A touch screen that uses pressure to control the zoom ratio and the zoom area. The touch screen has a display panel, a touch sensor, and a display control. The display panel is used to display an image. The touch sensor is used to sense the position and intensity of the pressure exerted on the touch screen. The display control is connected to the display panel and the touch sensor. pressure exerted on the touch sensor is interpreted by the display control to change the zoom area and the zoom ratio of the image on the display panel.

Patent
   6567102
Priority
Jun 05 2001
Filed
Nov 25 2001
Issued
May 20 2003
Expiry
Nov 28 2021
Extension
3 days
Assg.orig
Entity
Large
249
2
EXPIRED
1. A touch screen comprising:
a display panel for displaying an image;
a touch sensor having a sensing surface for sensing intensity and position of an external force imposed thereon and generating a corresponding pressure signal and a position signal; and
a display control electrically connected to display panel and the touch sensor for controlling the image and zooming in on a portion of the image according to the pressure signal and the position signal.
2. The touch screen of claim 1 wherein the touch sensor comprises:
a transparent sensing plate having a plurality of sensing units each positioned at a predetermined position on the display panel for detecting intensity of an external force; and
a pressure detector electrically connected to the sensing plate for detecting the intensity and position of the external force imposed on the sensing plate and generating corresponding pressure and position signals.
3. The touch screen of claim 2 wherein the transparent sensing plate is fixed on the display panel.
4. The touch screen of claim 2 wherein each sensing unit has a capacitor, and when an external force is imposed on one of the sensing units, capacitance of the sensing unit will change, and the pressure detector will generate the pressure signal according to the capacitance of the sensing unit and will generate the position signal according to the position of the sensing unit.
5. The touch screen of claim 1 wherein the display control will zoom the portion of the image corresponding to the position of the external force detected by the touch sensor and display that portion of the image full-screen on the display panel.
6. The touch screen of claim 1 wherein the display control will zoom in on the portion of the image corresponding to the position of the external force detected by the touch sensor in a fixed display frame on the display panel; the fixed display frame has the same size for different intensities of external forces; and the image outside of the fixed display frame will remain unchanged.
7. The touch screen of claim 6 wherein the fixed display frame is displayed at a position corresponding to the position of the external force detected by the touch sensor on the display panel.
8. The touch screen of claim 1 wherein the display control will zoom in on the portion of the image corresponding to the position of the external force detected by the touch sensor in a variable display frame on the display panel; the variable display frame has a size which varies with the intensity of the external force; and the image outside of the variable display frame will remain unchanged.
9. The touch screen of claim 1 wherein the display control uses a linear conversion model to zoom in on the image.
10. The touch screen of claim 1 wherein the display control uses a step conversion model to zoom in on the image; the step conversion model has a plurality of pressure sections each having a corresponding zoom ratio; and when receiving a pressure signal which falls within one of the pressure sections, the pressure signal will be converted to a corresponding zoom ratio.

1. Field of the Invention

The present invention relates to a touch screen, more specifically, to a touch screen that uses pressure to control the zoom ratio.

2. Description of the Prior Art

In modern society, computer systems are no longer viewed as costly toys reserved for the wealthy, but as necessities for ordinary people in their daily lives. Nowadays, nearly everyone has a computer system, such as a desktop computer, a laptop computer, or a personal digital assistant (PDA). Just as computer systems have become more advanced, computer monitors are constantly being redesigned to be thinner, lighter, and more convenient to use. One of the most recent innovations in computer monitor technology is the touch screen.

Among touch screens, there are two prior art that deal with zooming in on images. Please refer to FIG. 1A, FIG. 1B, and FIG. 1C. The FIG. 1A is a diagram of the unmagnified display 10 of a screen showing an image. FIG. 1B is a diagram of a display 20 showing an image magnified using the first method of magnification. FIG. 1C is a diagram of a display 30 showing an image magnified using the second method of magnification. The first prior art pertaining to magnification showed in FIG. 1B is magnifying the upper-left section of the imaged in FIG. 1A by a predetermined zoom ratio. If the user wants to view other parts of the image, he can control the horizontal scrolling bar 22 and vertical scrolling bar 24 to move to the part of the image he wishes to view. The second prior art pertaining to magnification shown in FIG. 1C is magnifying the part of the imaged in FIG. 1A under the zoom area 32 by a predetermined zoom ratio and displaying it in the zoom area 32. The user can move the zoom area 32 to view different parts of the imaged in FIG. 1A. This kind of operation simulates viewing the imaged in FIG. 1A under a magnifying glass.

Among the disadvantages of the two prior arts of magnification mentioned above is that it is not convenient to use a fixed zoom ratio for all zoom functions. It can also be cumbersome to use a zoom window that cannot be easily adjusted according to the needs of the user.

It is therefore an objective of the claimed invention to solve the problems mentioned above by providing a touch screen that uses pressure to control the zoom ratio.

The claimed touch screen, briefly summarized, comprises a display panel, a touch sensor, and a display control. A display panel is used to display an image. A touch sensor is used to sense the intensity and position of an external force and generate a corresponding pressure signal and position signal.

A display control is connected to the display panel and the touch sensor for controlling the image and zooming in on a portion of the image according to the pressure signal and position signals. A predetermined conversion model is used to derive the zoom ratio from the pressure signal generated by the touch sensor.

These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.

FIG. 1A is a diagram of the display of a screen showing an unmagnified image.

FIG. 1B is a diagram of the display of a screen showing an image magnified using the first method of magnification.

FIG. 1C is a diagram of the display of a screen showing an image magnified using the second method of magnification.

FIG. 2 is a function diagram of the touch screen.

FIG. 3 is a detailed structure diagram of the touch screen as illustrated in FIG. 2.

FIG. 4 is a diagram detailing the measurement of pressure when something contacts with the touch screen.

FIG. 5 is a diagram of a linear relationship between the pressure imposed on the touch screen 100 and the zoom ratio.

FIG. 6 is a diagram of a tiered relationship between the pressure imposed on the touch screen 100 and the zoom ratio.

FIG. 7A is a diagram of the display of a screen showing an unmagnified image.

FIG. 7B is a diagram of the display of a screen showing an image magnified under light pressure using the first method of magnification.

FIG. 7C is a diagram of the display of a screen showing an image magnified under greater pressure using the first method of magnification.

FIG. 8A is a diagram of the unmagnified display of a screen showing an unmagnified image.

FIG. 8B is a diagram of the display of a screen showing an image magnified under light pressure using the second method of magnification.

FIG. 8C is a diagram of the display of a screen showing an image magnified under greater pressure using the second method of magnification.

FIG. 9A is a diagram of a display of a screen showing an unmagnified image.

FIG. 9B is a diagram of the display of a screen showing an image magnified under light pressure using the third method of magnification.

FIG. 9C is a diagram of the display of a screen showing an image magnified under greater pressure using the third method of magnification.

Please refer to FIG. 2, which is the function diagram of the touch screen. The present invention provides a touch screen 100 that interprets the pressure exerted upon it to control the zoom ratio. The touch screen 100 comprises a display panel 104, a sensing plate 102, a display control 106, and a pressure detector 108. The display panel 104 is used to display the image. The sensing plate 102 and the pressure detector 108, which are housed in the display panel 104, form a touch sensor. The sensing plate 102 detects the intensity and position of an external force exerted upon the display panel and generates a corresponding pressure and position signal. The display control 106 is connected to the display panel 104 and the touch sensor. The display control 106 controls the image shown on the display panel 104, and zooms in on a portion of the image according to the position signal generated by the touch sensor. With the operation of a central processing unit (CPU) 112 and a memory 114 of a personal computer 110, a portion of the image mentioned above is magnified by a zoom ratio. A predetermined conversion model is used to derive the zoom ratio from the pressure signal generated by the touch sensor.

Please refer to FIG. 3, which is a detailed structure diagram of the touch screen 100. A sensing plate 102 is fixed on the display panel 104. A sensing plate 102 comprises a plurality of sensing units 128 each positioned at a predetermined position on the display panel 104 for detecting intensity of an external force. As illustrated in FIG. 4, the external force is generated when a controlling pen 120 touches a touching point 122 on the sensing plate 102 along one direction A. A pressure detector 108 is electrically connected to the sensing plate 102. The pressure detector 108 detects the intensity and position of the external force imposed on the sensing plate 102, and generates corresponding pressure and position signals.

The method of detecting pressure on a touch screen 100 according to the present invention is that every sensing unit 128 comprises one capacitor 129. When there is an external force imposed on the sensing units 128, there is a change in the capacitance of the capacitor 129. The method of detecting the capacitance of the capacitor 129 shall not be further elaborated, as it is well known to those who are familiar with such technology. The pressure detector 108 generates the corresponding pressure signal by using the capacitance of the sensing unit 128 and a corresponding position signal 124 using a position 122 of the sensing unit 128.

Please refer to FIG. 4, which is a diagram of the measurement of pressure when an object makes contact with the touch screen 100 as illustrated in FIG. 3. When a control pen 120 touches a touch point 122 of the sensing plate 102, the distance the control pen pushes down on the sensing plate 102 changes according to the intensity of the pressure exerted on the touch side 102. The original thickness of a sensing plate 102 is d. The sensing plate 102 is made of a soft, flexible, and thin film, so the more pressure the control pen 120 exerts, the less the thickness d of the sensing plate 102 at the touch point 122. Likewise, the less pressure the control pen 120 exerts, the greater the thickness d of the sensing plate 102. The relationship between the capacitance of the capacitor 129 and the thickness d of the sensing plate 102 can be described as:

Capacitance C=A/d

When more pressure is exerted, the value of d decreases, resulting in increased capacitance.

Please refer to FIG. 5 and FIG. 6. FIG. 5 is a diagram of a liner relationship between the pressure exerted on the touch screen 100 and the zoom ratio. FIG. 6 is a diagram of a tiered relationship between the pressure exerted on the touch screen 100 and the zoom ratio.

As FIG. 5 illustrates, the display control 106 of the touch screen 100 converts the pressure signal generated by the touch sensor to a corresponding zoom ratio according to a linear conversion model. When the pressure signal f is less than a certain intensity, the zoom ratio remains unchanged, and no zoom operation occurs. When the pressure signal f is greater than a certain intensity, the zoom ratio changes linearly according to the pressure signal f. This means that the zoom ratio increases or decreases in response to a larger or smaller signal. Because the user might have difficulty holding the control pen 120 perfectly steady when pressing the touch screen 100, the use of a linear relationship may make the zoom ratio wobble according to changes in the pressure signal.

As FIG. 6 illustrates, the display control 106 of the touch screen 100 converts the pressure signal, which is generated from the touch sensor, to a corresponding zoom ratio according to a tiered conversion model. The tiered conversion model has a plurality of pressure sections such as f1∼f2, f2∼f3, f3∼f4, f4∼f5, and f5∼f6, etc. Every pressure section corresponds to a fixed zoom ratio. For example, the section f1∼f2 corresponds to z1, section f2∼f3 corresponds to z2, section f3∼f4 corresponds to z3, section f4∼f5 corresponds to z4, and section f5∼f6 corresponds to z5, etc. When the display control 106 receives a pressure signal that falls within one of the pressure sections, the pressure signal is converted to the corresponding zoom ratio.

Please refer to FIG. 7A, FIG. 7B, and FIG. 7C. FIG. 7A is a diagram of the display 130 of a touch screen 100 showing an unmagnified image. FIG. 7B is a diagram of a display 140 of a touch screen 100 showing an image magnified under light pressure using the first method of magnification. FIG. 7C is a diagram of a display 150 of a touch screen 100 showing an image magnified under greater pressure using the first method of magnification. The display control 106 of the touch screen 100 zooms the portion of the image that corresponds to the position signal generated by the touch sensor. This zoomed region is displayed full-screen on the display panel 104. As FIG. 7B illustrates, when the control pen 120 exerts only a light pressure on the sensing plate 102, the image is zoomed by a smaller zoom ratio and displayed full-screen on the display panel 104. When the control pen 120 exerts a greater pressure on the sensing plate 102, the image is zoomed by a larger zoom ratio and displayed full-screen on the display panel 104.

Please refer to FIGS. 8A to 8C. FIG. 8A is a diagram of a display 130 of a touch screen 100 showing an unmagnified image. FIG. 8B is a diagram of a display 160 showing an image magnified under light pressure using the second method of magnification. FIG. 8C is a diagram of a display 170 showing an image magnified under greater pressure using the second method of magnification. The display control 106 of the touch screen 100 uses a fixed display frame 162, 172. The zoomed-in region of the unmagnified image is specified by the position signal generated by the touch sensor, and the zoom ratio is determined by the pressure signal generated by the touch sensor. The resulting zoomed image is displayed in the fixed display frame 162, 172. The image 160, 170 outside the fixed display frame 162, 172 remains unchanged. As illustrated in FIG. 8A, the arrowhead F represents the location at which the control pen 120 touches the sensing plate 102. As illustrated in FIG. 8B, when a smaller pressure is exerted on the sensing plate 102 by the control pen 120, the portion of the unmagnified image at the touch point 122 is zoomed in by a smaller zoom ratio. The zoomed-in image is displayed inside a fixed display frame 162 expanded from the touch point 122. As FIG. 8C illustrates, when a greater pressure is exerted on the sensing plate 102 by the control pen 120, the portion of the unmagnified image at the touch point 122 is zoomed in by a greater zoom ratio. The zoomed-in image is displayed inside a fixed display frame 172 that is expanded from the touch point 122. In such an embodiment, the fixed display frame will move as the touch point 122 moves. In order to view the image more conveniently, the fixed display frame could instead be located at a stationary spot on the touch screen 100 so that regardless of the location of the touch point 122, the magnified content would be displayed inside a stationary fixed display frame.

FIG. 9A is a diagram of a display 130 of a touch screen 100 showing an unmagnified image. FIG. 9B is a diagram of a display 180 of a touch screen 100 showing an image magnified under light pressure using a third method of magnification. FIG. 9C is a diagram of a display 190 of a touch screen 100 showing an image magnified under greater pressure using the third method of magnification. In this embodiment, the display control 106 of the touch screen 100 uses a variable display frame 182, 192. The variable display frame 182, 192 displays a zoomed portion of the image determined by the position signal generated from the touch sensor. The image 180, 190 outside the variable display frame 182, 192 remains unchanged. As illustrated in FIG. 9A, the arrowhead F represents a point at which the control pen 120 presses the sensing plate 102. As illustrated in FIG. 9B, when a light pressure is exerted on the sensing plate 102 by the control pen 120, the image at the touch point 122 is zoomed in and is displayed inside a small variable display frame 182 that is expanded from the touch point 122. As illustrated in FIG. 9C, when a greater pressure is exerted on the sensing plate 102 by the control pen 120, the image at the touch point 122 is zoomed in and displayed inside a larger variable display frame 182 that is expanded from the touch point 122.

In contrast to the prior art, the present invention makes use of the pressure generated by pressing the control pen 120 or other touch device on the sensing plate 102 to control the zoom ratio and zoom area. This is a powerful and convenient way for users to control what they see, and cannot be achieved by the prior art.

The above disclosure is not intended as limiting. Those skilled in the art will readily observe that numerous modifications and alterations of the device may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.

Kung, Shao-Tsu

Patent Priority Assignee Title
10001851, Mar 28 2012 Kyocera Corporation Electronic device and display method
10013094, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC System, method, and computer program product for a multi-pressure selection touch screen
10013095, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Multi-type gesture-equipped touch screen system, method, and computer program product
10031607, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC System, method, and computer program product for a multi-pressure selection touch screen
10037138, Dec 29 2012 Apple Inc. Device, method, and graphical user interface for switching between user interfaces
10042513, Mar 16 2009 Apple Inc. Multifunction device with integrated search and application selection
10042542, May 09 2012 Apple Inc. Device, method, and graphical user interface for moving and dropping a user interface object
10048757, Mar 08 2015 Apple Inc Devices and methods for controlling media presentation
10067645, Mar 08 2015 Apple Inc Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback
10067653, Apr 01 2015 Apple Inc Devices and methods for processing touch inputs based on their intensities
10067991, Mar 16 2009 Apple Inc. Multifunction device with integrated search and application selection
10071017, Nov 14 2012 ZOLL Medical Corporation Chest compression monitor with rotational sensing of compressions for discrimination of CPR movement from non-CPR movement
10073615, May 09 2012 Apple Inc. Device, method, and graphical user interface for displaying user interface objects corresponding to an application
10078442, Dec 29 2012 Apple Inc. Device, method, and graphical user interface for determining whether to scroll or select content based on an intensity theshold
10095391, May 09 2012 Apple Inc. Device, method, and graphical user interface for selecting user interface objects
10095396, Mar 08 2015 Apple Inc Devices, methods, and graphical user interfaces for interacting with a control object while dragging another object
10101887, Dec 29 2012 Apple Inc. Device, method, and graphical user interface for navigating user interface hierarchies
10114546, May 09 2012 Apple Inc. Device, method, and graphical user interface for displaying user interface objects corresponding to an application
10120480, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Application-specific pressure-sensitive touch screen system, method, and computer program product
10126930, May 09 2012 Apple Inc. Device, method, and graphical user interface for scrolling nested regions
10133397, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Tri-state gesture-equipped touch screen system, method, and computer program product
10146353, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Touch screen system, method, and computer program product
10152208, Apr 01 2015 Apple Inc Devices and methods for processing touch inputs based on their intensities
10156921, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Tri-state gesture-equipped touch screen system, method, and computer program product
10162448, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC System, method, and computer program product for a pressure-sensitive touch screen for messages
10162452, Aug 10 2015 Apple Inc Devices and methods for processing touch inputs based on their intensities
10168826, May 09 2012 Apple Inc. Device, method, and graphical user interface for transitioning between display states in response to a gesture
10175757, May 09 2012 Apple Inc. Device, method, and graphical user interface for providing tactile feedback for touch-based operations performed and reversed in a user interface
10175864, May 09 2012 Apple Inc. Device, method, and graphical user interface for selecting object within a group of objects in accordance with contact intensity
10175876, Jan 07 2007 Apple Inc. Application programming interfaces for gesture operations
10175879, Dec 29 2012 Apple Inc Device, method, and graphical user interface for zooming a user interface while performing a drag operation
10180772, Mar 08 2015 Apple Inc Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback
10185491, Dec 29 2012 Apple Inc. Device, method, and graphical user interface for determining whether to scroll or enlarge content
10191627, May 09 2012 Apple Inc. Device, method, and graphical user interface for manipulating framed graphical objects
10200598, Jun 08 2015 Apple Inc Devices and methods for capturing and interacting with enhanced digital images
10203794, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Pressure-sensitive home interface system, method, and computer program product
10203868, Aug 10 2015 Apple Inc Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback
10209806, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Tri-state gesture-equipped touch screen system, method, and computer program product
10209807, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Pressure sensitive touch screen system, method, and computer program product for hyperlinks
10209808, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Pressure-based interface system, method, and computer program product with virtual display layers
10209809, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Pressure-sensitive touch screen system, method, and computer program product for objects
10209884, Aug 10 2015 Apple Inc. Devices, Methods, and Graphical User Interfaces for Manipulating User Interface Objects with Visual and/or Haptic Feedback
10216408, Jun 14 2010 Apple Inc.; Apple Inc Devices and methods for identifying user interface objects based on view hierarchy
10222891, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Setting interface system, method, and computer program product for a multi-pressure selection touch screen
10222892, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC System, method, and computer program product for a multi-pressure selection touch screen
10222893, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Pressure-based touch screen system, method, and computer program product with virtual display layers
10222894, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC System, method, and computer program product for a multi-pressure selection touch screen
10222895, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Pressure-based touch screen system, method, and computer program product with virtual display layers
10222980, Mar 19 2015 Apple Inc. Touch input cursor manipulation
10235035, Aug 10 2015 Apple Inc. Devices, methods, and graphical user interfaces for content navigation and manipulation
10248308, Aug 10 2015 Apple Inc. Devices, methods, and graphical user interfaces for manipulating user interfaces with physical gestures
10268341, Mar 08 2015 Apple Inc Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback
10268342, Mar 08 2015 Apple Inc Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback
10275086, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Gesture-equipped touch screen system, method, and computer program product
10275087, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback
10303354, Jun 07 2015 Apple Inc Devices and methods for navigating between user interfaces
10338736, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback
10338772, Mar 08 2015 Apple Inc Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback
10345961, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Devices and methods for navigating between user interfaces
10346030, Jun 07 2015 Apple Inc Devices and methods for navigating between user interfaces
10365758, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback
10379728, Mar 04 2008 Apple Inc. Methods and graphical user interfaces for conducting searches on a portable multifunction device
10386960, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback
10387029, Mar 08 2015 Apple Inc Devices, methods, and graphical user interfaces for displaying and using menus
10402073, Mar 08 2015 Apple Inc Devices, methods, and graphical user interfaces for interacting with a control object while dragging another object
10416800, Aug 10 2015 Apple Inc. Devices, methods, and graphical user interfaces for adjusting user interface objects
10437333, Dec 29 2012 Apple Inc. Device, method, and graphical user interface for forgoing generation of tactile output for a multi-contact gesture
10455146, Jun 07 2015 Apple Inc Devices and methods for capturing and interacting with enhanced digital images
10481690, May 09 2012 Apple Inc. Device, method, and graphical user interface for providing tactile feedback for media adjustment operations performed in a user interface
10481785, Jan 07 2007 Apple Inc. Application programming interfaces for scrolling operations
10496260, May 09 2012 Apple Inc. Device, method, and graphical user interface for pressure-based alteration of controls in a user interface
10521047, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Gesture-equipped touch screen system, method, and computer program product
10521109, Mar 04 2008 Apple Inc. Touch event model
10534474, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Gesture-equipped touch screen system, method, and computer program product
10540039, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Devices and methods for navigating between user interface
10551966, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Gesture-equipped touch screen system, method, and computer program product
10592039, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Gesture-equipped touch screen system, method, and computer program product for displaying multiple active applications
10592041, May 09 2012 Apple Inc. Device, method, and graphical user interface for transitioning between display states in response to a gesture
10599331, Mar 19 2015 Apple Inc Touch input cursor manipulation
10606396, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Gesture-equipped touch screen methods for duration-based functions
10606470, Jan 07 2007 Apple, Inc. List scrolling and document translation, scaling, and rotation on a touch-screen display
10613634, Mar 08 2015 Apple Inc. Devices and methods for controlling media presentation
10613741, Jan 07 2007 Apple Inc. Application programming interface for gesture operations
10620781, Dec 29 2012 Apple Inc. Device, method, and graphical user interface for moving a cursor according to a change in an appearance of a control icon with simulated three-dimensional characteristics
10642413, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Gesture-equipped touch screen system, method, and computer program product
10649571, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback
10649578, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Gesture-equipped touch screen system, method, and computer program product
10649579, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback
10649580, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Devices, methods, and graphical use interfaces for manipulating user interface objects with visual and/or haptic feedback
10649581, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback
10656752, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Gesture-equipped touch screen system, method, and computer program product
10656753, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Gesture-equipped touch screen system, method, and computer program product
10656754, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Devices and methods for navigating between user interfaces
10656755, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Gesture-equipped touch screen system, method, and computer program product
10656756, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Gesture-equipped touch screen system, method, and computer program product
10656757, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Gesture-equipped touch screen system, method, and computer program product
10656758, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Gesture-equipped touch screen system, method, and computer program product
10656759, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback
10664097, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback
10671212, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Gesture-equipped touch screen system, method, and computer program product
10671213, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback
10698598, Aug 10 2015 Apple Inc Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback
10705718, Jun 07 2015 Apple Inc. Devices and methods for navigating between user interfaces
10719225, Mar 16 2009 Apple Inc. Event recognition
10725581, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Devices, methods and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback
10732997, Jan 26 2010 Apple Inc. Gesture recognizers with delegates for controlling and modifying gesture recognition
10754542, Aug 10 2015 Apple Inc. Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback
10775994, May 09 2012 Apple Inc. Device, method, and graphical user interface for moving and dropping a user interface object
10775999, May 09 2012 Apple Inc. Device, method, and graphical user interface for displaying user interface objects corresponding to an application
10782819, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Gesture-equipped touch screen system, method, and computer program product
10782871, May 09 2012 Apple Inc Device, method, and graphical user interface for providing feedback for changing activation states of a user interface object
10788931, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback
10817162, Jan 07 2007 Apple Inc. Application programming interfaces for scrolling operations
10838542, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Gesture-equipped touch screen system, method, and computer program product
10841484, Jun 07 2015 Apple Inc Devices and methods for capturing and interacting with enhanced digital images
10860177, Mar 08 2015 Apple Inc Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback
10884591, May 09 2012 Apple Inc. Device, method, and graphical user interface for selecting object within a group of objects
10884608, Aug 10 2015 Apple Inc. Devices, methods, and graphical user interfaces for content navigation and manipulation
10908808, May 09 2012 Apple Inc. Device, method, and graphical user interface for displaying additional information in response to a user contact
10915243, Dec 29 2012 Apple Inc. Device, method, and graphical user interface for adjusting content selection
10921943, Apr 30 2019 Apple Inc Compliant material for protecting capacitive force sensors and increasing capacitive sensitivity
10936114, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Gesture-equipped touch screen system, method, and computer program product
10936190, Mar 04 2008 Apple Inc. Devices, methods, and user interfaces for processing touch events
10942570, May 09 2012 Apple Inc. Device, method, and graphical user interface for providing tactile feedback for operations performed in a user interface
10963142, Jan 07 2007 Apple Inc. Application programming interfaces for scrolling
10963158, Aug 10 2015 Apple Inc. Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback
10969945, May 09 2012 Apple Inc. Device, method, and graphical user interface for selecting user interface objects
10983692, Jan 07 2007 Apple Inc. List scrolling and document translation, scaling, and rotation on a touch-screen display
10996787, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Gesture-equipped touch screen system, method, and computer program product
10996788, May 09 2012 Apple Inc. Device, method, and graphical user interface for transitioning between display states in response to a gesture
11010027, May 09 2012 Apple Inc. Device, method, and graphical user interface for manipulating framed graphical objects
11023116, May 09 2012 Apple Inc. Device, method, and graphical user interface for moving a user interface object based on an intensity of a press input
11036384, Sep 14 2009 Samsung Electronics Co., Ltd. Pressure-sensitive degree control method and system for touchscreen-enabled mobile terminal
11054990, Mar 19 2015 Apple Inc. Touch input cursor manipulation
11061503, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback
11068153, May 09 2012 Apple Inc. Device, method, and graphical user interface for displaying user interface objects corresponding to an application
11068155, Dec 30 2016 Dassault Systemes SolidWorks Corporation User interface tool for a touchscreen device
11112957, Mar 08 2015 Apple Inc. Devices, methods, and graphical user interfaces for interacting with a control object while dragging another object
11163440, Mar 16 2009 Apple Inc. Event recognition
11182017, Aug 10 2015 Apple Inc Devices and methods for processing touch inputs based on their intensities
11221675, May 09 2012 Apple Inc. Device, method, and graphical user interface for providing tactile feedback for operations performed in a user interface
11226734, Dec 30 2016 Dassault Systemes SolidWorks Corporation Triggering multiple actions from a single gesture
11231785, Mar 02 2017 Samsung Electronics Co., Ltd. Display device and user interface displaying method thereof
11231831, Jun 07 2015 Apple Inc. Devices and methods for content preview based on touch input intensity
11240424, Jun 07 2015 Apple Inc. Devices and methods for capturing and interacting with enhanced digital images
11269513, Jan 07 2007 Apple Inc. List scrolling and document translation, scaling, and rotation on a touch-screen display
11275475, Apr 30 2019 Apple Inc. Compliant material for protecting capacitive force sensors and increasing capacitive sensitivity
11295572, Sep 12 2019 IGT Pressure and time sensitive inputs for gaming devices, and related devices, systems, and methods
11314388, Jun 30 2016 HUAWEI TECHNOLOGIES CO , LTD Method for viewing application program, graphical user interface, and terminal
11314407, May 09 2012 Apple Inc. Device, method, and graphical user interface for providing feedback for changing activation states of a user interface object
11327648, Aug 10 2015 Apple Inc. Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback
11354033, May 09 2012 Apple Inc. Device, method, and graphical user interface for managing icons in a user interface region
11376189, Nov 14 2012 ZOLL Medical Corporation Chest compression monitor with rotational sensing of compressions for discrimination of CPR movement from non-CPR movement
11429190, Jun 09 2013 Apple Inc. Proxy gesture recognizer
11449217, Jan 07 2007 Apple Inc. Application programming interfaces for gesture operations
11461002, Jan 07 2007 Apple Inc. List scrolling and document translation, scaling, and rotation on a touch-screen display
11550471, Mar 19 2015 Apple Inc. Touch input cursor manipulation
11592946, Sep 21 2021 Apple Inc Capacitive gap force sensor with multi-layer fill
11681429, Jun 07 2015 Apple Inc. Devices and methods for capturing and interacting with enhanced digital images
11720584, Mar 16 2009 Apple Inc. Multifunction device with integrated search and application selection
11740725, Mar 04 2008 Apple Inc. Devices, methods, and user interfaces for processing touch events
11740727, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback
11740785, Aug 10 2015 Apple Inc Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback
11755196, Mar 16 2009 Apple Inc. Event recognition
11835985, Jun 07 2015 Apple Inc. Devices and methods for capturing and interacting with enhanced digital images
11886698, Jan 07 2007 Apple Inc. List scrolling and document translation, scaling, and rotation on a touch-screen display
7095387, Feb 28 2002 Qualcomm Incorporated Display expansion method and apparatus
7433179, Aug 10 2004 Kabushiki Kaisha Toshiba Electronic apparatus having universal human interface
7466961, Dec 13 2004 Qualcomm Incorporated Compact palmtop computer system and wireless telephone with foldable dual-sided display
7469381, Jan 07 2007 Apple Inc. List scrolling and document translation, scaling, and rotation on a touch-screen display
7564594, May 10 2004 FUNAI ELECTRIC CO , LTD Digital multifunctional imaging apparatus
7739616, Jul 14 2005 Canon Kabushiki Kaisha File content display device, file content display method, and computer program therefore
7859518, Jun 04 2001 Qualcomm Incorporated Interface for interaction with display visible from both sides
7973778, Apr 16 2007 Microsoft Technology Licensing, LLC Visual simulation of touch pressure
8169332, Mar 30 2008 WISETOUCH CO, LTD Tactile device with force sensitive touch input surface
8204558, Jan 16 2001 Qualcomm Incorporated Compact palmtop computer system and wireless telephone with foldable dual-sided display
8205157, Mar 04 2008 Apple Inc.; Apple Inc Methods and graphical user interfaces for conducting searches on a portable multifunction device
8209606, Jan 07 2007 Apple Inc. Device, method, and graphical user interface for list scrolling on a touch-screen display
8255798, Jan 07 2007 Apple Inc. Device, method, and graphical user interface for electronic document translation on a touch-screen display
8302026, Nov 28 2008 Microsoft Technology Licensing, LLC Multi-panel user interface
8312371, Jan 07 2007 Apple Inc. Device and method for screen rotation on a touch-screen display
8365090, Jan 07 2007 Apple Inc. Device, method, and graphical user interface for zooming out on a touch-screen display
8429557, Jan 07 2007 Apple Inc. Application programming interfaces for scrolling operations
8432416, Oct 17 2008 HTC Corporation Method for adjusting page display manner, mobile electronic device, and storage medium thereof
8607651, Sep 30 2011 Sensitronics, LLC Hybrid capacitive force sensors
8631354, Mar 06 2009 Microsoft Technology Licensing, LLC Focal-control user interface
8661363, Jan 07 2007 Apple Inc. Application programming interfaces for scrolling operations
8737821, May 31 2012 Automatic triggering of a zoomed-in scroll bar for a media program based on user input
8823750, Jan 06 2012 Microsoft Technology Licensing, LLC Input pointer delay and zoom logic
8951213, Nov 14 2012 ZOLL Medical Corporation Chest compression monitor with rotational sensing of compressions for discrimination of CPR movement from non-CPR movement
9037995, Jan 07 2007 Apple Inc. Application programming interfaces for scrolling operations
9052814, Jan 07 2007 Apple Inc. Device, method, and graphical user interface for zooming in on a touch-screen display
9069426, Aug 17 2009 Apple Inc. Sensing capacitance changes of a housing of an electronic device
9122364, Feb 03 2009 Kyocera Corporation Input device
9285908, Mar 16 2009 Apple Inc. Event recognition
9298363, Apr 11 2011 Apple Inc.; Apple Inc Region activation for touch sensitive surface
9311112, Mar 16 2009 Apple Inc.; Apple Inc Event recognition
9323335, Mar 04 2008 Apple Inc. Touch event model programming interface
9354811, Mar 16 2009 Apple Inc. Multifunction device with integrated search and application selection
9389712, Mar 04 2008 Apple Inc. Touch event model
9417754, Aug 05 2011 SMITH INTERFACE TECHNOLOGIES, LLC User interface system, method, and computer program product
9448712, Jan 07 2007 Apple Inc. Application programming interfaces for scrolling operations
9483121, Mar 16 2009 Apple Inc. Event recognition
9529519, Jan 07 2007 Apple Inc. Application programming interfaces for gesture operations
9575648, Jan 07 2007 Apple Inc. Application programming interfaces for gesture operations
9602729, Jun 07 2015 Apple Inc Devices and methods for capturing and interacting with enhanced digital images
9612741, May 09 2012 Apple Inc. Device, method, and graphical user interface for displaying additional information in response to a user contact
9619076, May 09 2012 Apple Inc. Device, method, and graphical user interface for transitioning between display states in response to a gesture
9619132, Jan 07 2007 Apple Inc. Device, method and graphical user interface for zooming in on a touch-screen display
9632664, Mar 08 2015 Apple Inc Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback
9639184, Mar 19 2015 Apple Inc Touch input cursor manipulation
9645709, Mar 08 2015 Apple Inc Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback
9645732, Mar 08 2015 Apple Inc Devices, methods, and graphical user interfaces for displaying and using menus
9665265, Jan 07 2007 Apple Inc. Application programming interfaces for gesture operations
9674426, Jun 07 2015 Apple Inc Devices and methods for capturing and interacting with enhanced digital images
9684521, Jan 26 2010 Apple Inc. Systems having discrete and continuous gesture recognizers
9690481, Mar 04 2008 Apple Inc. Touch event model
9706127, Jun 07 2015 Apple Inc Devices and methods for capturing and interacting with enhanced digital images
9720594, Mar 04 2008 Apple Inc. Touch event model
9733716, Jun 09 2013 Apple Inc Proxy gesture recognizer
9753639, May 09 2012 Apple Inc Device, method, and graphical user interface for displaying content associated with a corresponding affordance
9760272, Jan 07 2007 Apple Inc. Application programming interfaces for scrolling operations
9778771, Dec 29 2012 Apple Inc. Device, method, and graphical user interface for transitioning between touch input to display output relationships
9785305, Mar 19 2015 Apple Inc Touch input cursor manipulation
9798459, Mar 04 2008 Apple Inc. Touch event model for web pages
9823839, May 09 2012 Apple Inc. Device, method, and graphical user interface for displaying additional information in response to a user contact
9830048, Jun 07 2015 Apple Inc Devices and methods for processing touch inputs with instructions in a web page
9857897, Dec 29 2012 Apple Inc. Device and method for assigning respective portions of an aggregate intensity to a plurality of contacts
9860451, Jun 07 2015 Apple Inc Devices and methods for capturing and interacting with enhanced digital images
9880735, Aug 10 2015 Apple Inc Devices, methods, and graphical user interfaces for manipulating user interface objects with visual and/or haptic feedback
9886184, May 09 2012 Apple Inc. Device, method, and graphical user interface for providing feedback for changing activation states of a user interface object
9891811, Jun 07 2015 Apple Inc Devices and methods for navigating between user interfaces
9916080, Jun 07 2015 Apple Inc. Devices and methods for navigating between user interfaces
9946447, May 09 2012 Apple Inc. Device, method, and graphical user interface for selecting user interface objects
9959025, Dec 29 2012 Apple Inc. Device, method, and graphical user interface for navigating user interface hierarchies
9965074, Dec 29 2012 Apple Inc. Device, method, and graphical user interface for transitioning between touch input to display output relationships
9965177, Mar 16 2009 Apple Inc. Event recognition
9971499, May 09 2012 Apple Inc. Device, method, and graphical user interface for displaying content associated with a corresponding affordance
9971502, Mar 04 2008 Apple Inc. Touch event model
9990087, Sep 28 2013 Apple Inc. Compensation for nonlinear variation of gap capacitance with displacement
9990107, Mar 08 2015 Apple Inc Devices, methods, and graphical user interfaces for displaying and using menus
9990121, May 09 2012 Apple Inc. Device, method, and graphical user interface for moving a user interface object based on an intensity of a press input
9996231, May 09 2012 Apple Inc. Device, method, and graphical user interface for manipulating framed graphical objects
9996233, Dec 29 2012 Apple Inc. Device, method, and graphical user interface for navigating user interface hierarchies
RE42738, Oct 28 1997 Apple Inc Portable computers
RE44103, Oct 28 1997 Apple Inc. Portable computers
RE44855, Oct 08 1998 Apple Inc. Multi-functional cellular telephone
RE45559, Oct 28 1997 Apple Inc. Portable computers
RE46548, Oct 28 1997 Apple Inc. Portable computers
Patent Priority Assignee Title
5615384, Nov 01 1993 MEDIATEK INC Personal communicator having improved zoom and pan functions for editing information on touch sensitive display
6073036, Apr 28 1997 Nokia Corporation Mobile station with touch input having automatic symbol magnification function
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Nov 13 2001SHAO-TSU KUNGCOMPAL ELECTRONICS, INCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0121830520 pdf
Nov 25 2001Compal Electronics Inc.(assignment on the face of the patent)
Date Maintenance Fee Events
Oct 25 2006M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Oct 20 2010M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Dec 24 2014REM: Maintenance Fee Reminder Mailed.
May 20 2015EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
May 20 20064 years fee payment window open
Nov 20 20066 months grace period start (w surcharge)
May 20 2007patent expiry (for year 4)
May 20 20092 years to revive unintentionally abandoned end. (for year 4)
May 20 20108 years fee payment window open
Nov 20 20106 months grace period start (w surcharge)
May 20 2011patent expiry (for year 8)
May 20 20132 years to revive unintentionally abandoned end. (for year 8)
May 20 201412 years fee payment window open
Nov 20 20146 months grace period start (w surcharge)
May 20 2015patent expiry (for year 12)
May 20 20172 years to revive unintentionally abandoned end. (for year 12)