Some embodiments include cross-point memory structures. The structures may include a line of first electrode material extending along a first horizontal direction, a multi-sided container of access device materials over the first electrode material, a memory element material within the multi-sided container, and a line of second electrode material over the memory element material and extending along a second horizontal direction that is orthogonal to the first horizontal direction. Some embodiments include methods of forming memory arrays. The methods may include forming a memory cell stack over a first electrode material, and then patterning the first electrode material and the memory cell stack into a first set of spaced lines extending along a first horizontal direction. spaced lines of second electrode material may be formed over the first set of spaced lines, and may extend along a second horizontal direction that is orthogonal to the first horizontal direction.

Patent
   8021897
Priority
Feb 19 2009
Filed
Feb 19 2009
Issued
Sep 20 2011
Expiry
Dec 05 2029
Extension
289 days
Assg.orig
Entity
Large
139
31
all paid
1. A method of forming a memory array, comprising:
forming first electrode material over a base;
forming a memory cell stack over the first electrode material; the memory cell stack including, in ascending order from the first electrode material, a first insulator material, at least one additional insulator material, an electrically conductive material, and memory element material;
patterning the first electrode material and the memory cell stack into a first set of spaced lines extending primarily along a first horizontal direction;
forming dielectric material between the spaced lines of the first set;
forming spaced lines of second electrode material over the first set of spaced lines and over the dielectric material, the lines of second electrode material being a second set of spaced lines and extending primarily along a second horizontal direction that is orthogonal to the first horizontal direction; and
removing memory element material and electrically conductive material of the memory cell stack from regions between the lines of the second set to leave an array of memory unit cells, individual memory unit cells comprising the memory cell stack between the first electrode material and the second electrode material.
16. A method of forming a memory array, comprising:
forming a substrate to comprise a plurality of spaced apart lines of first electrode material, and to comprise trenches directly over the spaced apart lines and in one-to-one correspondence with the spaced apart lines; the trenches and the lines of first electrode material extending along a first horizontal direction;
forming access device materials within the trenches to partially fill the trenches and thereby narrow the trenches, the access device materials including an electrically conductive metal-containing material and at least two insulative materials, the insulative materials being between the electrically conductive metal-containing material and the first electrode material;
forming memory element material within the narrowed trenches, the memory element material forming a plug that extends into the access device materials, and the access device materials extending along a bottom and two sides of the memory element plug, the memory element material being configured as a plurality of spaced apart lines in one-to-one correspondence with the trenches;
forming second electrode material over the memory element material lines and over regions between the spaced apart memory element lines;
forming a patterned mask over the second electrode material, the patterned mask comprising a plurality of spaced apart lines, the spaced apart lines of the patterned mask extending along a second horizontal direction that is orthogonal to the first horizontal direction of the lines of first electrode material; and
transferring a pattern from the patterned mask through the second electrode material, through the memory element material and through the access device materials to thereby pattern the access device materials and memory element material into array of memory cells, and to pattern the second electrode material into top electrode lines extending over the memory cells and orthogonally to the lines of first electrode material.
21. A method of forming a memory array, comprising:
forming a substrate to comprise a plurality of spaced apart lines of first electrode material, and to comprise a plurality of polygonal openings directly over the lines of first electrode material; the polygonal openings being in many-to-one correspondence with the lines of first electrode material; the lines of first electrode material extending along a first horizontal direction;
forming access device materials within the openings to partially fill the openings and thereby narrow the openings, the access device materials including an electrically conductive metal-containing material and at least two insulative materials, the insulative materials being between the electrically conductive metal-containing material and the first electrode material;
forming memory element material within the narrowed openings, the memory element material within each individual opening forming a plug that extends into the access device materials, and the access device materials within each individual opening extending along a bottom of a memory element plug and around three or more sides of the memory element plug, the memory element material being configured as a plurality of spaced apart structures in one-to-one correspondence with the openings;
forming second electrode material over the memory element material structures and over regions between the spaced apart memory element structures;
forming a patterned mask over the second electrode material, the patterned mask comprising a plurality of spaced apart lines, the spaced apart lines of the patterned mask extending along a second horizontal direction that is orthogonal to the first horizontal direction of the lines of first electrode material; and
transferring a pattern from the patterned mask through the second electrode material to pattern the second electrode material into top electrode lines extending over the memory element material and orthogonally to the lines of first electrode material.
2. The method of claim 1 wherein the removing of the memory element material and the electrically conductive material of the cell stack occurs before forming the spaced lines of the second electrode material.
3. The method of claim 1 wherein the removing of the memory element material and the electrically conductive material of the cell stack occurs after forming the spaced lines of the second electrode material.
4. The method of claim 1 wherein the spaced lines of second electrode material are formed directly over the first set of spaced lines of the memory cell stack and utilized as an electrically conductive hard mask during the removing of the memory element material and the electrically conductive material of the memory stack.
5. The method of claim 1 further comprising:
forming a patterned mask over the first set of spaced lines and over the dielectric material, the patterned mask comprising spaced lines extending primarily along the second horizontal direction; and
forming the second electrode material within spaces between the spaced lines of the patterned mask to thereby form spaced lines of second electrode material.
6. The method of claim 5 wherein the dielectric material is a first dielectric material, and further comprising, after forming the second electrode material, replacing the spaced lines of the patterned mask with a second dielectric material.
7. The method of claim 6 wherein the second dielectric material is a same composition as the first dielectric material.
8. The method of claim 5 wherein the second electrode material is initially formed over the spaced lines of the patterned mask as well as between the spaced lines of the patterned mask, and further comprising planarizing the second electrode material to remove the second electrode material from over the spaced lines of the patterned mask, while leaving the second electrode material between the spaced lines of the patterned mask.
9. The method of claim 5 wherein the patterned mask is a second patterned mask, and wherein the patterning of the first electrode material and the memory cell stack into the first set of spaced lines, comprises:
forming a first patterned mask over the memory cell stack, the first patterned mask comprising a plurality of spaced lines extending along the first horizontal direction; and
transferring a pattern from the first patterned mask through the memory cell stack and the first electrode material with one or more etches.
10. The method of claim 9 wherein the first patterned mask remains over the first set of lines as the dielectric material is formed between the spaced lines of the first set.
11. The method of claim 9 wherein the first patterned mask comprises one or more of amorphous carbon, transparent carbon, silicon dioxide, silicon nitride and silicon oxynitride.
12. The method of claim 11 wherein the second patterned mask comprises one or more of amorphous carbon, transparent carbon, silicon dioxide, silicon nitride and silicon oxynitride.
13. The method of claim 1 wherein:
the first electrode material has a low work function relative to the electrically conductive material of the memory cell stack,
the first electrode material comprises one or more compositions selected from the group consisting of tantalum silicon nitride, chromium and tantalum, and
the electrically conductive material of the memory cell stack comprises one or more compositions selected from the group consisting of platinum, titanium nitride and tantalum nitride.
14. The method of claim 1 wherein one or more other components of the memory cell stack are removed from between the spaced lines of the second set in addition to the memory element material and the electrically conductive material.
15. The method of claim 1 wherein the only components of the memory cell stack that are removed from between the spaced lines of the second set are the memory element material and the electrically conductive material.
17. The method of claim 16 wherein the access device materials are initially formed within the trenches to comprise sidewall regions along sidewalls of the trenches, and to comprise bottom regions along bottoms of the trenches; and further comprising recessing the sidewall regions of the access device materials to a level beneath an upper level of the trenches prior to forming the memory element material.
18. The method of claim 17 wherein the recessing forms a planarized upper surface across the access device materials.
19. The method of claim 16 wherein the patterned mask is a second patterned mask, and wherein:
the substrate comprises a base and a first patterned mask over the base;
the first patterned mask comprises a plurality of spaced apart lines; and
the trenches correspond to gaps between the spaced apart lines of the first patterned mask.
20. The method of claim 16 wherein the patterned mask is a second patterned mask, and wherein the forming the substrate comprises:
forming a first patterned mask over a base, the first patterned mask comprising a plurality of spaced apart lines, the spaced apart lines being separated from one another by gaps;
etching into the base to extend the gaps into the base; and
filling a lower region of the gaps with the first electrode material to form the lines of the first electrode material, and leaving an unfilled upper region of the gaps as the trenches over the lines of the first electrode material.
22. The method of claim 21 wherein the access device materials are initially formed within the openings to comprise sidewall regions along sidewalls of the openings, and to comprise bottom regions along bottoms of the openings, and further comprising recessing the sidewall regions of the access device materials to a level beneath an upper level of the openings prior to forming the memory element material.
23. The method of claim 22 wherein the recessing forms a planarized upper surface across the access device materials.
24. The method of claim 21 wherein the patterned mask is a third patterned mask, and wherein:
the substrate comprises a base, a first patterned mask over the base, and a second patterned mask over the first patterned mask and over the base,
the first patterned mask comprises a plurality of spaced apart lines extending primarily along the first horizontal direction;
the second patterned mask comprises a plurality of spaced apart lines extending primarily along a second horizontal direction that is orthogonal to the first horizontal direction; and
the openings correspond to overlapping gaps between the spaced apart lines of the first patterned mask and between the spaced apart lines of the second patterned mask.
25. The method of claim 21 wherein the patterned mask is a third patterned mask, wherein the forming the substrate comprises:
forming a first patterned mask over a base, the first patterned mask comprising a plurality of spaced apart lines, the spaced apart lines extending primarily along the first horizontal direction and being separated from one another by first gaps;
etching into the base to extend the first gaps into the base;
filling a lower region of the gaps with the first electrode material to form the lines of the first electrode material, and leaving an unfilled upper region of the first gaps as trenches over the lines of the first electrode material; and
forming a second patterned mask over the first patterned mask and the base, the second patterned mask comprising a plurality of spaced apart lines, the spaced apart lines of the second patterned mask extending primarily along a second horizontal direction that is orthogonal to the first horizontal direction and being separated from one another by second gaps, and regions where the second gaps overlap with the first gaps being the polygonal openings.
26. The method of claim 25 wherein the first and second patterned masks comprise one or more of amorphous carbon, transparent carbon, silicon dioxide, silicon nitride and silicon oxynitride.
27. The method of claim 25 wherein the polygonal openings comprise four sides.

Cross-point memory structures, and methods of forming memory arrays.

A continuing goal of integrated circuit fabrication is to decrease the amount of semiconductor real estate consumed by integrated circuit devices, and to thereby increase the level of integration.

Memory may utilize a large array of memory devices, with each memory device storing one or more data bits. Accordingly, reduction in the size of individual memory devices may translate into a large increase in the bit density. Common memory devices are dynamic random access memory (DRAM) devices, static random access memory (SRAM) devices, and nonvolatile devices (so-called flash devices). The nonvolatile devices may be incorporated into NAND or NOR memory array architectures.

The size of a memory device may be expressed in terms of the smallest feature size utilized in fabrication of the memory device. Specifically, if the smallest feature size is designated as “F”, the memory device dimensions may be expressed in units of F. Conventional DRAM memory frequently comprises dimensions of at least 6 F2, and SRAM may require even more semiconductor real estate.

A type of memory that potentially consumes very little semiconductor real estate is so-called cross-point memory. In cross-point memory, a memory cell occurs at overlap between a wordline and a bitline. Specifically, a memory element material is provided between the wordline and bitline. The memory element material comprises one or more substances which undergo stable and detectable change upon exposure to current; and may be, for example, a perovskite material, a chalcogenide material, an ionic transport material, a resistive switching material, a polymeric material and/or a phase change material. Since the memory cell may be confined to a region of overlap of a bitline and wordline, the memory cell may be theoretically formed to dimensions of 4 F2 or less.

It is desired to develop improved methods for forming cross-point memory; and to develop improved cross-point memory structures.

FIGS. 1-9 and 11 are diagrammatic, three-dimensional views of a portion of a construction at various process stages of an example embodiment process for forming a memory array.

FIG. 10 is a cross-sectional view along the line 10-10 of FIG. 9.

FIGS. 12, 13, 15-17, 19, 20 and 22 are diagrammatic, three-dimensional views of a portion of a construction at various process stages of another example embodiment process for forming a memory array. The process stage of FIG. 12 follows the processing stage of FIG. 4, and is alternative to that of FIG. 5.

FIG. 14 is a cross-sectional view along the line 14-14 of FIG. 13;

FIG. 18 is a cross-sectional view along the line 18-18 of FIG. 17; and

FIG. 21 is a cross-sectional view along the line 21-21 of FIG. 20.

FIG. 23 is a diagrammatic, three-dimensional view of a portion of a construction showing an embodiment of a cross-point memory structure.

FIGS. 24-35 are diagrammatic, three-dimensional views of a portion of a construction at various process stages of another example embodiment process for forming a memory array.

FIG. 36 is a diagrammatic, three-dimensional view of a portion of a construction showing another embodiment of a cross-point memory structure.

FIGS. 37-48 are diagrammatic, three-dimensional views of a portion of a construction at various process stages of another example embodiment process for forming a memory array.

FIG. 49 shows an example plug that may be formed with processing alternative to that shown in FIG. 29.

Some embodiments include processing methods which may be utilized to form arrays of cross-point memory cells, and some embodiments include cross-point memory structures. Example embodiments are described with reference to FIGS. 1-48.

FIG. 1 shows a portion of a construction 10. The construction includes a base 12. The base may comprise an electrically insulative material, such as, for example, one or more of silicon dioxide, silicon nitride, and silicon oxynitride. Although the base is shown to be homogeneous, in some embodiments the base may comprise multiple layers and materials associated with the fabrication of integrated circuitry. For instance, the base may comprise the above-discussed insulative material supported over a semiconductor material. The semiconductor material may comprise, consist essentially of, or consist of monocrystalline silicon. If the base comprise a semiconductor material, base 12 may be referred to as a semiconductor substrate. The terms “semiconductive substrate” and “semiconductor substrate” mean any construction comprising semiconductive material, including, but not limited to, bulk semiconductive materials such as a semiconductive wafer (either alone or in assemblies comprising other materials thereon), and semiconductive material layers (either alone or in assemblies comprising other materials). The term “substrate” refers to any supporting structure, including, but not limited to, the semiconductive substrates described above. If base 12 is a semiconductor substrate, construction 10 may be referred to as a semiconductor construction.

A first electrode material (which may also be referred to as a bottom electrode material) 14 is formed over base 12. The first electrode material 14 physically contacts an upper surface of base 12.

First electrode material 14 may comprise any suitable composition or combination of compositions; and in some embodiments may comprise, consist essentially of, or consist of one or more compositions selected from the group consisting of platinum, titanium nitride and tantalum nitride.

A memory stack 16 is formed over the first electrode material 14. The memory stack comprises, in ascending order from the first electrode material, a first insulative material 18, a second insulative material 20, an electrically conductive material 22, and a memory element material 24.

The first and second insulative materials (18 and 20) together with the first electrode material 14 and the electrically conductive material 22 form a metal-insulator-insulator-metal (MIIM) diode. The electrically conductive material 22 may have a work function which is high relative to the work function of the first electrode material; and may, for example, comprise, consist essentially of, or consist of one or more compositions selected from the group consisting of tantalum silicon nitride, chromium and tantalum. The insulative materials may comprise any suitable compositions or combinations of compositions, and may be tailored relative to one another so that bandgaps, and/or conduction band edges, and/or valence band edges, between the materials enable tunneling of carriers in one direction, but not in an opposing direction. The insulative materials are thus compositionally different from one another, and each may, for example, comprise, consist essentially of, or consist of one or more compositions selected from the group consisting of aluminum oxide, silicon oxide, silicon nitride, zirconium oxide and hafnium oxide.

Although the shown diode is an MIIM diode, and thus comprises two insulative materials, in other embodiments the diode may comprise three or more insulative materials. The diode may be, for example, analogous to diodes described in US patent publication 2008/0273363. In some embodiments, one of the insulative materials may be a native oxide on the first electrode material.

The memory element material 24 may comprise any suitable composition or combination of compositions, and in some embodiments may be a perovskite material, a chalcogenide material, an ionic transport material, a resistive switching material, a polymeric material and/or a phase change material. If material 24 is a phase change material, the material may, for example, comprise, consist essentially, or consist of a mixture of germanium, antimony and tellurium.

A patterned masking material 28 is formed over memory element material 24. The patterned masking material is in the form of a plurality of spaced lines 26, with such lines extending primarily along a horizontal direction 30. In the shown embodiment, all of the lines extend exactly along the horizontal direction 30. In other embodiments the lines may have variation so that they extend mostly along horizontal direction 30, but have some waviness or other features so that the lines do not extend entirely along the horizontal direction 30. The term “primarily” in the phrase “extending primarily along the indicated horizontal direction” is used to indicate that the lines extend at least mostly along the indicated horizontal direction.

Masking material 28 may comprise any suitable composition or combination of compositions; and may, for example, comprise, consist essentially of, or consist of one or more of photoresist, amorphous carbon, transparent carbon, silicon dioxide, silicon nitride and silicon oxynitride. The material may be homogeneous (as shown), or may comprise a stack of two or more different compositions.

The spaced lines are separated from one another by gaps 32.

In some embodiments, the spaced lines may be referred to as a first set of spaced lines, to distinguish the spaced lines from other lines that may be formed subsequently.

The lines 26 of masking material 28 may be formed with any suitable processing. In some embodiments, the lines may be formed by initially forming a layer of material 28 entirely across masking element 24; forming a photolithographically-patterned mask over the layer of material 28; transferring a pattern from the photolithographically-patterned mask into the underlying material 28 to form the lines 26 of such material; and then removing the photolithographically-patterned mask to leave the construction shown in FIG. 1. If material 28 includes photoresist, the material 28 may consist of photolithographically-patterned photoresist, or may comprise the photolithographically-patterned photoresist mask over an underlying composition. In some embodiments, lines 26 may comprise sub-photolithographic resolution features that are formed using pitch multiplication techniques, e.g. spacer pitch-doubling or pitch-quadrupling techniques. In other embodiments, lines 26 may comprise sub-photolithographic resolution features that are formed using self-assembly or directed-assembly techniques, e.g. block copolymer microphase separation. In even other embodiments, lines 26 may comprise sub-photolithographic resolution features that are formed using particle beam lithography techniques, e.g. electron beam lithography.

Referring to FIG. 2, a pattern is transferred from patterned masking material 28 into first electrode material 14 and memory cell stack 16 with one or more etches, so that the first electrode material 14 and memory cell stack 16 adopt the pattern of the patterned masking material 28. Specifically, the first electrode material 14 and memory cell stack 16 adopt the pattern of the first set of spaced lines 26 extending primarily along the first horizontal direction 30. The patterning extends gaps 32 entirely through materials 14, 18, 20, 22 and 24; and to an upper surface of base 12.

Referring to FIG. 3, a dielectric material 34 is formed over lines 26, and within the gaps 32 between the lines. Dielectric material 34 may comprise any suitable composition or combination of compositions; and may, for example, comprise, one or more of silicon dioxide, silicon nitride, silicon oxynitride, and various doped silicon oxides (for instance, borophosphosilicate glass, borosilicate glass, fluorosilicate glass, etc.).

In the shown embodiment, masking material 28 remains over memory cell stack 16 during formation of dielectric material 34. In other embodiments, masking material 28 may be removed prior to formation of dielectric material 34.

Referring to FIG. 4, material 34 is removed from over lines 26. Such removal may be accomplished utilizing any suitable processing. For instance, the removal may be accomplished utilizing an etch-back and/or planarization (for instance, chemical-mechanical polishing [CMP]). In the shown embodiment, such removal is accomplished utilizing planarization to form a planarized upper surface 35 extending across materials 28 and 34.

Referring to FIG. 5, patterned masking materials 36 and 38 are formed over lines 26 and over the dielectric material 34 in the gaps between lines 26. The patterned masking materials 36 and 38 comprise a plurality of lines 40 extending primarily along a second horizontal direction 42 orthogonal to the first horizontal direction 30. The lines 40 may be referred to as a second set of lines to distinguish them from the first set of lines 26.

Material 36 may correspond to a so-called hard masking material, and may comprise any of the compositions discussed above regarding masking material 28.

Material 38 may correspond to photolithographically-patterned photoresist.

Patterned lines 40 may be formed by initially forming a layer of material 36 entirely across upper surface 35 (FIG. 4), forming photolithographically-patterned photoresist 38 over the layer of material 36, and then transferring a pattern from the photolithographically-patterned photoresist into material 36 with one or more etches.

Lines 40 are spaced from one another by gaps 44. After lines 40 are formed, material 28 is removed from within gaps 44 by one or more suitable etches.

Referring to FIG. 6, material 38 (FIG. 5) is removed from lines 40.

Referring to FIG. 7, top electrode material 46 is formed over lines 40 and within the gaps 44 between lines 40. Top electrode material 46 may comprise any suitable composition or combination of compositions; and in some embodiments may comprise one or more of various metals (platinum, palladium, tungsten, titanium, etc.), metal-containing compositions (metal nitride, metal suicides, etc.) and conductively-doped semiconductor materials (conductively-doped silicon, conductively-doped germanium, etc.).

Referring to FIG. 8, top electrode material 46 is removed from over lines 40. Such removal may be accomplished utilizing any suitable processing. For instance, the removal may be accomplished utilizing an etch-back and/or planarization (for instance, CMP). In the shown embodiment, such removal is accomplished utilizing planarization to form a planarized upper surface 47 extending across materials 46 and 36.

The top electrode material 46 remaining at the processing stage of FIG. 8 is in the form of a plurality of spaced lines 48 formed within the gaps 44 between lines 40. In some embodiments, lines 48 may be referred to as a second set of spaced electrically-conductive lines to distinguished them from the first set of spaced electrically-conductive lines 26 of electrode material 14. In some embodiments, lines 26 may be referred to as a first set of spaced lines, lines 40 may be referred to as a second set of spaced lines, and lines 48 may be referred to as a third set of spaced lines.

Referring to FIGS. 9 and 10, material 36 (FIG. 8) is removed from between lines 48; and subsequently the materials 18, 20, 22 and 24 of memory cell stacks 16 are removed from the regions between the lines 48. The removal of materials 18, 20, 22 and 24 from between lines 48 forms the remaining materials 18, 20, 22 and 24 into an array of memory unit cells 50 (only some of which are labeled). The individual memory unit cells comprise memory cell stack 16 between the first electrode material 14 and the second electrode material 46.

Referring to FIG. 11, dielectric material 52 is formed over lines 48, and within gaps between the lines 48. Dielectric material 52 may be referred to as a second dielectric material to distinguish it from the first dielectric material 34. Dielectric material 52 may comprise any of the compositions discussed above regarding dielectric material 34. In some embodiments, dielectric material 52 may be a same composition as dielectric material 34; and in other embodiments may be a different composition from dielectric material 34. In some embodiments, dielectric material 52 may be considered to replace the spaced lines 40 that had been between the spaced lines 48 of the first electrode material 46 at an earlier processing stage (FIG. 8).

The processing of FIGS. 1-11 removes conductive material 22 of the memory cell stack 16 after formation of the lines 48 of top electrode material 46. Specifically, the lines 48 are utilized as a mask during etching of the materials of the memory cell stack 16. In other embodiments, at least some of materials of the memory cell stack may be removed prior to forming the top electrode material. FIGS. 12-22 illustrate an example embodiment in which materials of a memory cell stack are removed prior to forming top electrode material 46.

Referring to FIG. 12, construction 10 is shown at a processing stage subsequent to that of FIG. 4, and analogous to that of FIG. 5. However, unlike the processing stage of FIG. 5, the materials of memory cell stack 16 are removed from between lines 40 of patterned masking materials 36 and 38. In the shown embodiment, all of the materials of the memory cell stack are removed between lines 40. However, as long as conductive material 22 and memory element material 24 are removed from between the lines 40, an array of isolated memory cells may be formed. Accordingly, in some embodiments it is only materials 22 and 24 that are removed between lines 40; and in other embodiments it may be materials 20, 22 and 24 removed from between lines 40; and in yet other embodiments all of materials 18, 20, 22 and 24 of the memory cell stacks 16 may be removed from between lines 40 (as shown).

In some embodiments, material 36 is a sacrificial material utilized to define a location for a top electrode material 46 (shown in FIGS. 19 and 20). In other embodiments, material 36 may be a conductive material (i.e., a conductive hard mask), and may be utilized as a top electrode. In embodiments in which material 36 is utilized as a top electrode, material 28 may be removed prior to formation of material 36; and processing discussed below with reference to FIGS. 16-22 may be modified, or omitted. If material 36 is a conductive hard mask material, the material 36 may be considered to be patterned into a plurality of conductive lines 37.

Referring to FIGS. 13 and 14, masking material 38 (FIG. 12) is removed with processing analogous to that discussed above with reference to FIG. 6.

Referring to FIG. 15, a dielectric material 54 is deposited over and between lines 40. Dielectric material 54 may comprise any of the compositions discussed above regarding dielectric material 34. In some embodiments, dielectric material 54 may be a same composition as dielectric material 34; and in other embodiments may be a different composition from dielectric material 34.

Referring to FIG. 16, material 54 is removed from over lines 40. Such removal may be accomplished utilizing any suitable processing. For instance, the removal may be accomplished utilizing an etch-back and/or planarization (for instance, CMP). In the shown embodiment, such removal is accomplished utilizing planarization to form a planarized upper surface 55 extending across materials 36 and 54.

Referring to FIGS. 17 and 18, materials 28 and 36 are removed to leave gaps 56 extending within dielectric materials 34 and 54. The gaps 56 are trenches extending along the second horizontal direction 42.

Referring to FIG. 19, top electrode material 46 is formed over dielectric material 54 and within gaps 56.

Referring to FIGS. 20 and 21, top electrode material 46 is removed from over dielectric material 54. Such removal may be accomplished utilizing any suitable processing. For instance, the removal may be accomplished utilizing an etch-back and/or planarization (for instance, CMP). In the shown embodiment, such removal is accomplished utilizing planarization to form a planarized upper surface 57 extending across materials 46 and 54.

The top electrode material 46 remaining at the processing stage of FIGS. 20 and 21 is in the form of a plurality of spaced lines 58 formed within the gaps 56 (FIG. 19). A difference between the processing of FIGS. 12-21 and that of FIGS. 5-9 is that the top electrode lines 58 of the processing of FIGS. 12-21 are formed at the locations of masking material 36 (FIG. 16), whereas the top electrode lines 48 of the processing of FIGS. 5-9 are formed within spaces between the locations of masking material 36 (FIG. 8).

Referring to FIG. 22, a dielectric material 60 is formed over lines 58 of top electrode material 46 as an electrically insulative cap. Dielectric material 60 may comprise any of the compositions discussed above regarding dielectric materials 34 and 54. In some embodiments, dielectric material 60 may be the same composition as at least one of dielectric materials 34 and 54; and in other embodiments dielectric material 60 may be compositionally different from both of materials 34 and 54.

Regardless of whether the processing of FIGS. 5-11 is followed, or the processing of FIGS. 12-15 is followed with material 36 being a conductive hard mask utilized as a top electrode, or the processing FIGS. 12-22 is followed with material 36 being a sacrificial material used to define a location of a top electrode, memory arrays will be formed comprising cross-point memory unit cells; with the memory cells having the same configuration from the various processing sequences. An example memory cell structure 62 formed by the processing of FIGS. 5-11, FIGS. 12-15 with material 36 being a conductive hard mask, or that of FIGS. 12-22, is shown in FIG. 23. The memory cell structure includes a line 26 of bottom electrode material 14 extending along a first horizontal direction, and a line 37, 48, 58 of top electrode material 36, 46 extending along a second horizontal direction which is perpendicular to the first horizontal direction. The line of top electrode material will be a line 37 if processing of FIGS. 12-15 is followed with a conductive hard mask material 36, a line 48 of material 46 if the processing of FIGS. 5-11 is followed, and will be a line 58 of material 46 if the processing of FIGS. 12-22 is followed with material 36 being a sacrificial material.

A memory cell 50 is sandwiched between the top and bottom electrodes. The memory cell includes the memory element material 24; and includes materials 18, 20 and 22 as part of an access device configured for accessing data stored within memory element material 24. The shown access device is an MIIM diode, with electrode 14 and electrically conductive material 22 being the outer components of the diode; and with the insulators 18 and 20 being the inner components of the diode.

Another process for forming a memory array is described with reference to FIGS. 24-36. Identical number will be used to describe the embodiment of FIGS. 24-36 as is used above in describing the embodiments of FIGS. 1-23, where appropriate.

FIG. 24 shows a construction 70 at a processing stage after a patterned masking material 72 has been formed across a base 12. The patterned masking material is in the form of a plurality of spaced lines 74, with such lines extending primarily along the horizontal direction 30. Masking material 72 may comprise any of the compositions described above relative to masking material 28 of FIG. 1.

The spaced lines 74 are separated from one another by gaps 76, which may be referred to as trenches between the lines 74.

The lines 74 of masking material 72 may be formed with any suitable processing. In some embodiments, the lines may be formed by initially forming a layer of material 72 entirely across base 12; forming a photolithographically-patterned mask over the layer of material 72; transferring a pattern from the photolithographically-patterned mask into the underlying material 72 to form the lines 74 of such material; and then removing the photolithographically-patterned mask to leave the construction shown in FIG. 24.

Referring to FIG. 25, a pattern is transferred from patterned masking material 72 into base 12 to extend the trenches 76 into the base.

Referring to FIG. 26, bottom electrode material (or first electrode material) 14 is formed over lines 74 and within the trenches 76 to fill the trenches.

Referring to FIG. 27, bottom electrode material 14 is removed from an upper region of trenches 76, while leaving the bottom electrode material within a lower region of the trenches. The bottom electrode material 14 remaining in the lower region of the trenches forms a plurality of spaced apart lines 77 extending along the first horizontal direction 30. In the shown embodiment, the bottom electrode material fills trenches 76 to a level that is about even with an upper surface of substrate 12. In different embodiments, the bottom electrode material may fill the trenches to a different level; and specifically may fill the trenches to a level beneath an upper surface of base 12 in some embodiments, or may fill the trenches to a level above the upper surface of base 12 in other embodiments. In some embodiments, the bottom electrode material may be a conformal coating, such as, for example, a film formed by atomic layer deposition.

Referring to FIG. 28, a stack 78 of access device materials is formed within the remaining upper regions of the trenches 76 to partially fill such regions of the trenches. The stack 78 includes insulative materials 18 and 20, as well as electrically conductive material 22. Although the access device materials are shown to include a pair of insulative materials, in other embodiments the access device materials may contain more than two insulative materials. In some embodiments, the first insulative material 18 may be native oxide formed along the bottom electrode material.

The access device materials are formed conformally over lines 74 and within trenches 76 so that the stack 78 has an undulating upper topography.

Referring to FIG. 29, the materials 18, 20 and 22 are removed from over lines 74 with etching and/or polishing. If etching is utilized, such etching may comprise a plasma etch. If polishing is utilized, such polishing may comprise CMP.

Electrically conductive material 22 is recessed within trenches 76 so that an upper surface of the electrically conductive material is below the uppermost surfaces of lines 72. In the shown embodiment, all of the materials 18, 20 and 22 are recessed. Such recessing may be accomplished during an etch utilized to remove materials 18, 20 and 22 from over lines 74; or may be accomplished with an etch conducted subsequent to removal of materials 18, 20 and 22 from over lines 74. In some embodiments, the access device materials remaining within the trenches at the processing stage of FIG. 29 may be considered to comprise sidewall regions along sidewalls of the trenches, and to comprise bottom regions along bottoms of the trenches; and the recessing of materials 18, 20 and 22 may be considered to comprise recessing the sidewall regions of the access device materials to a level beneath an upper level of the material 72 along the peripheries of the trenches. In some embodiments, the recessing may be conducted to remove all of materials 18, 20 and 22 from the sidewalls of the opening to leave a block of materials 18, 20 and 22 at the bottoms of the openings, and such blocks may have planarized upper surfaces extending across materials 18, 20 and 22. An example block is shown in FIG. 49.

Referring to FIG. 30, memory element material 24 is formed within trenches 76 in a processing stage following that of FIG. 29. The memory element material may be formed in the shown configuration by initially providing the memory element material over lines 74 as well as within the trenches; and then utilizing planarization (for instance, CMP) to remove the memory element material from over the lines, while leaving the memory element material within the trenches. The memory element material remaining within the trenches may be considered to correspond to a plurality of spaced-apart lines that are in one-to-one correspondence with the trenches.

In the shown embodiment, the memory element material within trenches 76 has an upper portion 78 extending across uppermost of materials 18, 20 and 22; and has a plug portion 80 extending downwardly from the upper portion and into a container defined by materials 18, 20 and 22. The plug portion has downwardly-extending sidewalls 81 and 83, and has a bottom 85 joined to the downwardly-extending sidewalls. The conductive material 22 extends along both of the downwardly-extending sidewalls 83 of the plugs, as well as along the bottoms 85 of such plugs.

Referring to FIG. 31, top electrode material (or second electrode material) is formed over memory element material 24, and over material 72 of lines 74.

Referring to FIG. 32, masking material 36 is formed over top electrode material 46, and patterned masking material 38 is formed over material 36. Material 38 may correspond to photolithographically-patterned photoresist, and is formed in the pattern of the plurality of spaced-apart lines 40 analogous to that which was discussed above with reference to FIG. 5. The lines 40 extend along the second horizontal direction 42 which is orthogonal to the first horizontal direction 30.

The lines 40 are spaced from one another by gaps 44.

Referring to FIG. 33, a pattern is transferred from material 38 (FIG. 32) through underlying materials 72, 18, 20, 22, 24, 36 and 46, to pattern such underlying materials into the configuration of the plurality of lines 40 extending along the horizontal direction 42; and then masking material 38 is removed. Such patterning may comprise transferring a pattern from masking material 38 into hard mask 36, removal of masking material 38, and then transfer of the pattern from hard mask 36 into the underlying materials 72, 18, 20, 22, 24 and 46 with one or more suitable etches. The patterning forms the top electrode material 46 into a plurality of electrode lines 48, with such electrode lines 48 being part of the lines 40.

Referring to FIG. 34, masking material 36 is removed. Such removal may be accomplished with an etch, CMP, and/or a wet clean.

Referring to FIG. 35, dielectric material 90 is formed over top electrode lines 48 and within the gaps 44 between such lines. Dielectric material 90 may comprise any of the compositions discussed above with reference to dielectric material 34 of FIG. 3.

Although material 36 (FIG. 33) is removed prior to formation of dielectric material 90 in the shown embodiment, in other embodiments material 36 may remain at the processing stage of FIG. 35.

The construction of FIG. 35 comprises a memory array which includes a plurality of cross-point memory structures. An example of the memory structures is shown in FIG. 36 as a structure 92.

The memory cell structure includes a line 77 of bottom electrode material 14 extending along a first horizontal direction, and a line 48 of top electrode material 46 extending along a second horizontal direction which is perpendicular to the first horizontal direction.

The memory cell structure also includes the memory element material 24, the insulative materials 18 and 20, and the electrically conductive material 22. The materials 18, 20 and 22 are part of an access device configured for accessing data stored within memory element material 24. The access device is an MIIM diode, with electrode 14 and electrically conductive material 22 being the outer components of the diode; and with the insulators 18 and 20 being the inner components of the diode.

In the shown embodiment, the memory element material 24 includes the upper portion 78 extending across uppermost of materials 18, 20 and 22; and the plug portion 80 extending downwardly from the upper portion and into a container defined by materials 18, and 22. The plug portion has the downwardly-extending sidewalls 81 and 83, and has the bottom 85 joined to the downwardly-extending sidewalls. The conductive material 22 extends along both of the downwardly-extending sidewalls 83 of the plug, as well as along the bottom 85 of such plug.

The materials 18, 20 and 22 may be together considered to correspond to diode material. In some embodiments, the materials 18, 20 and 22 are components of an access device utilized for accessing data stored in the memory element. Accordingly, the embodiment of FIG. 36 may be considered to comprise a multi-sided container of access device materials (with such multi-sided container specifically comprising two sides in the embodiment of FIG. 36); and to comprise the plug 80 of memory element material extending into such multi-sided container.

In the shown embodiment, memory element material 24 has an uppermost region 78 that extends across uppermost surfaces of all of the materials 18, 20 and 22 (with such uppermost surfaces being labeled 19, 21 and 23 in FIG. 36). However, as discussed above with reference to FIG. 29, the invention may include embodiments in which material 22 is recessed within a trench, without recessing one or both of the materials 18 and 20. In such embodiments, the upper portion 78 of memory element material 24 would not extend over the upper surface of the materials which were not recessed within the trench, and accordingly may be over an uppermost surface of electrically conductive material 22 while not being over uppermost surfaces of one or both of materials 18 and 20. If the processing of FIG. 49 is utilized instead of that of FIG. 29, a memory cell analogous to the structure 92 may be formed, but with a different configuration of materials 18, 20, 22 and 24.

Another process for forming a memory array is described with reference to FIGS. 37-48. Identical number will be used to describe the embodiment of FIGS. 37-48 as is used above in describing the embodiments of FIGS. 1-36, where appropriate.

FIG. 37 shows a construction 100 at a processing stage identical to that discussed above with reference to FIG. 24. Accordingly, the patterned masking material 72 has been formed across a base 12. The patterned masking material is in the form of a plurality of spaced apart lines 74, with such lines extending primarily along the horizontal direction 30. The spaced apart lines 74 are separated from one another by gaps 76, which may be referred to as trenches between the lines 74.

Referring to FIG. 38, construction 100 is shown at a processing stage identical to that discussed above with reference to FIG. 25. Accordingly, a pattern has been transferred from patterned masking material 72 into base 12 to extend the trenches 76 into the base.

Referring to FIG. 39, construction 100 is shown at a processing stage identical to that discussed above with reference to FIG. 26. Accordingly, bottom electrode material (or first electrode material) 14 is formed over lines 74 and within the trenches 76 to fill the trenches.

Referring to FIG. 40, construction 100 is shown at a processing stage identical to that discussed above with reference to FIG. 27. Accordingly, bottom electrode material 14 is removed from an upper region of trenches 76, while leaving the bottom electrode material within a lower region of the trenches. The bottom electrode material 14 remaining in the lower region of the trenches forms the plurality of spaced apart lines 77 extending along the first horizontal direction 30.

Referring to FIG. 41, an etch stop layer 102 is formed over lines 74 and within trenches 76. The etch stop material may comprise any suitable composition or combination of compositions; and may, for example, comprise, consist essentially of, or consist of silicon dioxide, silicon nitride or silicon oxynitride.

Referring to FIG. 42, material 102 is removed from over material 72 with one or both of etching and polishing. In the shown embodiment, material 102 has been removed with CMP to leave a planarized surface 103 extending across materials 72 and 102.

Referring to FIG. 43, a masking material 104 is formed over surface 103, and patterned masking material 106 is formed over material 104. Material 106 may correspond to photolithographically-patterned photoresist, and is formed in a pattern of a plurality of spaced-apart lines 108 extending along the second horizontal direction 42 which is orthogonal to the first horizontal direction 30.

The lines 108 are spaced from one another by gaps 110.

Material 104 may comprise any of the compositions discussed above relative to material 28 of FIG. 1. Material 104 may be of a common composition to material 72 in some embodiments, and may be compositionally different from material 72 in other embodiments.

Referring to FIG. 44, a pattern is transferred from material 106 (FIG. 43) through underlying material 104 to pattern such underlying material into the configuration of the plurality of lines 108 extending along the horizontal direction 42; and then masking material 106 is removed. Such patterning may be considered to comprise extending gaps 110 into material 104.

Some of the material 102 is exposed within the gaps 110. FIG. 45 shows construction 100 after the exposed portions of material 102 have been removed. Such removal creates openings 112 (only some of which are labeled) that extend to an upper surface of the bottom electrode material 14. As discussed above with reference to FIG. 40, the lines 74 of material 72 may be considered to be spaced from one another by trenches (or gaps) 76 (shown in FIG. 40). Similarly, the lines 108 of material 104 may be considered to be spaced from one another by gaps 110. Accordingly, the openings 112 may be considered to correspond to locations where gaps 110 overlap gaps 76 (shown in FIG. 40).

The openings 112 may be considered to be examples of polygonal openings, and in the shown embodiment are four-sided openings.

The openings 112 are in a many-to-one arrangement with the lines 77 of bottom electrode material 14. In other words, there are many openings 112 along each of the individual lines.

Referring to FIG. 46, a stack 78 of access device material is formed over materials 72 and 104, and within the openings 112. The stack 78 only partially fills the openings 112. The stack 78 includes insulative materials 18 and 20, as well as electrically conductive material 22. Although the stack 78 is shown to include a pair of insulative materials, in other embodiments the stack 78 may contain more than two insulative materials. In some embodiments, the insulative material 18 may correspond to native oxide grown over the bottom electrode. The drawing of FIG. 46 is somewhat confusing in that the materials 18, 20 and 22 along the rightmost edge of the drawing join two different planes to one another. A dashed line 105 is provided to indicate where the view of the materials 18, and 22 along the rightmost edges changes from one plane to another. Also, there is an illusion along the rightmost edge that appears to show gaps 110 pinched relative to openings 112. Such illusion results from the direction along the cross-section of the rightmost edge, and in actual practice the gaps 110 may correspond identically to the widths along one side of the openings 112.

Referring to FIG. 47, the materials 104, 18, 20 and 22 are removed from over materials 72 and 102 with etching and/or polishing. If etching is utilized, such etching may comprise a plasma etch. If polishing is utilized, such polishing may comprise CMP. The removal of materials 104, 18, 20 and 22 from over materials 72 and 102 leaves the materials 18, 20 and 22 only within openings 112, and leaves the openings 112 laterally bounded by materials 72 and 102. Materials 72 and 102 are different from one another so that material 102 could be selectively removed relative to material 72 at the processing stage of FIG. 45. Thus, the openings 112 at the processing stage of FIG. 47 may be considered to bounded by two types of material (with one of the materials corresponding to material 72, and the other corresponding to material 102). Two of the four sides of the openings 112 will be laterally bounded by one of said two types of material, and the other two of the four sides will be laterally bounded by the other of said two types of material.

Electrically conductive material 22 is recessed within openings 112 so that an upper surface of the electrically conductive material is below the uppermost surfaces of materials 72 and 102. In the shown embodiment, all of the materials 18, 20 and 22 are recessed. Such recessing may be accomplished during an etch utilized to remove materials 18, 20 and 22 from over materials 72 and 102; or may be encompassed with an etch conducted subsequent to removal of materials 18, 20 and 22 from over materials 72 and 102. In some embodiments, the access device material remaining within the openings 112 at the processing stage of FIG. 47 may be considered to comprise sidewall regions along sidewalls of the openings 112, and to comprise bottom regions along bottoms of the openings; and the recessing of access device materials 18, 20 and 22 may be considered to comprise recessing the sidewall regions of the access device materials to a level beneath an upper level of the materials 72 and 102 along the peripheries of openings 112. In some embodiments, the recessing may remove all of materials 18, 20 and 22 from along the sidewalls, analogously to the processing discussed above with reference to FIG. 49.

Referring to FIG. 48, memory element material 24 is formed within openings 112 and over materials 72 and 102.

In the shown embodiment, the memory element material within openings 112 has plug portions 114 extending downwardly into containers defined by materials 18, 20 and 22. The plug portions have four downwardly-extending sidewalls analogous to the sidewalls 81 and 83 of FIG. 36 (with such plug portions of the embodiment of FIG. 48 being defined by the four sides of the containers formed by materials 18, 20 and 22 within openings 112, with such containers being visible in the top view of FIG. 47), and have bottoms joined to the downwardly-extending sidewalls. The conductive material 22 extends along the downwardly-extending sidewalls of the plug portions, as well as along the bottoms of such plug portions.

In subsequent processing (not shown), the memory element material may be subjected to planarization (for instance, CMP) to remove the memory element material from over the materials 72 and 102, while leaving the memory element material within the openings 112. Top electrode material analogous to the electrode material 46 of FIG. 31 may be then be formed over memory element material, and patterned to form a plurality of top electrode lines analogous to the lines 48 of FIG. 34. Such patterning may utilize processing analogous to that discussed above with reference to FIGS. 31-35. The construction 100 of FIG. 48 may thus be utilized to form memory cell structures analogous to the structure of FIG. 36, but where a plug portion of a memory element material is within a four-sided container of access device material, rather than within a two-sided container of the access device material. The two-sided and four-sided containers of FIGS. 36 and 48 are examples of multi-sided containers that may be formed in some embodiments of the invention. The number of sides of multi-sided openings may be varied in other embodiments (not shown), and the lengths of the sides may be varied, so that the multi-sided containers may have more than four sides. In some embodiments, there may be so many sides that the multi-sided containers are substantially cylindrical.

It may be advantageous for the conductive material 22 of an access diode to wrap at least partially around the memory element material of a cross-point memory cell to improve coupling between the diode and the memory element material. Accordingly, the wrapping access structures formed in accordance with the embodiments of FIGS. 24-48 (for instance, the structure shown in FIG. 36) may have some advantages relative to the planar diode structures formed by the embodiment of FIGS. 1-23 (with such planar structures being shown in FIG. 23). However, the embodiment of FIGS. 1-23 may have an advantage in some applications in that the processing of the embodiment of FIGS. 1-23 may be simpler than the processing of the embodiments of FIGS. 24-48.

In compliance with the statute, the subject matter disclosed herein has been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the claims are not limited to the specific features shown and described, since the means herein disclosed comprise example embodiments. The claims are thus to be afforded full scope as literally worded, and to be appropriately interpreted in accordance with the doctrine of equivalents.

Sandhu, Gurtej S., Sills, Scott

Patent Priority Assignee Title
10026836, Oct 07 2014 Micron Technology, Inc. Recessed transistors containing ferroelectric material
10056907, Jul 29 2011 Crossbar, Inc. Field programmable gate array utilizing two-terminal non-volatile memory
10096653, Feb 07 2014 Crossbar, Inc Monolithically integrated resistive memory using integrated-circuit foundry compatible processes
10134982, Jul 24 2015 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Array of cross point memory cells
10153196, Aug 24 2017 Micron Technology, Inc.; Micron Technology, Inc Arrays of cross-point memory structures
10224370, Aug 23 2010 Crossbar, Inc. Device switching using layered device structure
10241185, Jun 07 2010 Micron Technology, Inc. Memory arrays
10262734, Jan 15 2008 Micron Technology, Inc. Memory cells, memory cell programming methods, memory cell reading methods, memory cell operating methods, and memory devices
10269804, May 11 2016 Micron Technology, Inc. Array of cross point memory cells and methods of forming an array of cross point memory cells
10290801, Feb 07 2014 Crossbar, Inc Scalable silicon based resistive memory device
10388864, Oct 16 2014 Micron Technology, Inc. Transistors and methods of forming transistors
10396145, Jan 12 2017 Micron Technology, Inc. Memory cells comprising ferroelectric material and including current leakage paths having different total resistances
10553587, May 11 2016 Micron Technology, Inc. Array of cross point memory cells and methods of forming an array of cross point memory cells
10593589, Aug 24 2017 Micron Technology, Inc. Arrays of cross-point memory structures, and methods of forming arrays of cross-point memory structures
10613184, Jun 07 2010 Micron Technology, Inc. Memory arrays
10656231, Jun 07 2010 Micron Technology, Inc. Memory Arrays
10741753, Mar 11 2016 Micron Technology, Inc. Conductive hard mask for memory device formation
10746835, Jun 07 2010 Micron Technology, Inc. Memory arrays
10784374, Oct 07 2014 Micron Technology, Inc. Recessed transistors containing ferroelectric material
10790020, Jan 15 2008 Micron Technology, Inc. Memory cells, memory cell programming methods, memory cell reading methods, memory cell operating methods, and memory devices
10859661, Jun 07 2010 Micron Technology, Inc. Memory arrays
10910255, Aug 24 2017 Micron Technology, Inc. Arrays of cross-point memory structures
10910561, Apr 13 2012 Crossbar, Inc. Reduced diffusion in metal electrode for two-terminal memory
11068620, Nov 09 2012 Crossbar, Inc Secure circuit integrated with memory layer
11101271, May 11 2016 Micron Technology, Inc. Array of cross point memory cells and methods of forming an array of cross point memory cells
11139202, Sep 27 2019 International Business Machines Corporation Fully aligned top vias with replacement metal lines
11170834, Jul 10 2019 Micron Technology, Inc Memory cells and methods of forming a capacitor including current leakage paths having different total resistances
11244951, Feb 17 2015 Micron Technology, Inc. Memory cells
11393530, Jan 15 2008 Micron Technology, Inc. Memory cells, memory cell programming methods, memory cell reading methods, memory cell operating methods, and memory devices
11393978, Jul 24 2015 Micron Technology, Inc. Array of cross point memory cells
11706929, Feb 17 2015 Micron Technology, Inc. Memory cells
11836277, Nov 09 2012 Crossbar, Inc. Secure circuit integrated with memory layer
8207557, Feb 19 2009 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Cross-point memory structures
8211743, May 02 2008 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Methods of forming non-volatile memory cells having multi-resistive state material between conductive electrodes
8411477, Apr 22 2010 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Arrays of vertically stacked tiers of non-volatile cross point memory cells, methods of forming arrays of vertically stacked tiers of non-volatile cross point memory cells, and methods of reading a data value stored by an array of vertically stacked tiers of non-volatile cross point memory cells
8427859, Apr 22 2010 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Arrays of vertically stacked tiers of non-volatile cross point memory cells, methods of forming arrays of vertically stacked tiers of non-volatile cross point memory cells, and methods of reading a data value stored by an array of vertically stacked tiers of non-volatile cross point memory cells
8431458, Dec 27 2010 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Methods of forming a nonvolatile memory cell and methods of forming an array of nonvolatile memory cells
8530939, Feb 19 2009 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Cross-point memory structures
8537592, Apr 15 2011 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Arrays of nonvolatile memory cells and methods of forming arrays of nonvolatile memory cells
8542513, Apr 22 2010 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Arrays of vertically stacked tiers of non-volatile cross point memory cells, methods of forming arrays of vertically stacked tiers of non-volatile cross point memory cells, and methods of reading a data value stored by an array of vertically stacked tiers of non-volatile cross point memory cells
8575585, Jul 13 2009 Hewlett Packard Enterprise Development LP Memristive device
8652909, Dec 27 2010 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Methods of forming a nonvolatile memory cell and methods of forming an array of nonvolatile memory cells array of nonvolatile memory cells
8674336, Apr 08 2008 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Non-volatile resistive oxide memory cells, non-volatile resistive oxide memory arrays, and methods of forming non-volatile resistive oxide memory cells and memory arrays
8681531, Feb 24 2011 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Memory cells, methods of forming memory cells, and methods of programming memory cells
8743589, Apr 22 2010 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Arrays of vertically stacked tiers of non-volatile cross point memory cells and methods of reading a data value stored by an array of vertically stacked tiers of non-volatile cross point memory cells
8750019, Jul 09 2010 Crossbar, Inc. Resistive memory using SiGe material
8753949, Nov 01 2010 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Nonvolatile memory cells and methods of forming nonvolatile memory cells
8759809, Oct 21 2010 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Integrated circuitry comprising nonvolatile memory cells having platelike electrode and ion conductive material layer
8760910, Apr 22 2010 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Arrays of vertically stacked tiers of non-volatile cross point memory cells, methods of forming arrays of vertically stacked tiers of non-volatile cross point memory cells, and methods of reading a data value stored by an array of vertically stacked tiers of non-volatile cross point memory cells
8765566, May 10 2012 Crossbar, Inc. Line and space architecture for a non-volatile memory device
8791010, Dec 31 2010 Crossbar, Inc. Silver interconnects for stacked non-volatile memory device and method
8791447, Jan 20 2011 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Arrays of nonvolatile memory cells and methods of forming arrays of nonvolatile memory cells
8796658, May 07 2012 Crossbar, Inc. Filamentary based non-volatile resistive memory device and method
8796661, Nov 01 2010 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Nonvolatile memory cells and methods of forming nonvolatile memory cell
8811063, Nov 01 2010 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Memory cells, methods of programming memory cells, and methods of forming memory cells
8854863, Apr 15 2011 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Arrays of nonvolatile memory cells and methods of forming arrays of nonvolatile memory cells
8883604, Oct 21 2010 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Integrated circuitry comprising nonvolatile memory cells and methods of forming a nonvolatile memory cell
8884261, Aug 23 2010 Crossbar, Inc. Device switching using layered device structure
8889521, Sep 14 2012 Crossbar, Inc Method for silver deposition for a non-volatile memory device
8912523, Sep 29 2010 INNOSTAR SEMICONDUCTOR SHANGHAI CO , LTD Conductive path in switching material in a resistive random access memory device and control
8930174, Dec 28 2010 Crossbar, Inc Modeling technique for resistive random access memory (RRAM) cells
8946046, May 02 2012 Crossbar, Inc. Guided path for forming a conductive filament in RRAM
8946669, Apr 05 2012 Crossbar, Inc. Resistive memory device and fabrication methods
8947908, Nov 04 2010 Crossbar, Inc Hetero-switching layer in a RRAM device and method
8976566, Sep 29 2010 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Electronic devices, memory devices and memory arrays
8982647, Nov 14 2012 Crossbar, Inc. Resistive random access memory equalization and sensing
8993397, Jun 11 2010 INNOSTAR SEMICONDUCTOR SHANGHAI CO , LTD Pillar structure for memory device and method
9012307, Jul 13 2010 INNOSTAR SEMICONDUCTOR SHANGHAI CO , LTD Two terminal resistive switching device structure and method of fabricating
9034710, Dec 27 2010 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Methods of forming a nonvolatile memory cell and methods of forming an array of nonvolatile memory cells
9035276, Aug 23 2010 Crossbar, Inc. Stackable non-volatile resistive switching memory device
9036400, Jul 09 2010 Crossbar, Inc Method and structure of monolithically integrated IC and resistive memory using IC foundry-compatible processes
9036402, Apr 22 2010 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Arrays of vertically stacked tiers of non-volatile cross point memory cells
9087576, Mar 29 2012 Crossbar, Inc. Low temperature fabrication method for a three-dimensional memory device and structure
9093368, Jan 20 2011 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Nonvolatile memory cells and arrays of nonvolatile memory cells
9111788, Jun 18 2008 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Memory device constructions, memory cell forming methods, and semiconductor construction forming methods
9112145, Jan 31 2013 INNOSTAR SEMICONDUCTOR SHANGHAI CO , LTD Rectified switching of two-terminal memory via real time filament formation
9117998, Nov 01 2010 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Nonvolatile memory cells and methods of forming nonvolatile memory cells
9129887, Sep 29 2010 INNOSTAR SEMICONDUCTOR SHANGHAI CO , LTD Resistor structure for a non-volatile memory device and method
9153623, Dec 31 2010 Crossbar, Inc. Thin film transistor steering element for a non-volatile memory device
9184385, Apr 15 2011 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Arrays of nonvolatile memory cells and methods of forming arrays of nonvolatile memory cells
9191000, Jul 29 2011 Crossbar, Inc Field programmable gate array utilizing two-terminal non-volatile memory
9252191, Jul 22 2011 Crossbar, Inc. Seed layer for a p+ silicon germanium material for a non-volatile memory device and method
9257430, Jun 18 2008 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Semiconductor construction forming methods
9257648, Feb 24 2011 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Memory cells, methods of forming memory cells, and methods of programming memory cells
9263577, Apr 24 2014 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Ferroelectric field effect transistors, pluralities of ferroelectric field effect transistors arrayed in row lines and column lines, and methods of forming a plurality of ferroelectric field effect transistors
9276134, Jan 10 2014 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Field effect transistor constructions and memory arrays
9305929, Feb 17 2015 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Memory cells
9312483, Sep 24 2012 INNOSTAR SEMICONDUCTOR SHANGHAI CO , LTD Electrode structure for a non-volatile memory device and method
9324942, Jan 31 2013 INNOSTAR SEMICONDUCTOR SHANGHAI CO , LTD Resistive memory cell with solid state diode
9337210, Aug 12 2013 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Vertical ferroelectric field effect transistor constructions, constructions comprising a pair of vertical ferroelectric field effect transistors, vertical strings of ferroelectric field effect transistors, and vertical strings of laterally opposing pairs of vertical ferroelectric field effect transistors
9343145, Jan 15 2008 OVONYX MEMORY TECHNOLOGY, LLC Memory cells, memory cell programming methods, memory cell reading methods, memory cell operating methods, and memory devices
9343665, Jul 02 2008 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Methods of forming a non-volatile resistive oxide memory cell and methods of forming a non-volatile resistive oxide memory array
9385319, May 07 2012 Crossbar, Inc. Filamentary based non-volatile resistive memory device and method
9401475, Aug 23 2010 INNOSTAR SEMICONDUCTOR SHANGHAI CO , LTD Method for silver deposition for a non-volatile memory device
9406379, Jan 03 2013 INNOSTAR SEMICONDUCTOR SHANGHAI CO , LTD Resistive random access memory with non-linear current-voltage relationship
9406878, Nov 01 2010 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Resistive memory cells with two discrete layers of programmable material, methods of programming memory cells, and methods of forming memory cells
9412421, Jun 07 2010 OVONYX MEMORY TECHNOLOGY, LLC Memory arrays
9412789, Aug 23 2010 Crossbar, Inc. Stackable non-volatile resistive switching memory device and method of fabricating the same
9412790, Dec 04 2012 Crossbar, Inc Scalable RRAM device architecture for a non-volatile memory device and method
9424920, Feb 24 2011 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Memory cells, methods of forming memory cells, and methods of programming memory cells
9450024, Jan 10 2014 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Field effect transistor constructions and memory arrays
9454997, Dec 02 2010 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Array of nonvolatile memory cells having at least five memory cells per unit cell, having a plurality of the unit cells which individually comprise three elevational regions of programmable material, and/or having a continuous volume having a combination of a plurality of vertically oriented memory cells and a plurality of horizontally oriented memory cells; array of vertically stacked tiers of nonvolatile memory cells
9472560, Jun 16 2014 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Memory cell and an array of memory cells
9543359, May 31 2011 Crossbar, Inc. Switching device having a non-linear element
9559118, Aug 12 2013 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Vertical ferroelectric field effect transistor constructions, constructions comprising a pair of vertical ferroelectric field effect transistors, vertical strings of ferroelectric field effect transistors, and vertical strings of laterally opposing pairs of vertical ferroelectric field effect transistors
9559194, Oct 16 2014 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Transistors and methods of forming transistors
9559301, Jun 18 2008 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Methods of forming memory device constructions, methods of forming memory cells, and methods of forming semiconductor constructions
9564587, Jun 30 2011 Crossbar, Inc Three-dimensional two-terminal memory with enhanced electric field and segmented interconnects
9570678, Jul 13 2010 INNOSTAR SEMICONDUCTOR SHANGHAI CO , LTD Resistive RAM with preferental filament formation region and methods
9570683, Jun 30 2011 Crossbar, Inc. Three-dimensional two-terminal memory with enhanced electric field and segmented interconnects
9576616, Oct 10 2012 Crossbar, Inc. Non-volatile memory with overwrite capability and low write amplification
9577186, May 02 2008 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Non-volatile resistive oxide memory cells and methods of forming non-volatile resistive oxide memory cells
9583701, Aug 14 2012 Crossbar, Inc Methods for fabricating resistive memory device switching material using ion implantation
9590013, Aug 23 2010 Crossbar, Inc Device switching using layered device structure
9601690, Jun 30 2011 Crossbar, Inc. Sub-oxide interface layer for two-terminal memory
9601692, Jul 13 2010 Crossbar, Inc. Hetero-switching layer in a RRAM device and method
9608111, Oct 07 2014 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Recessed transistors containing ferroelectric material
9620206, May 31 2011 Crossbar, Inc Memory array architecture with two-terminal memory cells
9627443, Jun 30 2011 Crossbar, Inc Three-dimensional oblique two-terminal memory with enhanced electric field
9633723, Jun 23 2011 Crossbar, Inc High operating speed resistive random access memory
9659998, Jun 07 2016 Macronix International Co., Ltd. Memory having an interlayer insulating structure with different thermal resistance
9666801, Jul 02 2008 Micron Technology, Inc. Methods of forming a non-volatile resistive oxide memory cell and methods of forming a non-volatile resistive oxide memory array
9673203, Feb 17 2015 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Memory cells
9673255, Apr 05 2012 INNOSTAR SEMICONDUCTOR SHANGHAI CO , LTD Resistive memory device and fabrication methods
9685608, Apr 13 2012 INNOSTAR SEMICONDUCTOR SHANGHAI CO , LTD Reduced diffusion in metal electrode for two-terminal memory
9697873, Jun 07 2010 Micron Technology, Inc. Memory arrays
9729155, Jul 29 2011 Crossbar, Inc Field programmable gate array utilizing two-terminal non-volatile memory
9735358, Aug 14 2012 Crossbar, Inc. Noble metal / non-noble metal electrode for RRAM applications
9741765, Feb 07 2014 Crossbar, Inc Monolithically integrated resistive memory using integrated-circuit foundry compatible processes
9755143, Jul 13 2010 Crossbar, Inc. On/off ratio for nonvolatile memory device and method
9761715, Apr 24 2014 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Ferroelectric field effect transistors, pluralities of ferroelectric field effect transistors arrayed in row lines and column lines, and methods of forming a plurality of ferroelectric field effect transistors
9773976, Oct 16 2014 Micron Technology, Inc. Transistors and methods of forming transistors
9793474, Apr 20 2012 INNOSTAR SEMICONDUCTOR SHANGHAI CO , LTD Low temperature P+ polycrystalline silicon material for non-volatile memory device
9805792, Jan 15 2008 Micron Technology, Inc. Memory cells, memory cell programming methods, memory cell reading methods, memory cell operating methods, and memory devices
9853211, Jul 24 2015 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Array of cross point memory cells individually comprising a select device and a programmable device
9887239, Jun 07 2010 Micron Technology, Inc. Memory arrays
9972778, May 02 2012 INNOSTAR SEMICONDUCTOR SHANGHAI CO , LTD Guided path for forming a conductive filament in RRAM
9989616, Jun 07 2010 Micron Technology, Inc. Memory arrays
RE46335, Nov 04 2010 Crossbar, Inc. Switching device having a non-linear element
Patent Priority Assignee Title
5497017, Jan 26 1995 Micron Technology, Inc. Dynamic random access memory array having a cross-point layout, tungsten digit lines buried in the substrate, and vertical access transistors
5835396, Oct 17 1996 Three-dimensional read-only memory
6269018, Apr 13 2000 International Business Machines Corporation Magnetic random access memory using current through MTJ write mechanism
6627530, Dec 22 2000 SanDisk Technologies LLC Patterning three dimensional structures
6642603, Jun 27 2002 SanDisk Technologies LLC Same conductivity type highly-doped regions for antifuse memory cell
6716644, May 17 2002 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Method for forming MRAM bit having a bottom sense layer utilizing electroless plating
6743641, Dec 20 2001 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Method of improving surface planarity prior to MRAM bit material deposition
6750069, Apr 10 2001 OVONYX MEMORY TECHNOLOGY, LLC Minimally spaced MRAM structures
6780652, Mar 15 2001 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Self-aligned MRAM contact and method of fabrication
6781166, Jul 02 1999 President and Fellows of Harvard College Nanoscopic wire-based devices and arrays
6826077, May 15 2002 SAMSUNG ELECTRONICS CO , LTD Magnetic random access memory with reduced parasitic currents
6980465, Dec 19 2003 Taiwan Semiconductor Manufacturing Company Limted Addressing circuit for a cross-point memory array including cross-point resistive elements
6984530, Mar 29 2004 SAMSUNG ELECTRONICS CO , LTD Method of fabricating a MRAM device
7119388, Apr 11 2002 OVONYX MEMORY TECHNOLOGY, LLC MRAM device fabricated using chemical mechanical polishing
7126200, Feb 18 2003 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Integrated circuits with contemporaneously formed array electrodes and logic interconnects
7259076, May 20 2003 Xenogenic Development Limited Liability Company High-density SOI cross-point memory fabricating method
7285811, Apr 11 2002 OVONYX MEMORY TECHNOLOGY, LLC MRAM device for preventing electrical shorts during fabrication
7323349, May 02 2005 Xenogenic Development Limited Liability Company Self-aligned cross point resistor memory array
7413945, Jun 27 2002 SanDisk Technologies LLC Electrically isolated pillars in active devices
7560339, Dec 19 2002 SanDisk Technologies LLC Nonvolatile memory cell comprising a reduced height vertical diode
20030025210,
20040087072,
20050054138,
20050068830,
20050254291,
20060189077,
20060234418,
20070253243,
20080211007,
20080272363,
20080273363,
////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Feb 18 2009SANDHU, GURTEJ S Micron Technology, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0222850291 pdf
Feb 18 2009SILLS, SCOTTMicron Technology, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0222850291 pdf
Feb 19 2009Micron Technology, Inc.(assignment on the face of the patent)
Apr 26 2016Micron Technology, IncU S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENTCORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001 ASSIGNOR S HEREBY CONFIRMS THE SECURITY INTEREST 0430790001 pdf
Apr 26 2016Micron Technology, IncMORGAN STANLEY SENIOR FUNDING, INC , AS COLLATERAL AGENTPATENT SECURITY AGREEMENT0389540001 pdf
Apr 26 2016Micron Technology, IncU S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0386690001 pdf
Jun 29 2018U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENTMicron Technology, IncRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0472430001 pdf
Jul 03 2018MICRON SEMICONDUCTOR PRODUCTS, INC JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0475400001 pdf
Jul 03 2018Micron Technology, IncJPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0475400001 pdf
Jul 31 2019JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTMICRON SEMICONDUCTOR PRODUCTS, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0510280001 pdf
Jul 31 2019JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTMicron Technology, IncRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0510280001 pdf
Jul 31 2019MORGAN STANLEY SENIOR FUNDING, INC , AS COLLATERAL AGENTMicron Technology, IncRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0509370001 pdf
Date Maintenance Fee Events
Aug 19 2011ASPN: Payor Number Assigned.
Mar 04 2015M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Mar 07 2019M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Mar 07 2023M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Sep 20 20144 years fee payment window open
Mar 20 20156 months grace period start (w surcharge)
Sep 20 2015patent expiry (for year 4)
Sep 20 20172 years to revive unintentionally abandoned end. (for year 4)
Sep 20 20188 years fee payment window open
Mar 20 20196 months grace period start (w surcharge)
Sep 20 2019patent expiry (for year 8)
Sep 20 20212 years to revive unintentionally abandoned end. (for year 8)
Sep 20 202212 years fee payment window open
Mar 20 20236 months grace period start (w surcharge)
Sep 20 2023patent expiry (for year 12)
Sep 20 20252 years to revive unintentionally abandoned end. (for year 12)