A wireless telecommunication equipment having a receiver portion and a transmitter portion. An automatic gain control amplifier having a gain varied in accordance with an automatic gain control signal input thereto is located in the receiver portion of the equipment, and a transmission power control amplifier having a gain varied in accordance with an open loop control signal input thereto is located in the transmitter portion of said equipment. The automatic gain control and the transmission power control amplifiers have the same operating characteristics.
|
4. A wireless telecommunication equipment having a receiver portion and a sender portion, comprising:
an automatic gain control amplifier located in the receiver portion of said equipment, said automatic gain control amplifier having a first central gain varied in accordance with an automatic gain control signal input thereto; a transmission power control amplifier located in the transmitter portion of said equipment, said transmission power control amplifier having a second central gain varied in accordance with an open loop control signal input thereto; and a plurality of fixed gain devices in said receiver and transmitter portions of said equipment, said fixed gain devices have gains allocated thereto which equalize said first central gain and said second central gain.
1. A wireless telecommunication equipment having a receiver portion and a transmitter portion, comprising:
an automatic gain control amplifier located in the receiver portion of said equipment, said automatic gain control amplifier having a first gain varied in accordance with an automatic gain control signal input thereto; and a transmission power control amplifier located in the transmitter portion of said equipment, said transmission power control amplifier having a second gain varied in accordance with an open loop control signal input thereto, wherein said automatic gain control amplifier and said transmission power control amplifier have the same operating characteristic and are comprised of amplifier devices, said amplifier devices having the same characteristics and having the same bias voltage applied thereto.
5. A mobile station of a cdma cellular phone system comprising:
a receiver portion, said receiver portion including an automatic gain control amplifier having a first input for receiving an input signal, a second input for receiving a gain control signal, and an output; a transmitter portion, said transmitter portion including a transmission power control amplifier having a first input for receiving a digital modulation signal, and a second input for receiving an open loop control signal, said automatic gain control amplifier and said transmission power control amplifier having substantially the same circuit; and a logic processing unit, said logic processing unit including a receive signal strength detector for receiving the output of said automatic gain control amplifier and having an output for outputting the gain control signal to the second input of said automatic gain control amplifier; a closed loop power detector; and an adder having a first input coupled to an output of said closed loop power detector and a second input coupled to the output of said receive signal strength detector, said adder outputting the open loop control signal to the second input of said transmission power control amplifier. 2. A wireless telecommunication equipment according to
3. A wireless telecommunication equipment according to
6. A mobile station of a cdma cellular phone system according to
7. A mobile station of a cdma cellular phone system according to
8. A mobile station of a cdma cellular phone system according to
9. A mobile station of a cdma cellular phone system according to
|
This application claims the priority of Japanese Application Serial No. 219786/1996 filed Aug. 21, 1996, the subject matter of which is incorporated herein by reference.
This invention relates to wireless telecommunication equipment, and in particular, to the mobile station of a code division multiple access (CDMA) cellular phone system. The CDMA system, which employs spread spectrum modulation, has a base station and a plurality of mobile stations wherein each mobile station includes a receiver portion and a transmitter portion, and is provided with a transmission power controller.
In the CDMA system, each mobile station is provided with a spread spectrum demodulator which despreads a received spread spectrum signal in accordance with a distinctive spreading code assigned to that mobile station. Each mobile station has a different spreading code, and interference often occurs between the mobile stations. The amount of interference depends on the correlation characteristic of the spreading code of each mobile station.
As the interference occurring when a signal is sent from one mobile station to another increases, the signal-to-noise ratio (S/N) of the demodulated signal decreases. Consequently, the strength of the radio wave transmitted by the mobile station must be constantly changed as a function of the distance between the mobile station and the base station, and to compensate for fading due to variations in the transmission path. This means that to maximize system capacity it is necessary to control transmission power so that the radio signal transmitted from each mobile station to the base station remains at the same level.
The transmission power of a conventional CDMA mobile station is controlled by employing both open and closed loop control of the power transmitted on a down channel from the base station to a mobile station. In the open loop power control, the control circuits of the mobile station initially assume that the radio signal is attenuated in the same way in both the down channel and in the up channel from the mobile station to the base station. An estimate is made of the propagation loss in the down channel by measuring the received power level at the mobile station, predicting the power required for the up channel and using this information to control the power transmitted by the mobile station.
FIG. 2 is a graph showing the open loop power control characteristic of a CDMA cellular portable telephone which complies with the United States standard for CDMA telephones. In FIG. 2, the transmission power of a mobile station is plotted against the strength of the signal received at the mobile station and shows that, using open loop power control, the dynamic range of the transmission power must be at least 80 dBm. However, a closed loop power control is also needed because the propagation losses of the down and up channels are not the same since each channel uses a different frequency band.
In the closed loop power control, the base station measures the received signal strength, and sends a power control bit to a mobile station along with normal information data at 1.25 ms intervals using a down channel. The mobile station provides a fine control of the transmitted power with a 1 dB pitch, which is in addition to the transmitted power predicted by the open loop power control. That is, the open loop power control provides an approximate or rough control of the transmitted power, and the closed loop power control performs a fine control of the transmitted power. However, the characteristic of the conventional open loop power control is such that the closed loop power control is nDt sufficiently effective. Thus, there is a need for an improved open loop power control.
The open loop power control characteristic of the conventional CDMA cellular portable telephone standardized for use in the United States has an allowable error in the transmitted power strength which is within ±9.5 dBm despite variations in the environment including changes in temperature. This is in comparison with the received power (receive signal strength) vs. transmission power (transmission signal strength) characteristic shown in FIG. 2.
However, the receiver and transmitter portions of conventional mobile stations are comprised of power amplifiers and many other functional components having individual gain variation characteristics. These variations, added to variations in the environmental temperature can result in the allowable error being exceeded if the differences in gain variation between components of the receiver and transmitter portions of the mobile station are unduly large. In other words, using a conventional open loop power control wherein the transmission signal strength in the transmitter portion of the mobile station is controlled in accordance with the strength of the received signal, the allowable error at a mobile station could be exceeded if the difference in the gain variations between the receiver and transmitter portions of the station is too large. This problem occurs not only in mobile stations associated with CDMA cellular portable telephone systems but also in other wireless telecommunication equipment having open loop power control.
It is an object of this invention to provide a wireless telecommunication equipment having a stable and desirable open loop power control characteristic which compensates for variations in the environment. It is another object of this invention to provide a wireless telecommunication equipment having a receiver portion including an automatic gain control amplifier and a transmitter portion having a transmission power control amplifier which provide a mobile station which is free from variations in gain despite changes in the environment.
In accordance with the present invention, a wireless mobile telecommunication equipment is provided having a receiver portion and a transmitter portion, for example a CDMA cellular portable telephone system which comprises an automatic gain control amplifier located in the receiver portion and a transmission power control amplifier located in the transmitter portion having first and second gains respectively. The first gain is varied in accordance with an automatic gain control signal input thereto, and the second gain is varied in accordance with an open loop control signal input thereto. Both the automatic gain control amplifier and the transmission power control amplifier have the same operating characteristic. Each of these amplifiers has the same bias applied thereto, the same characteristics including the same central gain, and the same circuitry. By central gain, is meant the midpoint of a variable gain range of an amplifier.
In another aspect of the invention, a wireless telecommunication equipment having a receiver portion and a transmitter portion comprises an automatic gain control amplifier for changing a first gain in accordance with an automatic gain control signal input to the receiver portion, a transmission power control amplifier for changing a second gain in accordance with an open loop control signal input to the transmitter portion, and a plurality of fixed gain devices. Each of the fixed gain devices has a gain allocated thereto which equalizes the central gain of the automatic gain control amplifier with the central gain of the transmission power control amplifier.
The objects and features of the invention may be understood with reference to the following detailed description of an illustrative embodiment of the invention, taken together with the accompanying drawings in which:
FIG. 1 is a functional schematic block diagram showing a mobile station according to an embodiment of the present invention;
FIG. 2 is a graph showing a standardized open loop power control characteristic for a conventional CDMA cellular portable telephone system;
FIG. 3 is a schematic block diagram showing a logic processing unit according to the embodiment of the invention shown in FIG. 1; and
FIG. 4 is a schematic diagram of a circuit which may be used as both an automatic gain control amplifier and a transmission power control amplifier for the embodiment of the invention shown in FIG. 1.
The drawings illustrate a preferred embodiment of a mobile station for a CDMA cellular telephone system used as a wireless telecommunication equipment in accordance with the present invention.
FIG. 1 is a functional schematic block diagram showing a mobile station according to an embodiment of the present invention, and FIG. 3 is a schematic block diagram showing a logic processing unit 8 comprising a part of the mobile station of FIG. 1.
Referring to FIGS. 1 and 3, an input signal received at a common sending/receiving antenna 1 of a mobile station is input via a duplexer 9 to a low noise amplifier (LNA) 2 comprising the first stage of a receiver portion 16 of the mobile station. The LNA 2 amplifies the input signal with a fixed gain and inputs the amplified signal to a band pass filter (BPF) 3 which removes unnecessary signal components from the amplified input signal. Then, a mixer 4 mixes the filtered signal with a local oscillation signal obtained from a local oscillator (not shown), and the mixed signal is down-converted to a digital modulation signal (IF signal) in an intermediate frequency band, and output to an automatic gain control amplifier (AGC) 5.
A gain control signal (RX AGC) is input to the AGC 5 from the logic processing unit 8. The AGC 5 amplifies the IF signal with a gain determined by the gain control signal RX AGC. A BPF 6 removes unnecessary signal components from the amplified IF signal, and the signal filtered by the BPF 6 is further amplified with a fixed gain by a power amplifier (AMP) 7. The output of AMP 7 is output to the logic processing unit 8 as an intermediate frequency band signal (RX IF).
The logic processing unit 8, as shown in FIG. 3 comprises an analog part 20 and a digital part 21. The analog part 20 includes an orthogonal demodulator 22, an analog to digital (A/D) converter 23, a digital to analog (D/A) converter 32 and an orthogonal modulator 33.
The RX IF signal output from AMP 7 is input to the orthogonal demodulator 22. At the orthogonal demodulator 22, orthogonal demodulation is performed on the digital modulator signal using a local oscillation signal output from a local oscillator (not shown). At the output of the demodulator 22, I phase (inphase) and Q phase (quadrature phase) data signal components are output to the A/D converter 23. These signal components are converted by the A/D converter 23 to a digital base band signal RX I/Q, and output to a conventional receive data processing circuit 34 where the digital base band signal RX I/Q is de-spread using conventional spread spectrum technology to provide a transmission symbol sequence. The coventional receive data processing circuit 34 is for example disclosed in OKI Technical review 156 Vol. 62, July 1996, p71-74 (esp., p72, left column, the fifth and sixth paragraphs) "CD3000B Portable Telephone for CDMA Cellular Systems".
The base band signal RX I/Q is also input to a receive signal strength detector 24 which generates receive electric field strength data in accordance with the base band signal RX I/Q, and outputs this data to an adder 25. The adder 25 outputs data corresponding to the difference between the received electric field strength data from the receive signal strength detector 24 and fine adjustment power reference data (PREF) which is fixed and in correspondence with desirable signal strength for the A/D converter 23 and the receive data processing circuit 34. The difference data is integrated by an integrator 26, converted to an analog signal by a D/A converter 27, and output to the AGC 5 as a gain control signal RX AGC.
A base band signal TX I/Q is output from a conventional send data processing circuit 35 using conventional spread spectrum technology, as is for example disclosed in OKI Technical review 156 Vol.62, July 1996, p71-74 (esp., p72, left column, the forth paragraph) "CD3000B Portable Telephone for CDMA Cellular Systems". The signal TX I/Q includes an I phase data component and a Q phase data component which are converted to an analog base band signal by the D/A converter 32 and output to an orthogonal modulator 33. The orthogonal modulator 33 orthogonally modulates the input base band signal TX I/Q and generates a transmission signal (digital modulation signal) in the intermediate frequency band (TX IF) by using a local oscillation signal output from a local oscillator (not shown).
The transmission signal TX IF is input to a transmitter portion 17 of the mobile station where it is amplified by a fixed gain intermediate frequency amplifier AMP 15, unnecessary signal components removed by a BPF 14, and the signal TX IF output to a transmission power control amplifier AMP 13 for controlling the transmission power. The TX AGC gain control signal from the logic processing unit 8 is also input to AMP 13 which amplifies the signal input from the BPF 14 by a gain determined by the gain control signal TX AGC and outputs a transmnission signal to a transmission mixer 12.
The gain control signal TX AGC is obtained as follows. As shown in FIG. 3, the data corresponding to the receive power strength, which is output from the integrator 26, is filtered by a Low Pass Filter (LPF) 28 and output to an adder 29 as data for controlling the open loop power. The adder 29 combines data output from a conventional closed loop power controller 30, as is reqired in TIA/EIA/IS-95-A page 6-6, section 6.1.2.3.2 "Closed Loop Output Power", for controlling the closed loop power with the output of the -LPF 28, and the sum of these data are output to a D/A converter 31. The D/A converter 31 converts the input data to an analog signal and outputs the analog signal to the AMP 13 as the gain control signal TX AGC. When the receive power strength decreases, the gain control signal TX AGC increases, and as a result the gain of the AMP 13 and the transmission power is increased. When the receive power increases, the transmission power is reduced.
As shown in FIG. 1, the transmission mixer 12 receives as an input not only the transmission signal output from AMP 13 but also a local oscillation signal of the transmission channel frequency band which is output from a transmission channel frequency oscillator (not shown). The mixer 12 up-converts the transmission signal from the intermediate frequency band to the transmission channel band. Unnecessary signal components of the transmission signal up-converted to the transmission channel band are removed by a BPF 11, and output to power amplifier (PA) 10 which amplifies the received signal by a fixed gain. The output signal of the PA 10 is input to the common antenna 1 for broadcast via the duplexer 9.
In the mobile station, the gains of the fixed gain devices in the receiver portion 16 of the mobile station, i.e., the LNA 2, BPF 3, receiver mixer 4, BPF 6 and AMP 7, and the fixed gain devices in the transmitter portion 17, i.e., the PA 10, BPF 11, transmission mixer 12, BPF 14 and AMP 15 are allocated so as to equalize the central gain of the AGC 5 with the central gain of the AMP 13.
Further, the AGC 5 in the receiver portion 16 and the AMP 13 in the transmitter portion, which have the same central gain, also have the same circuit which results in an open loop power control with a better characteristic than that obtained with prior art CDMA systems. More specifically, the AGC 5 and the AMP 13 are comprised of amplifying devices having the same characteristic with respect to variation in the environment such as temperature. In addition, the same bias voltage is applied to the AGC 5 and AMP 13.
FIG. 4 is a schematic circuit diagram showing both the AGC 5 and the AMP 13, these circuits being substantially identical. In the following description, the AGC 5 will be described but it will be understood that the description also applies to the AMP 13.
As shown in FIG. 4, the AGC 5 comprises three amplifying stages consisting of field effect transistors Q1, Q2 and Q3, each having an input gate terminal G1 and a control gate terminal G2. The gain of the AGC 5 is variable and controlled by applying the gain control signal RX AGC from the D/A converter 27 of the logic processing unit 8 to the control gates G2 of transistors Q1, Q2 and Q3 via gate resistances R1, R2 and R3. Similarly, the gain of the AMP 13 is variable and controlled by applying the gain control signal TX AGC from the D/A converter 31 of the logic processing unit 8 to the control gates G2 of transistors Q1, Q2 and Q3 via gale resistances R1, R2 and R3.
Since the AGC 5 in the receiver portion of the mobile station affects the detected receive signal strength, and the AMP 13 affects the transmission power in the transmitter portion of the mobile station, and since the AGC 5 and AMP 13 have the same central gain and the same circuit, both the AGC 5 and the AMP 13 exhibit the same characteristic with respect to variations in the environment including changes in temperature. Therefore, with regard to the open loop power control, a lower error is achieved in the open loop power control characteristics shown in FIG. 2 because the gain variations of the AGC 5 and the AMP 13 caused by changes in the environment are canceled by the interaction occurring at the transmission power control amplifier stage 13. That is, a stable and desirable open loop power control characteristic is achieved.
In the mobile station, by allocating the gains of the fixed gain devices in the receiver and transmitter portions, the AGC 5 which affects detected data of a receive signal strength in the receiver portion and the AMP 13 which affects transmission power in the transmitter portion have the same central gain and the same circuit so that stable and desired characteristics of the open loop power control can be achieved in spite of variations in the environment including temperature.
The positions of the automatic gain control amplifier in the receiver portion and the transmission power control amplifier in the transmitter system are not limited to that shown in the described embodiment. For example, the AGC 5 can be placed at the position of the AMP 7 shown in FIG. 1, and the AMP 13 can be placed at the position of the AMP 15 in FIG. 1.
In general, the invention is applicable to wireless telecommunication equipment of the type having a plurality of automatic gain control and transmission power control amplifiers. For example, in a wireless telecommunication equipment which down-converts a received signal by means of a plurality of stages and up-converts a transmission signal by means of a plurality of stages, the wireless telecommunication equipment of the invention may have a plurality of automatic gain control amplifiers and transmission power control amplifiers.
The invention is applicable to wireless, telecommunication systems, in general, and is not limited to the mobile station of a CDMA cellular portable telephone system. Whether the wireless telecommunication equipment has a closed loop power control or not is not significant as long as it has an automatic gain control loop in the receiver portion and an open loop power control.
As for the bias voltage described in the specific disclosed embodiment, which is applied to and controls the operating voltage of the automatic gain control amplifier and the transmission power control amplifier, the bias voltage of the automatic gain control amplifier is not necessarily the same as that of the transmission power control amplifier if the characteristic of the other components in the receiver and transmitter portions are suitably adjusted.
While particular embodiments of the present invention have been described and illustrated, it should be understood that the invention is not limited thereto since modifications may be made by persons skilled in the art. The present application contemplates any and all modifications that fall within the spirit and scope of the underlying invention described and claimed herein.
Katsuyama, Tsutomu, O, Waho, Nagano, Tomonori
Patent | Priority | Assignee | Title |
10009094, | Apr 15 2015 | Corning Optical Communications LLC | Optimizing remote antenna unit performance using an alternative data channel |
10045288, | Oct 13 2010 | Corning Optical Communications LLC | Power management for remote antenna units in distributed antenna systems |
10070258, | Jul 24 2009 | Corning Optical Communications LLC | Location tracking using fiber optic array cables and related systems and methods |
10104610, | Oct 13 2010 | Corning Optical Communications LLC | Local power management for remote antenna units in distributed antenna systems |
10128951, | Feb 03 2009 | Corning Optical Communications LLC | Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof |
10135561, | Dec 11 2014 | Corning Optical Communications LLC | Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting |
10136200, | Apr 25 2012 | Corning Optical Communications LLC | Distributed antenna system architectures |
10148347, | Apr 29 2011 | Corning Optical Communications LLC | Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems |
10153841, | Feb 03 2009 | Corning Optical Communications LLC | Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof |
10236924, | Mar 31 2016 | Corning Optical Communications LLC | Reducing out-of-channel noise in a wireless distribution system (WDS) |
10256879, | Jul 30 2014 | Corning Incorporated | Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods |
10257056, | Nov 28 2012 | Corning Optical Communications Wireless Ltd | Power management for distributed communication systems, and related components, systems, and methods |
10292056, | Jul 23 2013 | Corning Optical Communications LLC | Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs) |
10292114, | Feb 19 2015 | Corning Optical Communications LLC | Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS) |
10349156, | Apr 25 2012 | Corning Optical Communications LLC | Distributed antenna system architectures |
10361782, | Nov 30 2012 | Corning Optical Communications LLC | Cabling connectivity monitoring and verification |
10397929, | Aug 29 2014 | Corning Optical Communications LLC | Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit |
10420025, | Oct 13 2010 | Corning Optical Communications LLC | Local power management for remote antenna units in distributed antenna systems |
10425891, | Oct 13 2010 | Corning Optical Communications LLC | Power management for remote antenna units in distributed antenna systems |
10448205, | Aug 09 2010 | Corning Optical Communications LLC | Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s) |
10454270, | Nov 24 2010 | Corning Optical Communicatons LLC | Power distribution module(s) capable of hot connection and/or disconnection for wireless communication systems, and related power units, components, and methods |
10455497, | Nov 26 2013 | Corning Optical Communications LLC | Selective activation of communications services on power-up of a remote unit(s) in a wireless communication system (WCS) based on power consumption |
10530670, | Nov 28 2012 | Corning Optical Communications LLC | Power management for distributed communication systems, and related components, systems, and methods |
10560214, | Sep 28 2015 | Corning Optical Communications LLC | Downlink and uplink communication path switching in a time-division duplex (TDD) distributed antenna system (DAS) |
10959047, | Aug 09 2010 | Corning Optical Communications LLC | Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s) |
10992484, | Aug 28 2013 | Corning Optical Communications LLC | Power management for distributed communication systems, and related components, systems, and methods |
10999166, | Nov 28 2012 | Corning Optical Communications LLC | Power management for distributed communication systems, and related components, systems, and methods |
11114852, | Nov 24 2010 | Corning Optical Communications LLC | Power distribution module(s) capable of hot connection and/or disconnection for wireless communication systems, and related power units, components, and methods |
11178609, | Oct 13 2010 | Corning Optical Communications LLC | Power management for remote antenna units in distributed antenna systems |
11212745, | Oct 13 2010 | Corning Optical Communications LLC | Power management for remote antenna units in distributed antenna systems |
11224014, | Oct 13 2010 | Corning Optical Communications LLC | Power management for remote antenna units in distributed antenna systems |
11291001, | Jun 12 2013 | Corning Optical Communications LLC | Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs) |
11296504, | Nov 24 2010 | Corning Optical Communications LLC | Power distribution module(s) capable of hot connection and/or disconnection for wireless communication systems, and related power units, components, and methods |
11516030, | Aug 28 2013 | Corning Optical Communications LLC | Power management for distributed communication systems, and related components, systems, and methods |
11653175, | Aug 09 2010 | Corning Optical Communications LLC | Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s) |
11665069, | Nov 28 2012 | Corning Optical Communications LLC | Power management for distributed communication systems, and related components, systems, and methods |
11671914, | Oct 13 2010 | Corning Optical Communications LLC | Power management for remote antenna units in distributed antenna systems |
11715949, | Nov 24 2010 | Corning Optical Communications LLC | Power distribution module(s) capable of hot connection and/or disconnection for wireless communication systems, and related power units, components, and methods |
11792776, | Jun 12 2013 | Corning Optical Communications LLC | Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs) |
6163708, | Dec 31 1998 | RPX Corporation | Closed-loop power control method |
6208849, | Jun 21 1997 | SAMSUNG ELECTRONICS CO , LTD A CORP OF KOREA | Receiver with suppressed intermodulation distortion and method for operating the same |
6539226, | Feb 16 1998 | NEC Corporation | Base station transmission power control system mobile station and base station |
6567647, | Mar 26 1998 | Ericsson Inc. | Low noise radio frequency transceivers including circulators |
6631171, | Aug 06 1998 | ALPS Electric Co., Ltd. | QPSK modulation signal receiving unit |
6681100, | Mar 15 1999 | Teletronics International, Inc.; TELETRONICS INTERNATIONAL, INC | Smart amplifier for time division duplex wireless applications |
6944438, | Apr 20 2001 | ST Wireless SA | Transconductance stage and device for communication by Hertzian channel equipped with such a stage |
7035641, | Feb 16 1998 | NEC Corporation | Base station transmission power control system, mobile station and base station |
7046976, | Feb 16 2001 | INTERDIGITAL MADISON PATENT HOLDINGS | Receiving device with automatic gain control |
7106808, | Apr 21 2000 | STMICROELECTRONICS S A | Tuner of the type having zero intermediate frequency and corresponding control process |
7145886, | Nov 29 1999 | INVT SPE LLC | Communication terminal, base station system, and method of controlling transmission power |
7158761, | Mar 15 1999 | Teletronics International, Inc. | Smart amplifier for time division duplex wireless applications |
7197325, | Jun 07 2001 | LG Electronics Inc. | Power control apparatus with PAM reference voltage tuner for a mobile terminal |
7203495, | Feb 16 1998 | NEC Corporation | Base station transmission power control system, mobile station and base station |
7372925, | Jun 09 2004 | Theta IP, LLC | Wireless LAN receiver with I and Q RF and baseband AGC loops and DC offset cancellation |
7684760, | Feb 12 2004 | LG Electronics Inc. | Transmission power controller of a mobile communication terminal |
7764594, | Oct 18 2001 | Qualcomm Incorporated | Multiple-access hybrid OFDM-CDMA system |
7912505, | Aug 31 1999 | SanDisk Technologies LLC | Method for operating a base station by prelimiting an output signal station |
8369466, | Jun 21 2007 | Sharp Kabushiki Kaisha | Automatic gain control circuit, receiving apparatus and automatic gain control method |
8427936, | Oct 18 2001 | Qualcomm Incorporated | Multiple-access hybrid OFDM-CDMA system |
8472306, | Oct 18 2001 | Qualcomm Incorporated | Multi-access hybrid OFDM-CDMA system |
8532492, | Feb 03 2009 | Corning Optical Communications LLC | Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof |
8639121, | Nov 13 2009 | Corning Optical Communications LLC | Radio-over-fiber (RoF) system for protocol-independent wired and/or wireless communication |
8644844, | Dec 20 2007 | Corning Optical Communications Wireless Ltd | Extending outdoor location based services and applications into enclosed areas |
8718478, | Oct 12 2007 | Corning Optical Communications LLC | Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same |
8798564, | Mar 17 2009 | Maxlinear Israel LTD | Transmitter with replaceable power amplifier |
8831428, | Feb 15 2010 | Corning Optical Communications LLC | Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods |
8867919, | Jul 24 2007 | Corning Optical Communications LLC | Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems |
8873585, | Dec 19 2006 | Corning Optical Communications LLC | Distributed antenna system for MIMO technologies |
8948705, | Oct 18 2001 | Qualcomm Incorporated | Multiple-access hybrid OFDM-CDMA system |
8983301, | Mar 31 2010 | Corning Optical Communications LLC | Localization services in optical fiber-based distributed communications components and systems, and related methods |
9112611, | Feb 03 2009 | Corning Optical Communications LLC | Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof |
9130613, | Dec 19 2006 | Corning Optical Communications LLC | Distributed antenna system for MIMO technologies |
9158864, | Dec 21 2012 | Corning Optical Communications LLC | Systems, methods, and devices for documenting a location of installed equipment |
9178635, | Jan 03 2014 | Corning Optical Communications Wireless Ltd | Separation of communication signal sub-bands in distributed antenna systems (DASs) to reduce interference |
9184843, | Apr 29 2011 | Corning Optical Communications LLC | Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods |
9185674, | Aug 09 2010 | Corning Optical Communications LLC | Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s) |
9219879, | Nov 13 2009 | Corning Optical Communications LLC | Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication |
9240835, | Apr 29 2011 | Corning Optical Communications LLC | Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems |
9247543, | Jul 23 2013 | Corning Optical Communications LLC | Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs) |
9258052, | Mar 30 2012 | Corning Optical Communications LLC | Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods |
9319138, | Feb 15 2010 | Corning Optical Communications LLC | Dynamic cell bonding (DCB) for radio-over-fiber (RoF)-based networks and communication systems and related methods |
9357551, | May 30 2014 | Corning Optical Communications LLC | Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCS), including in distributed antenna systems |
9369222, | Apr 29 2011 | Corning Optical Communications LLC | Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods |
9385810, | Sep 30 2013 | Corning Optical Communications LLC | Connection mapping in distributed communication systems |
9414192, | Dec 21 2012 | Corning Optical Communications LLC | Systems, methods, and devices for documenting a location of installed equipment |
9419712, | Oct 13 2010 | Corning Optical Communications LLC | Power management for remote antenna units in distributed antenna systems |
9420542, | Sep 25 2014 | Corning Optical Communications LLC | System-wide uplink band gain control in a distributed antenna system (DAS), based on per band gain control of remote uplink paths in remote units |
9455784, | Oct 31 2012 | Corning Optical Communications Wireless Ltd | Deployable wireless infrastructures and methods of deploying wireless infrastructures |
9485022, | Nov 13 2009 | Corning Optical Communications LLC | Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication |
9497706, | Feb 20 2013 | Corning Optical Communications LLC | Power management in distributed antenna systems (DASs), and related components, systems, and methods |
9509133, | Jun 27 2014 | Corning Optical Communications LLC | Protection of distributed antenna systems |
9525472, | Jul 30 2014 | Corning Incorporated | Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods |
9526020, | Jul 23 2013 | Corning Optical Communications LLC | Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs) |
9531452, | Nov 29 2012 | Corning Optical Communications LLC | Hybrid intra-cell / inter-cell remote unit antenna bonding in multiple-input, multiple-output (MIMO) distributed antenna systems (DASs) |
9590733, | Jul 24 2009 | Corning Optical Communications LLC | Location tracking using fiber optic array cables and related systems and methods |
9602210, | Sep 24 2014 | Corning Optical Communications LLC | Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS) |
9621293, | Aug 07 2012 | Corning Optical Communications LLC | Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods |
9647758, | Nov 30 2012 | Corning Optical Communications LLC | Cabling connectivity monitoring and verification |
9648580, | Mar 23 2016 | Corning Optical Communications LLC | Identifying remote units in a wireless distribution system (WDS) based on assigned unique temporal delay patterns |
9653861, | Sep 17 2014 | Corning Optical Communications LLC | Interconnection of hardware components |
9661781, | Jul 31 2013 | Corning Optical Communications LLC | Remote units for distributed communication systems and related installation methods and apparatuses |
9673904, | Feb 03 2009 | Corning Optical Communications LLC | Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof |
9681313, | Apr 15 2015 | Corning Optical Communications LLC | Optimizing remote antenna unit performance using an alternative data channel |
9685782, | Nov 24 2010 | Corning Optical Communications LLC | Power distribution module(s) capable of hot connection and/or disconnection for distributed antenna systems, and related power units, components, and methods |
9699723, | Oct 13 2010 | Corning Optical Communications LLC | Local power management for remote antenna units in distributed antenna systems |
9715157, | Jun 12 2013 | Corning Optical Communications LLC | Voltage controlled optical directional coupler |
9729238, | Nov 13 2009 | Corning Optical Communications LLC | Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication |
9729251, | Jul 31 2012 | Corning Optical Communications LLC | Cooling system control in distributed antenna systems |
9729267, | Dec 11 2014 | Corning Optical Communications LLC | Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting |
9730228, | Aug 29 2014 | Corning Optical Communications LLC | Individualized gain control of remote uplink band paths in a remote unit in a distributed antenna system (DAS), based on combined uplink power level in the remote unit |
9775123, | Mar 28 2014 | Corning Optical Communications LLC | Individualized gain control of uplink paths in remote units in a distributed antenna system (DAS) based on individual remote unit contribution to combined uplink power |
9781553, | Apr 24 2012 | Corning Optical Communications LLC | Location based services in a distributed communication system, and related components and methods |
9785175, | Mar 27 2015 | Corning Optical Communications LLC | Combining power from electrically isolated power paths for powering remote units in a distributed antenna system(s) (DASs) |
9788279, | Sep 25 2014 | Corning Optical Communications LLC | System-wide uplink band gain control in a distributed antenna system (DAS), based on per-band gain control of remote uplink paths in remote units |
9806797, | Apr 29 2011 | Corning Optical Communications LLC | Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems |
9807700, | Feb 19 2015 | Corning Optical Communications LLC | Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS) |
9807722, | Apr 29 2011 | Corning Optical Communications LLC | Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods |
9807772, | May 30 2014 | Corning Optical Communications LLC | Systems and methods for simultaneous sampling of serial digital data streams from multiple analog-to-digital converters (ADCs), including in distributed antenna systems |
9813127, | Mar 30 2012 | Corning Optical Communications LLC | Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods |
9900097, | Feb 03 2009 | Corning Optical Communications LLC | Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof |
9913094, | Aug 09 2010 | Corning Optical Communications LLC | Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s) |
9929786, | Jul 30 2014 | Corning Incorporated | Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods |
9929810, | Sep 24 2014 | Corning Optical Communications LLC | Flexible head-end chassis supporting automatic identification and interconnection of radio interface modules and optical interface modules in an optical fiber-based distributed antenna system (DAS) |
9948349, | Jul 17 2015 | Corning Optical Communications LLC | IOT automation and data collection system |
9967032, | Mar 31 2010 | Corning Optical Communications LLC | Localization services in optical fiber-based distributed communications components and systems, and related methods |
9967754, | Jul 23 2013 | Corning Optical Communications LLC | Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs) |
9973968, | Aug 07 2012 | Corning Optical Communications LLC | Distribution of time-division multiplexed (TDM) management services in a distributed antenna system, and related components, systems, and methods |
9974074, | Jun 12 2013 | Corning Optical Communications LLC | Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs) |
Patent | Priority | Assignee | Title |
5107225, | Nov 30 1990 | QUALCOMM INCORPORATED A CORPORATION OF DELAWARE | High dynamic range closed loop automatic gain control circuit |
5142695, | Mar 21 1991 | HARRIS CANADA, INC | Cellular radio-telephone receiver employing improved technique for generating an indication of received signal strength |
5283536, | Nov 30 1990 | Qualcomm Incorporated | High dynamic range closed loop automatic gain control circuit |
5442811, | Dec 14 1992 | Fujitsu Limited | Loop testable radio transmitters/receivers |
5452473, | Feb 28 1994 | Qualcomm Incorporated | Reverse link, transmit power correction and limitation in a radiotelephone system |
5521937, | Oct 08 1993 | FUJI ELECTRIC CO , LTD | Multicarrier direct sequence spread system and method |
5564080, | Jun 25 1993 | NOKIA SIEMENS NETWORKS GMBH & CO KG | Method for optimizing the automatic amplifier setting in radio receivers |
5590408, | Feb 28 1994 | Qualcomm Incorporated | Reverse link, transmit power correction and limitation in a radiotelephone system |
5603113, | Jun 16 1993 | Canon Kabushiki Kaisha | Automatic gain control circuit for both receiver and transmitter adjustable amplifiers including a linear signal level detector with DC blocking, DC adding, and AC removing components |
5627857, | Sep 15 1995 | Qualcomm Incorporated | Linearized digital automatic gain control |
5655220, | Feb 28 1994 | Qualcomm Incorporated | Reverse link, transmit power correction and limitation in a radiotelephone system |
5659582, | Feb 28 1994 | Mitsubishi Denki Kabushiki Kaisha | Receiver, automatic gain controller suitable for the receiver, control signal generator suitable for the automatic gain controller, reception power controller using the automatic gain controller and communication method using the receiver |
5697096, | Nov 15 1994 | Uniden Corporation | Narrow-band communication apparatus |
5722061, | Aug 31 1995 | Qualcomm Incorporated | Method and apparatus for increasing receiver immunity to interference |
5722063, | Dec 16 1994 | Qualcomm Incorporated | Method and apparatus for increasing receiver immunity to interference |
5732341, | Dec 16 1994 | Qualcomm Incorporated | Method and apparatus for increasing receiver immunity to interference |
5768694, | Mar 20 1995 | Fujitsu Limited | Automatic gain control circuit with input and output signal detectors operating in equalized conditions |
5819165, | Nov 14 1994 | Nokia Mobile Phones Ltd. | System for regulating the power output of and linearizing the transmission signal from a radio transmitter |
5859838, | Jul 30 1996 | Qualcomm Incorporated | Load monitoring and management in a CDMA wireless communication system |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 03 1997 | NAGANO, TOMONORI | OKI ELECTRIC INDUSTRY CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 008661 | /0605 | |
Jul 03 1997 | O, WAHO | OKI ELECTRIC INDUSTRY CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 008661 | /0605 | |
Jul 03 1997 | KATSUYAMA, TSUTOMU | OKI ELECTRIC INDUSTRY CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 008661 | /0605 | |
Jul 25 1997 | Oki Electric Industry Co., Ltd. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jul 23 2003 | REM: Maintenance Fee Reminder Mailed. |
Jan 05 2004 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jan 04 2003 | 4 years fee payment window open |
Jul 04 2003 | 6 months grace period start (w surcharge) |
Jan 04 2004 | patent expiry (for year 4) |
Jan 04 2006 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 04 2007 | 8 years fee payment window open |
Jul 04 2007 | 6 months grace period start (w surcharge) |
Jan 04 2008 | patent expiry (for year 8) |
Jan 04 2010 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 04 2011 | 12 years fee payment window open |
Jul 04 2011 | 6 months grace period start (w surcharge) |
Jan 04 2012 | patent expiry (for year 12) |
Jan 04 2014 | 2 years to revive unintentionally abandoned end. (for year 12) |