A portable computer arranged to rest comfortably in the hand has a small display screen. Accelerometers capable of detecting movement of the pen with respect to gravity provide input to a microcontroller which selects a response from a number of viewing modes. The pen may be held in either hand and the output message to the screen will be oriented according to the location of the pen. Full personal digital assistance functionality may be incorporated in a relatively small plastics casing and functions, such as calendar, contracts the like may be incorporated.
|
0. 70. A hand held cellular telephone comprising:
a screen for displaying information;
a detector that detects a reflection from the user's eye to determine whether a user is looking directly at the screen; and,
a processor that modifies a functionality of the hand held telephone based on whether the user is looking at information on the screen.
0. 39. A hand held cellular telephone comprising:
a screen that displays information;
a proximity detector that detects proximity of a user to the screen;
a detector that detects a reflection from the user's eye to determine whether the user is looking directly at the screen; and,
a processor that modifies a functionality of the screen based on whether the user is looking at information on the screen.
0. 65. A handheld cellular telephone comprising:
a touch screen;
a speaker;
a microphone;
a proximity detector that detects proximity of a user to the touch screen;
a detector that detects a reflection from the user's eye to determine whether the user is looking directly at the touch screen;
a processor that modifies a functionality of the touch screen based on whether the user is looking at the touch screen; and,
the hand held cellular telephone configured for sending and receiving text messages, email and voice data.
13. A portable computer comprising:
a casing for housing other components of the portable computer, the casing being shaped to facilitate a user holding the portable computer as a writing stylus; and
a display screen;
wherein said casing includes a radiused triangular cross-section along a substantial portion of its length and a flattened section incorporating the display screen, and an angular shaping between a forward holding area adapted to rest in the user's fingers and rearward flattened area holding the display screen the shaping being such as to provide a natural viewing angle of the incorporated display screen while the casing is held as a writing stylus.
32. A portable computer comprising:
movement detection means responsive to movement of the computer to produce an electrical output signal representative of such movement;
a storage medium for storing data defining a multiplicity of displayable pages each comprising of a plurality of lines;
a display having a corresponding plurality of lines to enable one of the multiplicity of pages to be displayed; and
processing means responsive to the output of said movement detection means to determine detected movement data defining a user's intention;
in which relative rolling movement causes the display of information stored as above or below currently displayed information.
28. A portable computer comprising:
movement detection means responsive to movement of the computer to produce an electrical output signal representative of such movement;
a storage medium for storing data defining a multiplicity of displayable pages each comprising of a plurality of lines;
a display having a corresponding plurality of lines to enable one of the multiplicity of pages to be displayed; and
processing means responsive to the output of said movement detection means to determine detected movement data defining a user's intention;
in which a relative lateral tilting movement causes the display of information stored as to one or other side of currently displayed information.
4. A portable computer comprising:
movement at least one acceleration detection means responsive to movement of the computer to produce an electrical output signal representative of such movement;
processing means responsive to the output of said movement at least one acceleration detection means to determine detected movement data defining a user's intention;
the processing means using said data to provide a mode response selected from a multiplicity of stored possible modes; and
wherein the processing means is responsive to detected movement data to determine a most likely orientation of a computer display means, the processing means causing the displayed information to be oriented accordingly.
7. A portable computer comprising:
movement at least one acceleration detection means responsive to movement of the computer to produce an electrical output signal representative of such movement;
processing means responsive to the output of said movement at least one acceleration detection means to determine detected movement data defining a user's intention, the processing means using said data to provide a mode response selected from a multiplicity of stored possible modes; and
proximity detection means which provides signals indicative of the proximity of a computer display screen to a user's view, the processing means being further responsive to changes in relative proximity to increase or decrease the density of displayed information.
36. A portable computer comprising:
movement detection means responsive to movement of the computer to produce an electrical output signal representative of such movement;
a storage medium for storing data defining a multiplicity of displayable pages each comprising of a plurality of lines;
a display having a corresponding plurality of lines to enable one of the multiplicity of pages to be displayed; and
processing means responsive to the output of said movement detection means to determine detected movement data defining a user's intention;
wherein the processing means is responsive to detected movement data to determine a most likely orientation of the display, the processing means causing the displayed information to be oriented accordingly.
0. 66. A handheld cellular telephone comprising:
a touch screen;
a proximity detector that detects proximity of a user to the touch screen;
a detector that detects a reflection from the user's eye to determine whether the user is looking directly at the touch screen;
a processor that modifies a functionality of the telephone based on whether the user is looking directly at the touch screen;
the handheld cellular telephone configured for sending and receiving text messages and email;
a speaker and a microphone;
a radio transceiver configured for sending and receiving voice data; and,
wherein the functionality is at least one of powering down the telephone, powering down circuitry of the telephone, switching backlighting of the touch screen between on and off, and modifying the density of information displayed on the touch screen.
18. A portable computer comprising:
movement detection means responsive to movement of the computer to produce an electrical output signal representative of such movement;
a storage medium for storing data defining a multiplicity of displayable pages each comprising of a plurality of lines;
a display having a corresponding plurality of lines to enable one of the multiplicity of pages to be displayed; and
processing means responsive to the output of said movement detection means to determine detected movement data defining a user's intention;
wherein detected movement data is used to effect scrolling of displayed information such that portions of data defining alphanumeric or graphic information outside a currently displayed screen is selectable by the user, the scrolling of displayed information effectively displaying a part of an adjacent screen.
3. A portable computer comprising:
movement detection means responsive to movement of the computer to produce an electrical output signal representative of such movement;
a storage medium for storing data defining a multiplicity of displayable pages each comprising of a plurality of lines;
a display having a corresponding plurality of lines to enable one of the multiplicity of pages to be displayed; and
processing means responsive to the output of said movement detection means to determine detected movement data defining a user's intention;
the processing means using said movement data to provide a mode response selected from a multiplicity of stored possible modes, at least some of which define selection for display of a further one of the pages from the multiplicity of pages, the further one of the pages being adjacent to a previously selected page being currently displayed;
in which relative rolling movement causes the display of information stored as above or below currently displayed information.
2. A portable computer comprising:
movement detection means responsive to movement of the computer to produce an electrical output signal representative of such movement;
a storage medium for storing data defining a multiplicity of displayable pages each comprising of a plurality of lines;
a display having a corresponding plurality of lines to enable one of the multiplicity of pages to be displayed; and
processing means responsive to the output of said movement detection means to determine detected movement data defining a user's intention;
the processing means using said movement data to provide a mode response selected from a multiplicity of stored possible modes, at least some of which define selection for display of a further one of the pages from the multiplicity of pages, the further one of the pages being adjacent to a previously selected page being currently displayed;
in which a relative lateral tilting movement causes the display of information stored as to one or other side of currently displayed information.
8. A portable computer comprising:
movement detection means responsive to movement of the computer to produce an electrical output signal representative of such movement;
a storage medium for storing data defining a multiplicity of displayable pages each comprising of a plurality of lines;
a display having a corresponding plurality of lines to enable one of the multiplicity of pages to be displayed; and
processing means responsive to the output of said movement detection means to determine detected movement data defining a user's intention; the processing means using said movement data to provide a mode response selected from a multiplicity of stored possible modes, at least some of which define selection for display of a further one of the pages from the multiplicity of pages, the further one of the pages being adjacent to a previously selected page being currently displayed;
radio transceiver means, the processing means being responsive to detected movement data which identifies another device to cause the transmission of coded signals including a message for display.
15. A portable computer comprising:
movement detection means responsive to movement of the computer to produce an electrical output signal representative of such movement;
a storage medium for storing data defining a multiplicity of displayable pages each comprising of a plurality of lines;
a display having a corresponding plurality of lines to enable one of the multiplicity of pages to be displayed; and
processing means responsive to the output of said movement detection means to determine detected movement data defining a user's intention;
the processing means using said movement data to provide a mode response selected from a multiplicity of stored possible modes, at least some of which define selection for display of a further one of the pages from the multiplicity of pages being the further one of the pages being adjacent to a previously selected page being currently displayed;
wherein the processing means is responsive to detected movement data to determine a most likely orientation of the display, the processing means causing the displayed information to be oriented accordingly.
16. A portable computer comprising:
movement detection means responsive to movement of the computer to produce an electrical output signal representative of such movement;
a storage medium for storing data defining a multiplicity of displayable pages each comprising of a plurality of lines;
a display having a corresponding plurality of lines to enable one of the multiplicity of pages to be displayed; and
processing means responsive to the output of said movement detection means to determine detected movement data defining a user's intention;
the processing means using said movement data to provide a mode response selected from a multiplicity of stored possible modes, at least some of which define selection for display of a further one of the pages from the multiplicity of pages, the further one of the pages being adjacent to a previously selected page being currently displayed;
in which a plurality of switch means responsive to user action is included adjacent to the display, the respective function of each of the switch means being oriented to match the orientation of displayed information.
17. A portable computer comprising:
movement detection means responsive to movement of the computer to produce an electrical output signal representative of such movement;
a storage medium for storing data defining a multiplicity of displayable pages each comprising of a plurality of lines;
a display having a corresponding plurality of lines to enable one of the multiplicity of pages to be displayed;
processing means responsive to the output of said movement detection means to determine detected movement data defining a user's intention, the processing means using said movement data to provide a mode response selected from a multiplicity of stored possible modes, at least some of which define selection for display of a further one of the pages from the multiplicity of pages, the further one of the pages being adjacent to a previously selected page being currently displayed; and
a touch sensitive static potentiometer strip responsive to movement of a users finger to simulate movement of a potentiometer, the orientation of said potentiometer reflecting the orientation of the displayed information.
1. A portable computer comprising:
movement detection means responsive to movement of the computer to produce an electrical output signal representative of such movement,
a storage medium for storing data defining a multiplicity of displayable pages each comprising of a plurality of lines;
a display having a corresponding plurality of lines to enable one of the multiplicity of pages to be displayed; and
processing means responsive to the output of said movement detection means to determine detected movement data defining a user's intention;
the processing means using said movement data to provide a mode response selected from a multiplicity of stored possible modes, at least some of which define selection for display of a further one of the pages from the multiplicity of pages, the further one of the pages being adjacent to a previously selected page being currently displayed;
wherein detected movement data is used to effect scrolling of displayed information such that portions of data defining alphanumeric or graphic information outside a currently displayed screen is selectable by the user, the scrolling of displayed information effectively displaying a part of an adjacent screen.
5. A portable computer as in
6. A portable computer as in
9. A portable computer as in
10. A portable computer as in
11. A portable computer as in
12. A portable computer as in
14. A portable computer as in
19. A portable computer as in
20. A portable computer as in
21. A portable computer as in
22. A portable computer as in
23. A portable computer as in
24. A portable computer as in
25. A portable computer as in
26. A portable computer as in
27. A portable computer as in
29. A portable computer as in
30. A portable computer as in
31. A portable computer as in
33. A portable computer as in
34. A portable computer as in
35. A portable computer as in
0. 37. The portable computer of claim 4, wherein the at least one acceleration detection means comprises a plurality of acceleration detection means.
0. 38. The portable computer of claim 7, wherein the at least one acceleration detection means comprises a plurality of acceleration detection means.
0. 40. The cellular telephone of claim 39, wherein the modification to the functionality of the screen reduces power consumption.
0. 41. The cellular telephone of claim 39, wherein the modification to the functionality of the screen comprises turning off the screen.
0. 42. The cellular telephone of claim 39, wherein the modification to the functionality of the screen comprises modifying density of displayed information on the screen.
0. 43. The cellular telephone of claim 39, wherein the detector that detects a proximity determines whether the screen is on the user's left or right side.
0. 44. The cellular telephone of claim 39, wherein the screen comprises a touch screen.
0. 45. The cellular telephone of claim 39, wherein the proximity detector comprises a pyroelectric sensor.
0. 46. The cellular telephone of claim 39, wherein the proximity detector comprises an infrared sensor.
0. 47. The cellular telephone of claim 44, wherein the modification to the functionality of the screen comprises modifying density of displayed information on the screen.
0. 48. The cellular telephone of claim 44, wherein the modification to the functionality of the touch screen comprises powering down the screen.
0. 49. The cellular telephone of claim 39, wherein the modification to the functionality of the screen comprises entering a power saving mode.
0. 50. The cellular telephone of claim 44, wherein the modification to the functionality of the screen comprises powering down touch screen circuitry.
0. 51. The cellular telephone of claim 39, wherein the modification to the functionality of the screen comprises inverting information on the screen.
0. 52. The cellular telephone of claim 39, where the modification to the functionality of the screen comprises switching backlighting between on and off.
0. 53. The cellular telephone of claim 39, wherein the cellular telephone is configured for sending and receiving email messages.
0. 54. The cellular telephone of claim 39, wherein the cellular telephone is configured for sending and receiving text messages.
0. 55. The cellular telephone of claim 39, further comprising a casing shaped to facilitate the user holding the telephone in one hand.
0. 56. The cellular telephone of claim 55, wherein the casing is hermetically sealed.
0. 57. The cellular telephone of claim 39, further comprising a microphone.
0. 58. The cellular telephone of claim 39, further comprising a speaker.
0. 59. The cellular telephone of claim 39, further comprising a docking element.
0. 60. The cellular telephone of claim 39, wherein the processor is programmed to enter the telephone into a reduced power mode after a pre-determined period of inactivity.
0. 61. The cellular telephone of claim 39, wherein the telephone is configured for receiving GPS data.
0. 62. The cellular telephone of claim 39, further comprising a voice recorder.
0. 63. The cellular telephone of claim 39, wherein the telephone is configured for at least one of wired and wireless transfer of data to a computer.
0. 64. The cellular telephone of claim 39, further comprising a calculator.
0. 67. The portable computer of claim 4, wherein the mode response is scrolling of displayed information.
0. 68. The portable computer of claim 4, wherein the mode response is display of information stored as to one or other side of currently displayed information.
0. 69. The portable computer of claim 4, wherein the mode response is display of information stored as above or below currently displayed information.
0. 71. The hand held cellular telephone of claim 70, wherein the screen is a touch screen, and the functionality modified is powering down circuitry of the telephone.
|
This application is a reissue application of U.S. Pat. No. 6,956,564, issued Oct. 18, 2005; and is related to co-pending divisional reissue applications Ser. Nos. 12/255,557, filed Oct. 21, 2008; 12/268,254, filed Nov. 10, 2008; and 12/268,336, filed Nov. 10, 2008.
1. Field of the Invention
The present invention relates to portable computers and more particularly but not exclusively to hand-held computers of the kind sometimes referred to as personal digital assistants.
2. Related Art
A personal digital assistant includes data files defining such items as an electronic diary, address book and other applications such as word processing software, calculators and the like. As more powerful memories and processors have been developed in smaller packages it has become possible to provide quite powerful computers in relatively small portable cases. However, the limitation of miniaturisation occurs when a viewing screen and keyboard are needed for data input and read out. Thus, so called palm top personal computers (PPC) are usually of the order of 15 cm by 7 cm in order to provide a readable screen and a usable keyboard. Such palm top computers are known, for example Psion Corporation have produced a Psion Series 5 (trade mark) PPC having an 8 megabyte RAM and processor while Hewlett Packard similarly produce PPCs as e.g. the HP320LX (trade mark). The capabilities of such PPCs may be enhanced by incorporating so called flash cards enabling the expansion of the RAM by up to 10 megabytes or more while PCMCIA cards may be provided to enable connection of the PPC to telephone networks by way of cellular phones or telephony sockets for communication with other computers and the so called Internet and Intranets.
Most PPCs incorporate a docking arrangement to enable them to be connected with a desktop computer or other main frame for the purposes of synchronisation of data files and the like.
However, generally speaking PPCs are not robust and are prone to damage mainly because of the clam shell design requiring a hinge that opens to reveal the incorporated keyboard and screen. Thus PPCs are more usually used on a desk top or table or may be held in one hand while typing with the other.
According to the present invention there is provided a portable computer including movement detection means responsive to movement of the computer to produce an electrical output signal representative of such movement, processing means responsive to the output of said position detection means to determine detected movement data defining a user's intention, the processing means using said data to provide a mode response selected from a multiplicity of stored possible modes.
Preferably the movement detection means includes at least one acceleration or tilt detection means responsive to movement of the computer to produce the output electrical signal. There may be a plurality of acceleration detection means each producing a respective electrical output signal representative of movement components in respective directions, the detectors generally being mounted to detect X and Y movement components at a ninety degree angle.
The processing means may include a data input mode in which detected movement data is used to generate alphanumeric or graphical data. The alphanumeric or graphical data may be stored in data storage of the portable computer or may be output by transmitting means to receiving means connected to another processing device.
The processing means may include a screen output mode in which detected movement data is used to modify output to display means of the computer whereby scrolling of displayed information is effected. In the screen output mode the processing means may be responsive to relative lateral tilting movement to cause the display of information stored as to one or other side of currently displayed information. Relative rolling movement may cause the display of information stored as above or below the currently displayed information.
In the screen output mode the processing means may be responsive to detected movement data to determine a most likely orientation of the computer display means with respect to a user's eye line whereby the signals output to the display means may cause inversion of the displayed information such that the computer may be held and used in either hand.
The computer may include proximity detection means arranged to provide signals indicative of the proximity of the display screen to a user's view, the processing means being responsive to changes in the relative proximity to increase or decrease density of displayed information.
In a further development, security data derived from movement of the computer defining an authorised user's password is stored, the processing means being locked in a secure mode until detected movement data corresponding to the security data is received.
The computer may include a sound input device, the processing means having a second data input mode in which alphanumeric data is derived from input speech signals. A sound output device may also be included to permit the output of speech derived from stored data. Alternatively the sound input and output devices may be combined with a radio transceiver whereby cellular or other radio telephony networks may be used.
The computer may be housed in a casing shaped to facilitate a user holding the computer as if holding a writing stylus. The casing is preferably of substantially radiused triangular cross section along a substantial portion of its length and may include a flattened section incorporating a display screen. The casing may include angular shaping between a forward holding area and a rearward screen area the shaping being such as to provide a natural viewing angle of an incorporated display screen while the casing is held as a writing stylus. The shaping may also be such as to facilitate support of the rearward screen area by the dorsal aspect of a user's hand between the root of the thumb and index finger and the wrist.
A portable computer in accordance with the invention will now be described by way of example only with reference to the accompanying drawings of which:
Referring to
The casing is weighted at one end (for example by including a rechargeable battery 2) at the forward end so that if the item is dropped on to a surface it tends to fall in a specified manner such that the tip which may include some impact protection, for example by being rubber cased, prevents any significant damage to internal components. The weighting also assists balancing of the unit in a user's hand.
The case may incorporate a hook 3 for attachment of a strap or key ring (not shown) and may have a pocket clip 4. The hook is preferably recessed within the casing.
Externally mounted a small liquid crystal diode screen which may be of the kind manufactured by Batron and supplied under type number BT42003STYC is included. To either side of the LCD 5 touch or pressure sensitive switches 6 to 13 are provided. These switches may be soft programmed to provide functions as hereinafter described. A touch scroll strip 14 (hereinafter described) is provided in front of the screen 5 and the system includes a pyroelectric detector 15 used in determining the proximity of the computer to a user's eye.
Audio input and output devices are also provided together with an alerting device. For example, a microphone 16, annunciator 17 and speaker 18 may be included. Finger switches 19a, 19b, 20 are provided forward of the annunciator 17 and again may be soft programmed for functionality. Also visible are gold docking pins 21 used for connecting the hand-held computer for recharging of the battery 2 and transfer of data by way of a docking device to other computers, for example desk mounted personal computers.
As an alternative means of transferring data from the computer of the invention to another processing device or to enable the computer of the invention to be used as an input device for a PC, an infrared transceiver 22a, 22b is mounted towards the front of the casing 1.
Also included is a light emitting diode 23 which may be of the kind having three or more colours. Individual colours allow for a small amount of illumination or may be used to provide indication or alarm functions. Alternatively, a single coloured red light emitting diode part TLSH180P from Toshiba may be used. This ultrabright LED aids human night sight viewing and whilst only being of low power may in a dark environment assist the user.
Turning now to
One function of the radio transmitter may be to allow use of the hand-held computer of the invention as an input device for a desk mounted or other PC 40 having corresponding receiver 36 and an appropriate converter without physical interconnection. Other functions of the transceivers 35, 36 may be apparent from the description hereinafter.
Referring now to
Power to the accelerometers 31 is by way of a transistor TR2 so that if the microcontroller 30 determines that no movement of the computer is occurring or that the present program does not require use of the accelerometers 31 and 32, output RB1 may be set to stop current being drawn to minimise battery usage. The microcontroller may allow periodic sampling during dormant periods so that if the computer is picked up the sensors may again be activated.
An EEPROM integrated circuit chip type X24F064 8 Kbyte from Xicor providing 8 Kbytes of memory is also provided accessible from the microcontroller 30 in known manner. Switches S1 to S8 (keys 33 in
Note that TR1 controls power input to the back lighting circuitry of the LCD display 5. Again, the microcontroller 30 will normally bias TR1 off when the computer is dormant and will maintain TR1 biased off unless back lighting is requested by operation of one of the keys of the keyboard 33.
For the avoidance of doubt it is here noted that the microcontroller 30 includes a program which uses position outputs from the accelerometers 31, 32 to determine from the orientation of the computer whether the hand-held computer is in the left hand or right hand of the user. It is here noted that accelerometer output may depend upon the tilt angle of the included accelerometers to the earth's gravitational field. The keys S1 to S8 are then swapped over in soft programming mode such that functionality is determined by the apparent top of the display 5 to the user in its current position. Similarly, determination of orientation of alphanumeric or other display information on the screen 5 will be determined from the orientation of the computer itself. Thus, data output to the screen from the controller 30 arranged to provide an appropriately oriented display.
The speech recorder 34 is implemented using Sequoia technology sound recording integrated circuit type ISD2560. The Sequoia technology chip is capable of recording 60 seconds of speech message in digital form and is connected so that the microphone 16 can be used to provide an input. The three switches SW1, SW2 and SW3 may correspond to the fingertip switches 18 to 20 of
In speech recording mode SW1 provides a start and pause control function for the user, SW2 is a stop or reset function while SW3 switches between the record and play modes.
Short messages are played back by way of the loud speaker 18. As currently implemented the microphone 16 is a Maplin type QY62S, the speaker is from Hosiden type HDR9941. “Speech notes” recorded by this method may be down loaded to a PC for sorting and categorising.
Turning briefly to
A Maxim integrated circuit 42, which may be type MAX232IC, converts RS232 level serial output and input required by current PCs to the voltage level required by the microcontroller 30 of
Having discussed the hardware of the portable computer of the invention we shall now consider various uses to which the writing stylus input, voice input and screen may be used. Exemplary flow charts for some aspects of the use of the portable computer are attached. While functions are individually discussed in respect of the flow charts of
Turning now to
The program allows for the screen 5 to be scrolled in accordance with the user's requirements. The mounting of these sensors, as shown in
Using software the microcontroller 30 may use the output from the accelerometers 31, 32 to determine a user's requirement for a different view to be displayed on the screen 5. Thus a virtual hinge is created such that if the user moves the stylus whilst it is in viewing position the screen information may be changed to respond to a natural reaction for looking up or down or to the left or right. Thus, as shown in
Similarly, if the stylus is turned towards the user information stored at UC will be displayed and tilting the stylus away results in the information DC being displayed. It will be appreciated that combining tilt angles may result in the display of information up and to the left (UL), up and to the right (UR), down and to the left (DL) and down and to the right (DR). This simplified description of a multiple line screen moving as if a jump is occurring should be considered as allowing single line scrolling in which CP defines the top line of the screen, DC the line below and further lines to the limit of screen viewability also being displayed with CP such that single line scroll movement or smooth scrolling appears to occur. Finer scrolling modes such as single pixel movements are also possible. The user may select the rate of response using keys 6 to 13 or fingertip switches 18 to 20. It should also be noted that the tilt sensor arrangement 31, 32 allows the microcontroller 30 to determine the most likely viewing angle and to adjust pixel mapping to the screen accordingly so that if a user holds the stylus in the left hand the display is inverted to that shown in
It is also possible, particularly if pictorial rather than alphanumeric display is required, for the screen to enter a “portrait” mode if the stylus is held vertically. In this case the orientation will be appropriate to the stylus being held with its tip above or below the waist of the stylus.
To prevent scrolling or orientation change the user may use a soft key 6 to 13 or fingertip switch 18 to 20 to lock and unlock display movement.
Further, while as described with reference to
In a still further development the pyroelectric detector (Murata type IRA- E700STO) 15 may be used to detect the presence of the user and the proximity of the user to the viewing screen 5. Using the Kopin ¼ VGA display it is possible to decrease the size of character displayed. Thus the microcontroller 30 uses the output of the pyroelectric detector 15 to determine how close to a user's eye the stylus is held and may adjust the size of print so that more characters are fitted on the screen 5. In this way large areas of text may be read by holding the screen close to the user's eye. A further use of the pyroelectric detector for power saving purposes it discussed hereinafter. As has been mentioned detection of the position of the screen with respect to the user's left or right side is possible.
Referring to
It is envisaged that input to the computer system either for use as a PDA or for word processing purposes, will be carried out either by hand writing recognition (HR) or by voice input using the microphone 16. Handwriting recognition does not require the user to write on a surface, although some users may find this a preferable method of operation, but requires the user merely to move the stylus (that is the whole computer) as if writing letters and numbers. Katakana or Cyrillic texts may also be entered as may symbols.
Thus using one of the two accelerometers 31, 32 and referring to
It will be noted from
Note that predefined user gestures such as drawing an “envelope” to request e-mail mode or a table for diary mode, for example, may be used. The instructions may be user selectable or teachable so that on initialisation the user draws and selects the mode. Subsequently drawing the same symbol will cause the microcontroller 30 to enter the appropriate selected mode.
Again sensing may be used to move around the displayed area (as discussed with reference to
Entry of information to the diary may also be by handwriting input. It is convenient here to consider the construction of the touch strip 14 which as shown in
It will be appreciated that incorporating a second strip at right angles to the strip 14 would allow full functionality of (eg) a computer mouse to be simulated.
Thus as shown in
It will be appreciated, however, that if the tilt detection mechanism hereinbefore described indicates that the device is in the left hand rather than the right hand the functionality of bridging and unbridging is reversed accordingly.
Entry of data files, for example the composition of letters or reports can be carried out using either the write sensing arrangement, hereinbefore described, to determine input alphanumeric which may be stored for subsequent transmission to a printer or for transfer as data files to a PC for example. Data entered and converted into appropriate stored information may be displayed on the display screen if required.
Cursor movement around the display screen to select a position to which information is to be placed may be by use of either the potentiometer arrangement described with reference to
In an alternative method of operation and referring to
A corresponding program in the PC itself will read from radio receiver 36 and the receive port the data defining the voltage from one or both the accelerometers. Autocorrelation will be carried out on the reading to generate appropriate characters at step 725, the characters being displayed on the PC screen at step 730 and possibly being transmitted back to the hand-held PC.
In an alternative implementation autocorrelation may be carried out within the microcontroller 30 and data defining input characters themselves be transmitted to the PC.
Note that the transmission of comma separated variables (CSV) format ASCII is transmitted at 418 MHz using an amplitude modulated radio transmitter from RF Solutions of Lewes East Sussex UK. In the PC CMOS voltage levels converted by the RS232 conversion unit can be used to provide raw data to the PC. Windows 3.1 terminal software is capable of reading CSV data and spreadsheet can read and plot data graphically.
In a still further use of the accelerometer 31, 32 arrangement password protection of the hand-held computer may be provided. Thus, once trained to a user's signature, for example, a stored waveform corresponding to accelerometer voltage outputs read at 10 ms intervals can be used. Thus the user does not require to remember any special passwords and cracking of the signature code is extremely difficult since, for example forging a signature will result in a different acceleration pattern to that of the natural signature writer.
Thus it may be possible to use a hand-held computer of this nature to provide transmission of security information for, for example, electronic point of sale authorisations, access restriction and the like.
A still further use of the transmission and reception capability allows a local area paging system to be developed. Thus if several users work in reasonable proximity to each other it is possible to transmit a message directly from one hand-held computer to another such that, for example, telephone messages taken by one person in an office and files created may be transmitted using a digital serial identity to another specified hand-held computer unit.
Turning to
In an alternative method of working, the microcontroller causes storage of the speech input in the memory 38 without effecting conversion, the information being transmitted via the serial output port either in the docking station or by the radio link to a PC which may use voice recognition software to carry out the conversions. It may be preferable to use a PC to carry out the conversion rather than a microcontroller incorporated in the pen since significant processing power may be required. However, the inclusion of voice recognition software in the microcontroller 30 is possible.
It will also be realised that a data store may be used to store received speech signals. Thus several speech notes each time/date stamped may be held for subsequent use. If a suitable store is included then the speech storage chip, hereinbefore described, may be omitted from the stylus to allow additional memory chip space.
It will be noted that since the hand-held computer of the invention includes microphone, loudspeaker and function keys use of the device as a cellular telephone is also envisaged.
Where cellular phone functionality is included within the stylus or where the stylus is in contact with a PC for example by IRDA or radio transmission, the use of the microphone input for substantial dictation purposes is possible and also the use of substantially larger data files than could otherwise be stored locally.
Thus the input speech will be stored in a buffer by the microcontroller 30 and periodically, when the buffer contains a substantial amount of data, a network connection to either network data storage means or to a predetermined PC is effected. Stored buffered data is then transferred to the remote location. Since the network connection is not permanently required the cost of transferring the data by this means is less significant and periods of network signal weakness can be overcome.
Data buffered in this manner may be date and time stamped or, if the stylus incorporates GPS (global positioning systems) may be location stamped also.
Data may similarly be recovered such that large text documents required by a user may have portions stored in the buffer for display and sequential recovery of other parts of the document from the remote location using telephony as required. Photographic data, for example from a digital camera, may similarly be saved to the network by way of the buffered store.
The various functions above described enable the provision of a full PDA function including diary alarm and scheduling functions as well as data input, file creation and storage. The user may select the mode of operation using either soft buttons or movement input and the use of the accelerometers 31, 32 is determined from the mode selected by the user. Electronic mail and fax facilities may be incorporated in the PDA functions allowing reception or transmission of data via the unit. The transmission capability of the unit may be associated with a receiver in a printer for example or a printer incorporating a docking station may be used to allow the printing of data from the PDA. Note that infrared transmission may be used.
As will be appreciated one of the major problems with any hand-held portable device is the use of rechargeable batteries which have a limited power life between charges. The hand-held computer of the present invention therefore incorporates a number of power saving facilities arranged particularly to close down back lighting of the small LCD screen 5 if it is not appropriate. Thus if the accelerometers indicate that there is no current usage of the system then powering down of the detection circuitry and back lighting of the screen may occur. However, in a further use of the proximity detector 15, it is possible to turn back lighting on and off in dependence upon whether the user is looking at information on the screen or not. Thus, referring to
Thus the pyroelectric system can be used to detect the presence of a user and in the absence of use power down of the back lighting at least may occur. Infrared sensors may similarly be used to detect the presence or absence of body heat. Note the pyroelectric detector, as previously described, can be used to control the character zoom feature hereinbefore described. A suitable detector is a Murata type IRAE700STO.
In a further implementation of back lighting power down which is responsive to the viewer's vision in addition to the viewer's presence. It is known that when a subject looks directly at a lens and a flash occurs blood vessels at the rear of the eyes reflect back to the camera. It is thus possible to periodically flash a low level light and to sense red reflection using a photodiode sensor. Thus as shown at
If a user is not looking directly at the screen at the time the LED 60 is flashed there will be no reflection and the photodiode 61 will not activate. The microcontroller may therefore power down the back light 58 thus reducing the drain on the rechargeable battery 2.
Although the present invention has been described with reference to a particular implementation using accelerometers other position detection and location means may be used to implement movement detection arrangements. While herein references made to alphanumeric data it will be appreciated that katakana character and Cyrillic script inputs may also be detected using the acceleration method hereinbefore described.
Note when the hand-held computer is docked with a PC or is receiving data by way of cellular or radio transmission it is possible to display received information on the screen 5. Thus as indicated at
Further possible uses of the portable computer of the invention include storing large numbers of speech modes which when down loaded to a PC with the pen either in a docking station or by IRDA or radio transmission are sorted. In this process the PC converts the each of the speech notes to text and scans the text for frequently occurring words, for example “meeting” and then sorts the stored notes into sub-directories. Alternatively, notes may be sorted by date, subject matter or size as will occur with a normal windows file. Key control words such as “alarm” may result in the speech note being converted into a timed alarm which may then be written back to the portable computer so that at the appropriate time the portable computer either announces the alarm or a vibrate to alert the user, the alarm being displayed as a text message. It will be appreciated that if a sufficiently powerful microcontroller is used in the pen then the speech to text conversion may take place in the portable computer unit. A suitable vibrating motor for use as a silent alarm can be obtained from Murata of Japan. Situating the annunciator towards the barrel of the pen near the tip improves transmission.
The microcontroller may cause audio feedback of the current position of the stylus, for example by causing sounds of flicking pages when the pen is tilted forward or back.
While most emphasis herein has been on the display of alphanumeric, Katakana or Cyrillic characters, graphic information may also be viewed. For example, a file holding pictures related to a person may include three dimensional picture of that person's face. By revolving or tilting the computer the view may switch from a front view to a profile aspect. It will also be appreciated that an atlas may be stored in the data store and maps may be rotated to align with the direction of travel for example.
Additional functionality may be introduced to the handheld computer by including a touch screen in front of the display screen such that a stylus can be used to select text or to cause localised movement of a cursor.
An autolocate function may be built into the microcontroller such that if no movement, ie no change in tilt of either the enclosed accelerometers occurs for a selectable period, probably 24 hours, the unit will sound an alarm at periodic intervals so that the user can locate it.
Note that the tilt sensors included herein measure tilt with respect to earth's gravity by use of a small beam arrangement. Other position sensors may be included. Global positioning by satellite is also a possible method of detecting a change in the position of the portable computer.
In a symbol counted mode it is possible for a user to flick the pen either as a tick or a cross, for example, in relation to a submitted document. The number of ticks or crosses may be counted and the result accumulated and transferred to data store or accumulated in a spreadsheet to which the user may input names, titles and the like. The use of other symbols in anticipated.
While as hereinbefore described the security signature is by use of acceleration, a pressure detector may be incorporated into the end of the device to further increase security by measurement of the profile as well as the two dimensional or three dimensional spatial sensor.
As has been mentioned hereinbefore, a number of keys, switches and buttons are provided on the casing of the portable computer. In a further implementation an on/off switch may be provided operated by pressure on the “nib-end”. Whilst such switch pressure is not used for detecting input text per se, it may be used to turn functions on and off. This may be used in a normal writing mode, for example, touching the pen tip against a writing surface to turn on the accelerometer detection functions. Releasing pressure on the tip then stops the accelerometer signals being considered as potential input to be decoded.
Any of the other switches may be used in certain modes to turn on or off text detection, for example, or to stop screen scrolling for example.
Calculator functions in the portable computer may be provided simply by writing the numerals and appropriate mathematical symbols in the normal manner. The tilt sensor software will determine the numerals and characters entered and perform an appropriate calculation for display on the display screen.
A further function, for example for clock setting causes display of an analogue clock face on the display means 5. Time changes may be entered by selecting an appropriate mode and moving the user's wrist. Tilt sensing is used to determine forward or backward adjustment of the time stored.
Patent | Priority | Assignee | Title |
10019153, | Jun 07 2013 | Wells Fargo Bank, National Association | Scrapbooking digital content in computing devices using a swiping gesture |
10089054, | Sep 27 2011 | Z124 | Multiscreen phone emulation |
10149092, | Apr 04 2005 | X One, Inc. | Location sharing service between GPS-enabled wireless devices, with shared target location exchange |
10152175, | Jan 24 2013 | Wells Fargo Bank, National Association | Selective touch scan area and reporting techniques |
10165059, | Apr 04 2005 | X One, Inc. | Methods, systems and apparatuses for the formation and tracking of location sharing groups |
10200811, | Apr 04 2005 | X One, Inc. | Map presentation on cellular device showing positions of multiple other wireless device users |
10209940, | Sep 27 2011 | Z124 | Smartpad window management |
10248282, | Oct 01 2010 | Z124 | Smartpad split screen desktop |
10299071, | Apr 04 2005 | X One, Inc. | Server-implemented methods and systems for sharing location amongst web-enabled cell phones |
10313826, | Apr 04 2005 | X One, Inc. | Location sharing and map support in connection with services request |
10331777, | Dec 31 2013 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | Merging annotations of paginated digital content |
10341808, | Apr 04 2005 | X One, Inc. | Location sharing for commercial and proprietary content applications |
10341809, | Apr 04 2005 | X One, Inc. | Location sharing with facilitated meeting point definition |
10409372, | Jun 07 2012 | Nook Digital, LLC | Accessibility aids for users of electronic devices |
10444836, | Jun 07 2012 | Nook Digital, LLC | Accessibility aids for users of electronic devices |
10503346, | May 06 2013 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | Swipe-based confirmation for touch sensitive devices |
10534528, | Dec 31 2013 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | Digital flash card techniques |
10585563, | Jul 20 2012 | Nook Digital, LLC | Accessible reading mode techniques for electronic devices |
10620796, | Dec 19 2013 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | Visual thumbnail scrubber for digital content |
10740058, | Sep 27 2011 | Z124 | Smartpad window management |
10750309, | Apr 04 2005 | X One, Inc. | Ad hoc location sharing group establishment for wireless devices with designated meeting point |
10750310, | Apr 04 2005 | X One, Inc. | Temporary location sharing group with event based termination |
10750311, | Apr 04 2005 | X One, Inc. | Application-based tracking and mapping function in connection with vehicle-based services provision |
10791414, | Apr 04 2005 | X One, Inc. | Location sharing for commercial and proprietary content applications |
10856099, | Apr 04 2005 | X One, Inc. | Application-based two-way tracking and mapping function with selected individuals |
10915698, | Dec 31 2013 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | Multi-purpose tool for interacting with paginated digital content |
10976856, | May 06 2013 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | Swipe-based confirmation for touch sensitive devices |
11120203, | Dec 31 2013 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | Editing annotations of paginated digital content |
11126346, | Dec 31 2013 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | Digital flash card techniques |
11137796, | Sep 27 2011 | Z124 | Smartpad window management |
11204687, | Dec 19 2013 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | Visual thumbnail, scrubber for digital content |
11320931, | May 06 2013 | BARNES & NOBLE COLLEGE BOOKSELLERS, LLC | Swipe-based confirmation for touch sensitive devices |
11356799, | Apr 04 2005 | X One, Inc. | Fleet location sharing application in association with services provision |
11778415, | Apr 04 2005 | Xone, Inc. | Location sharing application in association with services provision |
8686976, | Apr 09 2001 | I C + TECHNOLOGIES LTD | Apparatus and method for hand motion detection and hand motion tracking generally |
8712441, | Apr 04 2005 | Xone, Inc.; X ONE, INC | Methods and systems for temporarily sharing position data between mobile-device users |
8773378, | Oct 01 2010 | Z124 | Smartpad split screen |
8781840, | Sep 12 2005 | Microsoft Technology Licensing, LLC | Retrieval and presentation of network service results for mobile device using a multimodal browser |
8798593, | Apr 04 2005 | X ONE, INC | Location sharing and tracking using mobile phones or other wireless devices |
8798647, | Apr 04 2005 | X One, Inc. | Tracking proximity of services provider to services consumer |
8831635, | Apr 04 2005 | X ONE, INC | Methods and apparatuses for transmission of an alert to multiple devices |
8843376, | Mar 13 2007 | Microsoft Technology Licensing, LLC | Speech-enabled web content searching using a multimodal browser |
8856679, | Sep 27 2011 | Z124 | Smartpad-stacking |
8866748, | Oct 01 2010 | Z124 | Desktop reveal |
8884841, | Sep 27 2011 | Z124 | Smartpad screen management |
8890768, | Sep 27 2011 | Z124 | Smartpad screen modes |
8907904, | Oct 01 2010 | Z124 | Smartpad split screen desktop |
8943434, | Oct 01 2010 | Z124 | Method and apparatus for showing stored window display |
8963840, | Oct 01 2010 | Z124 | Smartpad split screen desktop |
8963853, | Oct 01 2010 | Z124 | Smartpad split screen desktop |
8963865, | Dec 14 2012 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | Touch sensitive device with concentration mode |
8963869, | Apr 23 2013 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | Color pattern unlocking techniques for touch sensitive devices |
8966617, | Apr 23 2013 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | Image pattern unlocking techniques for touch sensitive devices |
9001064, | Dec 14 2012 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | Touch sensitive device with pinch-based archive and restore functionality |
9030430, | Dec 14 2012 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | Multi-touch navigation mode |
9031581, | Apr 04 2005 | X One, Inc. | Apparatus and method for obtaining content on a cellular wireless device based on proximity to other wireless devices |
9047038, | Sep 27 2011 | Z124 | Smartpad smartdock—docking rules |
9092190, | Oct 01 2010 | Z124 | Smartpad split screen |
9104365, | Sep 27 2011 | Z124 | Smartpad—multiapp |
9128582, | Oct 01 2010 | Z124 | Visible card stack |
9134892, | Dec 14 2012 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | Drag-based content selection technique for touch screen UI |
9134893, | Dec 14 2012 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | Block-based content selecting technique for touch screen UI |
9134903, | Dec 14 2012 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | Content selecting technique for touch screen UI |
9146672, | Apr 10 2013 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | Multidirectional swipe key for virtual keyboard |
9152321, | May 03 2013 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | Touch sensitive UI technique for duplicating content |
9167558, | Apr 04 2005 | X One, Inc.; X ONE, INC | Methods and systems for sharing position data between subscribers involving multiple wireless providers |
9185522, | Apr 04 2005 | X One, Inc. | Apparatus and method to transmit content to a cellular wireless device based on proximity to other wireless devices |
9188965, | Mar 06 2013 | ARRIS ENTERPRISES LLC | Control device including a protocol translator |
9189084, | Mar 11 2013 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | Stylus-based user data storage and access |
9195330, | Oct 01 2010 | Z124 | Smartpad split screen |
9213517, | Sep 27 2011 | Z124 | Smartpad dual screen keyboard |
9218021, | Oct 01 2010 | Z124 | Smartpad split screen with keyboard |
9235374, | Sep 27 2011 | Z124 | Smartpad dual screen keyboard with contextual layout |
9244603, | Jun 21 2013 | Wells Fargo Bank, National Association | Drag and drop techniques for discovering related content |
9253616, | Apr 04 2005 | X One, Inc. | Apparatus and method for obtaining content on a cellular wireless device based on proximity |
9261985, | Mar 11 2013 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | Stylus-based touch-sensitive area for UI control of computing device |
9280312, | Sep 27 2011 | Z124 | Smartpad—power management |
9367161, | Mar 11 2013 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | Touch sensitive device with stylus-based grab and paste functionality |
9367208, | Dec 31 2013 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | Move icon to reveal textual information |
9367212, | Dec 31 2013 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | User interface for navigating paginated digital content |
9395945, | Sep 27 2011 | Z124 | Smartpad—suspended app management |
9400601, | Jun 21 2013 | Wells Fargo Bank, National Association | Techniques for paging through digital content on touch screen devices |
9423932, | Jun 21 2013 | Wells Fargo Bank, National Association | Zoom view mode for digital content including multiple regions of interest |
9424241, | Dec 31 2013 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | Annotation mode including multiple note types for paginated digital content |
9448643, | Mar 11 2013 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | Stylus sensitive device with stylus angle detection functionality |
9448719, | Dec 14 2012 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | Touch sensitive device with pinch-based expand/collapse function |
9467832, | Apr 04 2005 | X One, Inc. | Methods and systems for temporarily sharing position data between mobile-device users |
9477382, | Dec 14 2012 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | Multi-page content selection technique |
9477394, | Oct 01 2010 | Z124 | Desktop reveal |
9575948, | Oct 04 2013 | Wells Fargo Bank, National Association | Annotation of digital content via selective fixed formatting |
9584960, | Apr 04 2005 | X One, Inc. | Rendez vous management using mobile phones or other mobile devices |
9588979, | Dec 31 2013 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | UI techniques for navigating a file manager of an electronic computing device |
9600053, | Mar 11 2013 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | Stylus control feature for locking/unlocking touch sensitive devices |
9612740, | May 06 2013 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | Swipe-based delete confirmation for touch sensitive devices |
9615204, | Apr 04 2005 | X One, Inc. | Techniques for communication within closed groups of mobile devices |
9626008, | Mar 11 2013 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | Stylus-based remote wipe of lost device |
9632594, | Mar 11 2013 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | Stylus sensitive device with stylus idle functionality |
9654921, | Apr 04 2005 | X One, Inc. | Techniques for sharing position data between first and second devices |
9658746, | Jul 20 2012 | Wells Fargo Bank, National Association | Accessible reading mode techniques for electronic devices |
9736618, | Apr 04 2005 | X One, Inc. | Techniques for sharing relative position between mobile devices |
9749790, | Apr 04 2005 | X One, Inc. | Rendez vous management using mobile phones or other mobile devices |
9760187, | Mar 11 2013 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | Stylus with active color display/select for touch sensitive devices |
9766723, | Mar 11 2013 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | Stylus sensitive device with hover over stylus control functionality |
9785259, | Mar 11 2013 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | Stylus-based slider functionality for UI control of computing device |
9792272, | Dec 31 2013 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | Deleting annotations of paginated digital content |
9811302, | Sep 27 2011 | Z124 | Multiscreen phone emulation |
9836154, | Jan 24 2013 | Wells Fargo Bank, National Association | Selective touch scan area and reporting techniques |
9843863, | Mar 20 2015 | Samsung Electronics Co., Ltd. | Electronic device and method of controlling the same |
9854394, | Apr 04 2005 | X One, Inc. | Ad hoc location sharing group between first and second cellular wireless devices |
9854402, | Apr 04 2005 | X One, Inc. | Formation of wireless device location sharing group |
9883360, | Apr 04 2005 | X One, Inc. | Rendez vous management using mobile phones or other mobile devices |
9891722, | Mar 11 2013 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | Stylus-based notification system |
9942705, | Apr 04 2005 | X One, Inc. | Location sharing group for services provision |
9946365, | Mar 11 2013 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | Stylus-based pressure-sensitive area for UI control of computing device |
9955298, | Apr 04 2005 | X One, Inc. | Methods, systems and apparatuses for the formation and tracking of location sharing groups |
9967704, | Apr 04 2005 | X One, Inc. | Location sharing group map management |
9971495, | Jan 28 2013 | Wells Fargo Bank, National Association | Context based gesture delineation for user interaction in eyes-free mode |
RE44103, | Oct 28 1997 | Apple Inc. | Portable computers |
RE44855, | Oct 08 1998 | Apple Inc. | Multi-functional cellular telephone |
RE45559, | Oct 28 1997 | Apple Inc. | Portable computers |
RE46548, | Oct 28 1997 | Apple Inc. | Portable computers |
Patent | Priority | Assignee | Title |
1061578, | |||
2798907, | |||
2945111, | |||
3005055, | |||
3509298, | |||
3662105, | |||
3706867, | |||
3721956, | |||
3790727, | |||
3798370, | |||
3965399, | Mar 22 1974 | Pushbutton capacitive transducer | |
4103252, | Nov 26 1976 | Xerox Corporation | Capacitive touch-activated transducer system including a plurality of oscillators |
4110749, | May 06 1977 | Tektronix, Inc. | Touch display to digital encoding system |
4115670, | Jan 19 1973 | Geno Corporation | Electrical switch assembly |
4121204, | Dec 14 1976 | General Electric Company | Bar graph type touch switch and display device |
4129747, | Aug 24 1976 | Peptek, Inc. | Human-machine interface apparatus |
4158216, | Feb 21 1978 | General Electric Company | Capacitive touch control |
4242676, | Dec 29 1977 | Centre Electronique Horloger SA | Interactive device for data input into an instrument of small dimensions |
4246452, | Jan 05 1979 | Mattel, Inc. | Switch apparatus |
4264903, | Feb 21 1978 | LXD, INC | Capacitive touch control and display |
4293734, | Feb 23 1979 | Peptek, Incorporated | Touch panel system and method |
4311891, | Apr 17 1980 | ABC Auto Alarms, Inc. | Vehicle alarm shaker device with spring damper |
4380007, | May 27 1980 | Playmont AG | Proximity switch |
4380040, | Sep 28 1979 | BFG Glassgroup | Capacitive systems for touch control switching |
4449193, | Apr 25 1980 | Thomson-CSF | Bidimensional correlation device |
4475008, | Aug 28 1981 | Tokyo Shibaura Denki Kabushiki Kaisha | Coordinate input device with pressure-sensitive rubber sheet |
4484346, | Aug 15 1980 | ERIM INTERNATIONAL, INC | Neighborhood transformation logic circuitry for an image analyzer system |
4513183, | May 04 1983 | U.S. Plastics Corporation | Gravity switch |
4564952, | Dec 08 1983 | AT&T Bell Laboratories | Compensation of filter symbol interference by adaptive estimation of received symbol sequences |
4570149, | Mar 15 1983 | MICROTOUCH SYSTEMS, INC | Simplified touch tablet data device |
4587378, | Jul 30 1984 | TELOGY NETWORKS, INC | Two-layer touch tablet |
4628160, | Oct 28 1985 | L-3 Communications Corporation | Electrical tilt switch |
4644100, | Mar 22 1985 | Zenith Electronics Corporation | Surface acoustic wave touch panel system |
4669054, | May 03 1985 | Raytheon Company | Device and method for optically correlating a pair of images |
4719524, | Oct 08 1984 | Sony Corporation | Signal reproduction apparatus including touched state pattern recognition speed control |
4734034, | Mar 29 1985 | TEKSCAN, INC , 582 E STREET, BOSTON, MA 02210, A DE CORP | Contact sensor for measuring dental occlusion |
4736191, | Aug 02 1985 | Karl E., Matzke | Touch activated control method and apparatus |
4739299, | Jan 17 1986 | INTERLINK ELECTRONICS, INC , 535 E MONTECITO STREET, SANTA BARBARA, CA 91303 A CA CORP | Digitizer pad |
4752655, | Nov 16 1984 | Nippon Telegraph & Telephone Corporation | Coordinate input device |
4764717, | Oct 27 1986 | COLORGRAPHICS SYSTEMS, INC , A CORP OF WI | Touch-sensitive potentiometer for operator control panel |
4783829, | Feb 23 1983 | Hitachi, Ltd. | Pattern recognition apparatus |
4798919, | Apr 28 1987 | International Business Machines Corporation | Graphics input tablet with three-dimensional data |
4810992, | Jan 17 1986 | INTERLINK ELECTRONICS, INC , 535 EAST MONTECITO STREET, SANTA BARBARA, CALIFORNIA 91303, A CA CORP | Digitizer pad |
4831359, | Jan 13 1988 | Micro Research, Inc. | Four quadrant touch pad |
4833281, | May 27 1988 | LECTRON PRODUCTS, INC , A MI CORP | Motion detector |
4847789, | Jul 08 1985 | International Business Machines Corporation | Method for hidden line removal |
4849852, | Sep 30 1988 | ALPS ELECTRIC, INC , A NY CORP | Variable capacitance push-button switch |
4856993, | Mar 29 1985 | Tekscan, Inc | Pressure and contact sensor system for measuring dental occlusion |
4866602, | Nov 02 1983 | Microsoft Technology Licensing, LLC | Power supply for a computer peripheral device which positions a cursor on a computer display |
4876524, | Jul 19 1985 | Six-axis joystick control | |
4897511, | Jun 17 1987 | Gunze Limited | Method of detection of the contacting position in touch panel sensor |
4914624, | May 06 1988 | Tyco Electronics Corporation | Virtual button for touch screen |
4917516, | Feb 18 1987 | Combination computer keyboard and mouse data entry system | |
4951036, | Aug 04 1988 | Tektronix, Inc | Touchpad jogger |
4976435, | Oct 17 1988 | SHATFORD, WILL & WALTER T SHATFORD, III | Video game control adapter |
4990900, | Oct 01 1987 | ALPS Electric Co., Ltd. | Touch panel |
5008497, | Mar 22 1990 | STRATOS PRODUCT DEVELOPMENT GROUP, INC | Touch controller |
5023438, | Nov 26 1988 | Nitto Kohki Co., Ltd. | Portable data input apparatus with different display modes |
5036321, | Aug 31 1989 | Otis Elevator Company | Capacitive sensing, solid state touch button system |
5043736, | Jul 27 1990 | INTRINSYC SOFTWARE INTERNATIONAL, INC | Cellular position locating system |
5053757, | Jun 04 1987 | Tektronix, Inc. | Touch panel with adaptive noise reduction |
5159159, | Dec 07 1990 | STRATOS PRODUCT DEVELOPMENT GROUP, INC | Touch sensor and controller |
5179648, | Mar 24 1986 | Computer auxiliary viewing system | |
5215397, | Apr 01 1991 | Yashima Electric Co., Ltd. | Writing device for storing handwriting |
5227929, | Nov 26 1990 | MARIANA HDD B V ; HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B V | Portable computer hard disk protective reflex system |
5231326, | Jan 30 1992 | Essex Electronics, Inc. | Piezoelectric electronic switch |
5237311, | Aug 01 1991 | Picker International, Inc. | Hingedly supported integrated trackball and selection device |
5252951, | Apr 28 1989 | INTERNATIONAL BUSINESS MACHINES CORPORATION A CORP OF NEW YORK | Graphical user interface with gesture recognition in a multiapplication environment |
5278362, | Dec 26 1991 | Nihon Kaiheiki Industrial Company, Ltd. | Push-button switch with display device |
5301222, | Jan 24 1990 | NEC Corporation | Portable radio telephone set for generating pattern signals representative of alphanumeric letters indicative of a telephone number |
5305017, | Sep 04 1991 | Cirque Corporation | Methods and apparatus for data input |
5313027, | Mar 16 1992 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | Push button switch assembly including single or plural sequentially closed switches |
5319386, | Aug 04 1992 | Ideographic character selection method and apparatus | |
5339213, | Nov 16 1992 | Cirque Corporation | Portable computer touch pad attachment |
5345543, | Nov 16 1992 | Apple Inc | Method for manipulating objects on a computer display |
5367199, | May 01 1992 | Triax Technologies | Sliding contact control switch pad |
5374787, | Jun 08 1992 | SYNAPTICS, INC ; Synaptics Incorporated | Object position detector |
5398310, | Apr 13 1992 | Apple Inc | Pointing gesture based computer note pad paging and scrolling interface |
5404152, | Feb 25 1992 | Renesas Electronics Corporation | Multi-dimension track-ring |
5408621, | Jun 10 1993 | Combinatorial data entry system having multi-position switches, each switch having tiltable control knob | |
5414445, | Oct 07 1992 | Microsoft Technology Licensing, LLC | Ergonomic pointing device |
5416498, | Oct 21 1986 | Microsoft Corporation | Prehensile positioning computer keyboard |
5422656, | Nov 01 1993 | MEDIATEK INC | Personal communicator having improved contrast control for a liquid crystal, touch sensitive display |
5424756, | May 14 1993 | Track pad cursor positioning device and method | |
5432531, | Dec 14 1990 | International Business Machines Corporation | Coordinate processor for a computer system having a pointing device |
5438331, | Aug 21 1992 | F&G RESEARCH, INC | Computer keyboard with dial for entering repetitive data and commands |
5442742, | Dec 21 1990 | Apple Inc | Method and apparatus for the manipulation of text on a computer display screen |
5450075, | Nov 11 1987 | AMS Industries PLC | Rotary control |
5453761, | Jun 18 1990 | Sony Corporation | Information processing apparatus |
5463696, | May 27 1992 | Apple Inc | Recognition system and method for user inputs to a computer system |
5473343, | Jun 23 1994 | Microsoft Technology Licensing, LLC | Method and apparatus for locating a cursor on a computer screen |
5473344, | Jan 06 1994 | Microsoft Technology Licensing, LLC | 3-D cursor positioning device |
5479192, | Feb 15 1991 | Multifunction space bar for video screen graphics cursor control | |
5488204, | Jun 08 1992 | Synaptics Incorporated; Synaptics, Incorporated | Paintbrush stylus for capacitive touch sensor pad |
5488558, | Oct 20 1993 | OPENSET TECHNOLOGIES, LTD | Handy computer with built-in digital camera and spot state recording method using the same |
5495566, | Nov 22 1994 | Microsoft Technology Licensing, LLC | Scrolling contents of a window |
5508703, | Sep 14 1992 | SMK Corporation | Membrane switch having a rotary motion detection function |
5513309, | Jan 05 1993 | Apple Computer, Inc. | Graphic editor user interface for a pointer-based computer system |
5523775, | May 26 1992 | Apple Inc | Method for selecting objects on a computer display |
5543588, | Jun 08 1992 | SYNAPTIICS, INCORPORATED; Synaptics, Incorporated | Touch pad driven handheld computing device |
5543591, | Jun 08 1992 | SYNAPTICS, INC | Object position detector with edge motion feature and gesture recognition |
5559301, | Sep 15 1994 | Korg, Inc. | Touchscreen interface having pop-up variable adjustment displays for controllers and audio processing systems |
5559943, | Jun 27 1994 | Microsoft Technology Licensing, LLC | Method and apparatus customizing a dual actuation setting of a computer input device switch |
5561445, | Nov 09 1992 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | Three-dimensional movement specifying apparatus and method and observational position and orientation changing apparatus |
5563996, | Apr 13 1992 | Apple Inc | Computer note pad including gesture based note division tools and method |
5565887, | Jun 29 1994 | Microsoft Technology Licensing, LLC | Method and apparatus for moving a cursor on a computer screen |
5578817, | Oct 05 1992 | LOGITECH EUROPE S A | Pointing device utilizing a photodetector array and controlled by a human finger contacting a prism |
5581670, | Jul 21 1993 | JB PARTNERS, LLC | User interface having movable sheet with click-through tools |
5581681, | Dec 14 1994 | Apple Inc | Pointing gesture based computer note pad paging and scrolling interface |
5583946, | Sep 30 1993 | Apple Inc | Method and apparatus for recognizing gestures on a computer system |
5585823, | Dec 30 1994 | Apple Inc | Multi-state one-button computer pointing device |
5589856, | Apr 29 1993 | AU Optronics Corporation | System & method for dynamically labeled touch sensitive buttons in a digitizing display |
5589893, | Dec 01 1994 | Zenith Electronics Corporation | On-screen remote control of a television receiver |
5590219, | Sep 30 1993 | Apple Inc | Method and apparatus for recognizing gestures on a computer system |
5592566, | Jan 05 1993 | Apple Inc | Method and apparatus for computerized recognition |
5594776, | Sep 14 1994 | Unwired Planet, LLC | Efficient paging system |
5594810, | Sep 19 1993 | Apple Inc | Method and apparatus for recognizing gestures on a computer system |
5598183, | Jan 27 1994 | Microsoft Technology Licensing, LLC | System and method for computer cursor control |
5602566, | Aug 24 1993 | Hitachi Maxell, Ltd | Small-sized information processor capable of scrolling screen in accordance with tilt, and scrolling method therefor |
5611060, | Feb 22 1995 | Microsoft Technology Licensing, LLC | Auto-scrolling during a drag and drop operation |
5612719, | Dec 03 1992 | Apple Inc | Gesture sensitive buttons for graphical user interfaces |
5613137, | Mar 18 1994 | International Business Machines Corporation | Computer system with touchpad support in operating system |
5616384, | Mar 05 1990 | Polyweave International, LLC | Recyclable polymeric label paper |
5617114, | Jul 21 1993 | Xerox Corporation | User interface having click-through tools that can be composed with other tools |
5627531, | Sep 30 1994 | Apple Inc | Multi-function menu selection device |
5632679, | Oct 26 1992 | Touch sensitive computer interface controller | |
5640258, | Jan 27 1995 | Fujitsu Component Limited | Touch panel having 15 to 30 degree angle between direction of display unit elements and direction of input unit elements |
5657012, | Jun 21 1989 | Finger operable control device | |
5661632, | Jan 04 1994 | Dell USA, L.P. | Hand held computer with dual display screen orientation capability controlled by toggle switches having first and second non-momentary positions |
5670985, | May 09 1994 | Apple Inc | System and method for adjusting the output of an output device to compensate for ambient illumination |
5677710, | May 10 1993 | Apple Inc | Recognition keypad |
5686940, | Dec 24 1993 | Rohm Co., Ltd. | Display apparatus |
5689285, | Sep 13 1993 | Joystick with membrane sensor | |
5708804, | Jul 25 1994 | International Business Machines Corp. | Apparatus and method therefor of intelligently searching for information in a personal communications device |
5715524, | Feb 06 1995 | Google Technology Holdings LLC | Radio communication device with movable housing element control |
5726672, | Sep 20 1994 | Apple Computer, Inc. | System to determine the color of ambient light for adjusting the illumination characteristics of a display |
5726687, | Feb 22 1995 | Microsoft Technology Licensing, LLC | Auto-scrolling with mouse speed computation during dragging |
5729219, | Aug 02 1996 | Google Technology Holdings LLC | Selective call radio with contraposed touchpad |
5729604, | Mar 14 1996 | Apple | Safety switch for communication device |
5739451, | Dec 27 1996 | Franklin Electronic Publishers, Incorporated | Hand held electronic music encyclopedia with text and note structure search |
5745116, | Sep 09 1996 | Google Technology Holdings LLC | Intuitive gesture-based graphical user interface |
5748185, | Jul 03 1996 | Stratos Product Development Group | Touchpad with scroll and pan regions |
5751274, | Sep 14 1995 | Foot-operable cursor control device | |
5753983, | Jun 16 1992 | 1012384 ONTARIO, INC | Multi-function control switch for electrically operating devices |
5754645, | Jan 21 1992 | Google Technology Holdings LLC | Electronic apparatus having keyless control |
5754890, | Feb 01 1996 | Microsoft Technology Licensing, LLC | System for automatic identification of a computer data entry device interface type using a transistor to sense the voltage generated by the interface and output a matching voltage level |
5777605, | May 12 1995 | Sony Corporation | Coordinate inputting method and apparatus, and information processing apparatus |
5781630, | Mar 16 1996 | Deutsche Telekom AG | Method and device for accurately dating an electronic document |
5786789, | Nov 14 1994 | Trimble Navigation Limited | GPS and cellphone unit having add-on modules |
5789716, | Nov 12 1996 | One-way shaking switch | |
5790769, | Aug 04 1995 | AUTODESK CANADA CO | System for editing time-based temporal digital media including a pointing device toggling between temporal and translation-rotation modes |
5794164, | Nov 29 1995 | Microsoft Technology Licensing, LLC | Vehicle computer system |
5808602, | Mar 15 1996 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Rotary cursor positioning apparatus |
5809267, | Dec 30 1993 | Xerox Corporation | Apparatus and method for executing multiple-concatenated command gestures in a gesture based input system |
5824904, | Mar 15 1994 | Toshiba Storage Device Corporation | Acceleration sensor using a piezoelectric element |
5825351, | May 12 1994 | Apple Computer, Inc. | Method and apparatus for noise filtering for an input device |
5825353, | Apr 18 1995 | LG ELECTRONICS, INC | Control of miniature personal digital assistant using menu and thumbwheel |
5828364, | Jan 03 1995 | Microsoft Technology Licensing, LLC | One-piece case top and integrated switch for a computer pointing device |
5835061, | Jun 06 1995 | WAYPORT, INC | Method and apparatus for geographic-based communications service |
5835732, | Oct 28 1993 | INPRO II LICENSING SARL | Miniature digital assistant having enhanced host communication |
5841423, | Feb 15 1991 | Multifunction space bar for video screen graphics cursor control | |
5850213, | Apr 15 1993 | Sony Corporation | Three-dimensional image special effect apparatus |
5856822, | Oct 27 1995 | MAISHI ELECTRONIC SHANGHAI LTD | Touch-pad digital computer pointing-device |
5859629, | Jul 01 1996 | Sun Microsystems, Inc. | Linear touch input device |
5875311, | Mar 18 1994 | International Business Machines Corporation | Computer system with touchpad support in operating system |
5880411, | Jun 08 1992 | Synaptics Incorporated | Object position detector with edge motion feature and gesture recognition |
5883619, | Nov 12 1996 | Primax Electronics Ltd. | Computer mouse for scrolling a view of an image |
5884156, | Feb 20 1996 | Geotek Communications Inc.; GEOTEK COMMUNICATIONS, INC | Portable communication device |
5889236, | Jun 08 1992 | Synaptics, Incorporated | Pressure sensitive scrollbar feature |
5889511, | Jan 17 1997 | Cirrus Logic, INC | Method and system for noise reduction for digitizing devices |
5900863, | Mar 16 1995 | Kabushiki Kaisha Toshiba | Method and apparatus for controlling computer without touching input device |
5902968, | Feb 20 1996 | Ricoh Company, LTD | Pen-shaped handwriting input apparatus using accelerometers and gyroscopes and an associated operational device for determining pen movement |
5903229, | Feb 20 1996 | Sharp Kabushiki Kaisha | Jog dial emulation input device |
5907152, | Oct 05 1992 | LOGITECH EUROPE S A | Pointing device utilizing a photodetector array |
5907318, | Jan 17 1997 | Foot-controlled computer mouse | |
5909211, | Mar 25 1997 | LENOVO SINGAPORE PTE LTD | Touch pad overlay driven computer system |
5910800, | Jun 11 1997 | Microsoft Technology Licensing, LLC | Usage tips for on-screen touch-sensitive controls |
5910882, | Nov 14 1995 | Garmin Corporation | Portable electronic device for use in combination portable and fixed mount applications |
5914706, | Mar 22 1989 | Seiko Epson Corporation | Compact portable audio-display electronic apparatus with interactive inquirable and inquisitorial interfacing |
5923388, | Jan 27 1995 | Fujitsu Component Limited | Touch panel |
5923757, | Aug 25 1994 | International Business Machines Corporation | Docking method for establishing secure wireless connection between computer devices using a docket port |
5943044, | Aug 05 1996 | INTERLINK ELECTRONIC | Force sensing semiconductive touchpad |
5953001, | Dec 23 1997 | LENOVO SINGAPORE PTE LTD | Computer input stylus and texture control system |
5955712, | Nov 01 1996 | Inertial switch | |
5956019, | Sep 28 1993 | The Boeing Company | Touch-pad cursor control device |
5956626, | Jun 03 1996 | Google Technology Holdings LLC | Wireless communication device having an electromagnetic wave proximity sensor |
5959611, | Mar 06 1995 | Carnegie Mellon University | Portable computer system with ergonomic input device |
5973668, | Jul 21 1995 | OL SECURITY LIMITED LIABILITY COMPANY | Pointing device |
5973915, | Dec 13 1996 | TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD | Pivotable display for portable electronic device |
5982573, | Dec 15 1993 | Hewlett Packard Enterprise Development LP | Disk drive and method for minimizing shock-induced damage |
5996080, | Oct 04 1995 | NYTELL SOFTWARE LLC | Safe, virtual trigger for a portable data capture terminal |
6002389, | Apr 24 1996 | ELAN MICROELECTRONICS CORP | Touch and pressure sensing method and apparatus |
6002808, | Jul 26 1996 | Mitsubishi Electric Research Laboratories, Inc | Hand gesture control system |
6002963, | Feb 17 1995 | Pacesetter, Inc.; Pacesetter, Inc | Multi-axial accelerometer-based sensor for an implantable medical device and method of measuring motion measurements therefor |
6005299, | Sep 24 1996 | Mannesmann VDO AG | Electronic apparatus provided with a bidirectional rotary switch |
6011585, | Jan 19 1996 | Apple Computer, Inc. | Apparatus and method for rotating the display orientation of a captured image |
6016135, | Oct 09 1991 | Welch Allyn Data Collection, Inc | Bar code reading instrument and selectively orientable graphics display which facilitates the operation of the instrument |
6025832, | Sep 29 1995 | Kabushiki Kaisha Toshiba | Signal generating apparatus, signal inputting apparatus and force-electricity transducing apparatus |
6031518, | May 30 1997 | Microsoft Technology Licensing, LLC | Ergonomic input device |
6031600, | Apr 23 1996 | Robert Bosch GmbH | Method for determining the position of an object |
6034672, | Jan 17 1992 | Sextant Avionique | Device for multimode management of a cursor on the screen of a display device |
6041023, | Mar 29 1999 | Portable digital radio and compact disk player | |
6044299, | Sep 30 1996 | Pacesetter AB | Implantable medical device having an accelerometer |
6046877, | Feb 16 1995 | MOBILE STORAGE TECHNOLOGY INC | Protection apparatus and method for hard disk drive unit of a portable computer |
6057829, | Jan 11 1995 | AVID TECHNOLOGY, INC | Computer-mirrored panel input device |
6072494, | Oct 15 1997 | Microsoft Technology Licensing, LLC | Method and apparatus for real-time gesture recognition |
6073036, | Apr 28 1997 | Nokia Corporation | Mobile station with touch input having automatic symbol magnification function |
6075533, | Jul 19 1997 | HANGER SOLUTIONS, LLC | Method of utilizing a three-dimensional mouse in the windows operating systems |
6083353, | Sep 06 1996 | FLORIDA RESEARCH FOUNDATION, UNIVERSITY OF | Handheld portable digital geographic data manager |
6084574, | Oct 05 1992 | LOGITECH EUROPE S A | Compact cursor pointing device utilizing photodetector array |
6097372, | Jun 05 1997 | ALPS ELECTRIC CO , LTD | Data input device |
6108426, | Aug 26 1996 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Audio power management |
6115620, | May 20 1998 | Google Technology Holdings LLC | Mode-switchable portable communication device and method therefor |
6122526, | Apr 24 1997 | SCA VENTURES, LLC | Cellular telephone and electronic camera system with programmable transmission capability |
6124587, | Oct 05 1992 | LOGITECH EUROPE S A | Pointing device utilizing a photodetector array |
6128003, | Dec 20 1996 | Hitachi, Ltd. | Hand gesture recognition system and method |
6128006, | Mar 26 1998 | IMMERSION CORPORATION DELAWARE CORPORATION | Force feedback mouse wheel and other control wheels |
6130663, | Jul 31 1997 | Touchless input method and apparatus | |
6130666, | Oct 07 1996 | C TECHNOLOGIES AB A SWEDISH CORPORATION | Self-contained pen computer with built-in display |
6137468, | Oct 15 1996 | International Business Machines Corporation | Method and apparatus for altering a display in response to changes in attitude relative to a plane |
6141014, | Apr 20 1995 | CLARION CO , LTD | Bird's-eye view forming method, map display apparatus and navigation system |
6144380, | Nov 03 1993 | Apple Inc | Method of entering and using handwriting to identify locations within an electronic book |
6157935, | Dec 17 1996 | Qualcomm Incorporated | Remote data access and management system |
6163312, | Dec 22 1997 | Sony Corporation | Portable radio information terminal, screen scroll method, recording medium and microcomputer |
6166721, | Jul 25 1997 | Mitsumi Electric Co., Ltd. | Mouse as computer input device having additional mechanism for controlling additional function such as scrolling |
6181322, | Nov 07 1997 | Meta Platforms, Inc | Pointing device having selection buttons operable from movement of a palm portion of a person's hands |
6185485, | Dec 22 1998 | Ford Global Technologies, Inc | Relative vehicle platform having synchronized adaptive offset calibration for lateral accelerometer and steering angle sensor |
6188391, | Jul 09 1998 | Synaptics, Incorporated | Two-layer capacitive touchpad and method of making same |
6188392, | Jun 30 1997 | Intel Corporation | Electronic pen device |
6188393, | Oct 05 1998 | SYSGRATION LTD. | Scroll bar input device for mouse |
6191774, | Nov 26 1996 | IMMERSION CORPORATION A DELAWARE CORPORATION | Mouse interface for providing force feedback |
6198473, | Oct 06 1998 | ANASCAPE, LTD | Computer mouse with enhance control button (s) |
6199045, | Aug 15 1996 | SNAP TRACK, INC | Method and apparatus for providing position-related information to mobile recipients |
6199874, | May 26 1993 | GEFUS SBIC II, L P | Microelectromechanical accelerometer for automotive applications |
6202060, | Oct 29 1996 | Qualcomm Incorporated | Data management system |
6219038, | Aug 06 1997 | Samsung Electronics Co., Ltd. | Water resistant touch pad for an electronic apparatus |
6225976, | Oct 30 1998 | SMK-LINK ELECTRONICS CORPORATION | Remote computer input peripheral |
6225980, | Feb 06 1998 | Carnegie Mellon University | Multi-functional, rotary dial input device for portable computers |
6227966, | Feb 19 1997 | Kabushiki Kaisha Bandai; Kabushiki Kaisha Wiz | Simulation device for fostering a virtual creature |
6243080, | Jul 14 1998 | Unwired Planet, LLC | Touch-sensitive panel with selector |
6256011, | Dec 03 1997 | IMMERSION CORPORATION DELAWARE CORPORATION | Multi-function control device with force feedback |
6259405, | Jun 06 1995 | WAYPORT, INC | Geographic based communications service |
6262717, | Jul 02 1998 | Cirque Corporation | Kiosk touch pad |
6266050, | Aug 08 1997 | SAMSUNG ELECTRONICS CO , LTD | Portable computer having touch pad input control function |
6278884, | Mar 07 1997 | RPX Corporation | Portable information communication device |
6297795, | Feb 24 1997 | Lenovo PC International | Small information processing apparatus |
6308134, | Dec 27 1996 | Mitac International Corp | Vehicle navigation system and method using multiple axes accelerometer |
6323845, | Mar 06 1995 | NCR Voyix Corporation | Single finger controlled computer input apparatus and method |
6323846, | Jan 26 1998 | Apple Inc | Method and apparatus for integrating manual input |
6347290, | Jun 24 1998 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Apparatus and method for detecting and executing positional and gesture commands corresponding to movement of handheld computing device |
6373612, | Apr 30 1997 | QUANTAPOINT, INC | Method and apparatus for directing energy based range detection sensors |
6380931, | Jun 08 1992 | Synaptics Incorporated | Object position detector with edge motion feature and gesture recognition |
6407846, | Mar 16 2001 | ALL OPTICAL NETWORKS, INC | Photonic wavelength shifting method |
6414671, | Jun 08 1992 | Synaptics Incorporated | Object position detector with edge motion feature and gesture recognition |
6429852, | May 30 1997 | Microsoft Technology Licensing, LLC | Ergonomic input device |
6459424, | Aug 10 1999 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Touch-sensitive input screen having regional sensitivity and resolution properties |
6473069, | Nov 13 1995 | Cirque Corporation | Apparatus and method for tactile feedback from input device |
6496181, | Oct 03 1997 | SIEMENS INFORMATION AND COMMUNICATION PRODUCTS LLC, | Scroll select-activate button for wireless terminals |
6567068, | Aug 05 1996 | Sony Corporation | Information processing device and method |
6567102, | Jun 05 2001 | Compal Electronics Inc. | Touch screen using pressure to control the zoom ratio |
6610936, | Jun 08 1992 | Synaptics, Inc. | Object position detector with edge motion feature and gesture recognition |
6681120, | Apr 25 1997 | RPX Corporation | Mobile entertainment and communication device |
6747692, | Mar 28 1997 | Symbol Technologies, LLC | Portable multipurpose recording terminal and portable network server |
6888536, | Jan 26 1998 | Apple Inc | Method and apparatus for integrating manual input |
6920619, | Aug 28 1997 | Flatworld Interactives, LLC | User interface for removing an object from a display |
6931309, | May 06 2003 | Allstate Insurance Company | Motor vehicle operating data collection and analysis |
20020015024, | |||
20020152045, | |||
20030076343, | |||
CN1139235, | |||
CN1455615, | |||
D362431, | May 18 1994 | Microsoft Corporation | Computer input device |
DE10022537, | |||
DE19722636, | |||
DE3615742, | |||
DE4434773, | |||
DE4445023, | |||
EP178157, | |||
EP498540, | |||
EP551778, | |||
EP658894, | |||
EP674288, | |||
EP731407, | |||
EP757437, | |||
EP880091, | |||
EP917077, | |||
EP982732, | |||
EP1026713, | |||
EP1028425, | |||
FR2686440, | |||
GB2072389, | |||
GB2315186, | |||
JP10074429, | |||
JP10198507, | |||
JP10227878, | |||
JP10326149, | |||
JP11184607, | |||
JP11194863, | |||
JP11194872, | |||
JP11194882, | |||
JP11194883, | |||
JP11194891, | |||
JP11195353, | |||
JP11203045, | |||
JP4032920, | |||
JP5041135, | |||
JP5080938, | |||
JP5101741, | |||
JP5189110, | |||
JP5205565, | |||
JP5211021, | |||
JP5217464, | |||
JP5233141, | |||
JP5265656, | |||
JP5274956, | |||
JP5289811, | |||
JP5298955, | |||
JP5325723, | |||
JP6089636, | |||
JP6096639, | |||
JP6111685, | |||
JP6111695, | |||
JP61117619, | |||
JP61124009, | |||
JP6139879, | |||
JP6187078, | |||
JP6208433, | |||
JP6267382, | |||
JP6283993, | |||
JP63106826, | |||
JP63181022, | |||
JP63298518, | |||
JP6333459, | |||
JP7107574, | |||
JP7201249, | |||
JP7201256, | |||
JP7253838, | |||
JP7261899, | |||
JP7261922, | |||
JP7296670, | |||
JP7319001, | |||
JP8016292, | |||
JP8115158, | |||
JP8203387, | |||
JP8293226, | |||
JP8298045, | |||
JP8299541, | |||
JP8316664, | |||
JP9044289, | |||
JP9069023, | |||
JP9128148, | |||
JP9218747, | |||
JP9230993, | |||
JP9231858, | |||
JP9251347, | |||
JP9288926, | |||
RE35269, | Apr 06 1994 | MARIANA HDD B V ; HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B V | Portable computer hard disk protective reflex system |
WO9417494, | |||
WO9500897, | |||
WO9814863, | |||
WO9938149, | |||
WO9949443, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 08 1998 | Apple Inc. | (assignment on the face of the patent) | / | |||
Jan 15 2008 | British Telecommunications plc | Apple Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 020897 | /0340 |
Date | Maintenance Fee Events |
Jun 14 2011 | ASPN: Payor Number Assigned. |
Mar 06 2013 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Sep 27 2014 | 4 years fee payment window open |
Mar 27 2015 | 6 months grace period start (w surcharge) |
Sep 27 2015 | patent expiry (for year 4) |
Sep 27 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 27 2018 | 8 years fee payment window open |
Mar 27 2019 | 6 months grace period start (w surcharge) |
Sep 27 2019 | patent expiry (for year 8) |
Sep 27 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 27 2022 | 12 years fee payment window open |
Mar 27 2023 | 6 months grace period start (w surcharge) |
Sep 27 2023 | patent expiry (for year 12) |
Sep 27 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |