A semiconductor package comprising multiple stacked substrates having flip chips attached to the substrates with chip-on-board assembly techniques to achieve dense packaging. The substrates are preferably stacked atop one another by electric connections which are column-like structures. The electric connections achieve electric communication between the stacked substrates, must be of sufficient height to give clearance for the components mounted on the substrates, and should preferably be sufficiently strong enough to give support between the stacked substrates.

Patent
   6583503
Priority
Mar 10 1997
Filed
May 02 2002
Issued
Jun 24 2003
Expiry
Mar 10 2017
Assg.orig
Entity
Large
218
38
all paid
1. A stacked assembly, comprising:
a base substrate having a first surface including a plurality of bond pads;
at least one first semiconductor die having an active surface having at least one bond pad thereon and having a second surface;
a first stacked nonconductive substrate having a first surface and a second surface, said at least one first semiconductor die electrically connected to said first surface of said first stacked nonconductive substrate and having said second surface thereof disposed on at least one portion of said first surface of said first stacked nonconductive substrate;
at least one second semiconductor die having a first surface having a plurality of bond pads located thereon, said first surface of said at least one second semiconductor die attached to at least one portion of said second surface of said first stacked nonconductive substrate;
at least one first connector connecting said at least one bond pad of said at least one first semiconductor die to at least one bond pad of said plurality of bond pads of said base substrate;
at least one second connector connecting at least one bond pad of said plurality of bond pads of said at least one second semiconductor die to at least one other bond pad of said plurality of bond pads of said base substrate;
a second stacked nonconductive substrate having a first surface and a second surface;
at least one third semiconductor die having a first surface having a plurality of bond pads located thereon, said first surface of said at least one third semiconductor die attached to at least one portion of said first surface of said second stacked nonconductive substrate; and
at least one third connector connecting at least one bond pad of said plurality of bond pads of said at least one third semiconductor die to said first surface of said first stacked nonconductive substrate.
19. An assembly comprising:
a base substrate having a first surface including a plurality of bond pads thereon, a second surface including a plurality of bond pads thereon, and a plurality of traces, at least one trace of said plurality of traces connecting at least one bond pad of said plurality of bond pads on said first surface of said base substrate to at least one bond pad of said plurality of bond pads on said second surface of said base substrate;
a first stacked nonconductive substrate having a first surface including a plurality of bond pads thereon, a second surface including a plurality of bond pads thereon, a first plurality of traces, at least one trace of said first plurality of traces connecting at least one bond pad of said plurality of bond pads on said first surface of said first stacked nonconductive substrate to at least one bond pad of said plurality of bond pads on said second surface of said first stacked nonconductive substrate, and a second plurality of traces, at least one trace of said second plurality of traces connected to another bond pad of said plurality of bond pads on said first surface of said first stacked nonconductive substrate;
a plurality of first semiconductor dice disposed on said first surface of said first stacked nonconductive substrate, each die of said plurality of first semiconductor dice connected to said at least one trace of said second plurality of traces connected to said another bond pad of said plurality of bond pads on said first surface of said first stacked nonconductive substrate;
a second stacked nonconductive substrate having a first surface including a plurality of bond pads thereon, a second surface including a plurality of bond pads thereon, a first plurality of traces, at least one trace of said first plurality of traces of said second stacked nonconductive substrate connecting at least one bond pad of said plurality of bond pads on said first surface of said second stacked nonconductive substrate to at least one bond pad of said plurality of bond pads on said second surface of said second stacked nonconductive substrate, and a second plurality of traces, at least one trace of said second plurality of traces of said second stacked nonconductive substrate connected to another bond pad of said plurality of bond pads on said first surface of said second stacked nonconductive substrate;
a plurality of second semiconductor dice disposed on said first surface of said second stacked nonconductive substrate, each die of said plurality of second semiconductor dice connected to said at least one trace of said second plurality of traces of said second stacked nonconductive substrate connected to said another bond pad of said plurality of bond pads on said first surface of said second stacked nonconductive substrate;
a plurality of third semiconductor dice disposed on said second surface of said second stacked nonconductive substrate;
a first plurality of connections connecting said base substrate and said first stacked nonconductive substrate, at least one connection of said first plurality of connections connecting said at least one bond pad of said plurality of bond pads on said first surface of said base substrate to said at least one bond pad of said plurality of bond pads on said first surface of said first stacked nonconductive substrate, said first plurality of connections connecting said base substrate and said first stacked nonconductive substrate supporting said first stacked nonconductive substrate;
a second plurality of connections connecting said second stacked nonconductive substrate and said first stacked nonconductive substrate, at least one connection of said second plurality of connections connecting said at least one bond pad of said plurality of bond pads on said first surface of said second stacked nonconductive substrate to said at least one bond pad of said plurality of bond pads on said second surface of said first stacked nonconductive substrate;
a third stacked nonconductive substrate having a first surface including a plurality of bond pads thereon, a second surface including a plurality of bond pads thereon, a first plurality of traces, at least one trace of said first plurality of traces of said third stacked nonconductive substrate connecting at least one bond pad of said plurality of bond pads on said first surface of said third stacked nonconductive substrate to at least one bond pad of said plurality of bond pads on said second surface of said third stacked nonconductive substrate, and a second plurality of traces, at least one trace of said second plurality of traces of said third stacked nonconductive substrate connected to another bond pad of said plurality of bond pads on said first surface of said third stacked nonconductive substrate;
a plurality of fourth semiconductor dice disposed on said first surface of said third stacked nonconductive substrate, each die of said plurality of fourth semiconductor dice connected to said at least one trace of said second plurality of traces of said third stacked nonconductive substrate connected to said another bond pad of said plurality of bond pads on said first surface of said third stacked nonconductive substrate;
a plurality of fifth semiconductor dice disposed on said second surface of said third stacked nonconductive substrate; and
a third plurality of connections connecting said third stacked nonconductive substrate and said second stacked nonconductive substrate, at least one connection of said third plurality of connections connecting said at least one bond pad of said plurality of bond pads on said first surface of said third stacked nonconductive substrate to said at least one bond pad of said plurality of bond pads on said second surface of said second stacked nonconductive substrate.
9. An assembly comprising:
a base substrate having a first surface including a plurality of bonds pads thereon, a second surface including a plurality of bond pads thereon, and a plurality of traces, at least one trace of said plurality of traces connecting at least one bond pad of said plurality of bond pads on said first surface of said base substrate to at least one bond pad of said plurality of bond pads on said second surface of said base substrate;
a first stacked nonconductive substrate having a first surface including a plurality of bond pads thereon, a second surface including a plurality of bond pads thereon, a first plurality of traces, at least one trace of said first plurality of traces connecting at least one bond pad of said plurality of bond pads on said first surface of said first stacked nonconductive substrate to at least one bond pad of said plurality of bond pads on said second surface of said first stacked nonconductive substrate, and a second plurality of traces, at least one trace of said second plurality of traces connected to another bond pad of said plurality of bond pads on said first surface of said first stacked nonconductive substrate;
a first semiconductor die disposed on said first surface of said first stacked nonconductive substrate, said first semiconductor die connected to said at least one trace of said second plurality of traces connected to said another bond pad of said plurality of bond pads on said first surface of said first stacked nonconductive substrate;
a second stacked nonconductive substrate having a first surface including a plurality of bond pads thereon, a second surface including a plurality of bond pads thereon, a first plurality of traces, at least one trace of said first plurality of traces of said second stacked nonconductive substrate connecting at least one bond pad of said plurality of bond pads on said first surface of said second stacked nonconductive substrate to at least one bond pad of said plurality of bond pads on said second surface of said second stacked nonconductive substrate, and a second plurality of traces, at least one trace of said second plurality of traces of said second stacked nonconductive substrate connected to another bond pad of said plurality of bond pads on said first surface of said second stacked nonconductive substrate;
a second semiconductor die disposed on said first surface of said second stacked nonconductive substrate, said second semiconductor die connected to said at least one trace of said second plurality of traces of said second stacked nonconductive substrate connected to said another bond pad of said plurality of bond pads on said first surface of said second stacked nonconductive substrate;
a third semiconductor die disposed on said second surface of said second stacked nonconductive substrate;
a first plurality of connections connecting said base substrate and said first stacked nonconductive substrate, at least one connection of said first plurality of connections connecting said at least one bond pad of said plurality of bond pads on said first surface of said base substrate to said at least one bond pad of said plurality of bond pads on said first surface of said first stacked nonconductive substrate, said first plurality of connections connecting said base substrate and said first stacked nonconductive substrate supporting said first stacked nonconductive substrate;
a second plurality of connections connecting said second stacked nonconductive substrate and said first stacked nonconductive substrate, at least one connection of said second plurality of connections connecting said at least one bond pad of said plurality of bond pads on said first surface of said second stacked nonconductive substrate to said at least one bond pad of said plurality of bond pads on said second surface of said first stacked nonconductive substrate, said second plurality of connections connecting said first stacked nonconductive substrate and said second stacked nonconductive substrate supporting said second stacked nonconductive substrate;
a third stacked nonconductive substrate having a first surface including a plurality of bond pads thereon, a second surface including a plurality of bond pads thereon, a first plurality of traces, at least one trace of said first plurality of traces of said third stacked nonconductive substrate connecting at least one bond pad of said plurality of bond pads on said first surface of said third stacked nonconductive substrate to at least one bond pad of said plurality of bond pads on said second surface of said third stacked nonconductive substrate, and a second plurality of traces, at least one trace of said second plurality of traces of said third stacked nonconductive substrate connected to another bond pad of said plurality of bond pads on said first surface of said third stacked nonconductive substrate;
a fourth semiconductor die disposed on said second surface of said third stacked nonconductive substrate;
a fifth semiconductor die disposed on said first surface of said third stacked nonconductive substrate, said fifth semiconductor die connected to said at least one trace of said second plurality of traces of said third stacked nonconductive substrate connected to said another bond pad of said plurality of bond pads on said first surface of said third stacked nonconductive substrate; and
a third plurality of connections connecting said third stacked nonconductive substrate and said second stacked nonconductive substrate, at least one connection of said third plurality of connections connecting said at least one bond pad of said plurality of bond pads on said first surface of said third stacked nonconductive substrate to said at least one bond pad of said plurality of bond pads on said second surface of said second stacked nonconductive substrate.
2. The assembly of claim 1, wherein said at least one first semiconductor die is located on a portion of said first surface of said first stacked nonconductive substrate being electrically connected to said first stacked nonconductive substrate thereat.
3. The assembly of claim 1, wherein said second surface of said first stacked nonconductive substrate includes a plurality of bond pads; and wherein said at least one second semiconductor die is located on and electrically connected to said at least one portion of said second surface of said first stacked nonconductive substrate.
4. The assembly of claim 1, wherein said at least one first connector includes one of solder, conductive adhesives, Z-axis conductive material, flex-contacts, spring contacts, wire bonds, and TAB tape.
5. The assembly of claim 1, wherein said base substrate further comprises a second surface having a plurality of bond pads located thereon.
6. The assembly of claim 5, further comprising connections attached to said plurality of bond pads of said second surface of said base substrate for connection with external electrical circuitry.
7. The assembly of claim 6, further comprising a plurality of trace leads located on said base substrate connecting said plurality of bond pads of said first surface of said base substrate and said plurality of bond pads of said second surface of said base substrate.
8. The assembly of claim 1, further comprising:
a base semiconductor die having a plurality of bond pads and disposed on said base substrate first surface; and
at least one fourth connector connecting at least one of said plurality of bond pads of said first surface of said base substrate and said at least one bond pad of said at least one first semiconductor die.
10. The assembly of claim 9, wherein said first plurality of connections includes solder, conductive adhesives, Z-axis conductive material, flex-contacts, spring contacts, wire bonds, and TAB tape.
11. The assembly of claim 9, wherein said second plurality of connections includes solder, conductive adhesives, Z-axis conductive material, flex-contacts, spring contacts, wire bonds, and TAB tape.
12. The assembly of claim 9, further comprising:
a fourth plurality of connections, at least one connection of said fourth plurality of connections connecting said at least one bond pad of said plurality of bond pads on said second surface of said base substrate to external electrical circuitry.
13. The assembly of claim 9, wherein said first semiconductor die disposed on said first surface of said first stacked nonconductive substrate is connected to said at least one trace of said second plurality of traces connected to said another bond pad of said plurality of bond pads on said first surface of said first stacked nonconductive substrate through one of flip chip attachment, wirebonding, TAB tape, and a combination thereof.
14. The assembly of claim 9, wherein said second semiconductor die disposed on said first surface of said second stacked nonconductive substrate is connected to said at least one trace of said second plurality of traces of said second stacked nonconductive substrate connected to said another bond pad of said plurality of bond pads on said first surface of said second stacked nonconductive substrate through one of flip chip attachment, wirebonding, TAB tape, and a combination thereof.
15. The assembly of claim 9, wherein said third semiconductor die disposed on said second surface of said second stacked nonconductive substrate is connected to said at least one bond pad of said plurality of bond pads on said second surface of said second stacked nonconductive substrate.
16. The assembly of claim 9, wherein said third semiconductor die disposed on said second surface of said second stacked nonconductive substrate is connected to said at least one bond pad of said plurality of bond pads on said first surface of said second stacked nonconductive substrate.
17. The assembly of claim 9, wherein said second semiconductor die disposed on said first surface of said second stacked nonconductive substrate is connected to said at least one bond pad of said plurality of bond pads on said second surface of said second stacked nonconductive substrate and wherein said third semiconductor die disposed on said second surface of said second stacked nonconductive substrate is connected to said at least one bond pad of said plurality of bond pads on said second surface of said second stacked nonconductive substrate.
18. The assembly of claim 9, further comprising:
a fourth stacked nonconductive substrate having a first surface including a plurality of bond pads thereon, a second surface including a plurality of bond pads thereon, a first plurality of traces, at least one trace of said first plurality of traces of said fourth stacked nonconductive substrate connecting at least one bond pad of said plurality of bond pads on said first surface of said fourth stacked nonconductive substrate to at least one bond pad of said plurality of bond pads on said second surface of said fourth stacked nonconductive substrate, and a second plurality of traces, at least one trace of said second plurality of traces of said fourth stacked nonconductive substrate connected to another bond pad of said plurality of bond pads on said first surface of said fourth stacked nonconductive substrate, said fourth stacked nonconductive substrate located above said second stacked nonconductive substrate, said fourth stacked nonconductive substrate having a size less than sizes of said base substrate, said first stacked nonconductive substrate, said second stacked nonconductive substrate, and said third stacked nonconductive substrate;
a sixth semiconductor die disposed on said first surface of said fourth stacked nonconductive substrate, said sixth semiconductor die connected to said at least one trace of said second plurality of traces of said fourth stacked nonconductive substrate connected to said another bond pad of said plurality of bond pads on said first surface of said fourth stacked nonconductive substrate; and
a fourth plurality of connections connecting said fourth stacked nonconductive substrate and said second stacked nonconductive substrate, at least one connection of said fourth plurality of connections connecting said at least one bond pad of said plurality of bond pads on said first surface of said fourth stacked nonconductive substrate to said at least one bond pad of said plurality of bond pads on said second surface of said second stacked nonconductive substrate.
20. The assembly of claim 19 wherein said second plurality of connections connecting said first stacked nonconductive substrate and said second stacked nonconductive substrate supports said second stacked nonconductive substrate.
21. The assembly of claim 19, wherein said first plurality of connections includes solder, conductive adhesives, Z-axis conductive material, flex-contacts, spring contacts, wire bonds, and TAB tape.
22. The assembly of claim 19, wherein said second plurality of connections includes solder, conductive adhesives, Z-axis conductive material, flex-contacts, spring contacts, wire bonds, and TAB tape.
23. The assembly of claim 19, further comprising:
a fourth plurality of connections, at least one connection of said fourth plurality of connections connecting said at least one bond pad of said plurality of bond pads on said second surface of said base substrate to external electrical circuitry.
24. The assembly of claim 19, wherein each die of said plurality of first semiconductor dice disposed on said first surface of said first stacked nonconductive substrate is connected to said at least one trace of said second plurality of traces connected to said another bond pad of said plurality of bond pads on said first surface of said first stacked nonconductive substrate through one of flip chip attachment, wirebonding, TAB tape, or a combination thereof.
25. The assembly of claim 19, wherein each die of said plurality of second semiconductor dice disposed on said first surface of said second stacked nonconductive substrate is connected to said at least one trace of said second plurality of traces of said second stacked nonconductive substrate connected to said another bond pad of said plurality of bond pads on said first surface of said second stacked nonconductive substrate through one of flip chip attachment, wirebonding, TAB tape, and a combination thereof.
26. The assembly of claim 20, further comprising:
a second semiconductor die disposed on said second surface of said first stacked nonconductive substrate, said second semiconductor die connected to said at least one bond pad of said plurality of bond pads on said second surface of said first stacked nonconductive substrate.
27. The assembly of claim 19, further comprising:
a second semiconductor die disposed on said second surface of said first stacked nonconductive substrate, said second semiconductor die connected to said at least one bond pad of said plurality of bond pads on said second surface of said first stacked nonconductive substrate; and
a third semiconductor die disposed on said second surface of said second stacked nonconductive substrate, said third semiconductor die connected to said at least one bond pad of said plurality of bond pads on said second surface of said second stacked nonconductive substrate.

This application is a continuation of application Ser. No. 09/834,706, filed Apr. 13, 2001, now U.S. Pat. No. 6,404,044 B2, issued Jun. 11, 2002, which is a continuation of application Ser. No. 09/466,454, filed Dec. 17, 1999, now U.S. Pat. No. 6,222,265, issued Apr. 24, 2001, which is a continuation of application Ser. No. 09/233,997, filed Jan. 19, 1999, now U.S. Pat. No. 6,051,878, issued Apr. 18, 2000, which is a divisional of application Ser. No. 08/813,467, filed Mar. 10, 1997, now U.S. Pat. No. 5,994,166, issued Nov. 30, 1999.

1. Field of the Invention

The present invention relates to an apparatus and a method for increasing semiconductor device density. In particular, the present invention relates to a stacked multi-substrate device using a combination of flip chips and chip-on-board assembly techniques to achieve densely packaged semiconductor devices.

2. State of the Art

Chip-On-Board techniques are used to attach semiconductor dice to a printed circuit board, including flip chip attachment, wirebonding, and tape automated bonding ("TAB"). Flip chip attachment consists of attaching a flip chip to a printed circuit board or other substrate. A flip chip is a semiconductor chip that has a pattern or array of electrical terminations or bond pads spaced around an active surface of the flip chip for face down mounting of the flip chip to a substrate. Generally, the flip chip has an active surface having one of the following electrical connectors: Ball Grid Array ("BGA")--wherein an array of minute solder balls is disposed on the surface of a flip chip that attaches to the substrate ("the attachment surface"); Slightly Larger than Integrated Circuit Carrier ("SLICC")--which is similar to a BGA, but having a smaller solder ball pitch and diameter than a BGA; or a Pin Grid Array ("PGA")--wherein an array of small pins extends substantially perpendicularly from the attachment surface of a flip chip. The pins conform to a specific arrangement on a printed circuit board or other substrate for attachment thereto. With the BGA or SLICC, the solder or other conductive ball arrangement on the flip chip must be a mirror-image of the connecting bond pads on the printed circuit board such that precise connection is made. The flip chip is bonded to the printed circuit board by refluxing the solder balls. The solder balls may also be replaced with a conductive polymer. With the PGA, the pin arrangement of the flip chip must be a mirror-image of the pin recesses on the printed circuit board. After insertion, the flip chip is generally bonded by soldering the pins into place. An under-fill encapsulant is generally disposed between the flip chip and the printed circuit board for environmental protection and to enhance the attachment of the flip chip to the printed circuit board. A variation of the pin-in-recess PGA is a J-lead PGA, wherein the loops of the J's are soldered to pads on the surface of the circuit board.

Wirebonding and TAB attachment generally begin with attaching a semiconductor chip to the surface of a printed circuit board with an appropriate adhesive, such as an epoxy. In wirebonding, bond wires are attached, one at a time, to each bond pad on the semiconductor chip and extend to a corresponding lead or trace end on the printed circuit board. The bond wires are generally attached through one of three industry-standard wirebonding techniques: ultrasonic bonding--using a combination of pressure and ultrasonic vibration bursts to form a metallurgical cold weld; thermocompression bonding--using a combination of pressure and elevated temperature to form a weld; and thermosonic bonding--using a combination of pressure, elevated temperature, and ultrasonic vibration bursts. The semiconductor chip may be oriented either face up or face down (with its active surface and bond pads either up or down with respect to the circuit board) for wire bonding, although face up orientation is more common. With TAB, ends of metal leads carried on an insulating tape, such as a polyamide, are respectively attached to the bond pads on the semiconductor chip and to the lead or trace ends on the printed circuit board. An encapsulant is generally used to cover the bond wires and metal tape leads to prevent contamination.

Higher performance, lower cost, increased miniaturization of components, and greater packaging density of integrated circuits are ongoing goals of the computer industry. As new generations of integrated circuit products are released, the number of devices used to fabricate them tends to decrease due to advances in technology even though the functionality of these products increases. For example, on the average, there is approximately a 10 percent decrease in components for every product generation over the previous generation with equivalent functionality.

In integrated circuit packaging, in addition to component reduction, surface mount technology has demonstrated an increase in semiconductor chip density on a single substrate or board despite the reduction of the number of components. This results in more compact designs and form factors and a significant increase in integrated circuit density. However, greater integrated circuit density is primarily limited by the space or "real estate" available for mounting dice on a substrate, such as a printed circuit board.

One method of further increasing integrated circuit density is to stack semiconductor dice vertically. U.S. Pat. No. 5,012,323, issued Apr. 30, 1991 to Farnworth, teaches combining a pair of dice mounted on opposing sides of a lead frame. An upper, smaller die is back-bonded to the upper surface of the leads of the lead frame via a first adhesively coated, insulated film layer. A lower, larger die is face-bonded to the lower lead frame die-bonding region via a second, adhesively coated, insulative film layer. The wirebonding pads on both upper die and lower die are interconnected with the ends of their associated lead extensions with gold or aluminum bond wires. The lower die must be slightly larger than the upper die such that the die pads are accessible from above through a bonding window in the lead frame such that gold wire connections can be made to the lead extensions. This arrangement has a major disadvantage from a production standpoint as the same size die cannot be used.

U.S. Pat. No. 5,291,061, issued Mar. 1, 1994 to Ball ("Ball"), teaches a multiple stacked dice device containing up to four stacked dice supported on a die-attach paddle of a lead frame, the assembly not exceeding the height of current single die packages, and wherein the bond pads of each die are wirebonded to lead fingers. The low profile of the device is achieved by close-tolerance stacking which is made possible by a low-loop-profile wirebonding operation and thin adhesive layers between the stacked dice. However, Ball requires long bond wires to electrically connect the stacked dice to the lead frame. These long bond wires increase resistance and may result in bond wire sweep during encapsulation. Also, Ball requires the use of spacers between the dice.

U.S. Pat. No. 5,323,060, issued Jun. 21, 1994 to Fogal et al. ("Fogal"), teaches a multi-chip module that contains stacked die devices, the terminals or bond pads of which are wirebonded to a substrate or to adjacent die devices. However, as discussed with Ball, Fogal requires long bond wires to electrically connect the stacked die bond pads to the substrate. Fogal also requires the use of spacers between the dice.

U.S. Pat. Nos. 5,422,435 and 5,495,398 to Takiar et al. ("Takiar"), teach stacked dice having bond wires extending to each other and to the leads of a carrier member such as a lead frame. However, Takiar also has the problem of long bond wires, as well as, requiring specific sized or custom designed dice to achieve a properly stacked combination.

U.S. Pat. No. 5,434,745, issued Jul. 18, 1995 to Shokrgozar et al. ("Shokrgozar"), discloses a stackable packaging module comprising a standard die attached to a substrate with a spacer frame placed on the substrate to surround the die. The substrate/die/spacer combinations are stacked one atop another to form a stacked assembly. The outer edge of the spacer frame has grooves in which a conductive epoxy is disposed. The conductive epoxy forms electric communication between the stacked layers and/or to the final substrate to which the stacked assembly is attached. However, Shokrgozar requires specialized spacer frames and a substantial number of assembly steps, both of which increase the cost of the final assembly.

U.S. Pat. No. 5,128,831, issued Jul. 7, 1992 to Fox, III et al. ("Fox"), also teaches a standard die attached to a substrate with a spacer frame placed on the substrate to surround the die. The stacked layers and/or the final substrate are in electric communication with conductive vias extending through the spacer frames. However, Fox also requires specialized spacer frames, numerous assembly steps, and is limited in its flexibility to utilize a variety of dice.

U.S. Pat. No. 5,513,076, issued Apr. 30, 1996 to Wether ("Wether"), teaches the use of interconnecting assemblies to connect integrated circuits in an integrated manner.

As has been illustrated, none of the cited prior art above uses or teaches flip chip manufacturing methods for attaching dice together in a stacked manner to form a stacked die assembly.

Therefore, it would be advantageous to develop a stacking technique and assembly for increasing integrated circuit density using a variety of non-customized die configurations in combination with commercially-available, widely-practiced semiconductor device fabrication techniques.

The present invention relates to a stacked multi-substrate device using combined flip chips and chip-on-board assembly techniques to achieve densely packaged semiconductor devices, and a method for making same. In this invention, multiple substrates are stacked atop one another. The substrates can include a plurality of semiconductor dice disposed on either surface of the substrates. The substrates can be structures of planar non-conductive material, such as fiberglass material used for PCBs, or may even be semiconductor dice. For the sake of clarity, the term "substrate", as used hereinafter, will be defined to include planar nonconductive materials and semiconductor dice. The substrates are preferably stacked atop one another by electric connections which are ball or column-like structures. Alternately, solder bumps or balls may be formed on the substrate. The electric connections achieve electric communication between the stacked substrates. The electric connections can be formed from industry standard solder forming techniques or from other known materials and techniques, such as conductive adhesives, Z-axis conductive material, flex-contacts, spring contacts, wire bonds, TAB tape, and the like. The electric connections must be of sufficient height to give clearance for the components mounted on the substrates and should be sufficiently strong enough to give support between the stacked substrates.

A preferred embodiment comprises a base substrate, having first and opposing surfaces, and means for electrical connection with external components or substrates, wherein the electrical connection means extends at least from the first surface of the base substrate. The base substrate opposing surface, the other side of the substrate, also includes a plurality of bond pads disposed thereon. Additionally, at least one semiconductor component may be attached to the opposing surface of the base substrate. The semiconductor components are preferably flip chips that are in electrical communication with electrical traces on or within the base substrate with any convenient known chip-on-board (COB) or direct-chip-attachment (DCA) technique (i.e., flip chip attachment, wirebonding, and TAB). Other techniques, such as the use of two-axis materials or conductive epoxies, can also be used for connections between either substrates or substrates and semiconductor chips. The electrical traces form a network of predetermined electrical connections between the base substrate electrical connection means, the base substrate bond pads, and/or the base substrate semiconductor components.

The preferred embodiment further comprises a stacked substrate. The stacked substrate has a first surface and an opposing surface. A plurality of bond pads may be disposed on the stacked substrate first surface and/or the stacked substrate opposing surface. At least one semiconductor component is attached to each of the stacked substrate first surface and the stacked substrate opposing surface. The semiconductor components are preferably flip chips which are in electrical communication with electrical traces on or within the first stacked substrate. The electrical traces form a network of predetermined electrical connections between the stacked substrate first surface bond pads, the stacked substrate opposing surface bond pads, and/or the stacked substrate semiconductor components.

The stacked substrate is attached to the base substrate through a plurality of electric connections. The electric connections can be column-like structures or spherical structures (balls) that support and form electrical communication between the base substrate bond pads and either the stacked substrate first surface bond pads or the stacked substrate opposing surface bond pads (depending upon which stacked substrate surface faces the base substrate first surface). The electric connections are preferably distributed evenly around a periphery of the base and stacked substrates. However, the electric connections may be of any distribution so long as adequate mechanical support exists between the base substrate and the stacked substrate.

In the manner discussed for the stacked substrate, additional stacked substrates may be attached to and stacked above the stacked substrate. Thus, with this technique, a multiple stacked substrate component may be formed. It is, of course, understood that the electrical connection means extending from the base substrate first surface for communication with an outside substrate may not be necessary if the multiple stacked substrate is in and of itself a complete component.

An alternative embodiment comprises substrates of varying size in a single assembly. The variable size substrate assembly is constructed in the manner discussed above. However, the variable size substrate assembly includes smaller sized substrates than the previously discussed base and stacked substrate. The smaller substrate is essentially identical to the previously discussed stacked substrate. The smaller substrate comprises a first surface and an opposing surface with a plurality of bond pads which may be disposed on the smaller substrate first surface and/or the smaller substrate opposing surface. At least one semiconductor component may be attached to the smaller substrate first surface and/or the smaller substrate opposing surface. The semiconductor components are in electrical communication with electrical traces on or within the first stacked substrate. The electrical traces form a network of predetermined electrical connections between the smaller substrate first surface bond pads, the smaller substrate opposing surface bond pads, and/or the smaller substrate semiconductor components.

The smaller substrate may be disposed between the base substrate and the stacked substrate. The smaller substrate is attached to either the base substrate or the stacked substrate through a plurality of electric connections. The electric connections form electrical communication between the base substrate bond pads and the smaller substrate bond pads or between the stacked substrate bond pads and the smaller substrate bond pads (depending upon whether the smaller substrate is attached to the base substrate or the stacked substrate). The smaller substrate may also be attached to the opposite surface of the stacked substrate and multiple smaller substrates may be attached in various positions on any substrate in the variable size substrate assembly.

Thus, the present invention offers the advantages of and achieves superior and improved electrical properties and speed of submodules and the entire module assembly, achieves higher density input/output configurations and locations (array), achieves higher density of devices or complexities of integrated circuits because of optimum input/output locations, results in improved thermal performance, allows easier repair and reusability, and allows easier modification of the package.

While the specification concludes with claims particularly pointing out and distinctly claiming that which is regarded as the present invention, the advantages of this invention can be more readily ascertained from the following description of the invention when read in conjunction with the accompanying drawings in which:

FIG. 1 is a side cross-sectional view of a first stacked assembly of the present invention;

FIG. 2 is a perspective view of a substrate of the present invention which has uniform periphery bond pads;

FIG. 3 is a perspective view of a substrate of the present invention which has non-uniform bond pads;

FIG. 4 is a side cross-sectional view of a variable stack size assembly of the present invention;

FIG. 5 is a perspective view of a variable stack size assembly of the present invention; and

FIG. 6 is a cross-sectional view of a variable stack size assembly of the present invention using flip chip bonding techniques.

FIG. 1 illustrates a first stacked assembly 100 of the present invention. The stacked assembly 100 comprises a base substrate 102 having a first surface 104 with a plurality of bond pads 106 disposed thereon and a second surface 108 with a plurality of bond pads 110 disposed thereon. Each of the base substrate first surface bond pads 106 is in electrical communication with its respective base substrate second surface bond pads 110 via a plurality of lead traces 112 extending through the base substrate 102. A plurality of electric connections 114 extends from the base substrate first surface bond pads 106. The base substrate electric connections 114 make contact with the other components or substrates.

The stacked assembly 100 further includes a first stacked substrate 116 having a first surface 118 with a plurality of bond pads 120 and a second surface 122 with a plurality of bond pads 124 disposed thereon. The first stacked substrate 116 is in electrical communication with the base substrate second surface 108 via a plurality of first electric connections 126. The first electric connections 126 extend between each first stacked substrate first surface bond pad 120 and its respective base substrate second surface bond pad 110. The bond pads of both the first stacked substrate 116 and base substrate 102 are preferably located such that each respective bond pad pair aligns perpendicularly.

A plurality of first semiconductor dice 128 each having a face side 130 and a back side 132 is attached to each of the first stacked substrate first surface 118 and the first stacked substrate second surface 122 with a first layer of adhesive 134 applied to the first semiconductor die back sides 132. The first semiconductor dice 128 are in electrical contact with a plurality of first stacked substrate electrical traces 136 via TAB bonds 138. The first stacked substrate electrical traces 136 extend in or on the first stacked substrate 116 and may contact the first stacked substrate first surface bond pad 120, the first stacked substrate second surface bond pad 124, and/or another first semiconductor die 128.

The stacked assembly 100 still further includes a second stacked substrate 140 having a first surface 142 with a plurality of bond pads 144 thereon and a second surface 146. The second stacked substrate 140 is in electrical communication with the first stacked substrate second surface 122 via a plurality of second electric connections 148. The second electric connections 148 extend between each second stacked substrate first surface bond pad 144 and its respective first stacked substrate second surface bond pad 124. The bond pads of both the second stacked substrate 140 and first stacked substrate 116 are preferably located such that each respective bond pad pair aligns perpendicularly.

A plurality of second semiconductor dice 150 each having a face side 152 and a back side 154 is attached to the second stacked substrate first surface 142 with a second layer of adhesive 156 applied to the second semiconductor die back sides 154. The second semiconductor dice 150 are in electrical contact with a plurality of second stacked substrate electrical traces 158 via wirebonds 160. A plurality of third semiconductor dice 162 each having a face side 164 is attached to the second stacked substrate second surface 146 with a plurality of flip chip contacts 166, such as BGA, PGA or the like. The flip chip contacts 166 are in electrical contact with the second stacked substrate electrical traces 158. The second stacked substrate electrical traces 158 extend in or on the second stacked substrate 140 and may contact the second stacked substrate first surface bond pads 144, the second semiconductor dice 150 and/or another third semiconductor die 162.

A flip chip dielectric material 168 may be disposed between the third semiconductor dice face side 164 and the second stacked substrate second surface 146. Additionally, a dielectric material 170 may be disposed between the base substrate 102 and the first stacked substrate 116, and/or the first stacked substrate 116 and the second stack substrate 140. Furthermore, an encapsulation material 172 may cover the stack dice portion of the stacked assembly 100.

It is, of course, understood that any available substrate surface, such as the base substrate second surface 108, may have semiconductor dice attached thereto.

FIG. 2 illustrates a substrate assembly 200 having a uniform bond pad arrangement, such as shown as the first surface 142 of the second stacked substrate 140 in FIG. 1. The substrate assembly 200 comprises a substrate 202 with a plurality of bond pads 204 distributed about a periphery 206 of a surface 208 of the substrate 202. A plurality of semiconductor dice 210 is disposed on the substrate surface 208 within the bond pads 204. The semiconductor dice 210 have a face side 212 and a back side 214. The semiconductor dice 210 are attached by an adhesive layer 216 applied to the semiconductor dice back side 214 and make electrical contact with the substrate surface 208 by a plurality of bond wires 218. Such an arrangement of bond pads 204 yields a strong, well-supported structure.

The distribution of the bond pads and the semiconductor dice need not be uniform, so long as the distribution allows adequate support between substrates. FIG. 3 illustrates a substrate assembly 300 having a non-uniform bond pad arrangement. The substrate assembly 300 comprises a substrate 302 with a plurality of bond pads 304 distributed in a non-uniform pattern across a surface 306 of the substrate 302. A plurality of semiconductor dice 308 is disposed on the substrate surface 306. The semiconductor dice 308 have a face side 310 and a back side 312. The semiconductor dice 308 are attached by an adhesive layer 314 applied to the semiconductor dice back side 312 and make electrical contact with the substrate surface 306 by a plurality of bond wires 316.

FIG. 4 illustrates a variable stack size assembly 400 of the present invention. The variable stack size assembly 400 comprises a first stacked substrate 402 having a surface 404 with a plurality of first bond pads 406 and second bond pads 408 disposed thereon. A plurality of first semiconductor dice 410 each having a face side 412 and a back side 414 is attached to the first stacked substrate surface 404 with a first layer of dielectric adhesive 416 applied to the first semiconductor die back sides 414. The first semiconductor dice 410 are in electric communication with a plurality of first stacked substrate electrical traces (not shown) via wirebonds 418.

The variable stack size assembly 400 further includes a first small stacked substrate 420 having a first surface 422 with a plurality of bond pads 424 disposed thereon and a second surface 426. The first small stacked substrate 420 is in electrical communication with the first stacked substrate surface 404 via a plurality of first small stacked substrate electric connections 428. The first small stacked substrate electric connections 428 extend between each first stacked substrate surface first bond pad 406 and its respective first small stacked substrate first surface bond pad 424. The bond pads of both the first stacked substrate 402 and first small stacked substrate 420 are preferably located such that each respective bond pad pair aligns perpendicularly. At least one second semiconductor die 430 having a face side 434 and a back side 432 is attached to the first small stacked substrate second surface 426 with a second layer of dielectric adhesive 436. The second semiconductor die 430 is in electric communication with a plurality of first small stacked substrate electrical traces (not shown) via wirebonds 438.

The variable stack size assembly 400 still further includes a second stacked substrate 440 having a first surface 442 with a plurality of bond pads 444 thereon and a second surface 446 with a plurality of bond pads 448. The second stacked substrate 440 is in electrical communication with the first stacked substrate surface 404 via a plurality of first electric connections 450. The first electric connections 450 extend between each second stacked substrate first surface bond pad 444 and its respective first stacked substrate second surface bond pad 408. The bond pads of both the second stacked substrate 440 and first stacked substrate 402 are preferably located such that each respective bond pad pair aligns perpendicularly.

A plurality of third semiconductor dice 452 each having a face side 454 and a back side 456 is attached to the second stacked substrate second surface 446 with a third layer of dielectric adhesive 458 applied to the third semiconductor die back sides 456. The third semiconductor dice 452 are in electric communication with a plurality of second stacked substrate electrical traces (not shown) via wirebonds 460.

The variable stack size assembly 400 still further includes a third stacked substrate 462 having a first surface 464 with a plurality of bond pads 466 thereon and a second surface 468 with a plurality of bond pads 470 thereon. The third stacked substrate 462 is in electrical communication with the second stacked substrate second surface 446 via a plurality of second electric connections 472. The second electric connections 472 extend between each third stacked substrate first surface bond pad 466 and its respective second stacked substrate second surface bond pad 448. The bond pads of both the third stacked substrate 462 and second stacked substrate 440 are preferably located such that each respective bond pad pair aligns perpendicularly.

A plurality of fourth semiconductor dice 474 each having a face side 476 and a back side 478 is attached to the third stacked substrate first surface 464 with a fourth layer of dielectric adhesive 480 applied to the fourth semiconductor die back sides 478. The fourth semiconductor dice 474 are in electrical contact with a plurality of third stacked substrate electrical traces (not shown) via wirebonds 482. A plurality of fifth semiconductor dice 484 each having a face side 486 and a back side 488 is attached to the third stacked substrate second surface 468 with a fifth layer of dielectric adhesive 490 applied to the fifth semiconductor die back sides 488. The fifth semiconductor dice 484 are in electric communication with a plurality of third stacked substrate electrical traces (not shown) via wirebonds 492.

The variable stack size assembly 400 further includes a second small stacked substrate 494 having a first surface 496 with a plurality of bond pads 498 disposed thereon and a second surface 500. The second small stacked substrate 494 is in electrical communication with the third substrate second surface 468 via a plurality of second small substrate electric connections 502. The second small substrate electric connections 502 extend between each second small stacked substrate first surface bond pad 498 and its respective third stacked substrate second surface bond pad 470. The bond pads of both the second small stacked substrate 494 and third stacked substrate 462 are preferably located such that each respective bond pad pair aligns perpendicularly. At least one sixth semiconductor die 504 having a face side 506 and a back side 508 is attached to the second small stacked substrate first surface 496 with a sixth layer of dielectric adhesive 510. The sixth semiconductor die 504 is in electric communication with a plurality of second small stacked substrate electrical traces (not shown) via wirebonds 512. At least one seventh semiconductor die 514 having a face side 516 and a back side 518 is attached to the second small stacked substrate second surface 500 with a seventh layer of dielectric adhesive 520. The seventh semiconductor die 514 is in electric communication with a plurality of second small stacked substrate electrical traces (not shown) via wirebonds 522. Although the electrical traces of the substrates have not been illustrated, it is understood that electrical traces make electrical connections in the same manner as described for FIG. 1.

FIG. 5 illustrates a substrate assembly 600 having a smaller substrate 602 on a larger substrate 604, such as shown as third stacked substrate 462 and second small stacked substrate 494 in FIG. 4. The substrate assembly 600 comprises the larger substrate 604 having a plurality of first semiconductor dice 606 and the smaller substrate 602 disposed on a surface 608 of the larger substrate 604. The first semiconductor dice 606 have a face side 612 and a back side 614. The first semiconductor dice 606 are attached by a first layer of adhesive 616 applied to the semiconductor dice back side 614 and make electrical contact with the substrate surface 608 by a plurality of first bond wires 618. The smaller substrate 602 has a first surface 620 and a second surface 622. The smaller substrate 602 has a plurality of electrical contacts 624 extending between a plurality of bond pads 626 on the smaller substrate first surface 620 and a plurality of bond pads 628 on the larger substrate surface 608. A plurality of second semiconductor dice 630 (only one shown) is disposed on the smaller substrate second surface 622. The second semiconductor dice 630 have a face side 634 and a back side 636. The second semiconductor dice 630 are attached by a second layer of adhesive 638 applied to the second semiconductor dice back side 636 and make electrical contact with the smaller substrate second surface 622 by a plurality of bond wires 640. Although the electrical traces of the smaller substrate have not been illustrated, it is understood that electrical traces make electrical connections in the same manner as described for FIG. 1.

FIG. 6 illustrates a substrate assembly 700 having a plurality of semiconductor devices mounted on substrates using known flip chip attachment techniques. The substrate assembly 700 comprises a first substrate 704 having a plurality of first semiconductor dice 702 disposed thereon and a second substrate 708 having a plurality of second semiconductor dice 706 disposed thereon. The first semiconductor dice 702 each have a surface or face side 710 having a plurality of bond pads (not shown) thereon and a back side 712. The first semiconductor dice 702 make electrical contact with the traces (not shown) on the first substrate surface 714 by a plurality of first conductive material balls 716 extending between the bond pads (not shown) on the face surface 710 of the dice 702 and the traces (not shown) on the first substrate surface 714. The balls 716 may be made of any suitable conductive material to connect the semiconductor dice 702 to the conductive traces on first substrate 704, such as solder, conductive epoxy, etc. The balls 716 are shown as generally spherical in shape, although they may be any suitable geometric shape and size for bonding purposes. Further, z-axis connectors may be substituted for the balls 716 if so desired. The second substrate 708 has a surface 718 having a plurality of conductive traces (not shown) thereon. The second plurality of semiconductor dice 706 each have a face side 720 having a plurality of bond pads (not shown) thereon and a back side 722. The second plurality of semiconductor dice 706 make electrical contact with the second substrate surface 718 by a plurality of second conductive material balls 724 extending between the bond pads of the dice 706 and the conductive traces on the second substrate surface 718. The balls 724 may be made of any suitable conductive material to connect the semiconductor dice 706 to the conductive traces on second substrate 708, such as solder, conductive epoxy, etc. The balls 724 are shown as generally spherical in shape, although they may be any suitable geometric shape and size for bonding purposes. Further, z-axis connectors may be substituted for balls 724 if so desired. The desired conductive traces on the surface 714 of the first substrate 704 are connected to the desired conductive traces on the surface 718 of the second substrate 708 by larger conductive balls 726. The larger conductive balls 726 may be of any suitable conductive material, such as solder, conductive epoxy, etc. The larger conductive balls are also used for connecting the surface 728 of the first substrate 704 to any other desired substrate. Further, z-axis connectors may be substituted for balls 726 if so desired. It should be understood that the conductive traces which have only been referred to on the surfaces 714 and 718 of the substrates may be formed on either side of the first substrate 704 or the second substrate 708 and, as such, have not been illustrated. Also, any connectors extending through the first substrate 704 and second substrate 708 for connection purposes have not been shown. Similarly, the bond pads on the first semiconductor dice 702 and second semiconductor dice 706 have not been illustrated. The first semiconductor dice 702 are attached to the first substrate 704 and the second semiconductor dice 706 are attached to the second substrate 708 by well known flip chip bonding techniques, depending upon the type of conductive balls 716 and 724 used for connection purposes.

FIGS. 4, 5 and 6, as shown, illustrate complete electrical components. As an example, the smaller stacked substrates (i.e., first small stacked substrate 420 and second small stacked substrate 494 of FIG. 4, and smaller substrate 602 of FIG. 5) could be memory modules containing a plurality of memory chips. These smaller stacked substrates or semiconductor devices are connected to the larger substrates (i.e., first stacked substrate 402 and third stacked substrate 462 of FIG. 4, larger substrate 604 of FIG. 5 or first semiconductor dice 702 stacked on first substrate 704 and second semiconductor devices 706 stacked on second substrate 708 of FIG. 6), which could be the motherboard portions with control logic circuits and a central processing unit(s). Thus, the combination of these example components could constitute a complete component. However, it is, of course, understood that the embodiments shown in FIGS. 4, 5 and 6 could include electric connections (such as electric connections 114 of FIG. 1) to connect to other components or other substrates.

Having thus described in detail preferred embodiments of the present invention, it is to be understood that the invention defined by the appended claims is not to be limited by particular details set forth in the above description as many apparent variations thereof are possible without departing from the spirit or scope thereof.

Akram, Salman, Brooks, Jerry M.

Patent Priority Assignee Title
10014240, Mar 29 2012 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Embedded component package and fabrication method
10090228, Mar 06 2012 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor device with leadframe configured to facilitate reduced burr formation
10217702, Jun 21 2012 JCET SEMICONDUCTOR SHAOXING CO , LTD Semiconductor device and method of forming an embedded SoP fan-out package
10410967, Nov 29 2011 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Electronic device comprising a conductive pad on a protruding-through electrode
10546833, Dec 07 2009 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Method of forming a plurality of electronic component packages
10665567, Nov 08 2002 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Wafer level package and fabrication method
10811341, Jan 05 2009 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor device with through-mold via
11043458, Nov 29 2011 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Method of manufacturing an electronic device comprising a conductive pad on a protruding-through electrode
11869829, Jan 05 2009 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE. LTD. Semiconductor device with through-mold via
6686656, Jan 13 2003 Kingston Technology Corporation Integrated multi-chip chip scale package
6714418, Nov 02 2001 Polaris Innovations Limited Method for producing an electronic component having a plurality of chips that are stacked one above the other and contact-connected to one another
6744126, Jan 09 2002 Bridge Semiconductor Corporation Multichip semiconductor package device
6828665, Oct 18 2002 Siliconware Precision Industries Co., Ltd. Module device of stacked semiconductor packages and method for fabricating the same
6844615, Mar 13 2003 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Leadframe package for semiconductor devices
6900545, Jun 25 1999 International Business Machines Corporation Variable thickness pads on a substrate surface
6953988, Mar 25 2000 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor package
6965157, Nov 09 1999 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor package with exposed die pad and body-locking leadframe
6979895, Mar 10 1997 Micron Technology, Inc. Semiconductor assembly of stacked substrates and multiple semiconductor dice
6995459, Sep 09 2002 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor package with increased number of input and output pins
7001799, Mar 13 2003 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Method of making a leadframe for semiconductor devices
7005326, Jun 24 1998 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Method of making an integrated circuit package
7009244, Jul 02 2003 INTEGRATED MEMORY TECHNOLOGIES, INC Scalable flash EEPROM memory cell with notched floating gate and graded source region
7030474, Jun 24 1998 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Plastic integrated circuit package and method and leadframe for making the package
7045882, Dec 29 2000 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor package including flip chip
7045883, Apr 04 2001 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Thermally enhanced chip scale lead on chip semiconductor package and method of making same
7057268, Jan 27 2004 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Cavity case with clip/plug for use on multi-media card
7064009, Apr 04 2001 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Thermally enhanced chip scale lead on chip semiconductor package and method of making same
7067908, Oct 15 1999 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor package having improved adhesiveness and ground bonding
7071541, Jun 24 1998 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Plastic integrated circuit package and method and leadframe for making the package
7087989, May 30 2003 Seiko Epson Corporation Semiconductor device, electronic device, electronic apparatus, and method of manufacturing semiconductor device
7091594, Jan 28 2004 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Leadframe type semiconductor package having reduced inductance and its manufacturing method
7112474, Jun 24 1998 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Method of making an integrated circuit package
7115445, Oct 15 1999 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor package having reduced thickness
7115998, Aug 29 2002 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Multi-component integrated circuit contacts
7170150, Mar 27 2001 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Lead frame for semiconductor package
7176062, Sep 19 2001 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Lead-frame method and assembly for interconnecting circuits within a circuit module
7180165, Sep 05 2003 Sanmina-SCI Corporation Stackable electronic assembly
7190062, Jun 15 2004 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Embedded leadframe semiconductor package
7192807, Nov 08 2002 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Wafer level package and fabrication method
7199424, Jul 02 2003 Integrated Memory Technologies, Inc. Scalable flash EEPROM memory cell with notched floating gate and graded source region
7202554, Aug 19 2004 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor package and its manufacturing method
7211471, Sep 09 2002 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Exposed lead QFP package fabricated through the use of a partial saw process
7214326, Nov 07 2003 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Increased capacity leadframe and semiconductor package using the same
7217991, Oct 22 2004 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Fan-in leadframe semiconductor package
7235870, Dec 30 2004 Intel Corporation Microelectronic multi-chip module
7247523, Nov 08 2002 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Two-sided wafer escape package
7253503, Nov 05 1999 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Integrated circuit device packages and substrates for making the packages
7253511, Jul 13 2004 STATS CHIPPAC PTE LTE ; STATS CHIPPAC PTE LTD Semiconductor multipackage module including die and inverted land grid array package stacked over ball grid array package
7279361, Sep 17 2002 STATS CHIPPAC PTE LTE Method for making a semiconductor multi-package module having wire bond interconnect between stacked packages
7321162, Oct 15 1999 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor package having reduced thickness
7332375, Jun 24 1998 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Method of making an integrated circuit package
7351610, Oct 08 2002 STATS CHIPPAC PTE LTE Method of fabricating a semiconductor multi-package module having a second package substrate with an exposed metal layer wire bonded to a first package substrate
7358115, Oct 08 2002 ChipPAC, Inc. Method of fabricating a semiconductor assembly including chip scale package and second substrate with exposed substrate surfaces on upper and lower sides
7361533, Nov 08 2002 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Stacked embedded leadframe
7364946, Oct 08 2002 STATS CHIPPAC PTE LTE ; STATS CHIPPAC PTE LTD Method of fabricating a semiconductor multi-package module having inverted land grid array (LGA) package stacked over ball grid array (BGA) package
7372141, Mar 31 2005 STATS CHIPPAC PTE LTE Semiconductor stacked package assembly having exposed substrate surfaces on upper and lower sides
7394148, Jun 20 2005 STATS CHIPPAC PTE LTE Module having stacked chip scale semiconductor packages
7407857, Jul 02 2003 Integrated Memory Technologies, Inc. Method of making a scalable flash EEPROM memory cell with notched floating gate and graded source region
7420272, Nov 08 2002 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Two-sided wafer escape package
7429786, Apr 29 2005 STATS CHIPPAC PTE LTE Semiconductor package including second substrate and having exposed substrate surfaces on upper and lower sides
7429787, Mar 31 2005 STATS CHIPPAC PTE LTE Semiconductor assembly including chip scale package and second substrate with exposed surfaces on upper and lower sides
7436061, May 30 2003 138 EAST LCD ADVANCEMENTS LIMITED Semiconductor device, electronic device, electronic apparatus, and method of manufacturing semiconductor device
7446028, Aug 29 2002 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Multi-component integrated circuit contacts
7473584, Oct 22 2004 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Method for fabricating a fan-in leadframe semiconductor package
7507603, Dec 02 2005 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Etch singulated semiconductor package
7521294, Mar 27 2001 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Lead frame for semiconductor package
7535085, Oct 15 1999 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor package having improved adhesiveness and ground bonding
7550834, Jun 29 2006 SanDisk Technologies LLC Stacked, interconnected semiconductor packages
7560804, Jun 24 1998 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Integrated circuit package and method of making the same
7564122, Nov 20 1998 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor package and method of making using leadframe having lead locks to secure leads to encapsulant
7572681, Dec 08 2005 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Embedded electronic component package
7573128, May 06 2003 Longitude Licensing Limited Semiconductor module in which a semiconductor package is bonded on a mount substrate
7582960, May 05 2005 STATS CHIPPAC PTE LTE Multiple chip package module including die stacked over encapsulated package
7598598, Feb 05 2003 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Offset etched corner leads for semiconductor package
7615409, Jun 29 2006 SanDisk Technologies LLC Method of stacking and interconnecting semiconductor packages via electrical connectors extending between adjoining semiconductor packages
7622325, Oct 29 2005 STATS CHIPPAC PTE LTE Integrated circuit package system including high-density small footprint system-in-package
7645634, Jun 20 2005 STATS CHIPPAC PTE LTE Method of fabricating module having stacked chip scale semiconductor packages
7652376, Jan 04 2006 STATS CHIPPAC PTE LTE Integrated circuit package system including stacked die
7663232, Mar 07 2006 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Elongated fasteners for securing together electronic components and substrates, semiconductor device assemblies including such fasteners, and accompanying systems
7682873, Sep 17 2002 STATS CHIPPAC PTE LTE Semiconductor multi-package module having package stacked over die-down flip chip ball grid array package and having wire bond interconnect between stacked packages
7687313, Oct 08 2002 STATS CHIPPAC PTE LTE Method of fabricating a semiconductor multi package module having an inverted package stacked over ball grid array (BGA) package
7687315, Apr 29 2005 STATS CHIPPAC PTE LTE Stacked integrated circuit package system and method of manufacture therefor
7687893, Dec 27 2006 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor package having leadframe with exposed anchor pads
7687899, Aug 07 2007 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Dual laminate package structure with embedded elements
7692279, Jul 13 2004 STATS CHIPPAC PTE LTE ; STATS CHIPPAC PTE LTD Semiconductor multipackage module including die and inverted land grid array package stacked over ball grid array package
7692286, Nov 08 2002 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Two-sided fan-out wafer escape package
7714431, Nov 08 2002 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Electronic component package comprising fan-out and fan-in traces
7719120, Aug 29 2002 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Multi-component integrated circuit contacts
7723210, Nov 29 2005 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Direct-write wafer level chip scale package
7723852, Jan 21 2008 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Stacked semiconductor package and method of making same
7729131, Jan 05 2007 Apple Inc.; Apple Inc Multiple circuit board arrangements in electronic devices
7732899, Dec 02 2005 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Etch singulated semiconductor package
7749807, Apr 04 2003 STATS CHIPPAC PTE LTE Method of fabricating a semiconductor multipackage module including a processor and memory package assemblies
7750482, Feb 09 2006 STATS CHIPPAC PTE LTE Integrated circuit package system including zero fillet resin
7768125, Jan 04 2006 STATS CHIPPAC PTE LTE ; STATS CHIPPAC PTE LTD Multi-chip package system
7768135, Apr 17 2008 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor package with fast power-up cycle and method of making same
7777351, Oct 01 2007 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Thin stacked interposer package
7808084, May 06 2008 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor package with half-etched locking features
7829382, Jul 13 2004 STATS ChipPAC Ltd Method for making semiconductor multipackage module including die and inverted land grid array package stacked over ball grid array package
7829990, Jan 18 2007 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Stackable semiconductor package including laminate interposer
7847386, Nov 05 2007 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Reduced size stacked semiconductor package and method of making the same
7847392, Sep 30 2008 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor device including leadframe with increased I/O
7855100, Mar 31 2005 STATS CHIPPAC PTE LTE ; STATS CHIPPAC PTE LTD Integrated circuit package system with an encapsulant cavity and method of fabrication thereof
7872343, Aug 07 2007 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Dual laminate package structure with embedded elements
7875963, Nov 21 2008 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor device including leadframe having power bars and increased I/O
7902660, May 24 2006 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Substrate for semiconductor device and manufacturing method thereof
7906855, Jan 21 2008 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Stacked semiconductor package and method of making same
7928542, Mar 27 2001 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Lead frame for semiconductor package
7932595, Nov 08 2002 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Electronic component package comprising fan-out traces
7935572, Sep 17 2002 STATS CHIPPAC PTE LTE Semiconductor multi-package module having package stacked over die-up flip chip ball grid array package and having wire bond interconnect between stacked packages
7952204, Apr 14 2008 Semiconductor Components Industries, LLC Semiconductor die packages with multiple integrated substrates, systems using the same, and methods using the same
7956453, Jan 16 2008 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor package with patterning layer and method of making same
7960818, Mar 04 2009 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Conformal shield on punch QFN semiconductor package
7968998, Jun 21 2006 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Side leaded, bottom exposed pad and bottom exposed lead fusion quad flat semiconductor package
7977163, Dec 08 2005 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Embedded electronic component package fabrication method
7977774, Jul 10 2007 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Fusion quad flat semiconductor package
7982297, Mar 06 2007 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Stackable semiconductor package having partially exposed semiconductor die and method of fabricating the same
7982298, Dec 03 2008 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Package in package semiconductor device
7989933, Oct 06 2008 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Increased I/O leadframe and semiconductor device including same
8008758, Oct 27 2008 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor device with increased I/O leadframe
8021924, Mar 31 2005 STATS CHIPPAC PTE LTE ; STATS CHIPPAC PTE LTD Encapsulant cavity integrated circuit package system and method of fabrication thereof
8026129, Mar 10 2006 STATS CHIPPAC PTE LTE ; STATS CHIPPAC PTE LTD Stacked integrated circuits package system with passive components
8026589, Feb 23 2009 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Reduced profile stackable semiconductor package
8030134, May 24 2004 STATS CHIPPAC PTE LTE Stacked semiconductor package having adhesive/spacer structure and insulation
8053276, Jun 29 2006 SanDisk Technologies LLC Method of stacking and interconnecting semiconductor packages via electrical connectors extending between adjoining semiconductor packages
8053880, Jun 29 2006 SanDisk Technologies LLC Stacked, interconnected semiconductor package
8058715, Jan 09 2009 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Package in package device for RF transceiver module
8067821, Apr 10 2008 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Flat semiconductor package with half package molding
8072050, Nov 18 2008 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor device with increased I/O leadframe including passive device
8084868, Apr 17 2008 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor package with fast power-up cycle and method of making same
8089141, Dec 27 2006 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor package having leadframe with exposed anchor pads
8089145, Nov 17 2008 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor device including increased capacity leadframe
8089159, Oct 03 2007 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor package with increased I/O density and method of making the same
8102037, Mar 27 2001 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Leadframe for semiconductor package
8106491, May 16 2007 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Methods of forming stacked semiconductor devices with a leadframe and associated assemblies
8110439, Jun 29 2006 SanDisk Technologies LLC Method of stacking and interconnecting semiconductor packages via electrical connectors extending between adjoining semiconductor packages
8119455, Nov 08 2002 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Wafer level package fabrication method
8124456, Mar 07 2006 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Methods for securing semiconductor devices using elongated fasteners
8125064, Jul 28 2008 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Increased I/O semiconductor package and method of making same
8143100, Sep 17 2002 STATS CHIPPAC PTE LTE Method of fabricating a semiconductor multi-package module having wire bond interconnect between stacked packages
8184453, Jul 31 2008 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Increased capacity semiconductor package
8188579, Nov 21 2008 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor device including leadframe having power bars and increased I/O
8188584, Nov 26 2005 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Direct-write wafer level chip scale package
8227921, Oct 03 2007 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor package with increased I/O density and method of making same
8268715, Aug 29 2002 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Multi-component integrated circuit contacts
8283767, Aug 07 2007 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Dual laminate package structure with embedded elements
8294276, May 27 2010 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor device and fabricating method thereof
8298866, Nov 08 2002 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Wafer level package and fabrication method
8299602, Sep 30 2008 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor device including leadframe with increased I/O
8304866, Jul 10 2007 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Fusion quad flat semiconductor package
8309397, Mar 31 2005 STATS CHIPPAC PTE LTE ; STATS CHIPPAC PTE LTD Integrated circuit packaging system with a component in an encapsulant cavity and method of fabrication thereof
8318287, Jun 24 1998 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Integrated circuit package and method of making the same
8319338, Oct 01 2007 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Thin stacked interposer package
8324511, Apr 06 2010 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Through via nub reveal method and structure
8390130, Jan 06 2011 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Through via recessed reveal structure and method
8410585, Apr 27 2000 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Leadframe and semiconductor package made using the leadframe
8432023, Oct 06 2008 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Increased I/O leadframe and semiconductor device including same
8440554, Aug 02 2010 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Through via connected backside embedded circuit features structure and method
8441110, Jun 21 2006 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Side leaded, bottom exposed pad and bottom exposed lead fusion quad flat semiconductor package
8445997, May 16 2007 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Stacked packaged integrated circuit devices
8486764, Nov 08 2002 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Wafer level package and fabrication method
8487420, Dec 08 2008 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Package in package semiconductor device with film over wire
8487445, Oct 05 2010 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor device having through electrodes protruding from dielectric layer
8501543, Nov 29 2005 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Direct-write wafer level chip scale package
8552548, Nov 29 2011 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Conductive pad on protruding through electrode semiconductor device
8552551, May 24 2004 STATS CHIPPAC PTE LTE Adhesive/spacer island structure for stacking over wire bonded die
8558365, Jan 09 2009 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Package in package device for RF transceiver module
8575742, Apr 06 2009 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor device with increased I/O leadframe including power bars
8618654, Jul 20 2010 MARVELL INTERNATIONAL LTD; CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD Structures embedded within core material and methods of manufacturing thereof
8623704, May 24 2004 STATS CHIPPAC PTE LTE Adhesive/spacer island structure for multiple die package
8648450, Jan 27 2011 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor device including leadframe with a combination of leads and lands
8664755, Jul 04 2011 Samsung Electro-Mechanics Co., Ltd Power module package and method for manufacturing the same
8674485, Dec 08 2010 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor device including leadframe with downsets
8680656, Jan 05 2009 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Leadframe structure for concentrated photovoltaic receiver package
8691632, Nov 08 2002 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Wafer level package and fabrication method
8704349, Feb 14 2006 STATS CHIPPAC PTE LTE ; STATS CHIPPAC PTE LTD Integrated circuit package system with exposed interconnects
8710649, Nov 08 2002 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Wafer level package and fabrication method
8729682, Mar 04 2009 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Conformal shield on punch QFN semiconductor package
8729710, Jan 16 2008 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor package with patterning layer and method of making same
8791501, Dec 03 2010 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Integrated passive device structure and method
8796561, Oct 05 2009 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Fan out build up substrate stackable package and method
8823152, Oct 27 2008 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor device with increased I/O leadframe
8853836, Jun 24 1998 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Integrated circuit package and method of making the same
8900995, Oct 05 2010 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor device and manufacturing method thereof
8937381, Dec 03 2009 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Thin stackable package and method
8952522, Nov 08 2002 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Wafer level package and fabrication method
8963301, Jun 24 1998 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Integrated circuit package and method of making the same
8963302, May 16 2007 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Stacked packaged integrated circuit devices, and methods of making same
8970049, Dec 17 2003 STATS CHIPPAC PTE LTE Multiple chip package module having inverted package stacked over die
8981572, Nov 29 2011 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Conductive pad on protruding through electrode semiconductor device
9048298, Mar 29 2012 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Backside warpage control structure and fabrication method
9054117, Nov 08 2002 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Wafer level package and fabrication method
9082833, Jan 06 2011 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Through via recessed reveal structure and method
9087835, Mar 18 2010 MARVELL INTERNATIONAL LTD; CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD Structures embedded within core material and methods of manufacturing thereof
9129943, Mar 29 2012 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Embedded component package and fabrication method
9159672, Aug 02 2010 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Through via connected backside embedded circuit features structure and method
9184118, May 02 2013 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Micro lead frame structure having reinforcing portions and method
9184148, Oct 24 2013 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor package and method therefor
9224676, Jun 24 1998 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Integrated circuit package and method of making the same
9275939, Jan 27 2011 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor device including leadframe with a combination of leads and lands and method
9324614, Apr 06 2010 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Through via nub reveal method and structure
9337162, Aug 29 2002 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Multi-component integrated circuit contacts
9362210, Apr 27 2000 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Leadframe and semiconductor package made using the leadframe
9362260, May 16 2007 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Stacked packaged integrated circuit devices, and methods of making same
9406645, Nov 08 2002 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Wafer level package and fabrication method
9431323, Nov 29 2011 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Conductive pad on protruding through electrode
9508631, Jan 27 2011 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor device including leadframe with a combination of leads and lands and method
9543235, Oct 22 2014 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor package and method therefor
9631481, Jan 27 2011 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor device including leadframe with a combination of leads and lands and method
9646922, Jan 13 2012 Taiwan Semiconductor Manufacturing Company, Ltd. Methods and apparatus for thinner package on package structures
9673122, May 02 2014 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Micro lead frame structure having reinforcing portions and method
9691734, Dec 07 2009 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Method of forming a plurality of electronic component packages
9704725, Mar 06 2012 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor device with leadframe configured to facilitate reduced burr formation
9704819, Mar 29 2016 Hong Kong Applied Science and Technology Research Institute Co. Ltd.; HONG KONG APPLIED SCIENCE AND TECHNOLOGY RESEARCH INSTITUTE CO LTD Three dimensional fully molded power electronics module having a plurality of spacers for high power applications
9871015, Nov 08 2002 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Wafer level package and fabrication method
9947623, Nov 29 2011 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor device comprising a conductive pad on a protruding-through electrode
9978695, Jan 27 2011 AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD Semiconductor device including leadframe with a combination of leads and lands and method
RE42363, Sep 05 2003 SANMINA CORPORATION Stackable electronic assembly
Patent Priority Assignee Title
4954878, Jun 29 1989 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Method of packaging and powering integrated circuit chips and the chip assembly formed thereby
5099306, Nov 21 1988 SAMSUNG ELECTRONICS CO , LTD , A CORP KOREA; SAMSUNG ELECTRONICS CO , LTD Stacked tab leadframe assembly
5109320, Dec 24 1990 Micron Technology, Inc System for connecting integrated circuit dies to a printed wiring board
5128831, Oct 31 1991 Micron Technology, Inc. High-density electronic package comprising stacked sub-modules which are electrically interconnected by solder-filled vias
5222014, Mar 02 1992 Freescale Semiconductor, Inc Three-dimensional multi-chip pad array carrier
5239198, Sep 06 1989 Freescale Semiconductor, Inc Overmolded semiconductor device having solder ball and edge lead connective structure
5252857, Aug 05 1991 International Business Machines Corporation Stacked DCA memory chips
5291061, Apr 06 1993 Round Rock Research, LLC Multi-chip stacked devices
5300801, Mar 18 1992 Micron Technology, Inc. Stacked capacitor construction
5323060, Jun 02 1993 Round Rock Research, LLC Multichip module having a stacked chip arrangement
5403784, Sep 03 1991 Stovokor Technology LLC Process for manufacturing a stacked multiple leadframe semiconductor package using an alignment template
5422435, May 22 1992 National Semiconductor Corporation Stacked multi-chip modules and method of manufacturing
5434745, Jul 26 1994 White Microelectronics Div. of Bowmar Instrument Corp. Stacked silicon die carrier assembly
5466627, Mar 18 1994 United Microelectronics Corporation Stacked capacitor process using BPSG precipitates
5473814, Jan 07 1994 GLOBALFOUNDRIES Inc Process for surface mounting flip chip carrier modules
5477082, Jan 11 1994 SAMSUNG ELECTRONICS CO , LTD Bi-planar multi-chip module
5481134, May 03 1994 Hughes Aircraft Company Stacked high density interconnected integrated circuit system
5494841, Oct 15 1993 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Split-polysilicon CMOS process for multi-megabit dynamic memories incorporating stacked container capacitor cells
5495398, May 22 1992 National Semiconductor Corporation Stacked multi-chip modules and method of manufacturing
5496775, Jul 15 1992 Micron Technology, Inc Semiconductor device having ball-bonded pads
5498902, Aug 25 1993 Seiko Epson Corporation Semiconductor device and its manufacturing method
5498905, Aug 26 1994 Hughes Aircraft Company Layered features for co-fired module integration
5506756, Jan 25 1994 Intel Corporation Tape BGA package die-up/die down
5508565, Dec 18 1992 Fujitsu Semiconductor Limited Semiconductor device having a plurality of chips having identical circuit arrangement sealed in package
5512765, Feb 03 1994 National Semiconductor Corporation Extendable circuit architecture
5512780, Sep 09 1994 Sun Microsystems, Inc. Inorganic chip-to-package interconnection circuit
5513076, Dec 30 1992 Interconnect Systems, Inc. Multi-level assemblies for interconnecting integrated circuits
5535101, Nov 03 1992 NXP, B V F K A FREESCALE SEMICONDUCTOR, INC Leadless integrated circuit package
5594275, Nov 18 1993 SAMSUG ELECTRONICS CO , LTD J-leaded semiconductor package having a plurality of stacked ball grid array packages
5612576, Oct 13 1992 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Self-opening vent hole in an overmolded semiconductor device
5639696, Jan 31 1996 Bell Semiconductor, LLC Microelectronic integrated circuit mounted on circuit board with solder column grid array interconnection, and method of fabricating the solder column grid array
5705858, Apr 14 1993 NEC Corporation Packaging structure for a hermetically sealed flip chip semiconductor device
5715144, Dec 30 1994 International Business Machines Corporation Multi-layer, multi-chip pyramid and circuit board structure
5728606, Jan 25 1995 International Business Machines Corporation Electronic Package
5729440, May 25 1995 International Business Machines Corporation Solder hierarchy for chip attachment to substrates
6051878, Mar 10 1997 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Method of constructing stacked packages
6222265, Jan 19 1999 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Method of constructing stacked packages
6404044, Mar 10 1997 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Semiconductor package with stacked substrates and multiple semiconductor dice
//////
Executed onAssignorAssigneeConveyanceFrameReelDoc
May 02 2002Micron Technology, Inc.(assignment on the face of the patent)
Apr 26 2016Micron Technology, IncU S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0386690001 pdf
Apr 26 2016Micron Technology, IncMORGAN STANLEY SENIOR FUNDING, INC , AS COLLATERAL AGENTPATENT SECURITY AGREEMENT0389540001 pdf
Apr 26 2016Micron Technology, IncU S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENTCORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001 ASSIGNOR S HEREBY CONFIRMS THE SECURITY INTEREST 0430790001 pdf
Jun 29 2018U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENTMicron Technology, IncRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0472430001 pdf
Jul 31 2019MORGAN STANLEY SENIOR FUNDING, INC , AS COLLATERAL AGENTMicron Technology, IncRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0509370001 pdf
Date Maintenance Fee Events
Mar 07 2003ASPN: Payor Number Assigned.
Dec 01 2006M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Nov 24 2010M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Dec 03 2014M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Jun 24 20064 years fee payment window open
Dec 24 20066 months grace period start (w surcharge)
Jun 24 2007patent expiry (for year 4)
Jun 24 20092 years to revive unintentionally abandoned end. (for year 4)
Jun 24 20108 years fee payment window open
Dec 24 20106 months grace period start (w surcharge)
Jun 24 2011patent expiry (for year 8)
Jun 24 20132 years to revive unintentionally abandoned end. (for year 8)
Jun 24 201412 years fee payment window open
Dec 24 20146 months grace period start (w surcharge)
Jun 24 2015patent expiry (for year 12)
Jun 24 20172 years to revive unintentionally abandoned end. (for year 12)