEA Limited; CommScope Technologies LLC Optical simulcast network with centralized call processing
6512478, Dec 22 1999 Skyworks Solutions, Inc Location position system for relay assisted tracking
6519395, May 04 2000 Northrop Grumman Systems Corporation Fiber optic array harness
6519449, Oct 29 1999 Apple Inc Method and apparatus for a signal power control in a wireless communication system
6525855, Jul 19 1996 NEXTG NETWORKS, INC Telecommunications system simultaneously receiving and modulating an optical signal
6535330, Mar 31 2001 Corning Incorporated Dynamic controller for a multi-channel optical amplifier
6535720, Jun 28 2000 Northrop Grumman Systems Corporation Digital power control system for a multi-carrier transmitter
6556551, May 27 1999 CommScope EMEA Limited; CommScope Technologies LLC Multi-frequency pilot beacon for CDMA systems
6577794, Sep 27 1999 Compound optical and electrical conductors, and connectors therefor
6577801, Jul 14 1999 SOUTHAMPTON, UNIVERSITY OF Holey optical fibers
6580402, Jul 26 2001 The Boeing Company Antenna integrated ceramic chip carrier for a phased array antenna
6580905, Jul 02 1996 Ericsson, Inc System and method for controlling the level of signals output to transmission media in a distributed antenna network
6580918, Aug 05 1997 Nokia Mobile Phones Limited Cellular telecommunications system
6583763, Apr 26 1999 CommScope Technologies LLC Antenna structure and installation
6587514, Jul 13 1999 MAXLINEAR ASIA SINGAPORE PTE LTD Digital predistortion methods for wideband amplifiers
6594496, Apr 27 2000 CommScope EMEA Limited; CommScope Technologies LLC Adaptive capacity management in a centralized basestation architecture
6597325, Apr 26 1999 CommScope Technologies LLC Transmit/receive distributed antenna systems
6598009, Feb 01 2001 Method and device for obtaining attitude under interference by a GSP receiver equipped with an array antenna
6606430, Sep 05 2000 Optical Zonu Corporation Passive optical network with analog distribution
6615074, Dec 22 1998 PITTSBURGH, UNIVERSITY OF Apparatus for energizing a remote station and related method
6628732, Jul 17 1998 NEC Corporation Received power calculating method and mobile station
6634811, Nov 30 1999 Emcore Corporation High performance optical link
6636747, Mar 06 1998 National Institute of Information and Communications Technology, Incorporated Multi-mode radio transmission system
6640103, Nov 23 1999 Telefonaktiebolaget LM Ericsson (publ) Method and system for cellular system border analysis
6643437, Nov 23 1998 Samsung Electronics Co., Ltd.; SAMSUNG ELECTRONICS CO , LTD All-dielectric self-supporting optical cable and manufacturing method thereof
6652158, Sep 05 2000 Optical Zonu Corporation Optical networking unit employing optimized optical packaging
6654590, May 01 1998 Intel Corporation Determining a calibration function using at least one remote terminal
6654616, Sep 27 1999 GTE Wireless Incorporated Wireless area network having flexible backhauls for creating backhaul network
6657535, Aug 31 1998 HAWKEYE GLOBAL, INC System for signaling a device at a remote location
6658269, Oct 01 1999 Texas Instruments Incorporated Wireless communications system
6665308, Aug 25 1995 Google Technology Holdings LLC Apparatus and method for equalization in distributed digital data transmission systems
6670930, Dec 05 2001 The Boeing Company Antenna-integrated printed wiring board assembly for a phased array antenna system
6674966, Oct 15 1998 Lucent Technologies Inc Re-configurable fibre wireless network
6675294, Sep 03 1996 VERSATA DEVELOPMENT GROUP, INC Method and apparatus for maintaining and configuring systems
6678509, Dec 24 1998 CLUSTER, LLC; Optis Wireless Technology, LLC Communication receiver having reduced dynamic range by reducing the fixed range of the amplifier and increasing the variable gain via a gain control circuit
6687437, Jun 05 2000 SUPERIOR ESSEX INTERNATIONAL INC Hybrid data communications cable
6690328, Apr 26 1999 CommScope Technologies LLC Antenna structure and installation
6697603, Dec 13 1999 CommScope Technologies LLC Digital repeater
6701137, Apr 26 1999 CommScope Technologies LLC Antenna system architecture
6704298, Sep 11 1998 KOKUSAI ELECTRIC CO , LTD Repeater amplifier apparatus
6704545, Jul 19 2000 CommScope EMEA Limited; CommScope Technologies LLC Point-to-multipoint digital radio frequency transport
6710366, Aug 02 2001 SAMSUNG ELECTRONICS CO , LTD Nanocomposite materials with engineered properties
6714800, May 02 2001 Trex Enterprises Corporation Cellular telephone system with free space millimeter wave trunk line
6731880, Jul 19 1996 NEXTG NETWORKS, INC Telecommunications system
6745013, Mar 31 1999 Adaptive Broadband Corporation; AXXCELERA BROADBAND WIRELSS, INC Method and system for controlling transmit power of network nodes
6758913, Oct 12 2000 General Electric Company Method of cleaning pressurized containers containing anhydrous ammonia
6763226, Jul 31 2002 Computer Science Central, Inc. MULTIFUNCTIONAL WORLD WIDE WALKIE TALKIE, A TRI-FREQUENCY CELLULAR-SATELLITE WIRELESS INSTANT MESSENGER COMPUTER AND NETWORK FOR ESTABLISHING GLOBAL WIRELESS VOLP QUALITY OF SERVICE (QOS) COMMUNICATIONS, UNIFIED MESSAGING, AND VIDEO CONFERENCING VIA THE INTERNET
6771862, Nov 27 2001 Intel Corporation Signaling medium and apparatus
6771933, Mar 26 2001 CommScope EMEA Limited; CommScope Technologies LLC Wireless deployment of bluetooth access points using a distributed antenna architecture
6784802, Nov 04 1999 Nordx/CDT, Inc. Real time monitoring of cable patch panel
6785558, Dec 06 2002 CommScope EMEA Limited; CommScope Technologies LLC System and method for distributing wireless communication signals over metropolitan telecommunication networks
6788666, Jun 13 2000 T-MOBILE INNOVATIONS LLC Hybrid fiber wireless communication system
6801767, Jan 26 2001 CommScope EMEA Limited; CommScope Technologies LLC Method and system for distributing multiband wireless communications signals
6807374, May 14 1999 KOKUSAI ELECTRIC CO , LTD Mobile communication system
6812824, Oct 17 1996 RF TECHNOLOGIES, INC Method and apparatus combining a tracking system and a wireless communication system
6812905, Apr 26 1999 CommScope Technologies LLC Integrated active antenna for multi-carrier applications
6823174, Oct 11 1999 AXIOM MICRODEVICES, INC Digital modular adaptive antenna and method
6826163, Jun 08 2001 NEXTG Networks Method and apparatus for multiplexing in a wireless communication infrastructure
6826164, Jun 08 2001 NEXTG Networks Method and apparatus for multiplexing in a wireless communication infrastructure
6826337, Dec 29 1999 EMC IP HOLDING COMPANY LLC Method and apparatus for transmitting fiber-channel and non-fiber channel signals through a common cable
6836660, Feb 25 1997 CommScope EMEA Limited; CommScope Technologies LLC Methods and systems for communicating in a cellular network
6836673, Dec 22 2000 Intel Corporation Mitigating ghost signal interference in adaptive array systems
6842433, Apr 24 2001 QWIKKER, INC System and method for communicating information from a computerized distributor to portable computing devices
6842459, Apr 19 2000 CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC Network combining wired and non-wired segments
6847856, Aug 29 2003 RPX Corporation Method for determining juxtaposition of physical components with use of RFID tags
6850510, Oct 05 1995 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
6865390, Jun 25 2001 Lucent Technologies Inc. Cellular communications system featuring a central radio pool/traffic router
6873823, Jun 20 2002 AXELL WIRELESS LTD Repeater with digital channelizer
6876056, Apr 19 2001 INTERUNIVERSITAIR MICROELEKTRONICA CENTRUM IMEC Method and system for fabrication of integrated tunable/switchable passive microwave and millimeter wave modules
6879290, Dec 26 2000 Gula Consulting Limited Liability Company Compact printed “patch” antenna
6882311, Apr 12 2001 CPI MALIBU DIVISION Digital beamforming radar system
6883710, Oct 11 2000 Avante International Technology, Inc Article tracking system and method
6885344, Nov 19 2002 High-frequency antenna array
6885846, Mar 31 1997 Texas Instruments Incorporated Low power wireless network
6889060, Jun 28 2001 Telecommunications Research Laboratories Optical fiber based on wireless scheme for wideband multimedia access
6901061, Sep 05 2000 Cisco Technology, Inc; Cisco Systems, Inc Handoff control in an enterprise division multiple access wireless system
6909399, Dec 31 2003 Symbol Technologies, LLC Location system with calibration monitoring
6915058, Feb 28 2003 Corning Optical Communications LLC Retractable optical fiber assembly
6915529, Feb 27 1998 Sharp Kabushiki Kaisha MILLIWAVE TRANSMITTING DEVICE, MILLIWAVE RECEIVING DEVICE AND MILLIWAVE TRANSMISSION AND RECEPTION SYSTEM CAPABLE OF SIMPLIFYING WIRING OF A RECEIVING SYSTEM OF TERRESTRIAL BROADCASTING SERVICE AND SATELLITE BROADCASTING SERVICE
6919858, Oct 10 2003 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD RF antenna coupling structure
6920330, Mar 26 2002 Oracle America, Inc Apparatus and method for the use of position information in wireless applications
6924997, Sep 25 2000 PANASONIC SEMICONDUCTOR SOLUTIONS CO , LTD Ferroelectric memory and method of operating same
6930987, Jun 29 1999 Sony Corporation Communication device communication method, and communication terminal device
6931183, Mar 29 1996 SEAFORT INTERNATIONAL TRADING, S R L Hybrid electro-optic cable for free space laser antennas
6931659, Aug 05 1999 Sharp Kabushiki Kaisha Cable modem having a wireless communication function
6931813, Aug 02 2002 Tornado and hurricane roof tie
6933849, Jul 09 2002 Automated Tracking Solutions, LLC Method and apparatus for tracking objects and people
6934511, Jul 20 1999 CommScope Technologies LLC Integrated repeater
6934541, Mar 01 2001 HITACHI KOKUSAI ELECTRIC INC. Communication device
6941112, Jul 14 2000 LENOVO INNOVATIONS LIMITED HONG KONG Gain control amplification circuit and terminal equipment having the same
6946989, Mar 01 2000 Transponder, including transponder system
6961312, Oct 05 1995 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
6963289, Oct 18 2002 Aeroscout, Ltd Wireless local area network (WLAN) channel radio-frequency identification (RFID) tag system and method therefor
6963552, Mar 27 2000 CommScope EMEA Limited; CommScope Technologies LLC Multi-protocol distributed wireless system architecture
6965718, Feb 20 2004 Hewlett Packard Enterprise Development LP Apparatus and method for supplying power over an optical link
6967347, May 21 2001 REGENTS OF THE UNIVERSITTY OF COLORADO, THE Terahertz interconnect system and applications
6968107, Aug 18 2000 University of Southhampton Holey optical fibres
6970652, Dec 07 2001 Oplink Communications, LLC Auto-setting and optimization of EAM with optical line systems
6973243, Feb 13 2003 Fujikura Ltd. Cable
6974262, Jan 21 2004 Communication cable
6977502, Nov 04 2002 Fonar Corporation Configurable matrix receiver for MRI
7002511, Mar 02 2005 XYTRANS, INC Millimeter wave pulsed radar system
7006465, Dec 15 1999 Kabushiki Kaisha Toshiba Radio communication scheme
7013087, Oct 25 2000 NTT DOCOMO, INC. Communication system using optical fibers
7015826, Apr 02 2002 VeriChip Corporation Method and apparatus for sensing and transmitting a body characteristic of a host
7020473, Feb 07 2003 RPX Corporation Method for finding the position of a subscriber in a radio communications system
7020488, Jul 19 2000 EMBEDDED SYSTEMS PRODUCTS INTELLECTUAL PROPERTY, LLC Communications unit, system and methods for providing multiple access to a wireless transceiver
7024166, Dec 18 2002 Qualcomm Incorporated Transmission diversity systems
7035512, Mar 16 2001 KONINKLIJKE KPN N V Method for providing a broadband infrastructure in a building by means of optical fibers
7035671, Apr 08 2002 CommScope EMEA Limited; CommScope Technologies LLC Method and apparatus for intelligent noise reduction in a distributed communication system
7039399, Mar 11 2002 CommScope EMEA Limited; CommScope Technologies LLC Distribution of wireless telephony and data signals in a substantially closed environment
7043271, Sep 13 1999 Kabushiki Kaisha Toshiba Radio communication system
7047028, Nov 15 2002 TELEFONAKTIEBOLAGET LM ERICSSON PUBL Optical fiber coupling configurations for a main-remote radio base station and a hybrid radio base station
7050017, Aug 14 2002 Mineral Lassen LLC RFID tire belt antenna system and method
7053838, Apr 26 1999 CommScope Technologies LLC Antenna structure and installation
7054513, Jun 09 2003 Virginia Tech Intellectual Properties, Inc Optical fiber with quantum dots
7069577, Feb 06 1995 HTC Corporation Dynamic bandwidth allocation
7072586, Dec 28 1999 NTT DoCoMo, Inc Radio base station system and central control station with unified transmission format
7082320, Sep 04 2001 TELEFONAKTIEBOLAGET L M ERICSSON PUBL Integration of wireless LAN and cellular distributed antenna
7084769, Jan 23 2002 SENSORMATIC ELECTRONICS, LLC Intelligent station using multiple RF antennae and inventory control system and method incorporating same
7093985, Jul 12 2004 MOOG INC Wall mount fiber optic connector and associated method for forming the same
7103119, Dec 22 2000 Kabushiki Kaisha Toshiba Use of smart antenna in beam formation circuit
7103377, Dec 03 2002 PROCOMM INTERNATIONAL PTE LTD Small signal threshold and proportional gain distributed digital communications
7106252, Feb 26 2002 Apple User terminal antenna arrangement for multiple-input multiple-output communications
7106931, Nov 19 2001 Prysmian Cables & Systems Limited Optical fiber drop cables
7110795, Aug 31 2001 Godo Kaisha IP Bridge 1 Radio apparatus, method for receiving its signal, method for measuring its filter coefficient, and program for measuring its filter coefficient
7114859, May 31 2005 Nokia Technologies Oy Electrical-optical/optical-electrical board to board connector
7127175, Jun 08 2001 NEXTG Networks Method and apparatus for multiplexing in a wireless communication infrastructure
7127176, Jun 26 2002 Oki Electric Industry Co., Ltd. Optical transmission system of radio signal over optical fiber link
7142503, Feb 11 2000 RPX CLEARINGHOUSE LLC Communication system architecture and operating methodology providing a virtual neighborhood network
7142535, Oct 05 1995 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
7142619, Apr 26 2000 Symmetricom, Inc Long subscriber loops using automatic gain control mid-span extender unit
7146506, May 25 1999 Intel Corporation Digital video display system
7160032, Apr 24 2003 Sony Corporation Electro-optical composite connector, electro-optical composite cable, and network devices using the same
7171244, Dec 03 2002 CommScope EMEA Limited; CommScope Technologies LLC Communication system and method with gain control for signals from distributed antennas
7184728, Feb 25 2002 CommScope EMEA Limited; CommScope Technologies LLC Distributed automatic gain control system
7190748, Aug 17 2001 DSP Group Inc Digital front-end for wireless communication system
7194023, Feb 06 2001 CommScope Technologies LLC Loop extender with communications, control, and diagnostics
7199443, Feb 22 2002 Arizona Board of Regents Integration of filters using on-chip transformers for RF and wireless applications
7200305, Nov 21 2002 Bae Systems Information and Electronic Systems Integration INC Electro-optical cable for use in transmission of high voltage and optical signals under extremes of temperature
7200391, Dec 06 2002 ERICSSON EVDO INC Capacity enhancement schemes for forward and reverse links of distributed cellular base stations
7228072, Oct 16 2001 TELEFONAKTIEBOLAGET LM ERICSSON PUBL System and method for integrating a fiber optic fixed access network and a fiber optic radio access network
7263293, Jun 10 2002 CommScope Technologies LLC Indoor wireless voice and data distribution system
7269311, Apr 04 2005 Samsung Electronics Co., Ltd. Remote antenna unit and wavelength division multiplexing radio-over-fiber network
7280011, Nov 27 2001 Intel Corporation Waveguide and method of manufacture
7286843, Feb 12 2004 Nokia Siemens Networks Oy Identifying remote radio units in a communication system
7286854, Jun 27 2003 PIRELLI & C S P A Method for configuring a communication network, related network architecture and computer program product therefor
7295119, Jan 22 2003 Extreme Networks, Inc System and method for indicating the presence or physical location of persons or devices in a site specific representation of a physical environment
7310430, Jun 02 2006 SBC Knowledge Ventures; SBC KNOWLEDGE VENTURES A NEVADA PARTNERSHIP Hybrid cables for communication networks
7313415, Nov 01 2004 NEXTG NETWORKS, INC Communications system and method
7315735, Feb 24 2004 P.G. Electronics Ltd. System and method for emergency 911 location detection
7324730, May 19 2004 Schlumberger Technology Corporation Optical fiber cables for wellbore applications
7343164, Nov 30 2001 TELEFONAKTIEBOLAGET LM ERICSSON PUBL Cellular communications system employing wireless optical links
7348843, Apr 21 2005 The United States of America as represented by the Secretary of the Navy Predistortion linearizer using cascaded lower-order linearizers
7349633, Jun 30 2003 Samsung Electronics Co., Ltd. Access point for constructing optical fiber-based high-speed wireless network system
7359408, Jan 30 2003 Samsung Electronics Co., Ltd. Apparatus and method for measuring and compensating delay between main base station and remote base station interconnected by an optical cable
7359674, May 10 2005 Nokia Technologies Oy Content distribution & communication system for enhancing service distribution in short range radio environment
7366150, May 20 2003 Samsung Electronics Co., Ltd. Indoor local area network system using ultra wide-band communication system
7366151, Oct 05 1995 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
7369526, Sep 11 2003 KOHL GROUP, INC , THE Flexible transport system including support for bilateral user access
7379669, Apr 25 2002 SAMSUNG ELECTRONICS CO , LTD Method and apparatus for duplex communication in hybrid fiber-radio systems
7388892, Dec 17 2004 Corning Incorporated System and method for optically powering a remote network component
7392025, Aug 28 2002 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Iterative multi-stage detection technique for a diversity receiver having multiple antenna elements
7392029, Dec 04 2002 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Method and apparatus for true diversity reception with single antenna
7394883, Mar 08 2004 Fujitsu Limited Multiple antenna system
7403156, Oct 30 2003 TELECOM ITALIA S P A ; PIRELLI & C S P A Method and system for performing digital beam forming at intermediate frequency on the radiation pattern of an array antenna
7409159, Jun 29 2001 HRL Laboratories, LLC Wireless wavelength division multiplexed system
7412224, Nov 14 2005 RPX Corporation Portable local server with context sensing
7424228, Mar 31 2003 Lockheed Martin Corporation High dynamic range radio frequency to optical link
7442679, Apr 15 2004 Ecolab USA Inc Binding agent for solidification matrix comprising MGDA
7444051, Dec 19 2003 DRAKA COMTEQ B V Conductor module, especially of an optical fibre type, having longitudinal impenetrability and controlled relative slippage, and associated method of production
7450853, Dec 22 2000 LG-ERICSSON CO , LTD Signal transmission apparatus and method for optical base station
7450854, Dec 22 2003 Samsung Electronics Co., Ltd. High-speed wireless LAN system
7451365, May 13 2002 UNWIRED BROADBAND, INC System and method for identifying nodes in a wireless network
7454222, Nov 22 2000 COMS IP HOLDINGS, LLC Apparatus and method for controlling wireless communication signals
7460507, Oct 05 1995 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
7460829, Jul 25 2003 Panasonic Corporation Wireless communication system
7460831, Jun 20 2002 AXELL WIRELESS LTD System and method for excluding narrow band noise from a communication channel
7466925, Mar 19 2004 Emcore Corporation Directly modulated laser optical transmission system
7469105, Apr 09 2004 NEXTG NETWORKS, INC Optical fiber communications method and system without a remote electrical power supply
7477597, Sep 08 2004 Alcatel Lucent Rural broadband hybrid satellite/terrestrial solution
7483504, Feb 12 2007 Corning Optical Communications LLC MIMO-adapted distributed antenna system
7483711, Oct 24 2002 USTA Technology, LLC Spectrum-adaptive networking
7495560, May 08 2006 Corning Optical Communications LLC Wireless picocellular RFID systems and methods
7496070, Jun 30 2004 Extreme Networks, Inc Reconfigureable arrays of wireless access points
7496384, Sep 13 1999 Kabushiki Kaisha Toshiba Radio communication system
7505747, Feb 25 2002 CommScope EMEA Limited; CommScope Technologies LLC Distributed automatic gain control system
7512419, Apr 08 2002 CommScope EMEA Limited; CommScope Technologies LLC Method and apparatus for intelligent noise reduction in a distributed communication system
7522552, Nov 10 2003 GO NET SYSTEMS LTD Improving the performance of a wireless CSMA-based MAC communication system using a spatially selective antenna
7539509, Dec 03 2002 PROCOMM INTERNATIONAL PTE LTD Small signal threshold and proportional gain distributed digital communications
7542452, Apr 09 2004 Sharp Kabushiki Kaisha Systems and methods for implementing an enhanced multi-channel direct link protocol between stations in a wireless LAN environment
7546138, Dec 03 2002 CommScope EMEA Limited; CommScope Technologies LLC Communication system and method with gain control for signals from distributed antennas
7548138, Sep 29 2005 Intel Corporation Compact integration of LC resonators
7548695, Oct 19 2004 NEXTG NETWORKS, INC Wireless signal distribution system and method
7551641, Jul 26 2005 Dell Products L.P. Systems and methods for distribution of wireless network access
7557758, Mar 26 2007 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Very high frequency dielectric substrate wave guide
7565080, Oct 16 2001 Telefonaktiebolaget L M Ericsson (publ) System and method for integrating a fiber optic fixed access network and a fiber optic radio access network
7580384, Oct 05 1995 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
7586861, Oct 05 1995 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
7590354, Jun 16 2006 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Redundant transponder array for a radio-over-fiber optical fiber cable
7593704, Mar 31 2005 Georgia Tech Research Corporation Receiver assembly and method for multi-gigabit wireless systems
7599420, Jul 30 2004 REARDEN, LLC System and method for distributed input distributed output wireless communications
7599672, Jul 29 2003 National Institute of Information and Communications Technology Millimeter-wave-band radio communication method in which both a modulated signal and an unmodulated carrier are transmitted to a system with a receiver having plural receiving circuits
7610046, Apr 06 2006 CommScope EMEA Limited; CommScope Technologies LLC System and method for enhancing the performance of wideband digital RF transport systems
7630690, Apr 12 2002 InterDigital Technology Corporation Access burst detector correlator pool
7633934, Oct 05 1995 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
7639982, Jul 19 2000 CommScope EMEA Limited; CommScope Technologies LLC Point-to-multipoint digital radio frequency transport
7646743, Oct 05 1995 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
7646777, Jul 07 2003 AT&T Intellectual Property I, L P Communication environment switchover
7653397, Feb 09 2007 Nokia Technologies Oy Managing unscheduled wireless communication in a multiradio device
7668565, Nov 07 2006 Nokia Technologies Oy Multiradio priority control based on modem buffer load
7672591, Mar 01 2005 System and method for a subscriber-powered network element
7675936, Jul 26 2006 Hitachi, LTD Passive optical network (PON) system
7688811, Oct 05 1995 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
7693486, May 11 2006 Nokia Technologies Oy Distributed multiradio controller
7697467, Oct 05 1995 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
7697574, Oct 17 2001 National Institute of Information and Communications Technology Radio communication apparatus, transmitter apparatus and receiver apparatus
7715375, Oct 05 1995 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
7720510, Nov 15 2004 BAE SYSTEMS PLC Data communications between terminals in a mobile communication system
7751374, Jan 18 2005 MARVELL INTERNATIONAL LTD; CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD WLAN TDM protocol
7751838, Jan 17 2006 Telefonaktiebolaget L M Ericsson (publ) Method and mobile station for synchronizing to a common synchronization channel and obtaining a channel estimate
7760703, Oct 05 1995 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
7761093, Mar 27 2000 CommScope EMEA Limited; CommScope Technologies LLC Multi-protocol distributed antenna system for multiple service provider-multiple air interface co-located base stations
7768951, Oct 05 1995 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
7773573, Feb 16 2006 MARVELL INTERNATIONAL LTD; CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD Dual MAC arbitration
7778603, Oct 26 2006 NOKIA CORPORATION , FINLAND Bandwidth conservation by reallocating unused time scheduled for a radio to another radio
7787823, Sep 15 2006 Corning Optical Communications LLC Radio-over-fiber (RoF) optical fiber cable system with transponder diversity and RoF wireless picocellular system using same
7787854, Feb 01 2005 CommScope EMEA Limited; CommScope Technologies LLC Scalable distributed radio network
7805073, Apr 28 2006 CommScope EMEA Limited; CommScope Technologies LLC Systems and methods of optical path protection for distributed antenna systems
7809012, Feb 16 2007 Nokia Technologies Oy Managing low-power wireless mediums in multiradio devices
7812766, Sep 09 1996 FineTrak, LLC Locating a mobile station and applications therefor
7812775, Sep 23 2005 California Institute of Technology Mm-wave fully integrated phased array receiver and transmitter with on-chip antennas
7817958, Dec 22 2006 CommScope EMEA Limited; CommScope Technologies LLC System for and method of providing remote coverage area for wireless communications
7817969, Feb 12 2007 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Limiting audible noise introduction through FM antenna tuning
7835328, Sep 13 2002 AURIX PTE LTD Network access points using multiple devices
7844273, Jul 14 2006 CommScope EMEA Limited; CommScope Technologies LLC System for and method of for providing dedicated capacity in a cellular network
7848316, Oct 05 1995 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
7848731, Aug 14 2007 Sprint Spectrum LLC System and method for communicating a combined digital signal for wireless service via integrated hybrid fiber coax and power line communication devices for a distributed antenna system over shared broadband media
7848770, Aug 29 2006 CommScope EMEA Limited; CommScope Technologies LLC Distributed antenna communications system and methods of implementing thereof
7853234, Dec 06 2006 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD RFIC with high power PA
7870321, Feb 06 2008 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Extended computing unit with stand-alone application
7880677, Dec 12 2007 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Method and system for a phased array antenna embedded in an integrated circuit package
7881755, May 26 2005 CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD Wireless LAN power savings
7894423, Oct 05 1995 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
7899007, Oct 05 1995 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
7907972, May 16 2001 Qualcomm Incorporated Method and apparatus for allocating downlink resources in a multiple-input multiple-output (MIMO) communication system
7912043, Oct 05 1995 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
7912506, May 02 2001 Trex Enterprises Corp Wireless millimeter wave communication system with mobile base station
7916706, Oct 05 1995 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
7917177, Dec 03 2002 CommScope EMEA Limited; CommScope Technologies LLC Communication system and method with gain control for signals from distributed antennas
7920553, Oct 05 1995 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
7920858, Mar 27 2000 CommScope EMEA Limited; CommScope Technologies LLC Multiprotocol antenna system for multiple service provider-multiple air interface co-located base stations
7924783, May 06 1994 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Hierarchical communications system
7929940, Apr 18 2006 Nextel Communications Inc. System and method for transmitting wireless digital service signals via power transmission lines
7936713, Oct 05 1995 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
7948897, Aug 15 2007 CommScope EMEA Limited; CommScope Technologies LLC Delay management for distributed communications networks
7949364, Oct 03 2006 Nokia Technologies Oy System for managing radio modems
7957777, Jul 12 2005 NXP USA, INC Wake on wireless LAN schemes
7962111, Feb 25 2002 CommScope EMEA Limited; CommScope Technologies LLC Distributed automatic gain control system
7969009, Jun 30 2008 Qualcomm Incorporated Through silicon via bridge interconnect
7969911, Jun 07 1995 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Hierarchical communication system providing intelligent data, program and processing migration
7990925, May 30 2007 Qualcomm Incorporated Method and apparatus for communication handoff
7996020, Dec 28 2006 CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD Locating a WLAN station using signal propagation delay
8018907, Oct 05 1995 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
8023886, Sep 28 2007 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Method and system for repeater with gain control and isolation via polarization
8027656, Sep 24 2007 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Method and system for a distributed transceiver for high frequency applications
8036308, Feb 28 2007 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Method and system for a wideband polar transmitter
8073329, Dec 20 2005 Huawei Technologies Co., Ltd. Passive optical network user terminal and method of power supply control and power supply state reporting for the same
8082353, May 13 2008 AT&T MOBILITY II LLC Reciprocal addition of attribute fields in access control lists and profiles for femto cell coverage management
8086192, Mar 03 2009 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Method and system for power control with optimum power efficiency with a multi-port distributed antenna
8107464, Feb 08 2008 CommScope EMEA Limited; CommScope Technologies LLC Enterprise mobile network for providing cellular wireless service using licensed radio frequency spectrum and supporting multiple-device ring for incoming calls
8107815, Mar 31 2008 Fujitsu Limited System and method for communicating wireless data utilizing a passive optical network
8135102, Jan 27 2009 PROCOMM INTERNATIONAL PTE LTD Method and apparatus for digitally equalizing a signal in a distributed antenna system
8174428, May 21 2008 Integrated Device Technology, inc Compression of signals in base transceiver systems
8213401, Jan 13 2009 CommScope EMEA Limited; CommScope Technologies LLC Systems and methods for IP communication over a distributed antenna system transport
8223795, Apr 08 2002 WINTERSPRING DIGITAL LLC Apparatus and method for transmitting LAN signals over a transport system
8228849, Jul 15 2002 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Communication gateway supporting WLAN communications in multiple communication protocols and in multiple frequency bands
8238463, Jun 14 2007 University of South Florida Reception and measurement of MIMO-OFDM signals with a single receiver
8270387, Jan 13 2009 CommScope EMEA Limited; CommScope Technologies LLC Systems and methods for improved digital RF transport in distributed antenna systems
8274929, Feb 08 2008 Strong Force IOT Portfolio 2016, LLC Enterprise mobile network for providing cellular wireless service using licensed radio frequency spectrum and the session initiation protocol
8279800, Feb 08 2008 Strong Force IOT Portfolio 2016, LLC Enterprise mobile network for providing cellular wireless service using licensed radio frequency spectrum and internet protocol backhaul
8280250, Sep 15 2010 AT&T Intellectual Property I, L.P. Bandwidth provisioning for an entangled photon system
8280259, Nov 13 2009 Corning Optical Communications LLC Radio-over-fiber (RoF) system for protocol-independent wired and/or wireless communication
8290483, Mar 27 2000 CommScope EMEA Limited; CommScope Technologies LLC Multiprotocol antenna system for multiple service provider-multiple air interface co-located base stations
8306563, Jan 29 2009 CommScope EMEA Limited; CommScope Technologies LLC Method and apparatus for muting a digital link in a distributed antenna system
8346091, Apr 29 2009 CommScope Technologies LLC Distributed antenna system for wireless network systems
8346278, Jan 13 2009 CommScope EMEA Limited; CommScope Technologies LLC Systems and methods for mobile phone location with digital distributed antenna systems
8351792, Dec 19 2005 APEX NET LLC System and communication method for interconnecting optical network and radio communication network
8374508, Jun 12 2003 Augmenting passive optical networks
8391256, Mar 17 2000 Symbol Technologies, LLC RF port for multiple wireless local area networks
8422883, Jul 29 2009 Industrial Technology Research Institute Head-end circuit and remote antenna unit and hybrid wired/wireless network system and transceiving method using thereof
8422884, Mar 24 2010 Fujitsu Limited Method and apparatus for picocell distributed radio heads providing macrocell capabilities
8428510, Mar 25 2010 CommScope EMEA Limited; CommScope Technologies LLC Automatic gain control configuration for a wideband distributed antenna system
8452178, Dec 20 2005 Huawei Technologies Co., Ltd. Passive optical network user terminal and method of power supply control and power supply state reporting for the same
8462683, Jan 12 2011 CommScope EMEA Limited; CommScope Technologies LLC Distinct transport path for MIMO transmissions in distributed antenna systems
8467823, Mar 24 2010 Fujitsu Limited Method and system for CPRI cascading in distributed radio head architectures
8472579, Jul 28 2010 CommScope EMEA Limited; CommScope Technologies LLC Distributed digital reference clock
8488966, Dec 05 2007 Huawei Technologies Co., Ltd. Data transmission method of optical access network, and system and device thereof
8509215, Aug 15 2007 CommScope EMEA Limited; CommScope Technologies LLC Delay management for distributed communications networks
8509850, Jun 14 2010 CommScope EMEA Limited; CommScope Technologies LLC Systems and methods for distributed antenna system reverse path summation using signal-to-noise ratio optimization
8526970, Jan 13 2009 CommScope EMEA Limited; CommScope Technologies LLC Systems and methods for mobile phone location with digital distributed antenna systems
8532242, Oct 27 2010 CommScope EMEA Limited; CommScope Technologies LLC Distributed antenna system with combination of both all digital transport and hybrid digital/analog transport
8548526, Feb 08 2008 Strong Force IOT Portfolio 2016, LLC Multiple-TRX PICO base station for providing improved wireless capacity and coverage in a building
8583100, Jan 25 2007 PROCOMM INTERNATIONAL PTE LTD Distributed remote base station system
8626245, Jun 14 2010 CommScope EMEA Limited; CommScope Technologies LLC Systems and methods for distributed antenna system reverse path summation using signal-to-noise ratio optimization
8634766, Feb 16 2010 CommScope Technologies LLC Gain measurement and monitoring for wireless communication systems
8639121, Nov 13 2009 Corning Optical Communications LLC Radio-over-fiber (RoF) system for protocol-independent wired and/or wireless communication
8649684, Feb 03 2009 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof
8676214, Feb 12 2009 CommScope EMEA Limited; CommScope Technologies LLC Backfire distributed antenna system (DAS) with delayed transport
8681917, Mar 31 2010 CommScope Technologies LLC Synchronous transfer of streaming data in a distributed antenna system
8693342, Oct 28 2011 CommScope EMEA Limited; CommScope Technologies LLC Distributed antenna system using time division duplexing scheme
8694034, May 19 2009 JMA WIRELESS B V System and method for the distribution of radio-frequency signals
8699982, Mar 27 2012 CommScope EMEA Limited; CommScope Technologies LLC Systems and methods for implementing a distributed antenna system in a radio frequency integrated circuit
8737300, Feb 07 2011 DALI WIRELESS, INC Daisy-chained ring of remote units for a distributed antenna system
8737454, Jan 25 2007 CommScope EMEA Limited; CommScope Technologies LLC Modular wireless communications platform
8743718, Jun 21 2011 CommScope EMEA Limited; CommScope Technologies LLC End-to-end delay management for distributed communications networks
8743756, Jan 12 2011 CommScope EMEA Limited; CommScope Technologies LLC Distinct transport path for MIMO transmissions in distributed antenna systems
8792933, Mar 10 2010 Fujitsu Limited Method and apparatus for deploying a wireless network
8837659, Jul 28 2010 CommScope EMEA Limited; CommScope Technologies LLC Distributed digital reference clock
8837940, Apr 14 2010 CommScope EMEA Limited; CommScope Technologies LLC Methods and systems for distributing fiber optic telecommunication services to local areas and for supporting distributed antenna systems
8873585, Dec 19 2006 Corning Optical Communications LLC Distributed antenna system for MIMO technologies
8908607, Oct 31 2012 CommScope Technologies LLC Digital baseband transport in telecommunications distribution systems
8929288, Jun 29 2011 CommScope EMEA Limited; CommScope Technologies LLC Evolved distributed antenna system
8948816, Feb 14 2012 CommScope EMEA Limited; CommScope Technologies LLC Timing adjustments for small cell distributed antenna systems
8958789, Dec 03 2002 CommScope EMEA Limited; CommScope Technologies LLC Distributed digital antenna system
8976067, Jun 09 2011 Strong Force IOT Portfolio 2016, LLC Antenna module having integrated radio frequency circuitry
9001811, May 19 2009 PROCOMM INTERNATIONAL PTE LTD Method of inserting CDMA beacon pilots in output of distributed remote antenna nodes
9107086, Jul 20 2012 CommScope EMEA Limited; CommScope Technologies LLC Integration panel
9112547, Aug 31 2007 CommScope EMEA Limited; CommScope Technologies LLC System for and method of configuring distributed antenna communications system
20010036163,
20010036199,
20020003645,
20020009070,
20020012336,
20020012495,
20020016827,
20020045518,
20020045519,
20020048071,
20020051434,
20020075906,
20020092347,
20020097564,
20020103012,
20020111149,
20020111192,
20020114038,
20020123365,
20020126967,
20020128009,
20020130778,
20020139064,
20020181668,
20020190845,
20020197984,
20030002604,
20030007214,
20030016418,
20030045284,
20030069922,
20030078074,
20030112826,
20030126294,
20030141962,
20030161637,
20030165287,
20030174099,
20030209601,
20040001719,
20040008114,
20040017785,
20040037565,
20040041714,
20040043764,
20040047313,
20040078151,
20040095907,
20040100930,
20040105435,
20040106435,
20040126068,
20040126107,
20040139477,
20040146020,
20040149736,
20040151164,
20040151503,
20040157623,
20040160912,
20040160913,
20040162084,
20040162115,
20040162116,
20040165573,
20040175173,
20040196404,
20040202257,
20040203703,
20040203704,
20040203846,
20040204109,
20040208526,
20040208643,
20040215723,
20040218873,
20040233877,
20040240884,
20040258105,
20040267971,
20050052287,
20050058451,
20050058455,
20050068179,
20050076982,
20050078006,
20050093679,
20050099343,
20050116821,
20050123232,
20050141545,
20050143077,
20050147067,
20050147071,
20050148306,
20050159108,
20050174236,
20050176458,
20050201323,
20050201761,
20050219050,
20050224585,
20050226625,
20050232636,
20050242188,
20050252971,
20050266797,
20050266854,
20050269930,
20050271396,
20050272439,
20060002326,
20060014548,
20060017633,
20060028352,
20060045054,
20060045524,
20060045525,
20060053324,
20060056327,
20060062579,
20060083512,
20060083520,
20060094470,
20060104643,
20060159388,
20060172775,
20060182446,
20060182449,
20060189354,
20060209745,
20060223439,
20060233506,
20060239630,
20060268738,
20060274704,
20070008939,
20070009266,
20070050451,
20070054682,
20070058978,
20070060045,
20070060055,
20070071128,
20070076649,
20070093273,
20070149250,
20070166042,
20070173288,
20070174889,
20070224954,
20070230328,
20070243899,
20070248358,
20070253714,
20070257796,
20070264009,
20070264011,
20070268846,
20070274279,
20070286599,
20070292143,
20070297005,
20080002652,
20080007453,
20080013909,
20080013956,
20080013957,
20080014948,
20080014992,
20080026765,
20080031628,
20080043714,
20080056167,
20080058018,
20080063397,
20080070502,
20080080863,
20080098203,
20080118014,
20080119198,
20080124086,
20080124087,
20080129634,
20080134194,
20080145061,
20080150514,
20080159744,
20080166094,
20080191682,
20080194226,
20080207253,
20080212969,
20080219670,
20080232305,
20080232799,
20080247716,
20080253280,
20080253351,
20080253773,
20080260388,
20080260389,
20080261656,
20080268766,
20080268833,
20080273844,
20080279137,
20080280569,
20080291830,
20080292322,
20080298813,
20080304831,
20080310464,
20080310848,
20080311876,
20080311944,
20090022304,
20090028087,
20090028317,
20090041413,
20090047023,
20090059903,
20090061796,
20090061939,
20090073916,
20090081985,
20090087179,
20090088071,
20090088072,
20090135078,
20090141780,
20090149221,
20090154621,
20090169163,
20090175214,
20090180407,
20090180426,
20090218407,
20090218657,
20090237317,
20090245084,
20090245153,
20090245221,
20090247109,
20090252136,
20090252139,
20090252204,
20090252205,
20090258652,
20090278596,
20090279593,
20090285147,
20090316608,
20090319909,
20100002626,
20100002661,
20100002662,
20100014494,
20100014868,
20100027443,
20100056200,
20100080154,
20100080182,
20100091475,
20100118864,
20100127937,
20100134257,
20100142598,
20100142955,
20100144285,
20100148373,
20100150556,
20100156721,
20100158525,
20100159859,
20100188998,
20100189439,
20100190509,
20100202326,
20100208656,
20100225413,
20100225520,
20100225556,
20100225557,
20100232323,
20100246558,
20100255774,
20100258949,
20100260063,
20100261501,
20100266287,
20100278530,
20100284323,
20100290355,
20100309049,
20100309752,
20100311472,
20100311480,
20100329161,
20100329166,
20100329680,
20110002687,
20110007724,
20110007733,
20110008042,
20110019999,
20110021146,
20110021224,
20110026932,
20110045767,
20110055875,
20110065450,
20110066774,
20110069668,
20110071734,
20110086614,
20110116393,
20110116572,
20110116794,
20110122912,
20110126071,
20110149879,
20110158298,
20110182230,
20110194475,
20110200325,
20110200328,
20110201368,
20110204504,
20110206383,
20110211439,
20110215901,
20110222415,
20110222434,
20110222619,
20110223958,
20110223960,
20110223961,
20110227795,
20110243201,
20110244887,
20110256878,
20110268033,
20110268449,
20110274021,
20110281536,
20110312340,
20120069880,
20120177026,
20120257893,
20120281565,
20120314797,
20120321305,
20130012195,
20130017863,
20130089332,
20130195467,
20130210490,
20140016583,
20140072064,
20140118464,
20140119735,
20140140225,
20140146797,
20140146905,
20140146906,
20140219140,
20140269859,
20140314061,
20150037041,
20150098351,
20150098372,
20150098419,
AU645192,
AU731180,
CA2065090,
CA2242707,
CN101043276,
CN101389148,
CN101547447,
CN1207841,
DE10249414,
DE20104862,
EP461583,
EP477952,
EP687400,
EP899976,
EP993124,
EP994582,
EP1037411,
EP1056226,
EP1089586,
EP1179895,
EP1227605,
EP1267447,
EP1347584,
EP1357683,
EP1363352,
EP1391897,
EP1443687,
EP1455550,
EP1501206,
EP1503451,
EP1511203,
EP1530316,
EP1570626,
EP1693974,
EP1742388,
EP1916806,
EP1954019,
EP1968250,
EP2276298,
EP851618,
GB2319439,
GB2323252,
GB2370170,
GB2399963,
GB2428149,
JP11068675,
JP2000152300,
JP2000341744,
JP2002264617,
JP2002353813,
JP2003148653,
JP2003172827,
JP2004172734,
JP2004222297,
JP2004245963,
JP2004247090,
JP2004264901,
JP2004265624,
JP2004317737,
JP2004349184,
JP2005018175,
JP2005087135,
JP2005134125,
JP2007228603,
JP2008172597,
JP4189036,
JP5260018,
JP9083450,
JP9162810,
JP9200840,
KR20010055088,
KR20110087949,
WO42721,
WO72475,
WO178434,
WO184760,
WO209363,
WO2102102,
WO221183,
WO230141,
WO3024027,
WO3098175,
WO2004030154,
WO2004034098,
WO2004047472,
WO2004056019,
WO2004059934,
WO2004086795,
WO2004093471,
WO2005062505,
WO2005069203,
WO2005073897,
WO2005079386,
WO2005101701,
WO2005111959,
WO2006011778,
WO2006018592,
WO2006019392,
WO2006039941,
WO2006046088,
WO2006051262,
WO2006060754,
WO2006094441,
WO2006105185,
WO2006133609,
WO2006136811,
WO2007048427,
WO2007075579,
WO2007077451,
WO2007088561,
WO2007091026,
WO2007133507,
WO2008008249,
WO2008027213,
WO2008033298,
WO2008039830,
WO2008116014,
WO2009100395,
WO2009100396,
WO2009100397,
WO2009100398,
WO2009132824,
WO2010087919,
WO2010090999,
WO2010132739,
WO2011023592,
WO2011043172,
WO2011059705,
WO2011100095,
WO2011112373,
WO2011139939,
WO2011139942,
WO2011160117,
WO2012024345,
WO2012054553,
WO2012148938,
WO2012148940,
WO2012170865,
WO2013009835,
WO2013122915,
WO2014070236,
WO2014082070,
WO2014082072,
WO2014082075,
WO2014144314,
WO2015054162,
WO2015054164,
WO2015054165,
WO9603823,
WO9748197,
WO9810600,
WO2006077569,
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Feb 12 2010KOBYAKOV, ANDREYCorning Cable Systems LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0361850506 pdf
Feb 12 2010SAUER, MICHAELCorning Cable Systems LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0361850506 pdf
Jan 14 2014Corning Cable Systems LLCCorning Optical Communications LLCCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0361850557 pdf
Aug 21 2014Corning Optical Communications LLC(assignment on the face of the patent)
Date Maintenance Fee Events
Sep 16 2019M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Sep 14 2023M1552: Payment of Maintenance Fee, 8th Year, Large Entity.


Date Maintenance Schedule
Apr 19 20194 years fee payment window open
Oct 19 20196 months grace period start (w surcharge)
Apr 19 2020patent expiry (for year 4)
Apr 19 20222 years to revive unintentionally abandoned end. (for year 4)
Apr 19 20238 years fee payment window open
Oct 19 20236 months grace period start (w surcharge)
Apr 19 2024patent expiry (for year 8)
Apr 19 20262 years to revive unintentionally abandoned end. (for year 8)
Apr 19 202712 years fee payment window open
Oct 19 20276 months grace period start (w surcharge)
Apr 19 2028patent expiry (for year 12)
Apr 19 20302 years to revive unintentionally abandoned end. (for year 12)