fluorinated, diamond-like carbon (F-DLC) films are produced by a pulsed, glow-discharge plasma immersion ion processing procedure. The pulsed, glow-discharge plasma was generated at a pressure of 1 Pa from an acetylene (C2H2) and hexafluoroethane (C2F6) gas mixture, and the fluorinated, diamond-like carbon films were deposited on silicon <100>substrates. The film hardness and wear resistance were found to be strongly dependent on the fluorine content incorporated into the coatings. The hardness of the F-DLC films was found to decrease considerably when the fluorine content in the coatings reached about 20%. The contact angle of water on the F-DLC coatings was found to increase with increasing film fluorine content and to saturate at a level characteristic of polytetrafluoroethylene.

Patent
   6572937
Priority
Nov 30 1999
Filed
Nov 30 2000
Issued
Jun 03 2003
Expiry
Nov 30 2020
Assg.orig
Entity
Large
162
3
EXPIRED
1. A method for producing a fluorinated, diamond-like carbon coating on a substrate which comprises the steps of:
(a) applying a negative-pulsed bias to said substrate; and
(b) immersing the biased substrate in a plasma containing ions simultaneously bearing carbon and hydrogen and carbon and fluorine, whereby the ions are projected onto the surface of said substrate and form a fluorinated, diamond-like coating on the surface thereof, wherein the plasma is formed in a gas mixture of acetylene and hexafluoroethane having a ratio of about 1:1.
2. The method for producing a fluorinated, diamond-like carbon coating on a substrate as described in claim 1, wherein said substrate includes silicon.

This application claims the benefit of provisional application 60/168,218, filed Nov. 30, 1999.

This invention was made with government support under Contract No. W-7405-ENG-36 awarded by the U.S. Department of Energy to The Regents of The University of California. The government has certain rights in the invention.

The present invention relates generally to the deposition of diamond-like coatings on substrates and, more particularly, to the deposition of fluorinated diamond-like coatings on substrates using plasma immersion ion processing.

Diamond-like carbon (DLC) films are known for their high hardness, wear resistance and low friction. Many applications have been developed for these coatings and their modified counterparts. A scratch resistant and extremely hard coating with excellent hydrophobic (un-wetting) properties has numerous practical applications ranging from non-stick kitchenware to protective coatings for optics. Since DLC is itself only mildly hydrophobic, different elements such as F, N, O or Si, have often been incorporated into it by using a variety of techniques (see e.g., M. Grischke et al., Surf. Coat. Technol. 74, 739 (1995)). The fluorination of thin films and surfaces can be achieved using both etching and deposition treatments. However, the fluorine incorporation in surfaces after the widely used C2F4 plasma etching process is only a few nanometers deep (see, e.g., Y. Lin and L. J. Overzet, Appl. Phys. Left. 62, 675 (1993) and C. Vivensang et al., Diamond Relat. Mater. 3, 645 (1994)), thereby limiting the applications of the treated surfaces. The deposition of different types of fluorinated films such as fluoropolymer films by sputtering of polytetrafluoroethylene (PTFE) onto targets or by using plasma-assisted deposition has been well established (see, e.g., D. Fleisch et al., J. Membrane Sci. 73, 163 (1992) and F. Quaranta et al., Appl. Phys. Lett. 63, 10 (1993)). For the plasma deposition of F-DLC films fluorocarbon-hydrocarbon mixtures have been mostly used (see, e.g., D. Fleisch et al., J. Membrane Sci. 73, 163 (1992), R. S. Butter et al., Thin Solid Films, 107 (1997), and J. Seth and S. V. Babu, Thin Solid Films 230, 90 (1993)). The results from various studies by different groups have shown that the un-wetting properties of F-DLC films can reach the performance of PTFE and the hardness and wear resistance have been kept relatively high (see, e.g., M. Grischke et al., Diam. Relet. Mater. 7, 454 (1998) and C. Donnet et al., Surf. Coat. Technol. 94-95, 531 (1997)). Earlier studies have also shown that the contact angle behavior of the F-DLC films produced with plasma techniques from fluorocarbon-hydrocarbon gas mixtures depends on the incorporation of CF2 and CF3 groups rather than CF group (see, e.g., D. Fleisch et al., supra, H. Kasai et al., J. Phys. D19, L225 (1986), and J. Seth and S. V. Babu, supra). This incorporation then depends on the composition of source gases, deposition technique and parameters and plasma chemistry that take place during the deposition.

In order to attain widespread utilization, a method for deposition of thin films must be readily scalable to a production scale. This also applies to F-DLC films. To date, all plasma deposition techniques that have been used to produce hard F-DLC with good un-wetting properties have been line-of-sight processes. Thus, complex-shaped objects are difficult to uniformly coat. Plasma Immersion Ion Processing (PIIP) for the deposition of F-DLC coatings differs from the Plasma Source Ion Implantation (PSII) process by employing a low pulsed-bias voltage, typically less than 10 kV, and enables the deposition of thin films on various substrate materials (see, e.g., K. C. Walter et al., Surf. Coat Technol. 93, 287 (1997) and S. M. Malik et al., J. Vac. Sci. Technol. A15, 2875 (1997)). Additionally, PIIP enables conformal deposition over large areas (see, e.g., J. R. Conrad et al., J. Appl. Phys. 62, 4591 (1987)).

Accordingly, it is an object of the present invention to provide a method for depositing fluorinated, diamond-like coatings on chosen substrates using a non-line-of-sight process.

Another object of the present invention is to provide a method for depositing fluorinated, diamond-like coatings on chosen substrates using plasma immersion ion processing.

Additional objects, advantages and novel features of the invention will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art upon examination of the following or may be learned by practice of the invention. The objects and advantages of the invention may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims.

To achieve the foregoing and other objects, and in accordance with the purposes of the present invention, as embodied and broadly described herein, the method for depositing a fluorinated, diamond-like carbon coating on a selected substrates includes the steps of: applying a negative-pulsed bias to the substrate, and immersing the biased substrate in a plasma containing ions simultaneously bearing carbon and hydrogen and carbon and fluorine, whereby the ions are projected onto the surface of said substrate and form a fluorinated, diamond-like coating on the surface thereof.

Preferably, the plasma is formed in a gas mixture including acetylene and hexafluoroethane.

It is also preferred that the substrate includes silicon.

Benefits and advantages of the present invention include conformal deposition of fluorinated, diamond-like carbon coatings over large areas.

The accompanying drawings, which are incorporated in and form a part of the specification, illustrate the embodiments of the present invention and, together with the description, serve to explain the principles of the invention. In the drawings:

FIG. 1 is a graph showing the wetting angle against water as a function of the fluorine content (fluorine weight percent) of fluorinated, diamond-like coatings deposited on silicon substrates. Data for pure diamond-like coatings and Teflon are presented for comparison.

FIG. 2 is a graph showing the hydrogen content and hardness as a function of fluorine content (fluorine weigh percent) of fluorinated, diamond-like coatings deposited on silicon substrates.

FIG. 3 is a graph showing the deposition rate of a fluorinated, diamond-like coating onto a silicon substrate as a function of C2H2/(C2F6+C2H2) ratio in the plasma gas mixture.

FIG. 4 shows the optical band gap for fluorinated diamond-like coatings on glass (a) and PMMA (b) generated using different C2F6:C2H2-gas ratios.

Briefly, the present invention includes a method for depositing durable fluorinated, diamond-like (F-DLC) coatings on chosen substrates using plasma immersion ion processing (PIIP). Gas mixture of hexafluoroethane (C2F6) and acetylene (C2H2) were used for generation of the pulsed, glow-discharge plasma. The composition, hardness, modulus and un-wetting properties of the F-DLC coatings were measured as a function of gas composition. A gas ratio of acetylene to hexafluoroethane of unity (C2H2:C2F6=1) was found to yield an optimized combination of good un-wetting properties and high coating hardness. At higher C2F6 concentrations, the hardness, modulus and wear resistance of the F-DLC coatings became less desirable, while the un-wetting properties of the films did not improve. This deterioration of diamond-like properties for F-DLC films deposited using higher C2F6 concentrations in the gas mixture can be attributed to the increased etching behavior of the fluorocarbon plasma. The deposition rate for F-DLC coatings was found reach a minimum value when a gas ratio of C2H2: C2F6=½ was employed, and with a gas ratio C2H2: C2F6=⅓, significant etching of the substrate was observed.

Having generally described the present invention, the following EXAMPLE provides greater detail as to the operation thereof.

To illustrate the method of the present invention, Si <100> was used as the substrate. Before deposition of the F-DLC, substrates were ultrasonically cleaned first in acetone, then in methanol, and subsequently sputter cleaned using an argon plasma. The initial pressure in the vacuum chamber was about 10-4 Pa. The argon plasma was generated using two inductively coupled 0.46 MHz RF power sources at about 0.04 Pa pressure (see, e.g., "Inductive Plasma Sources for Plasma Implantation and Deposition" by M. Tuszewski, et al., IEEE Transactions of Plasma Science 26, 1653 (1998), and "Diamond-Like Carbon Deposition on Silicon Using Radio-frequency Inductive Plasma of Ar and C2H2 Gas Mixture in Plasma Immersion Ion Deposition" by D. H. Lee et al., Appl. Phys. Lett. 73, 2423 (1998)). In order to generate a uniform ion distribution, both sources were positioned mirror-symmetrically with respect to the sample stage. The pulsed bias voltage during the sputter cleaning process was 1 kV, and the pulse frequency and pulse length were 10 kHz and 20 μs, respectively. The total sputtering time was 10 minutes for all substrates.

Pulsed glow discharge plasmas were used for the F-DLC depositions. Acetylene (C2H2) and hexafluoroethane (C2F6) gases were introduced into the chamber at various gas ratios, and a pulsed bias voltage of 4 kV was applied to the substrate. The pressure was maintained at approximately 1 Pa by adjusting the mass flow of the plasma gases. The pulse frequency was 4 kHz and the pulse length was 30 μs. The deposition rate was found to vary for different gas ratios. The following gas ratios were used for the deposition of the F-DLC coatings: C2H2:C2F6 (10:1), C2H2:C 2F6 (5:1), C2H2:C2F6 (2:1), C2H2:C2F6 (1:1), C2H2:C 2F6 (1:2) and C2H2:C2F6 (1:3). A Residual Gas Analyzer (RGA) was used to analyze the plasma composition.

The thickness of the coatings were measured using a profilometer and were found to vary between about 150 nm and 1.3 μm, while the roughness value of all coatings was about 10 nm. Hardness measurements were performed using a nanoindentor having a continuous stiffness mode. Hardness data were averaged for 10 indents and data from depths of about 10% of the total film thickness was selected. The compositions of the F-DLC films were measured using Rutherford Backscattering Spectrometry (RBS) and Elastic Recoil Detection (ERD) spectrometry with a 75°C beam-incidence angle to the surface normal (see, e.g., Handbook of Modern Ion Beam Materials Analysis, edited by J. R. Tesmer and M. Nastasi, (MRS, Pittsburg, 1995), p. 37-139). Friction and wear measurements were performed using a conventional pin-on-disk measurement system having an optical wear rate measurement capability. Contact angle measurements were performed by applying droplets of distilled water on the coating surface using a pipette and recording the contact angle using a digital camera. Three droplet sizes were used and six different contact angle measurements were averaged. As a comparison, contact angles against water for other materials were measured. For PTFE (Teflon®) the contact angle was 88°C, 46°C for DLC (produced using the PIIP technique on neat C2H2 gas), and 24°C for uncoated Si (<100>polished wafer). Before measurements were performed the samples were cleaned in an ultrasonic bath first with acetone and then with methanol.

Turning now to the drawings, FIG. 1 is a graph showing the wetting angle against water as a function of the fluorine content (fluorine weight percent) of fluorinated, diamond-like coatings deposited on silicon substrates. Data for pure diamond-like coatings and Teflon are presented for comparison. The unwetting properties improve exponentially, saturating at the level characteristic for PTFE (Teflon®). The data are shown in the TABLE which sets forth the composition, contact angle, hardness and modulus data as a function of C2H2:C2F6 gas ratio.

TABLE
Friction coefficient
Fluorine Hydrogen Contact angle (66.2 g, ruby-pin,
C2H2:C2F6 content content (against water) Hardness Modulus 10% humidity)
10:1 1.9% 25.2% 57°C 18 GPa 140 Gpa 0.13
5:1 3.7% 20.2% 62°C 18 GPa 150 Gpa 0.12
2:1 10.0% 7.8% 68°C 15 GPa 130 Gpa 0.15
1:1 19.7% 3.1% 87°C 8 GPa 80 Gpa 0.09
1:2 23.3% 3.0% 85°C 3 GPa 30 Gpa --
DLC 0.00% 30.5% 46°C 18 GPa 140 Gpa 0.12
Teflon ® 67.0% 0.0% 88°C 0.8 1.9 --

Since the coating produced using the gas ratio C2H2:C2F6=½ was too soft for pin-on-disk measurements, friction data is not presented. A gas ratio of ⅓ did not produce a coating.

FIG. 2 is a graph showing the hydrogen content and hardness as a function of fluorine content (fluorine weigh percent) of fluorinated, diamond-like coatings deposited on silicon substrates. It is seen that both the hydrogen content and hardness decrease with increasing fluorine concentration. FIG. 3 is a graph showing the deposition rate of a fluorinated, diamond-like coating onto a silicon substrate as a function of C2H2/(C2F6+C2H2) ratio in the plasma gas mixture. The etching property of the fluorocarbon plasma becomes more dominant after a certain threshold in the gas composition, since the deposition rate of the F-DLC coating is seen to decrease with increasing C2F6 content in the gas mixture. This may explain the difference in the hardness for the coatings that were produced with gas ratio C2H2:C2F6=1 compared to coatings produced with ratio C2H2:C2F6=½. Thus, present inventors believe that the harsh etching on the film surface transforms the sp3 bonding in the DLC bonding network into sp2 bonding, which lowers the hardness and the modulus of the coating. As stated, at a gas ratio C2H2:C2F6=⅓, etching became dominant and no deposition occurred. The low hydrogen content in the deposited F-DLC coatings is likely explained by the lowered partial pressure of hydrogen in the C2H2:C2F6-gas mixtures employed.

The calculated optical band gap, as a function of incorporated fluorine content in the films, is shown in FIG. 4 for F-DLC coatings on glass (a) and polymethylmethacrylate (PMMA) (b) generated using different C2F6:C2H2-gas ratios. Associating the hydrogen concentration in the Table with the data in FIG. 4, it is seen that increasing the fluorine content suppresses the incorporation of H and increases the optical band gap energy. This is different from the general a-C:H DLC films where optical properties are closely correlated to the amount of hydrogen incorporated in the films (See, e.g., J. Robertson, Surf. Coat. Technol. 50, 185 (1992)). The increase in the optical band gap energy may indicate that the incorporated fluorine in the DLC has modified the chemical structure of the film towards higher sp3 bonding fraction.

The foregoing description of the invention has been presented for purposes of illustration and description and is not intended to be exhaustive or to limit the invention to the precise form disclosed, and obviously many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application to thereby enable others skilled in the art to best utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto.

He, Xiao-Ming, Lee, Deok-hyung, Nastasi, Michael A., Hakovirta, Marko J.

Patent Priority Assignee Title
10026621, Nov 14 2016 Applied Materials, Inc SiN spacer profile patterning
10032606, Aug 02 2012 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
10043674, Aug 04 2017 Applied Materials, Inc Germanium etching systems and methods
10043684, Feb 06 2017 Applied Materials, Inc Self-limiting atomic thermal etching systems and methods
10049891, May 31 2017 Applied Materials, Inc Selective in situ cobalt residue removal
10062575, Sep 09 2016 Applied Materials, Inc Poly directional etch by oxidation
10062578, Mar 14 2011 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
10062579, Oct 07 2016 Applied Materials, Inc Selective SiN lateral recess
10062585, Oct 04 2016 Applied Materials, Inc Oxygen compatible plasma source
10062587, Jul 18 2012 Applied Materials, Inc. Pedestal with multi-zone temperature control and multiple purge capabilities
10128086, Oct 24 2017 Applied Materials, Inc Silicon pretreatment for nitride removal
10147620, Aug 06 2015 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
10163696, Nov 11 2016 Applied Materials, Inc Selective cobalt removal for bottom up gapfill
10170336, Aug 04 2017 Applied Materials, Inc Methods for anisotropic control of selective silicon removal
10186428, Nov 11 2016 Applied Materials, Inc. Removal methods for high aspect ratio structures
10224180, Oct 04 2016 Applied Materials, Inc. Chamber with flow-through source
10224210, Dec 09 2014 Applied Materials, Inc Plasma processing system with direct outlet toroidal plasma source
10242908, Nov 14 2016 Applied Materials, Inc Airgap formation with damage-free copper
10256079, Feb 08 2013 Applied Materials, Inc Semiconductor processing systems having multiple plasma configurations
10256112, Dec 08 2017 Applied Materials, Inc Selective tungsten removal
10283321, Jan 18 2011 Applied Materials, Inc Semiconductor processing system and methods using capacitively coupled plasma
10283324, Oct 24 2017 Applied Materials, Inc Oxygen treatment for nitride etching
10297458, Aug 07 2017 Applied Materials, Inc Process window widening using coated parts in plasma etch processes
10319600, Mar 12 2018 Applied Materials, Inc Thermal silicon etch
10319603, Oct 07 2016 Applied Materials, Inc. Selective SiN lateral recess
10319649, Apr 11 2017 Applied Materials, Inc Optical emission spectroscopy (OES) for remote plasma monitoring
10319739, Feb 08 2017 Applied Materials, Inc Accommodating imperfectly aligned memory holes
10325923, Feb 08 2017 Applied Materials, Inc Accommodating imperfectly aligned memory holes
10354843, Sep 21 2012 Applied Materials, Inc. Chemical control features in wafer process equipment
10354889, Jul 17 2017 Applied Materials, Inc Non-halogen etching of silicon-containing materials
10403507, Feb 03 2017 Applied Materials, Inc Shaped etch profile with oxidation
10424463, Aug 07 2015 Applied Materials, Inc. Oxide etch selectivity systems and methods
10424464, Aug 07 2015 Applied Materials, Inc. Oxide etch selectivity systems and methods
10424485, Mar 01 2013 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
10431429, Feb 03 2017 Applied Materials, Inc Systems and methods for radial and azimuthal control of plasma uniformity
10465294, May 28 2014 Applied Materials, Inc. Oxide and metal removal
10468267, May 31 2017 Applied Materials, Inc Water-free etching methods
10468276, Aug 06 2015 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
10468285, Feb 03 2015 Applied Materials, Inc. High temperature chuck for plasma processing systems
10490406, Apr 10 2018 Applied Materials, Inc Systems and methods for material breakthrough
10490418, Oct 14 2014 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
10497573, Mar 13 2018 Applied Materials, Inc Selective atomic layer etching of semiconductor materials
10497579, May 31 2017 Applied Materials, Inc Water-free etching methods
10504700, Aug 27 2015 Applied Materials, Inc Plasma etching systems and methods with secondary plasma injection
10504754, May 19 2016 Applied Materials, Inc Systems and methods for improved semiconductor etching and component protection
10522371, May 19 2016 Applied Materials, Inc Systems and methods for improved semiconductor etching and component protection
10529737, Feb 08 2017 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
10541113, Oct 04 2016 Applied Materials, Inc. Chamber with flow-through source
10541184, Jul 11 2017 Applied Materials, Inc Optical emission spectroscopic techniques for monitoring etching
10541246, Jun 26 2017 Applied Materials, Inc 3D flash memory cells which discourage cross-cell electrical tunneling
10546729, Oct 04 2016 Applied Materials, Inc Dual-channel showerhead with improved profile
10566206, Dec 27 2016 Applied Materials, Inc Systems and methods for anisotropic material breakthrough
10573496, Dec 09 2014 Applied Materials, Inc Direct outlet toroidal plasma source
10573527, Apr 06 2018 Applied Materials, Inc Gas-phase selective etching systems and methods
10593523, Oct 14 2014 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
10593553, Aug 04 2017 Applied Materials, Inc. Germanium etching systems and methods
10593560, Mar 01 2018 Applied Materials, Inc Magnetic induction plasma source for semiconductor processes and equipment
10600639, Nov 14 2016 Applied Materials, Inc. SiN spacer profile patterning
10607867, Aug 06 2015 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
10615047, Feb 28 2018 Applied Materials, Inc Systems and methods to form airgaps
10629473, Sep 09 2016 Applied Materials, Inc Footing removal for nitride spacer
10672642, Jul 24 2018 Applied Materials, Inc Systems and methods for pedestal configuration
10679870, Feb 15 2018 Applied Materials, Inc Semiconductor processing chamber multistage mixing apparatus
10699879, Apr 17 2018 Applied Materials, Inc Two piece electrode assembly with gap for plasma control
10699921, Feb 15 2018 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
10707061, Oct 14 2014 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
10727080, Jul 07 2017 Applied Materials, Inc Tantalum-containing material removal
10755941, Jul 06 2018 Applied Materials, Inc Self-limiting selective etching systems and methods
10770346, Nov 11 2016 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
10796922, Oct 14 2014 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
10854426, Jan 08 2018 Applied Materials, Inc Metal recess for semiconductor structures
10861676, Jan 08 2018 Applied Materials, Inc Metal recess for semiconductor structures
10872778, Jul 06 2018 Applied Materials, Inc Systems and methods utilizing solid-phase etchants
10886137, Apr 30 2018 Applied Materials, Inc Selective nitride removal
10892198, Sep 14 2018 Applied Materials, Inc Systems and methods for improved performance in semiconductor processing
10903052, Feb 03 2017 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
10903054, Dec 19 2017 Applied Materials, Inc Multi-zone gas distribution systems and methods
10920319, Jan 11 2019 Applied Materials, Inc Ceramic showerheads with conductive electrodes
10920320, Jun 16 2017 Applied Materials, Inc Plasma health determination in semiconductor substrate processing reactors
10943834, Mar 13 2017 Applied Materials, Inc Replacement contact process
10964512, Feb 15 2018 Applied Materials, Inc Semiconductor processing chamber multistage mixing apparatus and methods
11004689, Mar 12 2018 Applied Materials, Inc. Thermal silicon etch
11024486, Feb 08 2013 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
11049698, Oct 04 2016 Applied Materials, Inc. Dual-channel showerhead with improved profile
11049755, Sep 14 2018 Applied Materials, Inc Semiconductor substrate supports with embedded RF shield
11062887, Sep 17 2018 Applied Materials, Inc High temperature RF heater pedestals
11101136, Aug 07 2017 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
11121002, Oct 24 2018 Applied Materials, Inc Systems and methods for etching metals and metal derivatives
11158527, Aug 06 2015 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
11239061, Nov 26 2014 Applied Materials, Inc. Methods and systems to enhance process uniformity
11257693, Jan 09 2015 Applied Materials, Inc Methods and systems to improve pedestal temperature control
11264213, Sep 21 2012 Applied Materials, Inc. Chemical control features in wafer process equipment
11276559, May 17 2017 Applied Materials, Inc Semiconductor processing chamber for multiple precursor flow
11276590, May 17 2017 Applied Materials, Inc Multi-zone semiconductor substrate supports
11328909, Dec 22 2017 Applied Materials, Inc Chamber conditioning and removal processes
11361939, May 17 2017 Applied Materials, Inc Semiconductor processing chamber for multiple precursor flow
11417534, Sep 21 2018 Applied Materials, Inc Selective material removal
11437242, Nov 27 2018 Applied Materials, Inc Selective removal of silicon-containing materials
11476093, Aug 27 2015 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
11594428, Feb 03 2015 Applied Materials, Inc. Low temperature chuck for plasma processing systems
11637002, Nov 26 2014 Applied Materials, Inc Methods and systems to enhance process uniformity
11682560, Oct 11 2018 Applied Materials, Inc Systems and methods for hafnium-containing film removal
11721527, Jan 07 2019 Applied Materials, Inc Processing chamber mixing systems
11735441, May 19 2016 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
11915950, May 17 2017 Applied Materials, Inc. Multi-zone semiconductor substrate supports
6836312, Sep 18 2001 International Business Machines Corporation Optically transparent film, method of manufacturing optically transparent film, alignment film, and liquid crystal panel and display including alignment film
7134381, Aug 21 2003 NISSAN MOTOR CO , LTD Refrigerant compressor and friction control process therefor
7146956, Aug 08 2003 NISSAN MOTOR CO , LTD Valve train for internal combustion engine
7228786, Jun 06 2003 Nissan Motor Co., Ltd. Engine piston-pin sliding structure
7255083, Oct 10 2003 Nissan Motor Co., Ltd. Sliding structure for automotive engine
7273655, Apr 09 1999 Shojiro, Miyake; Nissan Motor Co., Ltd. Slidably movable member and method of producing same
7284525, Aug 13 2003 NISSAN MOTOR CO , LTD Structure for connecting piston to crankshaft
7318514, Aug 22 2003 NISSAN MOTOR CO , LTD Low-friction sliding member in transmission, and transmission oil therefor
7322749, Nov 06 2002 Nissan Motor Co., Ltd.; Nippon Oil Corporation Low-friction sliding mechanism
7406940, May 23 2003 NISSAN MOTOR CO , LTD Piston for internal combustion engine
7427162, May 27 2003 Nissan Motor Co., Ltd. Rolling element
7458585, Aug 08 2003 NISSAN MOTOR CO , LTD Sliding member and production process thereof
7500472, Apr 15 2003 NISSAN MOTOR CO , LTD Fuel injection valve
7547847, Sep 19 2006 SIEMENS ENERGY, INC High thermal conductivity dielectric tape
7553438, Jun 15 2004 SIEMENS ENERGY, INC Compression of resin impregnated insulating tapes
7572200, Aug 13 2003 Nissan Motor Co., Ltd. Chain drive system
7592045, Jun 15 2004 SIEMENS ENERGY, INC Seeding of HTC fillers to form dendritic structures
7650976, Aug 22 2003 Nissan Motor Co., Ltd. Low-friction sliding member in transmission, and transmission oil therefor
7651963, Apr 15 2005 SIEMENS ENERGY, INC Patterning on surface with high thermal conductivity materials
7655295, Jun 14 2005 SIEMENS ENERGY, INC Mix of grafted and non-grafted particles in a resin
7771821, Aug 21 2003 NISSAN MOTOR CO , LTD ; NISSAN ARC, LTD ; MARTIN, JEAN MICHEL Low-friction sliding member and low-friction sliding mechanism using same
7776392, Apr 15 2005 SIEMENS ENERGY, INC Composite insulation tape with loaded HTC materials
7781057, Jun 14 2005 SIEMENS ENERGY, INC Seeding resins for enhancing the crystallinity of polymeric substructures
7781063, Jul 11 2003 SIEMENS ENERGY, INC High thermal conductivity materials with grafted surface functional groups
7837817, Jun 15 2004 Siemens Energy, Inc. Fabrics with high thermal conductivity coatings
7846853, Apr 15 2005 SIEMENS ENERGY, INC Multi-layered platelet structure
7851059, Jun 14 2005 SIEMENS ENERGY, INC Nano and meso shell-core control of physical properties and performance of electrically insulating composites
7955661, Jun 14 2005 SIEMENS ENERGY, INC Treatment of micropores in mica materials
8039530, Jul 11 2003 Siemens Energy, Inc. High thermal conductivity materials with grafted surface functional groups
8096205, Jul 31 2003 Nissan Motor Co., Ltd. Gear
8152377, Nov 06 2002 Nissan Motor Co., Ltd.; Nippon Oil Corporation Low-friction sliding mechanism
8206035, Aug 06 2003 NISSAN MOTOR CO , LTD ; Nippon Oil Corporation; MARTIN, JEAN MICHEL Low-friction sliding mechanism, low-friction agent composition and method of friction reduction
8216672, Jun 15 2004 SIEMENS ENERGY, INC Structured resin systems with high thermal conductivity fillers
8277613, Apr 15 2005 Siemens Energy, Inc. Patterning on surface with high thermal conductivity materials
8313832, Jun 15 2004 Siemens Energy, Inc. Insulation paper with high thermal conductivity materials
8357433, Jun 14 2005 SIEMENS ENERGY, INC Polymer brushes
8383007, Jun 14 2005 Siemens Energy, Inc. Seeding resins for enhancing the crystallinity of polymeric substructures
8512864, Aug 06 2008 MITSUBISHI HEAVY INDUSTRIES, LTD Component for rotary machine
8575076, Aug 08 2003 Nissan Motor Co., Ltd. Sliding member and production process thereof
8685534, Jun 15 2004 Siemens Energy, Inc. High thermal conductivity materials aligned within resins
9514932, Aug 08 2012 Applied Materials, Inc Flowable carbon for semiconductor processing
9741593, Aug 06 2015 Applied Materials, Inc Thermal management systems and methods for wafer processing systems
9754800, May 27 2010 Applied Materials, Inc. Selective etch for silicon films
9768034, Nov 11 2016 Applied Materials, Inc Removal methods for high aspect ratio structures
9773648, Aug 30 2013 Applied Materials, Inc Dual discharge modes operation for remote plasma
9773695, Jul 31 2014 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
9837249, Mar 20 2014 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
9837284, Sep 25 2014 Applied Materials, Inc. Oxide etch selectivity enhancement
9842744, Mar 14 2011 Applied Materials, Inc. Methods for etch of SiN films
9865484, Jun 29 2016 Applied Materials, Inc Selective etch using material modification and RF pulsing
9881805, Mar 02 2015 Applied Materials, Inc Silicon selective removal
9885117, Mar 31 2014 Applied Materials, Inc Conditioned semiconductor system parts
9903020, Mar 31 2014 Applied Materials, Inc Generation of compact alumina passivation layers on aluminum plasma equipment components
9934942, Oct 04 2016 Applied Materials, Inc Chamber with flow-through source
9947549, Oct 10 2016 Applied Materials, Inc Cobalt-containing material removal
9966240, Oct 14 2014 Applied Materials, Inc Systems and methods for internal surface conditioning assessment in plasma processing equipment
9978564, Sep 21 2012 Applied Materials, Inc. Chemical control features in wafer process equipment
Patent Priority Assignee Title
4693927, Mar 19 1984 Fuji Photo Film Company Limited Magnetic recording medium and process for producing the same
4971667, Feb 05 1988 Semiconductor Energy Laboratory Co., Ltd. Plasma processing method and apparatus
6002418, Apr 16 1997 FUJIFILM Corporation Thermal head
///////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Nov 30 2000The Regents of the University of California(assignment on the face of the patent)
Jan 24 2001CALIFORNIA, UNIVERSITY OFENERGY, U S DEPARTMENT OFCONFIRMATORY LICENSE SEE DOCUMENT FOR DETAILS 0144040189 pdf
Mar 30 2001HAKOVIRTA, MARKO J REGENT OF THE UNIVERSITY OF CALIFORNIA, THEASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0117520924 pdf
Mar 30 2001NASTASI, MICHAEL A REGENT OF THE UNIVERSITY OF CALIFORNIA, THEASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0117520924 pdf
Mar 30 2001LEE, DEOK-HYUNGREGENT OF THE UNIVERSITY OF CALIFORNIA, THEASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0117520924 pdf
Mar 30 2001HE, XIAO-MINGREGENT OF THE UNIVERSITY OF CALIFORNIA, THEASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0117520924 pdf
Apr 17 2006Regents of the University of California, TheLos Alamos National Security, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0179060842 pdf
Date Maintenance Fee Events
Nov 21 2006M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Dec 04 2006STOL: Pat Hldr no Longer Claims Small Ent Stat
Jan 10 2011REM: Maintenance Fee Reminder Mailed.
Jun 03 2011EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Jun 03 20064 years fee payment window open
Dec 03 20066 months grace period start (w surcharge)
Jun 03 2007patent expiry (for year 4)
Jun 03 20092 years to revive unintentionally abandoned end. (for year 4)
Jun 03 20108 years fee payment window open
Dec 03 20106 months grace period start (w surcharge)
Jun 03 2011patent expiry (for year 8)
Jun 03 20132 years to revive unintentionally abandoned end. (for year 8)
Jun 03 201412 years fee payment window open
Dec 03 20146 months grace period start (w surcharge)
Jun 03 2015patent expiry (for year 12)
Jun 03 20172 years to revive unintentionally abandoned end. (for year 12)