A method of manufacturing an active matrix substrate is provided that uses a technique of transferring a thin film device. In forming thin film transistors and pixel electrodes on an original substrate before transfer, an insulator film such as an interlayer insulation film or the like, is previously removed before the pixel electrodes are formed. Further, the original substrate is separated by exfoliation to transfer the device to a transfer material to cause the pixel electrodes to partially appear in the surface or the vicinity of the surface of the device. This portion permits application of a voltage to a liquid crystal through the pixel electrode.
|
0. 55. A method of manufacturing a device, the method comprising:
forming a separation layer over a substrate; forming the thin film device over the separation layer; forming an insulation film over the thin film device and the separation layer; selectively removing at least a portion of the insulation film; and forming at least one of a first electrode connected to the thin film device and an external connection terminal in an area where the insulation film is removed.
0. 56. A method of manufacturing a device, the method comprising:
forming a separation layer over a substrate; forming an intermediate layer over the separation layer; forming the thin film device over the intermediate layer; forming an insulation film over the thin film device and the separation layer; selectively removing the intermediate layer; and forming at least one of a first electrode connected to the thin film device and an external connection terminal in an area where the insulation film is removed.
0. 26. A transfer method for transferring a thin film device formed on a substrate onto a transcriptional body, the method comprising:
forming a separation layer over a substrate; forming the thin film device over the separation layer; forming an insulation film over the thin film device and the separation layer; selectively removing at least a portion of the insulation film; and forming at least one of a first electrode connected to the thin film device and an external connection terminal in an area where the insulation film is removed.
0. 58. A method of manufacturing a device, the method comprising:
forming a separation layer over a substrate; forming at least one of an electrode connected to the thin film device and an external connection terminal on the separation layer; forming at least one of the electrode and the external connection terminal and then forming the thin film device; and transferring at least one of the thin film device, the electrode, and the external connection terminal onto a transcriptional body to expose at least one of the electrode and the external connection terminal.
0. 36. A transfer method for transferring a thin film device formed over a substrate onto a transcriptional body, the method comprising:
forming a separation layer over a substrate; forming an intermediate layer over the separation layer; forming the thin film device over the intermediate layer; forming an insulation film over the thin film device and the separation layer; selectively removing the intermediate layer; and forming at least one of a first electrode connected to the thin film device and an external connection terminal in an area where the insulation film is removed.
0. 57. A method of manufacturing a device, the method comprising:
forming a separation layer over a substrate; forming the thin film device over the separation layer; forming an insulation film over the thin film device and the separation layer; forming at least one of an electrode connected to the thin film device and an external connection terminal over the insulation film; transferring at least one of the thin film device, the electrode, and the external connection terminal onto a transcriptional body; and selectively removing the insulation layer to expose at least one of the electrode and the external connection terminal.
0. 51. A transfer method for transferring a thin film device formed on a substrate onto a transcriptional body, the method comprising:
forming a separation layer over a substrate; forming at least one of an electrode connected to the thin film device and an external connection terminal on the separation layer; forming at least one of the electrode and the external connection terminal and then forming the thin film device; and transferring at least one of the thin film device, the electrode, and the external connection terminal onto a transcriptional body to expose at least one of the electrode and the external connection terminal.
0. 46. A transfer method for transferring a thin film device formed on a substrate onto a transcriptional body, the method comprising:
forming a separation layer over a substrate; forming the thin film device over the separation layer; forming an insulation film over the thin film device and the separation layer; forming at least one of an electrode connected to the thin film device and an external connection terminal over the insulation film; transferring at least one of the thin film device, the electrode, and the external connection terminal onto a transcriptional body; and selectively removing the insulation layer to expose at least one of the electrode and the external connection terminal.
16. A method of manufacturing an active matrix substrate comprising a pixel portion including thin film transistors connected to scanning lines and signal lines arranged in a matrix, and pixel electrodes connected to terminals of the thin film transistors, the method comprising the steps of:
forming a separation layer on a substrate; forming the pixel electrodes over the separation layer or on an intermediate layer formed on the separation layer; forming an insulation film on the pixel electrodes, and forming the thin film transistors on the insulation film to respectively connect the thin film transistors to the pixel electrodes; adhering the thin film transistors to a transmissive transfer material with a transmissive adhesive layer; producing exfoliation in the separation layer and/or at an interface of the separation layer and the substrate to separate the substrate from the separation layer; and removing any portion of the separation layer remaining on the intermediate layer to form an active matrix substrate using the transfer material as a new substrate.
1. A method of manufacturing an active matrix substrate comprising a pixel portion including thin film transistors connected to scanning lines and signal lines arranged in a matrix, and pixel electrodes connected to terminals of the thin film transistors, the method comprising the steps of:
forming a separation layer on a substrate; forming the thin film transistors over the separation layer; forming an insulation film on the thin film transistors and over the separation layer; selectively removing at least a portion of the insulation film where each of the pixel electrodes is to be formed; forming each of the pixel electrodes on the insulation film and the separation layer in the region where at least a portion of the insulation film has been removed; adhering the thin film transistors to a transfer material with an adhesive layer; producing exfoliation in the separation layer and/or at an interface of the separation layer and the substrate to separate the substrate from the separation layer; and removing any portion of the separation layer remaining on the pixel electrodes to form an active matrix substrate using the transfer material as a new substrate.
8. A method of manufacturing an active matrix substrate comprising a pixel portion including thin film transistors connected to scanning lines and signal lines arranged in a matrix, and pixel electrodes connected to terminals of the thin film transistors, the method comprising the steps of:
forming a separation layer on a substrate; forming an intermediate layer on the separation layer; forming the thin film transistors on the intermediate layer; forming an insulation film on the thin film transistors and the intermediate layer; selectively removing at least a portion of the insulation film where each of the pixel electrodes is to be formed; forming each of the pixel electrodes on the insulation film and the separation layer in the region where at least a portion of the insulation film is removed; adhering the thin film transistors to a transfer material with an adhesive layer; producing exfoliation in the separation layer and/or at an interface of the separation layer and the substrate to separate the substrate from the separation layer; and removing any portion of the separation layer remaining on the intermediate layer and the pixel electrodes to form an active matrix substrate using the transfer material as a new substrate.
15. A method of manufacturing an active matrix substrate comprising a pixel portion including thin film transistors connected to scanning lines and signal lines arranged in a matrix, and pixel electrodes connected to terminals of the thin film transistors, the method comprising the steps of:
forming a separation layer on a transmissive substrate; forming the thin film transistors over the separation layer or on an intermediate layer formed on the separation layer; forming an insulation film on the thin film transistors; forming the pixel electrodes made of a conductive material on the insulation film; forming a light shielding layer that is overlapped with the thin film transistors, and not overlapped with at least a portion of the pixel electrodes; adhering the thin film transistors and the light shielding layer to a transmissive transfer material with a transmissive adhesive layer; irradiating the separation layer through the transmissive substrate to produce exfoliation in the separation layer and/or at an interface of the separation layer and the transmissive substrate to separate the transmissive substrate from the separation layer; forming a photoresist on a surface obtained by separating the transmissive substrate or the surface of a layer appearing after removing any remaining portion of the separation layer; irradiating light to expose only a predetermined portion of the photoresist using the light shielding layer as a mask, followed by development to form a desired photoresist mask; selectively removing at least a portion of the intermediate layer and the insulation film or at least a portion of the insulation film by using the photoresist mask; and removing the photoresist mask to form an active matrix substrate using the transfer material as a new substrate.
2. The method of manufacturing an active matrix substrate according to
3. The method of manufacturing an active matrix substrate according to
4. The method of manufacturing an active matrix substrate according to
forming electrodes connected to an impurity layer which constitutes the thin film transistors; and connecting the pixel electrodes to the corresponding electrodes connected to the impurity layers.
5. The method of manufacturing an active matrix substrate according to
6. The method of manufacturing an active matrix substrate according to
7. The method of manufacturing an active matrix substrate according to
9. The method of manufacturing an active matrix substrate according to
10. The method of manufacturing an active matrix substrate according to
11. The method of manufacturing an active matrix substrate according to
forming electrodes connected to an impurity layer which constitutes the thin film transistors; and connecting the pixel electrodes to the corresponding electrodes connected to the impurity layers.
12. The method of manufacturing an active matrix substrate according to
13. The method of manufacturing an active matrix substrate according to
14. The method of manufacturing an active matrix substrate according to
17. The method of manufacturing an active matrix substrate according to
18. An active matrix substrate manufactured by the method of manufacturing an active matrix substrate according to
19. An active matrix substrate manufactured by the method of manufacturing an active matrix substrate according to
20. An active matrix substrate manufactured by the method of manufacturing an active matrix substrate according to
21. An active matrix substrate manufactured by the method of manufacturing an active matrix substrate according to
22. A liquid crystal display device comprising an active matrix substrate manufactured by the method of manufacturing an active matrix substrate according to
23. A liquid crystal display device comprising an active matrix substrate manufactured by the method of manufacturing an active matrix substrate according to
24. A liquid crystal display device comprising an active matrix substrate manufactured by the method of manufacturing an active matrix substrate according to
25. A liquid crystal display device comprising an active matrix substrate manufactured by the method of manufacturing an active matrix substrate according to
0. 27. The transfer method according to
adhering the thin film device to a transfer material with an adhesive layer.
0. 28. The transfer method according to
producing exfoliation in the separation layer and/or at an interface of the separation layer and the substrate to separate the substrate from the separation layer.
0. 29. The transfer method according to
removing any portion of the separation layer remaining on the first electrode to form an active matrix substrate using the transfer material as a new substrate.
0. 30. The transfer method according to
0. 31. The transfer method according to
0. 32. The transfer method according to
forming at least one of a second electrode connected to an impurity layer which constitutes the thin film device; and connecting the first electrode to the corresponding second electrode connected to the impurity layer.
0. 33. The transfer method according to
0. 34. The transfer method according to
0. 35. The transfer method according to
0. 37. The transfer method according to
adhering the thin film device to a transfer material with an adhesive layer.
0. 38. The transfer method according to
producing exfoliation in the separation layer and/or at an interface of the separation layer and the substrate to separate the substrate from the separation layer.
0. 39. The transfer method according to
removing any portion of the separation layer remaining on the intermediate layer and the first electrode to form an active matrix substrate using the transfer material as a new substrate.
0. 40. The transfer method according to
0. 41. The transfer method according to
0. 42. The transfer method according to
forming at least one second electrode connected to an impurity layer which constitutes the thin film device; and connecting the first electrode to the corresponding second electrode connected to the impurity layer.
0. 43. The transfer method according to
0. 44. The transfer method according to
0. 45. The transfer method according to
0. 47. The transfer method according to
forming a light shielding layer that is overlapped with the thin film device, and not overlapped with at least a portion of the electrode.
0. 48. The transfer method according to
adhering the thin film device and the light shielding layer to a transmissive transfer material with a transmissive adhesive layer; and irradiating the separation layer through the transmissive substrate to produce exfoliation in the separation layer and the transmissive substrate to separate the transmissive substrate from the separation layer.
0. 49. The transfer method according to
forming a photoresist on a surface obtained by separating the transmissive substrate; irradiating light to expose only a predetermined portion of the photoresist using the light shielding layer as a mask, followed by development to form a desired photoresist mask; and selectively removing at least a portion of the insulation film by using the photoresist mask.
0. 50. The transfer method according to
removing the photoresist mask to form an active matrix substrate using the transfer material as a new substrate.
0. 52. The transfer method according to
adhering the thin film device to a transmissive transfer material with a transmissive adhesive layer.
0. 53. The transfer method according to
producing exfoliation in the separation layer to separate the substrate from the separation layer.
0. 54. The transfer method according to
|
This application is a continuation-in-Part of international application PCT/JP97/04110, filed on Nov. 11, 1997, which claims priority from Japanese application Nos. 8-315590 and 8-327688, filed on Nov. 12, 1996 and Nov. 22, 1996, respectively. PCT/JP97/04110 and Japanese application Nos. 8-315590 and 8-327688 are incorporated by reference herein in their entirety.
1. Field of the Invention
The present invention relates to a method of manufacturing an active matrix substrate using a method of transferring a thin film device. The present invention also relates to an active matrix substrate manufactured by the manufacturing method, and a liquid crystal display device comprising this active matrix substrate as one of a pair of substrates.
2. Description of Related Art
For example, a liquid crystal display using thin film transistors (TFT) is manufactured through the step of forming thin film transistors on a substrate by CVD or the like. Since the step of forming thin film transistors on the substrate is accompanied with high temperature processing, it is necessary to use material for the substrate which has excellent heat resistance, i.e., material having a high softening point and melting point. At present, silica glass is used as a substrate which can resist a temperature of about 10000C, and heat resistant glass is used as a substrate which can resist a temperature of about 500°C C.
Namely, the substrate on which thin film elements are mounted must satisfy conditions for producing the thin film transistors. Therefore, the substrate used is determined so as to satisfy conditions for manufacturing a device to be mounted thereon.
However, in consideration of only the steps after the substrate comprising the thin film transistors such as TFT or the like mounted thereon is completed, in some cases, the above-described substrate is not always satisfactory.
For example, in the above-described manufacturing process accompanied with high temperature processing, a quartz substrate, a heat-resistant substrate, or the like is used. However, these substrates are very expensive, and thus cause an increase in product cost.
Also the glass substrate has the properties that it is heavy and easily broken. A liquid crystal display used for portable electronic apparatus such as a palm top computer, a portable telephone, etc. is preferably light weight, can resist a little deformation, and is hardly broken by dropping. However, in fact, the glass substrate is generally heavy, less resistant to deformation and is possibly broken by dropping.
In other words, there are gaps between the limitations caused by manufacturing conditions and preferable characteristics required for products, and it is very difficult to satisfy the conditions and characteristics.
The present invention has been achieved in consideration of these problems, and an object of the invention is to provide a novel technique which permits independent free selection of a substrate used in producing thin film devices, and a substrate (a substrate having preferable properties for application of a product) used in, for example, actual use of a product, and a completely new method of effectively manufacturing an active matrix substrate having excellent properties and a liquid crystal display device by using the technique.
In order to achieve the object, the present invention may include the following.
(1) The present invention provides a method of manufacturing an active matrix substrate comprising a pixel portion including thin film transistors connected to scanning lines and signal lines arranged in a matrix, and pixel electrodes respectively connected to terminals of the thin film transistors, the method may include:
forming a separation layer on the substrate;
forming the thin film transistors over the separation layer;
forming an insulation film on the thin film transistors and over the separation layer;
selectively removing at least a portion of the insulation film in a region where each of the pixel electrodes is to be formed;
forming each of the pixel electrodes on the insulation film and the separation layer in a region where at least a portion of the insulation film has been removed;
adhering the thin film transistors to a transfer material with an adhesive layer
producing exfoliation in the separation layer and/or at an interface of the separation layer and the substrate to separate the substrate from the separation layer; and
removing any portion of the separation layer remaining on the pixel electrodes and under the insulation film to form an active matrix substrate using the transfer material as a new substrate.
In the method of manufacturing an active matrix substrate of the present invention, the thin film transistors and the pixel electrodes formed on the substrate are transferred to the desired transfer material by the device transfer technique developed by the applicant of the present invention. In this case, the device transferred onto the transfer material is reverse to a normal device. In the transferred device, consequently, the pixel electrode is covered with the insulator layer such as an interlayer insulation film or the like before transfer. If the insulation film has a large thickness, a large voltage loss occurs in this portion, and thus a sufficient voltage cannot be applied to a liquid crystal.
Therefore, in the manufacturing method of the present invention, in forming the thin film transistors and pixel electrodes on the original substrate before transfer, at least a portion of the insulator layer such as the interlayer insulation film or the like is removed before the pixel electrodes are formed. In this case, the entire insulator layer is preferably removed. However, when the insulation film remaining unremoved is thin, at least a portion of the insulator layer may be removed because no problem occurs in application of a voltage to the liquid crystal.
In any case, by separating the original substrate after a device is transferred onto the transfer material, the pixel electrode partially appears at least in the vicinity of the surface of the device. Therefore, a sufficient voltage can be applied to the liquid crystal layer from this portion.
The insulation film remaining on the pixel electrodes can also be separately removed in another step (for example, in a step after transfer of the device).
(2) The present invention provides a method of manufacturing an active matrix substrate comprising a pixel portion including thin film transistors connected to scanning lines and signal lines arranged in a matrix, and pixel electrodes respectively connected to terminals of the thin film transistors, and the method may include:
forming a separation layer on a substrate;
forming an intermediate layer on the separation layer;
forming the thin film transistors on the intermediate layer;
forming an insulation film on the thin film transistors and the intermediate layer;
selectively removing a portion of the insulation film in a region where each of the pixel electrodes is to be formed;
forming each of the pixel electrodes on the insulation film and the separation layer in the region where at least a portion of the insulation film is removed;
adhering the thin film transistors to a transfer material with an adhesive layer;
producing exfoliation in the separation layer and/or at an interface of the separation layer and the substrate to separate the substrate from the separation layer; and
removing any portion of the separation layer remaining on the intermediate layer and the pixel electrodes to form an active matrix substrate using the transfer material as a new substrate.
This invention is different from invention (1) in that the intermediate layer is provided. The intermediate layer can comprise a single layer film of an insulator, such as an SiO2 film or the like, or a multilayered film comprising a laminate of an insulator and a metal. The intermediate layer functions to facilitate separation from the separation layer, protect the transistors from contamination during removal of the separation layer, ensure insulation properties of the transistors, and suppress irradiation of the transistors with laser light.
In forming the thin film transistors and the pixel electrodes on the original substrate before transfer, at least a portion of the insulator layer such as an interlayer insulation film or the like, which causes a problem in the later steps, is removed before the pixel electrodes are formed. In this case, the whole insulation film and intermediate layer below it are preferably removed at the same time from the viewpoint of prevention of a loss of the voltage applied to the liquid crystal. However, where the insulator layer remaining unremoved is thin, a sufficient voltage can be applied to the liquid crystal from the pixel electrodes. Therefore, at least a portion of the insulation film may be removed.
In the present invention, by separating the original substrate after a device is transferred to the transfer material, the pixel electrode partially appears at least in the vicinity of the surface of the device. Therefore, a voltage can sufficiently be applied to the liquid crystal layer from this portion.
The insulation film remaining on the pixel electrodes can separately be removed in another step (for example, the step after transfer of the device).
(3) In invention (2), at least a portion of the insulation film may be selectively removed in the step of forming contact holes for electrically connecting the pixel electrodes to the thin film transistors. Since the same manufacturing step is used for both purposes, an increase in the number of the manufacturing steps can be prevented.
(4) In invention (3), the contact holes may be used for connecting the pixel electrodes directly to an impurity layer which constitutes the thin film transistors.
Namely, in a structure in which the pixel electrodes are connected directly to terminals(source layer or drain layer) of the thin film transistors, the insulator layer such as an interlayer insulation film or the like may be removed in formation of the contact holes for connection.
(5) In invention (3), the contact holes may be used for connecting the pixel electrodes to respective electrodes connected to an impurity layer which constitutes the thin film transistors.
Namely, in a structure in which the pixel electrodes are connected to terminals(the source layer or drain layer) of the thin film transistors through electrodes made of a metal or the like (when the pixel electrodes are in a layer above the electrodes of the transistors), the insulator layer such as an interlayer insulation film or the like may be removed in formation of the contact holes for connection.
(6) In any one of inventions (1) to (5), at least one of a color filter and a light shielding film may be after the step of forming the pixel electrodes.
In the structure of normal thin film transistors, if the color filter or the light shielding film is formed on the pixel electrodes, application of a voltage to the liquid crystal layer from the pixel electrodes is interfered with, and thus such a structure cannot be used.
However, in the present invention, a device is reversed by transfer, and thus the region where a voltage is applied to the liquid crystal layer from the pixel electrode is formed on the side (i.e., the thin film transistor side) opposite to a conventional device. Therefore, even if the color filter or the light shielding film has been previously formed on the original substrate before transfer, no trouble occurs. In this case, only common electrodes may be formed on the opposite substrate, and the color filter or the light shielding film, which is conventionally formed on the opposite substrate, need not be strictly aligned with the pixel electrodes, thereby facilitating assembly of a liquid crystal display device.
(7) In any one of inventions (1) to (6), in selectively removing at least a portion of the insulation film, at least a portion of the insulation film may be selectively removed in a region where an external connection terminal is to be provided.
In an active matrix substrate, where the external connection terminal (for example, a terminal for connecting a liquid crystal driving IC) is required, this terminal also must be at a position near at least the surface of the device.
Therefore, in the region where the external connection terminal is provided, the insulator film such as an interlayer insulation film or the like is removed. In this case, the under insulation film (intermediate layer) must be removed in the same step or a different step.
(8) In invention (7), in the region where at least a portion of the insulation film is selectively removed for providing the external connection terminal, a conductive layer formed from the same material as the pixel electrodes or an electrode connected to an impurity layer which constitutes the thin film transistors may be formed. In this invention, the conductive layer may be used for forming the external connection terminal.
(9) The present invention also may provide a method of manufacturing an active matrix substrate having a pixel portion including thin film transistors connected to scanning lines and signal lines arranged in a matrix, and pixel electrodes connected to terminals of the thin film transistors, and the method may include:
forming a separation layer on a transmissive substrate;
forming the thin film transistors over the separation layer or on a predetermined intermediate layer formed on the separation layer;
forming an insulation film on the thin film transistors;
forming the pixel electrodes comprising a transparent conductive material on the insulation film;
forming a light shielding layer that is overlapped with the thin film transistors and is not overlapped with at least a portion of the pixel electrodes;
adhering the thin film transistors and the light shielding layer on a transmissive transfer material with a transmissive adhesive layer;
irradiating the separation layer with light through the transmissive substrate to produce exfoliation in the separation layer and/or at an interface of the separation layer and the transmissive substrate to separate the transmissive substrate from the separation layer;
forming a photoresist on a surface from which the transmissive substrate is separated, or on the surface of a layer which appears after removing any remaining portion of the separation layer;
irradiating light to expose only a predetermined portion of the photoresist using the light shielding layer as a mask, followed by development to form a desired photoresist mask;
selectively removing at least a portion of the intermediate layer and the insulation film or at least a portion of the insulation film using the photoresist mask; and
removing the photoresist mask to form an active matrix substrate using the transfer material as a new substrate.
Although, in inventions (1) to (8), at least a portion of the insulator layer below the pixel electrodes may be removed before transfer, in this invention, at least a portion of the insulator layer below the pixel electrodes may be removed in a self alignment manner using the light shielding film after transfer.
Namely, the light shielding layer may be formed on the original substrate before transfer, and may be used as an exposure mask after transfer to form a desired resist pattern by utilizing the fact that the light shielding layer is formed around the pixel electrodes. Then, at least a portion of the insulator layer below the pixel electrodes may be removed by using the resist pattern as an etching mask.
(10) This invention provides a method of manufacturing an active matrix substrate having a pixel portion including thin film transistors connected to scanning lines and signal lines arranged in a matrix, and pixel electrodes respectively connected to terminals of the thin film transistors, and the method may include:
forming a separation layer on a substrate;
forming the pixel electrodes over the separation layer or on a predetermined intermediate layer formed on the separation layer;
forming an insulation film on the pixel electrodes, forming the thin film transistors on the insulation film, and respectively connecting the thin film transistors to the pixel electrodes;
adhering the thin film transistors to a transfer material with an adhesive layer;
producing exfoliation in the separation layer and/or at an interface of the separation layer and the substrate to separate the substrate from the separation layer; and
removing any portion of the separation layer remaining on the intermediate layer to form an active matrix substrate using the transfer material as a new substrate.
In this invention, when the thin film transistors are formed on the original substrate before transfer, the pixel electrodes are previously formed. The original substrate before transfer is separated after transfer to automatically expose the surfaces of the pixel electrodes or position the pixel electrodes at least at the surface of the device.
(11) In invention (10), a conductive material layer may be formed on the separation layer or on the intermediate layer at a position where an external connection terminal is to be formed.
When the thin film transistors are formed on the original substrate before transfer, the conductive material layer for forming the external connection terminal is previously formed as well as the pixel electrode. The original substrate before transfer is separated after transfer to automatically expose the surface of the conductive material layer at the same time as the pixel electrodes, or position the conductive material layer near the surface, leaving the intermediate layer. In the latter case, the intermediate layer is removed in the same step or a different step to expose the surface of the conductive material layer. The conductive material layer with the exposed surface serves as the external connection terminal.
(12) This invention provides an active matrix substrate manufactured by the method of manufacturing an active matrix substrate of any one of inventions (1) to (11). Since limitations due to the manufacturing conditions are eliminated so that the substrate can freely be selected, a novel active matrix substrate, which has not yet been realized, can be realized.
(13) This invention provides a liquid crystal display device comprising an active matrix substrate manufactured by the method of manufacturing an active matrix substrate of any one of inventions (1) to (11). For example, it is possible to realize an active matrix type liquid crystal display device comprising a plastic substrate and having flexibility.
An exfoliating method in accordance with an embodiment of the present invention is described in detail below with reference to the attached drawings.
In the present invention, an active matrix substrate is formed by using "the device transfer technique" developed by the applicant of this invention. Therefore, the contents of "the device transfer technique" are first described.
(Contents of device transfer technique)
[Step 1]
As shown in
The substrate 100 and the separation layer 120 are described.
(1) Description of the substrate 100
The substrate 100 preferably has transmissivity which allows transmission of light. In this case, the light transmittance is preferably 10% or more, and more preferably 50% or more. With too low transmittance, attenuation (loss) of light is increased, and thus a large quantity of light is required for exfoliating the separation layer 120.
Also the substrate 100 is preferably made of a material having high reliability, particularly a material having excellent heat resistance. The reason for this is that for example, when a transferred layer 140 or an intermediate layer 142, which will be described below, are formed, the process temperature is sometimes increased (for example, about 350 to 1000°C C.) according to the type and the forming method. However, in this case, in forming the transferred layer 140 or the like on the substrate 100 having excellent heat resistance, the ranges of the film forming conditions such as the temperature condition, etc. are widened.
Therefore, if the highest temperature in formation of the transferred layer 140 is Tmax, the substrate 100 is preferably made of a material having a strain point higher than Tmax. Specifically, the material for forming the substrate 100 preferably has a strain point of 350°C C. or higher, more preferably 500°C C. or higher. Examples of such materials include heat resistant glass such as quartz glass, Corning 7059, Nihon Denki glass OA-2, and the like Although the thickness of the substrate 100 is not limited, the thickness is preferably about 0.1 to 5.0 mm, more preferably about 0.5 to 1.5 mm. With the substrate 100 having an excessively small thickness, the strength deteriorates, and with the substrate 100 having an excessively large thickness, attenuation of light easily occurs when the substrate 100 exhibits low transmittance. When the substrate 100 exhibits high transmittance, the thickness thereof may exceed the upper limit. In order to permit uniform irradiation, the substrate 100 preferably has a uniform thickness.
(2) Description of the separation layer 120
The separation layer 120 has the property of absorbing light to produce exfoliation in the layer and/or the interface thereof (referred to as "internal exfoliation" and "interfacial exfoliation" hereinafter), and preferably, the adhering strength between the atoms or molecules of the material which constitutes the separation layer 120 is reduced or eliminated by irradiation of light, i.e., internal exfoliation and/or interfacial exfoliation results from ablation.
Further, in some cases, gases are discharged from the separation layer 120 by irradiation of light to cause a separating effect. Namely, the components contained in the separation layer 120 are discharged as gases, or the separation layer 120 absorbs light to become a gas for a moment and the vapor is discharged to contribute to separation. Examples of the composition of the separation layer 120 include the following A to E.
A. Amorphous silicon (a-Si)
Amorphous silicon may contain hydrogen (H). In this case, the H content is preferably about 2 atomic % or more, more preferably about 2 to 20 atomic %. When a predetermined amount of hydrogen (H) is present, hydrogen is discharged by irradiation of light to generate internal pressure in the separation layer 120, which serves as the force to exfoliate upper and lower thin films. The content of hydrogen (H) in amorphous silicon can be adjusted by appropriately setting film deposition conditions, e.g., the gas composition, gas pressure, gas atmosphere, gas flow rate, temperature, substrate temperature, input power, etc. of CVD.
B. Various oxide ceramics such as silicon oxide or silicates, titanium oxide or titanates, zirconium oxide or zirconates, lanthanum oxide or lanthanates, and the like, dielectric material (ferroelectric material) or semiconductor.
Examples of silicon oxides include SiO, SiO2 and Si3O2, and examples of silicate compounds include K2SiO3, Li2SiO3, CaSiO3, ZrSiO4, and Na2SiO3.
Examples of titanium oxides include Tio, Ti2O3 and TiO2, and examples of titanate compounds include BaTiO4, BaTiO3, Ba2Ti9O20, BaTi5O1l, CaTiO3, SrTiO3, PbTiO3, MgTiO3, ZrTiO2, SnTiO4, Al2TiO5, and FeTiO3.
Zirconium oxide is ZrO2, and examples of zirconate compounds include BaZrO3, ZrSiO4, PbZrO3, MgZrO3, and K2ZrO3.
C. Ceramics such as PZT, PLZT, PLLZT, PBZT and the like, or dielectric material (ferroelectric material)
D. Nitride ceramics such as silicon nitride, aluminum nitride, titanium nitride, and the like.
E. Organic polymer material
As an organic polymer material, any material having bonds such as --CH--, --CO-- (ketone), --CONH-- (amido), --NH-- (imido), COO-- (ester), --N═N-- (azo), --CH═N-- (Schiff) or the like (these bonds are cut by light irradiation), particularly any material having many bonds of such a type can be used. The organic polymer material may have an aromatic hydrocarbon (at least one benzene ring or condensed ring thereof) in the composition thereof.
Examples of such organic polymer materials include polyolefines such as polyethylene and polypropylene, polyimide, polyamide, polyester, polymethylmethacrylate (PMMA), polyphenylenesulfide (PPS), polyethersulfone (PES), epoxy resins, and the like.
F. Metal
Examples of metals include Al, Li, Ti, Mn, In, Sn, Y, La, Ce, Nd, Pr, Gd, Sm, and alloys containing at least one of these metals.
Although the thickness of the separation layer 120 depends upon conditions such as the purpose of exfoliation, the composition of the separation layer 120, the layer structure, the forming method, etc., the thickness is preferably about 0.5 nm to 20 pm, more preferably about 1 nm to 2 μm, most preferably about 5 nm to 1 μm. With the separation layer 120 having an excessively small thickness, uniformity of film deposition deteriorates, thereby causing nonuniformity in exfoliation. With the separation layer 120 having an excessively large thickness, the power of light (quantity of light) must be increased to ensure good exfoliating properties of the separation layer 120, and much time is required for removing the separation layer 120 later. The thickness of the separation layer 120 is preferably as uniform as possible.
The method of forming the separation layer 2 is not limited, and is appropriately selected according to conditions such as the film composition, the thickness, and the like. Examples of the forming method include various vapor phase deposition methods such as CVD (including MOCVD, low-pressure CVD and ECR-CVD), evaporation, molecular beam evaporation (MB), sputtering, ion plating, PVD, and the like; various plating methods such as electroplating, immersion plating (dipping), electroless plating, and the like; coating methods such as Langmuir-Blodgett's (LB) technique, spin coating, spray coating, roll coating, and the like; various printing methods; a transfer method; an ink jet method; a powder jet method; and the like. The separation layer may be formed by a combination of at least two of these methods.
For example, where the composition of the separation layer 120 comprises amorphous silicon (a-Si), the layer is preferably formed by CVD, particularly low-pressure CVD or plasma CVD.
Where the separation layer 120 is made of ceramic by a sol-gel method, or an organic polymer material, it is preferably formed by a coating method, particularly spin coating.
[Step 2]
Next, the transferred layer (thin film device layer) 140 is formed on the separation layer 120, as shown in FIG. 2.
An enlarged section of portion K (shown by a one-dot chain line in
Although, in this embodiment, as the intermediate layer provided in contact with the separation layer 120, the SiO2 film is used, another insulation film can also be used. The thickness of the SiO2 film (intermediate layer) is appropriately determined according to the purpose of forming, the degree of the function exhibited, but the thickness is preferably about 10 nm to 5 μm, more preferably about 40 nm to 1 μm. The intermediate layer is formed for various purposes. For example, the intermediate layer is formed for exhibiting at least one of the functions as a protection layer for physically or chemically protecting the transferred layer 140, an insulation layer, a conductive layer, laser light shielding layer, a barrier layer for preventing migration, and a reflecting layer.
In some cases, the intermediate layer comprising the SiO2 film or the like is not formed, and the transferred layer (thin film layer) 140 may be formed directly on the separation layer 120. An example of cases in which the intermediate layer need not be provided is a case in which a TFT in the transferred layer is a bottom gate structure transistor, and no problem with contamination occurs even if the bottom gate is exposed to the surface after transfer.
The transferred layer 140 (thin film device layer) is a layer containing thin film devices such as TFTs or the like, as shown on the right hand side of FIG. 2. Besides TFTs, examples of thin film devices include thin film diodes and other thin film semiconductor devices, electrodes (for example, transparent electrodes such as ITO and mesa films), switching devices, memory, actuators such as piezo-electric devices, micro mirrors (piezo thin film ceramics), magnetic recording thin film heads, coils, inductors, thin film materials with high permeability and micro magnetic devices comprising a combination of these materials, filters, reflecting films, dichroic mirrors, and the like.
Such a thin film device is generally formed through a relatively high process temperature in relation to the forming method thereof. Therefore, in this case, the substrate 100 must-resist the process temperature and have high reliability, as described above.
[Step 3]
Next, the thin film device layer 140 is adhered to a transfer material 180 through an adhesive layer 160, as shown in FIG. 3.
Preferable examples of an adhesive which constitutes the adhesive layer 160 include various curing adhesives such as reactive curing adhesives, heat curing adhesives, light curing adhesives such as ultraviolet curing adhesives, anaerobic curing adhesives, and the like. As the composition of the adhesive, any type such as an epoxy type, an acrylate type, or a silicone type, may be used. The adhesive layer 160 is formed by, for example, the coating method.
In the use of the curing adhesive, for example, the curing adhesive is coated on the transferred layer (thin film device layer) 140, the transfer material 180 is adhered to the curing adhesive, and then the curing adhesive is cured by the curing method according to the properties of the curing adhesive, to bond and fix the transferred layer (thin film device layer) 140 and the transfer material 180.
Unlike the case shown in the drawing, the adhesive layer 160 may be formed on the transfer material 180 side, and the transferred layer (thin film device layer) 140 may be adhered to the adhesive layer 160. For example, when the transfer material 180 has the adhesive function, the formation of the adhesive layer 160 may be omitted.
Although the transfer material 180 is not limited, a substrate, particularly a transparent substrate can be used. Such a substrate may be a flat plate or a curved plate. As the transfer material 180, a material having heat resistance, corrosion resistance, and the like which are poorer than the substrate 100 may be used. The reason for this is that in the present invention, since the transferred layer (thin film device layer) 140 is formed on the substrate 100 side, and is then transferred to the transfer material 180, the conditions required for the transferred layer (thin film device layer) 140, particularly, heat resistance, does not depend upon the temperature conditions in forming the transferred layer (thin film device layer) 140.
Therefore, when the highest temperature in formation of the transferred layer 140 is Tmax, as the material for forming the transfer material 180, a material having a glass transition point (Tg) or softening point lower than Tmax can be used. For example, the transfer material 180 preferably comprises a material having a glass transition point (Tg) or softening point of 800°C C. or less, more preferably 500°C C. or less, most preferably 320°C C. or less.
The transfer material 180 may have as a mechanical property some rigidity (strength), but it may have flexibility and elasticity.
As the material which constitutes the transfer material 180, various synthetic resins or various types of glass may be used, particularly various synthetic resins or inexpensive ordinary glass materials (low melting point) are preferably used.
Synthetic resins may be either thermoplastic resins or heat curing resins. Examples of such synthetic resins include polyolefins such as polyethylene, polypropylene, ethylene-propylene copolymers, ethylene-vinyl acetate copolymers (EVA), and the like; cyclic polyolefins; modified polyolefins; polyvinyl chloride; polyvinylidene chloride; polystyrene; various polyesters such as polamide, polyimide, polycarbonate, poly-(4-methylpentene-1), ionomer, acrylic resins, polymethyl methacrylate, acryl-styrene copolymers (AB resins), butadiene-styrene copolymers, polyolefin copolymers (EVOH), polyetheyele terephthalate (PET), polubutylene terephthalate (PBT), polycyclohexane terephthalate (PCT), and the like; polyethers; polyether ketones (PEK); polyether ether ketones (PEKK); polyether imide; polyacetal (POM); polyphenylene oxide; modified polyphenyl oxide; polyacrylate; aromatic polyetsers (liquid crystal polymers); polytetrafluoroethene; polyvinylene fluoride; other fluororesins; various thermoplastic elastomers of styrene, polyolefin, polyvinyl chloride, polyurethane, fluororubber, chlorinated polyethylene, and the like; epoxy resins; phenolic resins; urea resins; melamine resins; unsaturated polyesters; silicone resins; polyurethane; and copolymers, blends and polymer alloys mainly consisting of these polymers; the like. These polymers may be used singly or in combination of at least two of them (for example, as a laminate of at least two layers).
Examples of glass materials include silicate glass (quartz glass), alkali silicate glass, soda-lime glass, potash lime glass, lead (alkali) glass, barium glass, borosilicate glass, and the like. Of these types of glass, glass other than silicate glass is preferable because it has a melting point lower than silicate glass, is relatively easily formed and processed, and inexpensive.
When a member made of a synthetic resin is used as the transfer material 180, there are various advantages that the larger transfer material 180 can be integrally formed, the member having a complicated shape such as a curved surface or an unevenness can easily be produced, and the material cost and production cost are low. Therefore, the use of a synthetic resin is advantageous for producing a large low-priced device (for example, a liquid crystal display).
The transfer material 180 may comprise an independent device, such as a liquid crystal cell, or a portion of a device, such as a color filter, an electrode layer, a dielectric layer, an insulation layer or a semiconductor device.
The transfer material 180 may be made of a material such as a metal, ceramic, a stone material, wood paper, or the like, or may comprise any desired surface which constitutes a product (a surface of a watch, a surface on an air conditioner, a surface of a printed board, or the like), or a surface of a structure, such as a wall, a column, a ceiling, a window glass, or the like.
[Step 4]
Next, the substrate 100 is irradiated with light from the back thereof, as shown in FIG. 4.
The light passes through the substrate 100 and is then applied to the separation layer 120. This causes internal exfoliation and/or interfacial exfoliation in the separation layer 120, thereby decreasing or eliminating the adhering strength.
The principle of occurrence of internal exfoliation and/or interfacial exfoliation in the separation layer 120 is thought to be based on ablation occurring in the constituent material of the separation layer 120, discharge of gases contained in the separation layer 120 and a phase change such as melting or vaporization caused immediately after irradiation.
The ablation means that a solid material (the constituent material of the separation layer 120) which absorbs light is photochemically or thermally excited to discharge atoms or molecules due to cutting of bonds in the surface and inside of the material. This mainly occurs as the phenomenon that a phase change such as melting, vaporization (evaporation) or the like occurs in the whole or part of the constituent material of the separation layer 120. Also, in some cases, the phase change causes a fine foam state, and decreases the adhering strength.
The type of the exfoliation produced in the separation layer 120, i.e., internal exfoliation, interfacial exfoliation or both types of exfoliation, depends upon the composition of the separation layer 120, and other various factors. One of the factors is the type, wavelength, strength, arrival depth and the like of irradiating light.
As the irradiating light, any light can be used as long as it generates internal exfoliation and/or interfacial exfoliation in the separation layer 120. Examples of the irradiating light include X-rays, ultraviolet rays, visible light, infrared light (heat rays), laser light, millimeter waves, microwaves, electron rays, radiation (α-rays, β-rays and γ-rays), and the like. Of these types of light, laser light is preferable from the viewpoint that exfoliation (ablation) is easily produced in the separation layer 120.
As a laser device for generating laser light, various gas lasers, solid lasers (semiconductor lasers), and the like can be used. However, an excimer laser, an Nd-YAG laser, an Ar laser, a CO2 laser, a CO laser, an He--Ne laser and the like are preferably used, and an eximer laser is particularly preferable.
Since the eximer laser outputs high energy in a short wavelength region, it can generate ablation in the separation layer 120 within a very short time, and thus peel off the separation layer 120 with hardly producing a temperature rise in the transfer material 180 and the substrate 100 adjacent to the separation layer 120, i.e., with producing neither deterioration nor damage.
In producing ablation in the separation layer 120, the wavelength of the irradiating laser light is preferably about 100 to 350 nm. In regard to the transmittance of the substrate 100 for the light wavelength, the substrate 100 has the property that transmittance for a wavelength of 250 nm rapidly increases. In this case, irradiation is performed with light at a wavelength over 300 nm (for example, Xe--Cl eximer laser light with 308 nm).
For example, when a phase change such as gas discharge, evaporation or sublimation is generated in the separation layer 120 to provide a separation property, the wavelength of the irradiating laser light is preferably about 350 to 1200 nm.
The energy density of the irradiating laser light, particularly the energy density of eximer laser, is preferably about 10 to 5000 mJ/cm2, more preferably about 100 to 500 mJ/cm2. The irradiation time is preferably about 1 to 1000 nsec, more preferably about 10 to 100 nsec. With a low energy density or a short irradiation time, sufficient ablation does not occur, and with a high energy density or a long irradiation time, the irradiating light transmitted through the separation layer 120 might produce adverse effects on the transferred layer 140.
As a measure against the adverse effects caused by arrival of the irradiating light transmitted through the separation layer at the transferred layer 140, for example, a metal film of tantalum (Ta) or the like is formed on the separation layer (laser absorbing layer) 120. This causes the laser light transmitted through the separation layer 120 to be totally reflected by the interface of the metal film, thereby causing no adverse effect on the thin film element provided thereon.
Irradiation is preferably performed with the irradiating light, typically laser light, so that the strength is made uniform. The irradiation direction of the irradiating light is not limited to the direction perpendicular to the separation layer 120, and the irradiation direction may be a direction at a predetermined angle with respect to the separation layer 120.
Where the area of the separation layer 120 is larger than the irradiation area of the irradiating light in one irradiation, the total region of the separation layer 120 can be irradiated several times with the irradiating light. The same position may be irradiated two times or more, or the same region or different regions may be irradiated with different types of irradiating light (laser light) or irradiating light at different wavelengths (wavelength ranges).
Next, as shown in
Next, as shown in
When part of the separation layer also adheres to the separated substrate 100, it is removed by the same method as described above. When the substrate 100 is made of an expensive material such as quartz glass or a rare material, the substrate is preferably recycled. Namely, the present invention can be applied to the substrate 100, which is desired to be recycled, with high availability.
The transferred layer (thin film device layer) 140 is completely transferred to the transfer material 180 through the above steps. Then the SiO2 film adjacent to the transferred layer (thin film device layer) 140 may be removed. and a desired protecting film may be formed.
In the present invention, since the transferred layer (thin film device layer) 140, which is a layer to be exfoliated, is not directly exfoliated, but exfoliated through the separation layer adhered thereto, the transferred layer 140 can easily, securely and uniformly be exfoliated (transferred) regardless of the properties of the layer to be exfoliated (the transferred layer 140), and conditions, etc., without damage to the layer to be exfoliated (the transferred layer 140) due to the exfoliating operation. Therefore, it is possible to maintain the high reliability of the transferred layer 140.
The device transfer technique is summarized above.
Next, an example of the method of manufacturing a liquid crystal display device using the above device transfer technique is described.
(First embodiment)
In this embodiment, an example of the process for manufacturing an active matrix type liquid crystal display device comprising an active matrix substrate, as shown in
(Configuration of liquid crystal display device)
As shown in
The active matrix substrate 440 used in this embodiment is an active matrix substrate with a built-in driver in which TFTs are arranged in a pixel portion 442, and a driver circuit (a scanning line driver and data line driver 444) is provided.
Namely, as shown in
Reference numeral 1702 denotes a region (voltage applied region) where a voltage is applied to the liquid crystal 460 from the pixel electrode 1700.
Also, as shown on the right hand side of
In
Reference numeral 1000 denotes a underlaying SiO2 film corresponding to an "intermediate layer". Reference numeral 1600 denotes an insulation film (for example, a CVD SiO2 film), and reference numeral 1800 denotes an adhesive layer. Reference numeral 1900 denotes a substrate (transfer material) comprising, for example, soda glass.
In this embodiment, attention should be given to the point that a recess (through hole) is selectively formed in the insulation film 1600 and the underlying SiO2 film, and the pixel electrode 1700 is bent downward along the surface of the recess and has the exposed back at the bottom thereof to form the voltage applied region 1702 for the liquid crystal 460. This eliminates interposition of the insulation films (the underlying SiO2 film (intermediate layer) 1000 and the interlayer insulation film 1500) between the pixel electrode 1700 and the liquid crystal layer 460, thereby preventing a voltage loss.
If the insulation films remain on the pixel electrode without causing a problem in driving the liquid crystal, the insulation films need not be completely removed. For example, although, in
A detailed description will now be made.
In this embodiment, the active matrix substrate is manufactured by transferring, to a desired transfer material, thin film transistors and pixel electrodes which are formed on the predetermined substrate. In this case, the device transferred onto the transfer material is reverse to a normal device. As a result, in the transferred device, the pixel electrode is covered with an insulator film in the state before transfer such as the interlayer insulation film or the like.
In this state, in assembly of a liquid crystal display device (liquid crystal panel), the insulator layer is interposed between the pixel electrode and the liquid crystal layer, and thus a voltage loss in this portion cannot be neglected.
Therefore, in manufacturing the active matrix substrate, a method is used in which in forming the thin film transistor and the pixel electrode on the original substrate before transfer, at least a portion of the insulator layer such as the interlayer insulation film or the like, which causes a problem in the later steps, is previously removed before the pixel electrode is formed. This causes a portion of the pixel electrode to appear in the surface or the vicinity of the surface by separating the original substrate after the device is transferred to the transfer material. It is thus possible to apply a voltage from this portion. Therefore, the above-described trouble (voltage loss) does not occur.
Even if an unnecessary insulation film remains on the pixel electrode after the thin film transistor is transferred, the remaining insulating film is removed in another step, thereby causing no problem.
The process for manufacturing the principal portion of the liquid crystal display device shown in
First, as shown in
In
Next, as shown in
These two openings (1610 and 1620) are simultaneously formed in a common etching step. Namely, in forming the contact hole 1620 for connecting the pixel electrode to TFT, the insulation film 1600 and the underlying SiO2 film (intermediate layer) 1000 are also selectively removed. Therefore, the special step for forming the opening 1610 is unnecessary, and an increase in the number of the manufacturing steps can thus be prevented.
Although, in
Even when the insulation film 1600 and the underlying SiO2 film (intermediate layer) 1000 are completely removed in formation of the opening 1610, a method may be used in which these films are not removed at a time in this step, but these films are partially left in this step, and the films remaining on the pixel electrode are removed in a later step (for example, the step after the thin film transistor is transferred) to expose the surface of the pixel electrode.
Next, as shown in
Next, as shown in
Next, the separation layer (laser absorbing layer) 3100 is removed to complete the active matrix substrate shown in FIG. 14. The bottom (the region 1702) of the pixel electrode 1700 is exposed to permit application of a sufficient voltage to the liquid crystal.
Then an alignment film is formed on the inner sides of the opposite substrate 480 and the active matrix substrate 440 shown in
Although the above description is made on the basis of a device structure (the pixel electrode is in an upper layer, and the transistor electrode is in a lower layer) in which the transistors electrode layers 1400a and 1400b connected to the n+ layers 1100a and 1100b, respectively, which constitute the pixel TFT, are in a layer different from the pixel electrode 1700, the device structure is not limited to this. As shown in
Namely, as shown in
Although, in
Even when the interlayer insulation film 1500 and the underlying SiO2 film (intermediate layer) 1000 are completely removed in formation of the opening 1612, a method may be used in which these films are not removed at a time in this step, but these films are partially left in this step, and the films remaining on the pixel electrode are removed in a later step (for example, the step after the thin film transistor is transferred) to expose the surface of the pixel electrode.
Next, as shown in
Then, like in the case shown in
(Second embodiment)
This embodiment is characterized in that the step of forming a color filter and a light shielding film (for example, a black matrix) is added after the step of forming the pixel electrode made of ITO or a metal to form an active matrix substrate with the color filter and the light shielding film (for example, a black matrix).
The case where the black matrix is used as the light shielding film is described below.
As the structure of an ordinary thin film transistor, a structure in which the color filter and the black matrix are formed on the pixel electrode cannot be used because the liquid crystal layer and the pixel electrode are separated.
However, in the present invention, a device is reverse to a normal device due to transfer, and thus the contact region between the pixel electrode and the liquid crystal layer is formed on the side (i.e., the TFT side) opposite to a conventional device.
Therefore, in the original substrate before transfer, the color filter and the black matrix can be formed without any trouble. In this case, only the common electrode is formed on the opposite substrate, and the color filter and the black matrix, which are conventionally formed on the opposite substrate side, need not be strictly aligned with the pixel electrode, thereby causing the special effect of facilitating assembly of a liquid crystal display device.
As shown in
As shown in
As described above, when a liquid crystal display device is formed by using the active matrix substrate, strict alignment with the opposite substrate is unnecessary, and assembly is facilitated.
(Third embodiment)
The liquid crystal display device shown in
Namely, in the active matrix substrate, where the external connection terminal (for example, a terminal for connecting liquid crystal driving IC) is required, this terminal must be exposed to the surface.
Therefore, in the region where the external connection terminal is provided, the underlying insulation film (intermediate layer) and the insulator layer such as interlayer insulation film are moved.
However, the surface of the external connection terminal 1404 need not be exposed only in the same step as formation of the opening in the pixel electrode region, and another etching step may be added for removing the film remaining on the surface of the external connection terminal 1404 in the etching step, to expose the surface.
In
Namely, as shown in
In
In
The process for manufacturing the active matrix substrate shown in
First, as shown in
Next, as shown in
Although, in
Even when the insulation film 1600, the interlayer insulation film 1500 and the underlying SiO2 film (intermediate layer) 1000 are completely removed in formation of the opening 1610 (1640), a method may be used in which these films are not removed at a time in this step, but these films are partially left in this step, and the films remaining on the pixel electrode are removed in a later step (for example, the step after the thin film transistor is transferred) to expose the surface of the pixel electrode.
Next, as shown in
Next, as shown in
Next, as shown in
Next, the substrate 3000 is separated, and the separation layer 3100 is completely removed to form the active matrix substrate shown in FIG. 27. In
Although the above description is made on the basis of a device structure (the pixel electrode and the external connection terminal are in an upper layer, and the transistor electrodes are in a lower layer) in which the transistor electrode layers 1400a and 1400b connected to the n+ layers 1100a and 1100b, respectively, which constitute the TFT of the pixel, are in a layer different from the pixel electrode 1700 and the external connection terminal 1404, the device structure is not limited to this. As shown in
Namely, as shown in
Next, as shown in
Then, the device is adhered to the transfer material 1900 through the adhesive layer 1800, and the substrate is separated after light irradiation to complete the active matrix substrate shown in FIG. 30.
The pixel electrode and the external connection terminal need not be made of ITO, and may be a metal electrode made of aluminum which serve as a reflection type pixel electrode. When the pixel electrode is a metal electrode, there is the advantage of low wiring resistance. In this case, the external connection terminal is made of the same metal material, thereby causing an advantage from the viewpoint of electrical properties.
(Fourth embodiment)
Although, in the above embodiments, the insulator layer below the pixel electrode is previously removed before transfer of the device, in this embodiment, at least a portion of the insulator layer below the pixel electrode is removed in self alignment by using a black matrix after transfer.
Namely, the black matrix is formed on the original substrate before transfer, and exposure is performed by using the black matrix as an exposure mask after transfer by utilizing the fact that the black matrix is formed around the pixel electrode, followed by development to form a desired resist pattern. The insulator layer below the pixel electrode is removed by using the resist pattern as an etching mask.
A detailed description will now be made.
First, as shown in
Next, a black matrix 1750 is formed. The black matrix 1750 is provided to shield the periphery of the principal portion (the voltage applied region for the liquid crystal) from light except the principal portion, as shown on the lower side of FIG. 34.
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Next, as shown in
Like in the above embodiments, the films may be left on the pixel electrode as long as no trouble occurs in driving the liquid crystal. Alternatively, the remaining films may be removed in another step to expose the surface of the pixel electrode.
Next, as shown in
The liquid crystal display device shown in
Although, in this embodiment, only the black matrix is formed, the color filter may be formed on the active matrix substrate as long as the exposure conditions for photoresist are satisfied, as in the case shown in
Like in the above embodiments, not only the pixel electrode but also the external connection terminal can be formed by the same method as described above.
(Fifth embodiment)
In this embodiment, when a thin film transistor is formed on an original substrate before transfer, a pixel electrode is previously formed. Therefore, the original substrate before transfer is separated after transfer of the device to automatically expose the surface of the pixel electrode.
Namely, as shown in
Next, as shown in
Next, as shown in
The liquid crystal display device shown in
In
As described above, the present invention is capable of effectively removing the problems due to reversal of a device which results from the use of the transfer technique. Therefore, a substrate used in manufacturing thin film devices and a substrate (for example, a substrate having preferable properties from the viewpoint of application of a product) used in, for example, actual use of a product can be freely individually selected. For example, an active matrix substrate can be formed by using a flexible plastic substrate.
The active matrix substrate can be used for not only a liquid crystal display device but for also other applications. For example, an active matrix substrate on which an electronic circuit (a computer or the like) comprising TFTs is mounted can be formed.
The present invention is not limited to the above embodiments, and various modifications can be made. For example, although, in each of the above embodiments, a type (top gate type) in which a gate electrode is disposed above a channel after the channel is formed is described as an example of thin film transistor (TFT) structures, TFT structures of a type (bottom gate type) in which the gate electrode is formed before the channel is formed can also be used.
Further, although, in the embodiments, the manufacturing substrate is separated from the separation layer by irradiation with laser light or the like, of course, the present invention can be applied to any cases using other methods of separating the substrate as long as the methods can separate the manufacturing substrate from the separation layer.
Industrial Applicability
As described above, the present invention is capable of forming a liquid crystal display device by forming the thin film transistors on the substrate and then transferring thin film transistors to any one of various other substrates, thus providing as an active type liquid crystal display device a liquid crystal display device using glass, plastic, films or the like, which cannot be used for conventional active type liquid crystal display devices.
Inoue, Satoshi, Shimoda, Tatsuya
Patent | Priority | Assignee | Title |
10000695, | Dec 26 2014 | Samsung Electronics Co., Ltd. | Method of manufacturing fluoride phosphor, white light emitting apparatus, display apparatus, and lighting device |
10002992, | Aug 06 2015 | Samsung Electronics Co., Ltd. | Red phosphor, white light emitting device and lighting apparatus |
10008640, | Nov 05 2015 | Samsung Electronics Co., Ltd. | Semiconductor light emitting apparatus and method of manufacturing same |
10008642, | Apr 25 2016 | Samsung Electronics Co., Ltd. | Semiconductor light emitting devices |
10014454, | May 04 2016 | Samsung Electronics Co., Ltd. | Light-emitting device including chip-scale lens |
10038012, | Dec 27 2002 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof, delamination method, and transferring method |
10038127, | Jul 08 2010 | Samsung Electronics Co., Ltd. | Semiconductor light-emitting device and method of manufacturing the same |
10038171, | Feb 28 2014 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing display device and method for manufacturing electronic device |
10043951, | Jun 14 2016 | Samsung Electronics Co., Ltd. | Light emitting device package and method of manufacturing the same |
10043953, | Dec 23 2015 | Samsung Electronics Co., Ltd. | Light emitting diode package |
10065161, | Jan 25 2016 | Samsung Electronics Co., Ltd. | Resin dispensing apparatus |
10066789, | Jul 29 2014 | Samsung Electronics Co., Ltd. | Method of automatically inspecting internal gas leak and method of manufacturing LED chip |
10084118, | Feb 13 2015 | Samsung Electronics Co., Ltd. | Semiconductor light-emitting device |
10103301, | Dec 16 2016 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
10104741, | Feb 17 2017 | SAMSUNG ELECTRONICS CO , LTD | LED driving apparatus, lighting apparatus including the same, and method of driving LED module |
10106666, | Mar 02 2016 | Samsung Electronics Co., Ltd. | Curable silicone resin composition containing inorganic oxide and optical member using same |
10107486, | Jul 24 2015 | Samsung Electronics Co., Ltd. | Light emitting diode module |
10109763, | Mar 10 2016 | Samsung Electronics Co., Ltd. | Light-emitting devices and methods of manufacturing the same |
10112377, | Feb 20 2012 | AIMECHATEC, LTD ; PROCESS EQUIPMENT BUSINESS SPIN-OFF PREPARATION CO , LTD | Supporting member separation method and supporting member separation apparatus |
10113705, | Sep 17 2015 | Samsung Electronics Co., Ltd. | Light source module and lighting device having the same |
10115747, | Jan 06 2015 | Sharp Kabushiki Kaisha | Method of producing component board |
10121934, | Dec 12 2014 | Samsung Electronics Co., Ltd. | Method for manufacturing semiconductor light emitting device package |
10121939, | Jun 21 2016 | Samsung Electronics Co., Ltd. | Semiconductor light-emitting devices and methods of manufacturing the same |
10121945, | Dec 16 2016 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
10123386, | Sep 08 2017 | Samsung Electronics Co., Ltd. | Lighting apparatus |
10125947, | Aug 27 2015 | Samsung Electronics Co., Ltd. | Board and light source module including the same |
10128425, | Aug 03 2016 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
10134949, | Jan 11 2017 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
10147760, | Dec 08 2016 | Samsung Electronics Co., Ltd. | Light-emitting devices |
10147851, | Nov 12 2015 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device package |
10150912, | Dec 17 2014 | Samsung Electronics Co., Ltd. | Red phosphor, white light emitting apparatus, display apparatus, and lighting apparatus |
10153260, | Feb 26 2016 | Samsung Electronics, Co., Ltd. | Light-emitting diode (LED) device |
10153397, | Jan 05 2017 | Samsung Electronics Co., Ltd. | Semiconductor light-emitting device |
10164159, | Dec 20 2016 | Samsung Electronics Co., Ltd. | Light-emitting diode package and method of manufacturing the same |
10170663, | Jan 05 2015 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device package and method for manufacturing the same |
10170666, | Apr 04 2016 | Samsung Electronics Co., Ltd. | LED light source module and display device |
10177278, | Jul 18 2016 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
10178742, | Jan 13 2016 | Samsung Electronics Co., Ltd. | LED driving apparatus and lighting apparatus |
10186682, | Mar 14 2003 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
10189048, | Dec 12 2013 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and peeling apparatus |
10204962, | Nov 16 2015 | Samsung Electronics Co., Ltd. | Light source module and display apparatus having the same |
10205074, | Dec 16 2015 | Samsung Electronics Co., Ltd. | Circuit board for mounting of semiconductor light emitting device and semiconductor light emitting device package using the same |
10211372, | Sep 29 2017 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
10215373, | Apr 06 2016 | Samsung Electronics Co., Ltd. | Lighting apparatus |
10216035, | Aug 19 2015 | Samsung Electronic Co., Ltd. | Connector, light source module including the connector, and light source module array including the light source module |
10217680, | Aug 03 2016 | Samsung Electronics Co., Ltd. | Test apparatus and manufacturing apparatus of light emitting device package |
10217914, | May 27 2015 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
10230021, | Sep 30 2015 | SAMSUNG ELECTRONICS CO , LTD | Light emitting device package |
10236280, | Jul 12 2017 | Samsung Electronics Co., Ltd. | Light emitting device package and display device using the same |
10243123, | Aug 26 2015 | Samsung Electronics Co., Ltd. | Light-emitting diode (LED), LED package and apparatus including the same |
10256218, | Jul 11 2017 | Samsung Electronics Co., Ltd. | Light emitting device package |
10276629, | Sep 04 2015 | Samsung Electronics Co., Ltd. | Light emitting device package |
10281088, | Jan 31 2017 | Samsung Electronics Co., Ltd. | LED device and LED lamp including the same |
10285240, | Aug 12 2015 | Samsung Electronics Co., Ltd. | Light emitting diode (LED) driving apparatus, lighting apparatus, and current control circuit |
10301541, | Jul 06 2015 | Samsung Electronics Co., Ltd. | Fluoride phosphor, method of manufacturing the same, and light emitting device |
10302412, | Mar 11 2016 | Samsung Electronics Co., Ltd. | Testing apparatus and manufacturing apparatus for testing light emitting device package |
10304990, | Oct 01 2014 | Samsung Electronics Co., Ltd. | Method of fabricating semiconductor light emitting device |
10305003, | Jul 13 2017 | Samsung Electronics Co., Ltd. | Light-emitting device, package including the same, and method of manufacturing the same |
10309612, | Dec 26 2014 | Samsung Electronics Co., Ltd. | Light source module having lens with support posts |
10312315, | Dec 02 2013 | Semiconductor Energy Laboratory Co., Ltd. | Display device and method for manufacturing the same |
10312419, | May 02 2017 | Samsung Electronics Co., Ltd. | White light emitting devices |
10325940, | Nov 30 2001 | Semiconductor Energy Laboratory Co., Ltd. | Vehicle, display device and manufacturing method for a semiconductor device |
10326061, | Aug 11 2016 | SAMSUNG ELECTRONICS CO , LTD | Method of fabricating light emitting device package |
10332865, | Aug 22 2016 | Samsung Electronics Co., Ltd. | Method of fabricating light emitting diode module |
10333023, | Oct 22 2008 | Samsung Electronics Co., Ltd. | Method of manufacturing semiconductor light emitting device |
10333025, | Dec 19 2017 | Samsung Electronics Co., Ltd. | Ultraviolet light emitting devices having a dielectric layer and a transparent electrode layer disposed in between patterned nitride semiconductor layers |
10333035, | Feb 25 2016 | Samsung Electronics Co., Ltd. | Method of manufacturing light emitting device package |
10338876, | Mar 29 2016 | Samsung Electronics Co., Ltd. | Display panels and multivision apparatuses |
10340420, | Jul 18 2017 | Samsung Electronics Co., Ltd. | Semiconductor light-emitting device having a transparent cover layer tail portion |
10347804, | Feb 11 2014 | Samsung Electronics Co., Ltd. | Light source package and display device including the same |
10355067, | Dec 02 2013 | Semiconductor Energy Laboratory Co., Ltd. | Display device and method for manufacturing the same |
10361248, | Feb 12 2016 | Samsung Electronics Co., Ltd. | Light source module, display panel and display apparatus having blue sub-pixel that emits blue light and green light and methods for manufacturing the same |
10362654, | Sep 08 2017 | Samsung Electronics Co., Ltd. | Lighting apparatus |
10374003, | May 30 2017 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device and LED module using the same |
10386020, | Jun 05 2017 | Samsung Electronics Co., Ltd. | Light emitting diode (LED) module array and an LED lamp using the same |
10388693, | Apr 08 2016 | Samsung Electronics Co., Ltd. | Light emitting diode module, display panel having the same and method of manufacturing the same |
10401557, | May 29 2015 | Samsung Electronics Co., Ltd. | Semiconductor light emitting diode chip and light emitting device having the same |
10403608, | Dec 14 2016 | Samsung Electronics Co., Ltd. | Light-emitting diode (LED) device for realizing multi-colors |
10408430, | Sep 23 2016 | Samsung Electronics Co., Ltd. | Asymmetric lighting lens, lighting lens array, and lighting apparatus therewith |
10409351, | Feb 27 2017 | Samsung Electronics Co., Ltd.; Seoul National University R&DB Foundation | Computing devices and methods of allocating power to plurality of cores in each computing device |
10411037, | Jun 14 2004 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and communication system |
10438994, | Dec 12 2017 | Samsung Electronics Co., Ltd. | Method of fabricating light emitting device package |
10446722, | Sep 29 2017 | Samsung Electronics Co., Ltd. | White light emitting device |
10475820, | May 18 2016 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method, display device, module, and electronic device |
10475957, | Apr 04 2016 | Samsung Electronics Co., Ltd. | LED light source module and display device |
10475972, | Dec 20 2016 | Samsung Electronics Co., Ltd. | Light-emitting diode package and method of manufacturing the same |
10483433, | Dec 19 2017 | Samsung Electronics Co., Ltd. | Ultraviolet light emitting devices |
10497683, | Feb 26 2016 | Samsung Electronics Co., Ltd. | Light-emitting diode (LED) device |
10497828, | Oct 19 2017 | Samsung Electronics Co., Ltd. | Light-emitting devices and methods of manufacturing the same |
10499471, | Apr 13 2018 | Samsung Electronics Co., Ltd. | Light-emitting diode lighting module and lighting apparatus including the same |
10505073, | Jan 12 2017 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device including floating conductive pattern |
10509159, | Aug 22 2016 | Samsung Electronics Co., Ltd. | Light source module and backlight assembly having the same |
10510936, | Apr 26 2017 | Samsung Electronics Co., Ltd. | Light emitting device package including a lead frame |
10529699, | Aug 11 2016 | Samsung Electronics Co., Ltd. | Light source module, method of manufacturing the module, and backlight unit including the light source module |
10529748, | Aug 22 2001 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and method of manufacturing semiconductor device |
10542600, | Sep 05 2017 | Samsung Electronics Co., Ltd. | LED driving apparatus and lighting apparatus |
10553641, | Aug 11 2016 | Samsung Electronics Co., Ltd. | Light emitting device package and display device using the same |
10553752, | Dec 02 2015 | Samsung Electronics Co., Ltd. | Light-emitting device and display device including the same |
10566318, | Dec 14 2017 | Samsung Electronics Co., Ltd. | Light emitting device package and display device using the same |
10566382, | Mar 31 2017 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
10566502, | Jun 17 2015 | Samsung Electronics Co., Ltd. | Semiconductor light-emitting device |
10573628, | May 17 2016 | Samsung Electronics Co., Ltd. | Light emitting device |
10573632, | Jun 01 2018 | Samsung Electronics Co., Ltd. | Method of manufacturing display module using LED |
10573786, | Jan 26 2018 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
10586816, | Jul 16 2001 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and peeling off method and method of manufacturing semiconductor device |
10586817, | Mar 24 2016 | SEMICONDUCTOR ENERGY LABORATORY CO , LTD | Semiconductor device, manufacturing method thereof, and separation apparatus |
10588193, | Jan 31 2018 | Samsung Electronics Co., Ltd. | LED module and lighting apparatus |
10607877, | Jun 23 2017 | Samsung Electronics Co., Ltd. | Chip mounting apparatus and method using the same |
10607883, | Oct 30 2001 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacturing the same |
10622513, | Dec 19 2017 | Samsung Electronics Co., Ltd. | Light emitting device |
10622520, | Jan 25 2018 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device with increased reflectance and light emission efficiency, and suppressed peeling or migration of the reflective metal |
10629637, | Nov 30 2001 | Semiconductor Energy Laboratory Co., Ltd. | Vehicle, display device and manufacturing method for a semiconductor device |
10629782, | Sep 30 2015 | Samsung Electronics Co., Ltd. | Light emitting device package |
10629831, | Jul 29 2016 | Semiconductor Energy Laboratory Co., Ltd. | Separation method, display device, display module, and electronic device |
10634944, | Oct 28 2003 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing optical film |
10636692, | Feb 20 2013 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method, semiconductor device, and peeling apparatus |
10636940, | Sep 16 2015 | Samsung Electronics Co., Ltd. | Semiconductor light-emitting device |
10644062, | Apr 08 2016 | Samsung Electronics Co., Ltd. | Light emitting diode module, display panel having the same and method of manufacturing the same |
10644191, | Oct 30 2017 | Samsung Electronics Co., Ltd. | Semiconductor package separating device |
10644205, | Mar 09 2018 | Samsung Electronics Co., Ltd. | Light-emitting diode package and method of manufacturing the same |
10658551, | Dec 20 2017 | Samsung Electronics Co., Ltd. | Wavelength-converting film and semiconductor light emitting apparatus having the same |
10678036, | Nov 20 2017 | Samsung Electronics Co., Ltd. | Optical device and light source module including the same |
10680144, | Jun 05 2017 | Samsung Electronics Co., Ltd. | Quantum dot glass cell and light-emitting device package including the same |
10685939, | Jun 04 2018 | Samsung Electronics Co., Ltd. | White light emitting diode module and lighting apparatus |
10686101, | Mar 02 2018 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
10686103, | Nov 05 2015 | Samsung Electronics Co., Ltd. | Semiconductor light emitting apparatus and method of manufacturing same |
10700246, | Oct 02 2018 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
10705659, | Dec 12 2014 | DONGWOO FINE-CHEM CO , LTD | Film touch sensor and method of preparing the same |
10707393, | Dec 14 2017 | Samsung Electronics Co., Ltd. | Light emitting device package including light emitting devices, light-transmissive substrate, and eutectic bonding layer interposed therebetween and display device using the same |
10711187, | Jan 13 2016 | Samsung Electronics Co., Ltd. | Fluoride phosphor, method of manufacturing the same, and light emitting device |
10711958, | May 09 2018 | Samsung Electronics Co., Ltd. | LED device and LED lamp using the same |
10711990, | Jun 05 2018 | Samsung Electronics Co., Ltd. | Light source module |
10714667, | Dec 07 2017 | Samsung Electronics Co., Ltd. | Method of manufacturing light emitting device |
10727437, | Mar 14 2003 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
10734559, | Aug 26 2015 | Samsung Electronics Co., Ltd. | Light-emitting diode (LED), LED package and apparatus including the same |
10741718, | Sep 05 2012 | KONINKLIJKE PHILIPS N V | Laser de-bond carrier wafer from device wafer |
10741737, | Dec 14 2017 | Samsung Electronics Co., Ltd. | Light emitting device package |
10756238, | Apr 27 2018 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
10763322, | Dec 02 2013 | Semiconductor Energy Laboratory Co., Ltd. | Display device and method for manufacturing the same |
10763397, | Mar 02 2018 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
10763399, | Dec 27 2016 | Samsung Electronics Co., Ltd. | Light emitting device package |
10764976, | Dec 20 2017 | Samsung Electronics Co., Ltd. | Lighting systems, lighting devices and lighting control methods using ultra-wideband sensor |
10770436, | Feb 26 2016 | Samsung Electronics Co., Ltd. | Light-emitting diode (LED) device |
10777712, | Feb 13 2015 | Samsung Electronics Co., Ltd. | Semiconductor light-emitting device |
10781368, | Mar 21 2016 | Samsung Electronics Co., Ltd. | Fluoride phosphor, method of manufacturing the same, and light emitting device |
10784308, | Sep 05 2017 | Samsung Electronics Co., Ltd. | Display device including light emitting diode and method of manufacturing the same |
10784405, | Dec 19 2017 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
10797040, | Jun 01 2018 | Samsung Electronics Co., Ltd. | Method of manufacturing display module using LED |
10804132, | Sep 08 2017 | Samsung Electronics Co., Ltd. | Apparatus for manufacturing semiconductor |
10811568, | May 11 2018 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device and semiconductor light emitting device package using the same |
10831291, | Apr 13 2015 | Semiconductor Energy Laboratory Co., Ltd. | Display panel, data processor, and method for manufacturing display panel |
10840412, | Jan 25 2018 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
10851294, | Dec 09 2014 | Samsung Electronics Co., Ltd. | Fluoride phosphor composite, method of manufacturing fluoride phosphor composite, white light emitting apparatus, display apparatus, lighting device, and electronic device |
10854697, | Dec 02 2013 | Semiconductor Energy Laboratory Co., Ltd. | Display device and method for manufacturing the same |
10861733, | Aug 09 2016 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method of semiconductor device |
10862004, | Dec 13 2017 | Samsung Electronics Co., Ltd. | Ultraviolet semiconductor light emitting devices |
10862015, | Mar 08 2018 | Samsung Electronics., Ltd. | Semiconductor light emitting device package |
10867551, | Aug 14 2018 | Samsung Electronics Co., Ltd. | Degradation compensation device and organic light emitting display device including the same |
10872947, | Dec 02 2013 | Semiconductor Energy Laboratory Co., Ltd. | Display device and method for manufacturing the same |
10879331, | Dec 02 2013 | Semiconductor Energy Laboratory Co., Ltd. | Display device and method for manufacturing the same |
10892391, | Apr 26 2017 | Samsung Electronics Co., Ltd. | Light-emitting device package including a lead frame |
10900142, | Jul 26 2016 | Samsung Electronics Co., Ltd. | Apparatus for manufacturing a second substrate on a first substrate including removal of the first substrate |
10903397, | Sep 30 2015 | Samsung Electronics Co., Ltd. | Light emitting device package |
10930817, | Mar 11 2016 | Samsung Electronics Co., Ltd. | Light-emitting device |
10930870, | Jul 29 2016 | Semiconductor Energy Laboratory Co., Ltd. | Separation method, display device, display module, and electronic device |
10946577, | Oct 02 2017 | Samsung Electronics Co., Ltd. | Imprinting apparatus |
10955950, | Nov 09 2016 | SEMICONDUCTOR ENERGY LABORATORY CO , LTD | Display device, display module, electronic device, and method for manufacturing the display device |
10957723, | Nov 30 2001 | Semiconductor Energy Laboratory Co., Ltd. | Vehicle, display device and manufacturing method for a semiconductor device |
10964852, | Apr 24 2018 | Samsung Electronics Co., Ltd. | LED module and LED lamp including the same |
10964854, | Feb 13 2015 | Samsung Electronics Co., Ltd. | Semiconductor light-emitting device |
10971662, | Jun 19 2015 | Samsung Electronics Co., Ltd. | Light emitting diode package and method of manufacturing the same |
10971668, | Apr 26 2017 | Samsung Electronics Co., Ltd. | Light-emitting device package including a lead frame |
10978614, | Mar 11 2016 | Samsung Electronics Co., Ltd. | Light-emitting device |
10978618, | Mar 02 2018 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
10991857, | Aug 11 2016 | Samsung Electronics Co., Ltd. | Method of fabricating light emitting device package |
11004925, | Dec 02 2013 | Semiconductor Energy Laboratory Co., Ltd. | Display device and method for manufacturing the same |
11016329, | Apr 13 2015 | Semiconductor Energy Laboratory Co., Ltd. | Display panel, data processor, and method for manufacturing display panel |
11038091, | Mar 22 2019 | Samsung Electronics Co., Ltd. | Light-emitting device packages |
11054687, | Aug 09 2016 | SEMICONDUCTOR ENERGY LABORATORY CO , LTD | Method for manufacturing display device, display device, display module, and electronic device |
11060689, | Jul 18 2018 | Samsung Electronics Co., Ltd. | Light-emitting devices, headlamps for vehicles, and vehicles including the same |
11069845, | Jun 29 2018 | Samsung Electronics Co., Ltd. | Light emitting device |
11075250, | Jun 26 2018 | Samsung Electronics Co., Ltd. | Light-emitting device package, display device including the same, and method of manufacturing the same |
11075326, | Oct 02 2018 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
11107846, | Mar 24 2016 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device, manufacturing method thereof, and separation apparatus |
11157358, | Sep 20 2019 | Samsung Electronics Co., Ltd. | Memory module, error correction method of memory controller controlling the same, and computing system including the same |
11188805, | Jul 30 2004 | Semiconductor Energy Laboratory Co., Ltd. | Lamination system, IC sheet, scroll of IC sheet, and method for manufacturing IC chip |
11189577, | Nov 06 2019 | PlayNitride Display Co., Ltd. | Semiconductor structure |
11196020, | Mar 14 2003 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
11199920, | Apr 25 2014 | Semiconductor Energy Laboratory Co., Ltd. | Display device and electronic device |
11216131, | Nov 20 2014 | DONGWOO FINE-CHEM CO , LTD | Film touch sensor and manufacturing method therefor |
11217623, | Jul 17 2018 | Samsung Electronics Co., Ltd. | Light emitting device package |
11236869, | Oct 23 2019 | Samsung Electronics Co., Ltd. | Light emitting device and light apparatus for plant growth |
11251225, | Apr 08 2016 | Samsung Electronics Co., Ltd. | Light emitting diode module, display panel having the same and method of manufacturing the same |
11257991, | Jun 03 2019 | Samsung Electronics Co., Ltd. | Light emitting device, backlight unit and display apparatus |
11264532, | Jul 08 2019 | Samsung Electronics Co., Ltd. | Manufacturing method of semiconductor light emitting device |
11296131, | Aug 22 2001 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and method of manufacturing semiconductor device |
11296132, | Apr 07 2016 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and manufacturing method of flexible device |
11296260, | Nov 05 2018 | Samsung Electronics Co., Ltd. | Light emitting device package and display apparatus using the same |
11301016, | Feb 27 2017 | Seoul National University R&DB Foundation; Samsung Electronics Co., Ltd. | Computing devices and methods of allocating power to plurality of cores in each computing device |
11302743, | Apr 20 2018 | Samsung Electronics Co., Ltd. | Pixel-type semiconductor light-emitting device and method of manufacturing the same |
11302745, | Oct 29 2019 | Samsung Electronics Co., Ltd. | LED module and method of fabricating the same |
11306908, | Jul 09 2018 | Samsung Electronics Co., Ltd. | Light emitting device and a light source module including the same |
11310895, | Apr 05 2019 | Samsung Electronics Co., Ltd. | Lighting system and lighting device |
11333953, | May 15 2020 | Samsung Electronics Co., Ltd. | Light source package and mobile device including the same |
11355382, | Feb 20 2013 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method, semiconductor device, and peeling apparatus |
11362145, | Aug 12 2019 | Samsung Electronics Co., Ltd. | Organic light emitting device and method of manufacturing the same |
11374202, | Sep 11 2019 | Samsung Electronics Co., Ltd. | Light emitting device and method of manufacturing the same |
11398500, | Jul 08 2019 | Samsung Electronics Co., Ltd. | LED lighting device package and display panel using the same |
11428385, | Nov 12 2020 | Samsung Electronics Co., Ltd. | Light source module and mobile device including the same |
11497094, | Dec 31 2020 | Samsung Electronics Co., Ltd. | LED lighting apparatus |
11502221, | May 25 2020 | Samsung Electronics Co., Ltd. | Semiconductor light-emitting device including buffer structure |
11502229, | Mar 17 2020 | Samsung Electronics Co., Ltd. | Light source module and display panel using the same |
11507456, | Sep 20 2019 | Samsung Electronics Co., Ltd. | Memory module, error correction method of memory controller controlling the same, and computing system including the same |
11527675, | Jun 24 2019 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device having a rod shape, and display apparatus including the same |
11528787, | Dec 18 2019 | Samsung Electronics Co., Ltd. | Correlated color temperature changeable lighting apparatus |
11560986, | Dec 28 2020 | Samsung Electronics Co., Ltd. | LED module and lighting apparatus |
11569417, | Mar 18 2019 | Samsung Electronics Co., Ltd. | Method of manufacturing semiconductor light emitting device |
11570860, | Jan 25 2021 | Samsung Electronics Co., Ltd. | LED control device and lighting device including the same |
11573006, | Jul 09 2018 | Samsung Electronics Co., Ltd. | Light emitting device and a light source module including the same |
11574937, | Apr 12 2016 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and manufacturing method of flexible device |
11592155, | Jul 18 2018 | Samsung Electronics Co., Ltd. | Light-emitting devices, headlamps for vehicles, and vehicles including the same |
11594664, | Nov 22 2019 | Samsung Electronics Co., Ltd. | Light emitting diode package |
11602028, | Nov 23 2020 | Samsung Electronics Co., Ltd. | LED device and lighting device including the same |
11609668, | Nov 20 2014 | DONGWOO FINE-CHEM CO.. LTD. | Film touch sensor and manufacturing method therefor |
11616206, | Jul 29 2016 | Semiconductor Energy Laboratory Co., Ltd. | Separation method, display device, display module, and electronic device |
11631791, | Feb 13 2015 | Samsung Electronics Co., Ltd. | Semiconductor light-emitting device |
11637009, | Oct 07 2016 | SEMICONDUCTOR ENERGY LABORATORY CO , LTD | Cleaning method of glass substrate, manufacturing method of semiconductor device, and glass substrate |
11645971, | Jun 23 2020 | Samsung Electronics Co., Ltd. | Light emitting diode package and display apparatus including the same |
11646398, | Sep 11 2020 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
11669181, | Apr 25 2014 | Semiconductor Energy Laboratory Co., Ltd. | Display device and electronic device |
11670576, | Jan 30 2020 | Samsung Electronics Co., Ltd. | Wiring board and electronic device module |
11670736, | May 25 2020 | Samsung Electronics Co., Ltd. | Semiconductor light-emitting device including buffer structure |
11672148, | Dec 02 2013 | Semiconductor Energy Laboratory Co., Ltd. | Display device and method for manufacturing the same |
11677059, | Apr 26 2017 | Samsung Electronics Co., Ltd. | Light-emitting device package including a lead frame |
11695031, | May 25 2020 | Samsung Electronics Co., Ltd. | Light-emitting device, light source module, and method of manufacturing light-emitting device |
11700795, | May 04 2021 | Samsung Electronics Co., Ltd. | Light emitting device and light apparatus for plant growth |
11728371, | Oct 29 2019 | Samsung Electronics Co., Ltd. | Method of fabricating LED module |
11735698, | Dec 29 2020 | Samsung Electronics Co., Ltd. | Light-emitting device and head lamp for vehicles including the light emitting device |
11742469, | Nov 26 2019 | Samsung Electronics Co., Ltd. | Semiconductor light-emitting device and method of fabricating the same |
11754873, | Apr 13 2015 | Semiconductor Energy Laboratory Co., Ltd. | Display panel, data processor, and method for manufacturing display panel |
11757076, | Mar 17 2020 | Samsung Electronics Co., Ltd. | Light source module and display panel using the same |
11762256, | Nov 26 2020 | Samsung Electronics Co., Ltd. | Light emitting diode package and electronic device including the same |
11764336, | Oct 02 2018 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
11784285, | Feb 04 2020 | Samsung Electronics Co., Ltd. | Three dimensionally structured semiconductor light emitting diode and display apparatus |
11791350, | Apr 07 2016 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and manufacturing method of flexible device |
11794633, | May 22 2020 | Samsung Electronics Co., Ltd. | Light-emitting device and headlamp for vehicle including the same |
11804513, | May 22 2020 | Samsung Electronics Co., Ltd. | Semiconductor light-emitting devices and methods of manufacturing the same |
11805580, | Nov 29 2021 | Samsung Electronics Co., Ltd. | LED driving device and lighting device including the same |
11811008, | May 25 2020 | Samsung Electronics Co., Ltd. | Light source module including light-emitting diode |
11812527, | Dec 27 2021 | Samsung Electronics Co., Ltd. | LED control device and lighting device including the same |
11882634, | Nov 19 2020 | Samsung Electronics Co., Ltd. | LED lighting apparatus and operating method thereof |
11888091, | May 20 2020 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device and light emitting device package |
11908982, | Oct 06 2020 | Samsung Electronics Co., Ltd. | Light-emitting diode package and electronic device including the same |
11929451, | Mar 02 2018 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
11932164, | Mar 14 2022 | Samsung Electronics Co., Ltd. | Light-emitting cell array, headlamp driving device, and headlamp control system |
11935910, | Feb 12 2020 | Samsung Electronics Co., Ltd. | Semiconductor light-emitting device with groove and method of manufacturing the same |
11942024, | Jun 18 2021 | Samsung Electronics Co., Ltd. | Display device including cell matrix including redundancy cell |
11984536, | Sep 15 2020 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device and light emitting device package having the same |
11990570, | Dec 28 2020 | Samsung Electronics Co., Ltd. | White light emitting device and lighting apparatus |
12119431, | Sep 01 2022 | Samsung Electronics Co., Ltd. | Light emitting device for display and backlight unit including the same |
12119437, | Dec 29 2020 | Samsung Electronics Co., Ltd. | Light emitting device package |
12125869, | Dec 17 2020 | Samsung Electronics Co., Ltd. | Semiconductor light emitting devices and partition wall structure, and methods of manufacturing the same |
12125942, | Jun 24 2020 | Samsung Electronics Co., Ltd. | Semiconductor light emitting devices |
12125954, | Jul 09 2021 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device package |
12130541, | Feb 04 2021 | Samsung Electronics Co., Ltd. | Flash LED modules |
12132154, | Feb 04 2021 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
12132159, | Jan 13 2021 | Samsung Electronics Co., Ltd. | Light emitting diode (LED) package and illuminating device including the same |
12159895, | Oct 29 2020 | Samsung Electronics Co., Ltd. | LED display apparatus |
6878574, | Jan 17 2002 | Sony Corporation | Alloying method for a image display device using laser irradiation |
6967353, | Jan 18 2002 | SAMSUNG ELECTRONICS CO , LTD | Semiconductor light emitting device and fabrication method thereof |
6969670, | Jan 17 2002 | SAMSUNG ELECTRONICS CO , LTD | Selective growth method, and semiconductor light emitting device and fabrication method thereof |
7008827, | Jan 17 2002 | Sony Corporation | Alloy method using laser irradiation |
7011990, | Jan 17 2002 | Sony Corporation | Alloying method using laser irradiation for a light emitting device |
7045442, | Dec 27 2002 | Semiconductor Energy Laboratory Co., Ltd. | Method of separating a release layer from a substrate comprising hydrogen diffusion |
7049227, | Jan 17 2002 | Sony Corporation | Method for alloying a wiring portion for a image display device |
7067339, | Jan 17 2002 | SAMSUNG ELECTRONICS CO , LTD | Selective growth method, and semiconductor light emitting device and fabrication method thereof |
7122445, | Jul 16 2002 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method |
7147740, | May 17 2002 | Semiconductor Energy Laboratory Co., Ltd. | Method of transferring a laminate and method of manufacturing a semiconductor device |
7189631, | Oct 30 2002 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
7189632, | Sep 02 2003 | S O I TEC SILICON ON INSULATOR TECHNOLOGIES; COMMISSARIAT A L ENERGIE ATOMIQUE CEA ; S O I TEC SILICON ON INSULATOR TECHNOLOGIES, S A ; COMMISSARIAT À L ENERGIE ATOMIQUE CEA | Multifunctional metallic bonding |
7230316, | Dec 27 2002 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having transferred integrated circuit |
7232739, | Sep 02 2003 | S.O.I. Tec Silicon on Insulator Technologies; Commissariat à l 'Energie Atomique (CEA) | Multifunctional metallic bonding |
7245331, | Jan 15 2003 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and method for manufacturing display device using the peeling method |
7303942, | Dec 26 2002 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
7319052, | Jan 17 2002 | Sony Corporation | Alloying method, and wiring forming method, display device forming method, and image display unit fabricating method |
7332381, | Oct 30 2001 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacturing the same |
7335573, | Nov 30 2001 | SEMICONDUCTOR ENERGY LABORATORY CO , LTD | Vehicle, display device and manufacturing method for a semiconductor device |
7351300, | Aug 22 2001 | SEMICONDUCTOR ENERGY LABORATORY CO , LTD | Peeling method and method of manufacturing semiconductor device |
7361573, | Aug 10 2001 | Semiconductor Energy Laboratory Co., Ltd. | Method of peeling off and method of manufacturing semiconductor device |
7375006, | Jul 16 2002 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method |
7402446, | Nov 17 2003 | SAMSUNG ELECTRONICS CO , LTD | Method of manufacturing an electroluminescence device |
7407870, | Dec 27 2002 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
7436050, | Jan 22 2003 | Semiconductor Energy Laboratory Co., Ltd.; SEMICONDUCTOR ENERGY LABORATORY CO , LTD | Semiconductor device having a flexible printed circuit |
7442957, | Aug 01 2001 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
7465674, | May 31 2005 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method of semiconductor device |
7482248, | Dec 03 2004 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method of semiconductor device |
7521383, | Jun 30 2005 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method of semiconductor device |
7531428, | Nov 09 2004 | S.O.I.Tec Silicon on Insulator Technologies; S O I TEC SILICON ON INSULATOR TECHNOLOGIES, S A | Recycling the reconditioned substrates for fabricating compound material wafers |
7547612, | Oct 30 2002 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
7564139, | Dec 26 2002 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
7576362, | Mar 14 2003 | SEMICONDUCTOR ENERGY LABORATORY CO , LTD | Semiconductor device having EL element, integrated circuit and adhesive layer therebetween |
7588969, | May 31 2005 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device, and semiconductor device |
7622797, | Jan 22 2003 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having a flexible printed circuit |
7648862, | Oct 30 2001 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacturing the same |
7666719, | Jul 16 2002 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method |
7714950, | Jan 15 2003 | Semiconductor Energy Laboratory Co., Ltd | Peeling method and method for manufacturing display device using the peeling method |
7723209, | Dec 27 2002 | SEMICONDUCTOR ENERGY LABORATORY CO , LTD | Semiconductor device and manufacturing method thereof, delamination method, and transferring method |
7777409, | Aug 01 2001 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device including a flexible support |
7820495, | Jun 30 2005 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
7825002, | Aug 22 2001 | Semiconductor Energy Laboratory Co., Ltd. | Method of peeling thin film device and method of manufacturing semiconductor device using peeled thin film device |
7851330, | Nov 09 2004 | S.O.I.Tec Silicon on Insulator Technologies | Methods for fabricating compound material wafers |
7858411, | Dec 28 2001 | Semiconductor Energy Laboratory Co., Ltd. | Method for fabricating light emitting device and method for fabricating liquid crystal display device |
7919779, | Jan 08 2003 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacturing thereof |
7923348, | Oct 30 2002 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
7968909, | Nov 09 2004 | S.O.I.Tec Silicon on Insulator Technologies | Reconditioned substrates for fabricating compound material wafers |
7972910, | Jun 03 2005 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method of integrated circuit device including thin film transistor |
7994506, | Oct 30 2001 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacturing the same |
8012854, | Oct 30 2002 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
8026152, | Dec 27 2002 | Semiconductor Energy Laboratory Co., Ltd. | Separation method of semiconductor device |
8030132, | May 31 2005 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method of semiconductor device including peeling step |
8039288, | Feb 01 2000 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
8040469, | Sep 10 2004 | Semiconductor Energy Laboratory Co., Ltd. | Display device, method for manufacturing the same and apparatus for manufacturing the same |
8044397, | Mar 14 2003 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having light emitting element, integrated circuit and adhesive layer |
8048251, | Oct 28 2003 | SEMICONDUCTOR ENERGY LABORATORY CO , LTD | Method of manufacturing optical film |
8173520, | Oct 30 2002 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
8228454, | Jan 15 2003 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and method for manufacturing display device using the peeling method |
8247246, | Dec 27 2002 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof, delamination method, and transferring method |
8338198, | Aug 22 2001 | Semiconductor Energy Laboratory Co., Ltd. | Method of peeling thin film device and method of manufacturing semiconductor device using peeled thin film device |
8344369, | Dec 28 2001 | Semiconductor Energy Laboratory Co., Ltd. | Vehicle that includes a display panel having a curved surface |
8361845, | Jun 30 2005 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
8367440, | Jul 16 2001 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and peeling off method and method of manufacturing semiconductor device |
8371891, | Sep 10 2004 | Semiconductor Energy Laboratory Co., Ltd. | Display device, method for manufacturing the same and apparatus for manufacturing the same |
8415208, | Jul 16 2001 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and peeling off method and method of manufacturing semiconductor device |
8415679, | Oct 30 2002 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
8441102, | Dec 27 2002 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having a capacitor |
8466482, | Feb 01 2000 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
8492246, | Jun 03 2005 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing integrated circuit device |
8508682, | Jan 15 2003 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and method for manufacturing display device using the peeling method |
8610118, | Dec 28 2001 | Semiconductor Energy Laboratory Co., Ltd. | Flexible display panel having curvature that matches curved surface of vehicle part |
8674364, | Aug 22 2001 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and method of manufacturing semiconductor device |
8691604, | Dec 27 2002 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof, delamination method, and transferring method |
8778112, | Sep 26 2011 | Sumitomo Electric Industries, Ltd. | Method for bonding thin film piece |
8779658, | Oct 25 2002 | ELEMENT CAPITAL COMMERCIAL COMPANY PTE LTD | Electro-optical device and electronic apparatus |
8830413, | Jan 15 2003 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and method for manufacturing display device using the peeling method |
8945331, | May 17 2002 | Semiconductor Energy Laboratory Co., Ltd. | Method of transferring a laminate and method of manufacturing a semiconductor device |
8969915, | Sep 14 2010 | Samsung Electronics Co., Ltd. | Methods of manufacturing the gallium nitride based semiconductor devices |
8975655, | Jul 08 2010 | Samsung Electronics Co., Ltd. | Semiconductor light-emitting device and method of manufacturing the same |
8980700, | Oct 30 2001 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacturing the same |
8981641, | Oct 28 2003 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing optical film |
8994060, | Feb 02 2007 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing semiconductor device |
9013650, | Jan 15 2003 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and method for manufacturing display device using the peeling method |
9018618, | Jan 16 2014 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
9024294, | Sep 14 2010 | Samsung Electronics Co., Ltd. | Group III nitride nanorod light emitting device |
9048172, | Dec 23 2011 | Samsung Electronics Co., Ltd | Method of manufacturing white light emitting device (LED) and apparatus measuring phosphor film |
9053401, | Jul 30 2004 | SEMICONDUCTOR ENERGY LABORATORY CO , LTD | Laminating system, IC sheet, scroll of IC sheet, and method for manufacturing IC chip |
9054234, | Nov 05 2013 | Samsung Electronics Co., Ltd.; Research & Business Foundation Sungkyunkwan University | Method of manufacturing nitride semiconductor device |
9065074, | Oct 25 2002 | ELEMENT CAPITAL COMMERCIAL COMPANY PTE LTD | Electro-optical device and electronic apparatus |
9070834, | Jun 18 2013 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
9087971, | Jun 25 2012 | Samsung Electronics Co., Ltd. | Light-emitting device having dielectric reflector and method of manufacturing the same |
9099573, | Oct 31 2013 | Samsung Electronics Co., Ltd. | Nano-structure semiconductor light emitting device |
9099631, | Jul 08 2010 | Samsung Electronics Co., Ltd. | Semiconductor light-emitting device and method of manufacturing the same |
9105521, | Feb 01 2000 | Semiconductor Energy Laboratory Co., Ltd. | Display device having light emitting elements with red color filters |
9105762, | Oct 25 2010 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device and manufacturing method thereof |
9112105, | Feb 04 2014 | Samsung Electronics Co., Ltd. | Nitride semiconductor light emitting device |
9123595, | Dec 28 2001 | Semiconductor Energy Laboratory Co., Ltd. | Method for fabricating a semiconductor device by bonding a layer to a support with curvature |
9123871, | Feb 21 2014 | Samsung Electronics Co., Ltd. | Method of manufacturing light emitting diode package |
9142730, | Sep 25 2013 | Samsung Electronics Co., Ltd. | Method of manufacturing semiconductor light emitting device |
9142737, | Nov 10 2010 | Samsung Electronics Co., Ltd. | Light emitting device surrounded by reflection wall and covered with fluorescent film |
9153759, | Mar 25 2011 | Samsung Electronics Co., Ltd. | Light emitting diode, manufacturing method thereof, light emitting diode module, and manufacturing method thereof |
9159882, | Jan 20 2014 | Samsung Electronics Co., Ltd. | Semiconductor light-emitting device |
9166122, | May 07 2012 | Samsung Electronics Co., Ltd. | Light emitting device |
9171994, | Jul 12 2010 | Samsung Electronics Co., Ltd. | Chemical vapor deposition apparatus and method of forming semiconductor epitaxial thin film using the same |
9171997, | May 27 2013 | Samsung Electronics Co., Ltd.; GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGY | Semiconductor light emitting device |
9178182, | Mar 14 2003 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
9184221, | Feb 02 2007 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing semiconductor device |
9184343, | Dec 03 2013 | Samsung Electronics Co., Ltd. | Nano structure semiconductor light emitting device, and system having the same |
9188300, | May 18 2011 | Samsung Electronics Co., Ltd. | Light emitting device assembly and headlamp including the same |
9190270, | Jun 04 2013 | Samsung Electronics Co., Ltd. | Low-defect semiconductor device and method of manufacturing the same |
9190563, | Nov 25 2013 | Samsung Electronics Co., Ltd.; SAMSUNG ELECTRONICS CO , LTD | Nanostructure semiconductor light emitting device |
9190583, | Apr 23 2012 | Samsung Electronics Co., Ltd. | White light emitting device and display apparatus |
9192032, | Aug 13 2013 | Samsung Electronics Co., Ltd. | Lighting apparatus, lighting control system, and method of controlling the lighting apparatus |
9196487, | Nov 07 2013 | Samsung Electronics Co., Ltd. | Method for forming electrode of n-type nitride semiconductor, nitride semiconductor device, and manufacturing method thereof |
9196812, | Dec 17 2013 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device and semiconductor light emitting apparatus having the same |
9202969, | Mar 07 2012 | Samsung Electronics Co., Ltd. | Nitride semiconductor light emitting device and method of manufacturing the same |
9202987, | Jul 16 2001 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and peeling off method and method of manufacturing semiconductor device |
9207477, | Apr 28 2011 | Sharp Kabushiki Kaisha | Display module and display device |
9224667, | Oct 30 2002 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
9231167, | Mar 20 2006 | Samsung Electronics Co., Ltd. | Insulation structure for high temperature conditions and manufacturing method thereof |
9236525, | Apr 02 2012 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device and fabrication method thereof |
9239159, | Dec 16 2011 | SAMSUNG ELECTRONICS CO , LTD | Heat-dissipating structure for lighting apparatus and lighting apparatus |
9246048, | Jul 26 2010 | Samsung Electronics Co., Ltd. | Semiconductor light emitting devices having an uneven emission pattern layer and methods of manufacturing the same |
9247612, | Aug 21 2013 | Samsung Electronics Co., Ltd. | LED driving device and lighting device |
9247626, | Oct 16 2013 | Samsung Electronics Co., Ltd. | Light emitting module testing apparatus |
9252327, | Sep 18 2014 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
9257599, | Aug 28 2013 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device including hole injection layer |
9257605, | Oct 31 2013 | Samsung Electronics Co., Ltd. | Nano-structure semiconductor light emitting device |
9257623, | Feb 17 2014 | Samsung Electronics Co., Ltd. | Light-emitting diode package |
9263469, | Feb 01 2000 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
9265107, | Sep 11 2014 | Samsung Electronics Co., Ltd. | LED driving device, lighting device and control circuit for LED driving device |
9269817, | Dec 27 2002 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof, delamination method, and transferring method |
9269865, | Feb 18 2014 | Samsung Electronics Co., Ltd. | Nanostructure semiconductor light emitting device |
9272300, | Jan 17 2011 | Samsung Electronics Co., Ltd. | Method and apparatus for manufacturing white light-emitting device |
9281403, | Aug 22 2001 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and method of manufacturing semiconductor device |
9287446, | Mar 27 2014 | Samsung Electronics Co., Ltd. | Nanostructure semiconductor light emitting device |
9287470, | Jul 03 2008 | Samsung Electronics Co., Ltd. | Wavelength-converting light emitting diode (LED) chip and LED device equipped with chip |
9293666, | Dec 10 2013 | Samsung Electronics Co., Ltd. | Method of manufacturing light emitting device |
9293675, | Jul 08 2010 | Samsung Electronics Co., Ltd. | Semiconductor light-emitting device and method of manufacturing the same |
9299561, | Jun 14 2013 | Samsung Electronics Co., Ltd. | Method for fabricating nitride semiconductor thin film and method for fabricating nitride semiconductor device using the same |
9299846, | Dec 28 2001 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having aluminum-containing layer between two curved substrates |
9299879, | Jan 15 2003 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and method for manufacturing display device using the peeling method |
9305906, | Nov 14 2008 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
9312249, | Nov 14 2008 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
9312439, | Jan 09 2014 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
9318647, | Jan 21 2014 | Samsung Electronics Co., Ltd. | Method of manufacturing semiconductor light emitting device |
9320103, | Mar 06 2014 | Samsung Electronics Co., Ltd. | Light-emitting diode (LED) driver, LED lighting apparatus, and method of operating LED lighting apparatus |
9324904, | Aug 14 2012 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device and light emitting apparatus |
9334582, | Feb 17 2014 | Samsung Electronics Co., Ltd. | Apparatus for evaluating quality of crystal, and method and apparatus for manufacturing semiconductor light-emitting device including the apparatus |
9337341, | Dec 28 2001 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having aluminum-containing layer between two curved substrates |
9337381, | Oct 21 2013 | Samsung Electronics Co., Ltd. | Semiconductor buffer structure, semiconductor device including the semiconductor buffer structure, and method of manufacturing the semiconductor device using the semiconductor buffer structure |
9337386, | Dec 26 2012 | SAMSUNG ELECTRIC CO., LTD. | Light emitting device package |
9337391, | Aug 11 2014 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device, light emitting device package comprising the same, and lighting device comprising the same |
9345114, | Nov 14 2013 | Samsung Electronics Co., Ltd. | Lighting system and signal converting device therefor |
9352542, | Feb 07 2012 | TOKYO OHKA KOGYO CO , LTD | Processing method and processing apparatus |
9362447, | Jan 15 2014 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
9362448, | Sep 05 2014 | Samsung Electronics Co., Ltd. | Nanostructure semiconductor light emitting device |
9368694, | Oct 06 2014 | Samsung Electronics Co., Ltd. | Method of fabricating light-emitting device package |
9370063, | Jun 24 2014 | Samsung Electronics Co., Ltd. | LED driving device and lighting device |
9373746, | Mar 27 2012 | SAMSUNG ELECTRONICS CO , LTD | Manufacturing method of semiconductor light emitting device having sloped wiring unit |
9379288, | Oct 19 2007 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device, manufacturing method thereof, and semiconductor light emitting device package using the same |
9384439, | Jun 14 2004 | SEMICONDUCTOR ENERGY LABORATORY CO , LTD | Semiconductor device and communication system |
9401348, | Jun 28 2013 | Samsung Electronics Co., Ltd. | Method of making a substrate structure having a flexible layer |
9406635, | Aug 20 2014 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device and semiconductor light emitting device package using the same |
9406839, | Aug 25 2014 | Samsung Electronics Co., Ltd. | Nanostructure semiconductor light emitting device |
9412588, | Oct 07 2013 | Samsung Electronics Co., Ltd. | Method of growing nitride semiconductor layer and nitride semiconductor formed by the same |
9412903, | Jan 20 2014 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
9419172, | Jun 10 2014 | Samsung Electronics Co., Ltd. | Method of manufacturing light emitting device package |
9419176, | Dec 14 2012 | SAMSUNG ELECTRONICS CO , LTD | Three-dimensional light-emitting device and fabrication method thereof |
9427949, | Dec 03 2013 | Semiconductor Energy Laboratory Co., Ltd. | Peeling apparatus and stack manufacturing apparatus |
9431583, | Jan 13 2014 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
9437831, | Dec 02 2013 | SEMICONDUCTOR ENERGY LABORATORY CO , LTD | Display device and method for manufacturing the same |
9440518, | Jan 14 2014 | Samsung Electronics Co., Ltd. | Lighting system for a vehicle |
9449817, | Sep 28 2010 | SAMSUNG ELECTRONICS CO , LTD | Semiconductor devices and methods of manufacturing the same |
9450018, | Feb 05 2014 | Samsung Electronics Co., Ltd. | Light-emitting device and light-emitting device package |
9450151, | Sep 02 2014 | Samsung Electronics Co., Ltd. | Semiconductor light-emitting device |
9450204, | Oct 25 2002 | ELEMENT CAPITAL COMMERCIAL COMPANY PTE LTD | Electro-optical device and electronic apparatus |
9461199, | Jul 11 2014 | Samsung Electronics Co., Ltd. | Nanostructure semiconductor light-emitting device |
9461205, | Oct 14 2013 | Samsung Electronics Co., Ltd. | Nanostructure semiconductor light emitting device |
9464800, | Jan 13 2014 | Samsung Electronics Co., Ltd. | Light emitting module |
9466765, | May 27 2015 | Samsung Electronics Co., Ltd. | Method of manufacturing semiconductor light emitting device |
9468058, | Jan 08 2014 | Samsung Electronics Co., Ltd. | Light emitting device and light source driving apparatus |
9472722, | Dec 02 2010 | Samsung Electronics Co., Ltd. | Light emitting device package and manufacturing method thereof |
9472729, | Jun 16 2014 | Samsung Electronics Co., Ltd. | Method of manufacturing semiconductor light emitting device package including light transmissive substrate having wavelength conversion regions |
9472740, | Jul 28 2014 | Samsung Electronics Co., Ltd. | Light emitting diode package and lighting device using the same |
9478702, | Feb 03 2014 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
9484500, | Jun 17 2013 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device and method of manufacturing the same |
9490391, | Oct 15 2014 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
9490395, | Jul 10 2014 | Samsung Electronics Co., Ltd. | Nanostructure semiconductor light-emitting device |
9490401, | Jul 24 2014 | Samsung Electronics Co., Ltd. | Method of manufacturing light emitting device |
9493119, | Nov 30 2001 | Semiconductor Energy Laboratory Co., Ltd. | Vehicle, display device and manufacturing method for a semiconductor device |
9502605, | Oct 01 2014 | Samsung Electronics Co., Ltd. | Method of fabricating semiconductor light emitting device |
9508620, | Oct 30 2002 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
9508697, | Nov 06 2014 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device and semiconductor light emitting device package including the same |
9508893, | Jan 29 2013 | SAMSUNG ELECTRONICS CO , LTD | Method for manufacturing nano-structured semiconductor light-emitting element |
9508898, | Aug 28 2014 | Samsung Electronics Co., Ltd. | Nanostructure semiconductor light emitting device |
9515224, | Aug 25 2014 | Samsung Electronics Co., Ltd. | Semiconductor light-emitting device |
9519184, | Jul 19 2007 | Samsung Electronics Co., Ltd. | Backlight unit |
9525100, | Dec 14 2012 | Samsung Electronics Co., Ltd. | Nano-structured light-emitting devices |
9525102, | Jan 29 2013 | SAMSUNG ELECTRONICS CO , LTD | Method for manufacturing nanostructure semiconductor light emitting device |
9525106, | Aug 19 2014 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
9536901, | Dec 28 2001 | Semiconductor Energy Laboratory Co., Ltd. | Method for fabricating a semiconductor device by bonding a layer to a support with curvature |
9537049, | Nov 03 2014 | Samsung Electronics Co., Ltd. | Nanostructure semiconductor light emitting device |
9537051, | Aug 29 2014 | Samsung Electronics Co., Ltd. | Nanostructure semiconductor light emitting device |
9537055, | Oct 23 2013 | Samsung Electronics Co., Ltd. | Semiconductor light emitting diode package and lighting device using the same |
9543221, | Nov 11 2014 | Samsung Electronics Co., Ltd. | Method of manufacturing light-emitting apparatus, light-emitting module inspecting apparatus, and method of determining whether light-emitting module meets quality requirement |
9543337, | Dec 27 2002 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof, delamination method, and transferring method |
9543470, | Aug 06 2013 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
9543475, | Nov 14 2014 | Samsung Electronics Co., Ltd | Light emitting device and method of manufacturing the same |
9546926, | Jun 09 2014 | Samsung Electronics Co., Ltd. | Method of inspecting a light source module for defects, method of manufacturing a light source module, and apparatus for inspecting a light source module |
9548422, | Oct 17 2013 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device including a pad electrode spaced apart from a transparent electrode |
9548426, | Sep 19 2014 | Samsung Electronics Co., Ltd. | Semiconductor light-emitting device |
9548430, | Oct 23 2014 | Samsung Electronics Co., Ltd. | Method of manufacturing light emitting diode package |
9549442, | Jun 26 2015 | Samsung Electronics Co., Ltd. | Light emitting device (LED) driving apparatus and lighting device including the same |
9550939, | Dec 20 2006 | Samsung Electronics Co., Ltd. | Red emitting nitride fluorescent material and white light emitting device using the same |
9553009, | Mar 25 2014 | Samsung Electronics Co., Ltd. | Substrate separation device and substrate separation system |
9553234, | Jul 11 2014 | Samsung Electronics Co., Ltd. | Method of manufacturing nanostructure semiconductor light emitting device |
9553235, | Jul 11 2014 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device and manufacturing method thereof |
9559260, | Jul 21 2014 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device, method for manufacturing semiconductor light emitting device, and method for manufacturing semiconductor light emitting device package |
9559271, | Dec 22 2014 | Samsung Electronics Co., Ltd. | Oxynitride-based phosphor and white light emitting device including the same |
9559316, | Dec 02 2013 | Semiconductor Energy Laboratory Co., Ltd. | Display device and method for manufacturing the same |
9559317, | Dec 02 2013 | Semiconductor Energy Laboratory Co., Ltd. | Display device and method for manufacturing the same |
9564316, | Apr 25 2014 | Samsung Electronics Co., Ltd. | Method of manufacturing semiconductor device and method of maintaining deposition apparatus |
9565745, | Aug 13 2013 | Samsung Electronics Co., Ltd. | Lighting apparatus, lighting control system, and method of controlling the lighting apparatus |
9567669, | Dec 04 2014 | Samsung Electronics Co., Ltd. | Chemical vapor deposition apparatus and method of manufacturing light-emitting diode device using the same |
9570660, | Nov 25 2014 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device and semiconductor light emitting apparatus having the same |
9577147, | Dec 02 2010 | Samsung Electronics Co., Ltd. | Light emitting device package and manufacturing method thereof |
9578714, | Nov 14 2013 | Samsung Electronics Co., Ltd. | Lighting system and signal converting device therefor |
9583340, | Nov 05 2013 | Samsung Electronics Co., Ltd. | Semipolar nitride semiconductor structure and method of manufacturing the same |
9583672, | Nov 05 2012 | Samsung Electronics Co., Ltd. | Nano-structured light-emitting device and methods for manufacturing the same |
9583687, | Nov 10 2014 | Samsung Electronics Co., Ltd. | Semiconductor device, semiconductor device package, and lightning apparatus |
9593827, | Jun 09 2014 | Samsung Electronics Co., Ltd. | Light source module, lighting device, and lighting system |
9594207, | Jul 03 2008 | Samsung Electronics Co., Ltd. | LED package and a backlight unit comprising said LED package |
9595637, | Nov 03 2014 | Samsung Electronics Co., Ltd. | Nanostructure semiconductor light emitting device having rod and capping layers of differing heights |
9601665, | Aug 18 2014 | Samsung Electronics Co., Ltd. | Nanostructure semiconductor light emitting device |
9603214, | Feb 12 2013 | Samsung Electronics Co., Ltd. | Light emitting device (LED) array unit and LED module comprising the same |
9608004, | Jul 16 2001 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and peeling off method and method of manufacturing semiconductor device |
9613989, | Feb 01 2000 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
9614121, | Jan 27 2016 | Samsung Electronics Co., Ltd. | Method of fabricating semiconductor light emitting device |
9620408, | Oct 30 2001 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method of manufacturing the same |
9620490, | Dec 31 2014 | Samsung Electronics Co., Ltd. | Fuse package and light emitting device module using the same |
9622327, | Sep 22 2015 | Samsung Electronics Co., Ltd. | Device and method for testing LED lighting device |
9627279, | Nov 16 2010 | Samsung Electronics Co., Ltd. | Method for removing defective light emitting diode (LED) package from LED package arrary |
9634186, | May 29 2014 | Samsung Electronics Co., Ltd. | Method of manufacturing light emitting device package |
9640717, | Nov 03 2014 | Samsung Electronics Co., Ltd. | Ultraviolet light emitting apparatus |
9640778, | Mar 14 2003 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and method for manufacturing the same |
9653515, | Dec 06 2013 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device and semiconductor light emitting apparatus including the same |
9660139, | Mar 27 2014 | Samsung Electronics Co., Ltd. | Nanostructure semiconductor light emitting device |
9660163, | Jul 08 2010 | Samsung Electronics Co., Ltd. | Semiconductor light-emitting device and method of manufacturing the same |
9664842, | Sep 03 2014 | Samsung Electronics Co., Ltd. | Light source module and backlight unit having the same |
9666561, | Oct 12 2015 | Samsung Electronics Co., Ltd. | Light emitting device package and lighting apparatus including the same |
9666754, | May 27 2015 | Samsung Electronics Co., Ltd. | Method of manufacturing semiconductor substrate and substrate for semiconductor growth |
9666773, | Feb 11 2014 | Samsung Electronics Co., Ltd. | Light source package and display device including the same |
9676047, | Mar 15 2013 | Samsung Electronics Co., Ltd. | Method of forming metal bonding layer and method of manufacturing semiconductor light emitting device using the same |
9680050, | Oct 22 2008 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
9680069, | Jun 08 2015 | Samsung Electronics Co., Ltd. | Light emitting device package, wavelength conversion film, and manufacturing method thereof |
9680074, | Jun 26 2015 | Samsung Electronics Co., Ltd. | Optical device and light emitting device package including the same |
9681509, | Mar 06 2015 | Samsung Electronics Co., Ltd. | Light-emitting device package and electronic device including light-emitting device |
9682532, | Oct 29 2010 | TOKYO OHKA KOGYO CO , LTD | Laminated body and method for separating laminated body |
9686833, | Jun 26 2015 | Samsung Electronics Co., Ltd. | LED driving apparatus and lighting apparatus including the same |
9691945, | Jan 13 2014 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
9691954, | Jul 30 2015 | Samsung Electronics Co., Ltd. | Light-emitting diode (LED) package |
9691957, | Feb 22 2013 | Samsung Electronics Co., Ltd. | Light emitting device package |
9698304, | Sep 18 2014 | Samsung Electronics Co., Ltd. | Lighting system |
9702757, | Dec 18 2014 | Samsung Electronics Co., Ltd. | Light measuring system |
9705040, | Nov 13 2014 | Samsung Electronics Co., Ltd. | Light-emitting device |
9716214, | Jun 16 2015 | Samsung Electronics Co., Ltd. | Light-emitting diode package |
9722146, | Aug 25 2010 | Samsung Electronics Co., Ltd. | Phosphor film, method of manufacturing the same, coating method of phosphor layer, method of manufacturing LED package and LED package manufactured thereby |
9725648, | Dec 10 2013 | Samsung Electronics Co., Ltd. | Phosphor and light-emitting device including the same |
9728544, | Nov 26 2014 | Samsung Electronics Co., Ltd. | Semiconductor device and method of manufacturing the same |
9730323, | Feb 25 2014 | Samsung Electronics Co., Ltd. | Semiconductor package |
9735070, | Sep 17 2015 | Samsung Electronics Co., Ltd. | Methods of manufacturing light source module |
9735313, | Jan 05 2015 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device package and method for manufacturing the same |
9735331, | Nov 19 2015 | Samsung Electronics Co., Ltd. | Bonding wire for semiconductor package and semiconductor package including same |
9748438, | Aug 25 2014 | Samsung Electronics Co., Ltd. | Nanostructure semiconductor light emitting device |
9748453, | Jun 22 2015 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device having convex portion made with different materials |
9755148, | Aug 22 2001 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and method of manufacturing semiconductor device |
9766533, | Feb 12 2014 | Samsung Electronics Co., Ltd. | Flash device, and imaging method |
9770894, | Dec 03 2013 | Semiconductor Energy Laboratory Co., Ltd. | Peeling apparatus and stack manufacturing apparatus |
9779968, | Apr 10 2014 | FUJI ELECTRIC CO , LTD | Method for processing semiconductor substrate and method for manufacturing semiconductor device in which said processing method is used |
9780260, | Jan 18 2013 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device and manufacturing method of the same |
9786817, | Sep 10 2015 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
9793432, | Aug 26 2009 | Samsung Electronics Co., Ltd. | Light emitting devices and methods of manufacturing the same |
9793450, | Nov 24 2015 | Samsung Electronics Co., Ltd. | Light emitting apparatus having one or more ridge structures defining at least one circle around a common center |
9794993, | Apr 30 2015 | Samsung Electronics Co., Ltd. | LED driving device |
9799809, | Aug 26 2015 | Samsung Electronics Co., Ltd. | Light-emitting diode (LED), LED package and apparatus including the same |
9807843, | Oct 02 2015 | Samsung Electronics Co., Ltd. | White light emitting module and LED lighting apparatus |
9809744, | Dec 09 2014 | Samsung Electronics Co., Ltd. | Fluoride phosphor composite, method of manufacturing fluoride phosphor composite, white light emitting apparatus, display apparatus, lighting device, and electronic device |
9825014, | Nov 19 2015 | Samsung Electronics Co., Ltd. | Light source module, display panel, and display apparatus including the same |
9825016, | May 17 2016 | SAMSUNG ELECTRONICS CO , LTD | Light emitting device package |
9829188, | Mar 16 2016 | Samsung Electronics Co., Ltd. | Light-emitting diode driving apparatus and lighting device |
9831378, | Aug 03 2015 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device and method of manufacturing the same |
9831380, | Sep 02 2014 | Samsung Electronics Co., Ltd. | Method of manufacturing semiconductor device package |
9832845, | Nov 18 2015 | Samsung Electronics Co., Ltd. | Lighting control system and lighting control method thereof |
9841161, | Jul 30 2014 | Samsung Electronics Co., Ltd. | Lens for light emitter, light source module, lighting device, and lighting system |
9842960, | Oct 01 2014 | Samsung Electronics Co., Ltd. | Method of manufacturing nanostructure semiconductor light-emitting device |
9842966, | Jan 29 2013 | SAMSUNG ELECTRONICS CO , LTD | Nano-structured semiconductor light-emitting element |
9842994, | Aug 22 2001 | Semiconductor Energy Laboratory Co., Ltd. | Peeling method and method of manufacturing semiconductor device |
9845939, | Oct 21 2014 | Samsung Electronics Co., Ltd. | Light emitting device |
9851820, | Apr 13 2015 | Semiconductor Energy Laboratory Co., Ltd. | Display device comprising a first transistor and a second transistor wherein an insulating film is located between a first display element and a conductive film |
9853185, | Jan 29 2013 | Samsung Electronics Co., Ltd. | Method for manufacturing nano-structured semiconductor light-emitting element |
9854633, | Aug 19 2016 | Samsung Electronics Co., Ltd. | Light emitting device array and light source device using the same |
9854650, | Dec 11 2015 | Samsung Electronics Co., Ltd. | Lighting system, lighting device, and control method thereof |
9857042, | Aug 12 2015 | Samsung Electronics Co., Ltd. | Light source module and lighting device having same |
9860955, | Sep 02 2015 | Samsung Electronics Co., Ltd. | LED driving apparatus and lighting apparatus including same |
9871162, | Apr 25 2014 | Samsung Electronics Co., Ltd. | Method of growing nitride single crystal and method of manufacturing nitride semiconductor device |
9871172, | Nov 12 2015 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device package with wavelength conversion layer |
9876149, | Aug 28 2015 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device package and light source module using same |
9887255, | Apr 10 2015 | SHENZHEN CHINA STAR OPTOELECTRONICS TECHNOLOGY CO , LTD | Array substrate, display device, and method for manufacturing array substrate |
9887315, | Sep 02 2002 | Samsung Electronics Co., Ltd. | Light emitting diode and method for fabricating the same |
9887330, | Jul 10 2015 | Samsung Electronics Co., Ltd. | Light-emitting apparatus and light-emitting module including the same |
9887332, | May 29 2015 | Samsung Electronics Co., Ltd. | Semiconductor light-emitting device package |
9887334, | Aug 03 2016 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
9887392, | Feb 28 2014 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing display device and method for manufacturing electronic device |
9890924, | Sep 10 2015 | Samsung Electronics Co., Ltd. | Optical device and light source module including the same |
9893247, | Dec 15 2010 | SAMSUNG ELECTRONICS CO , LTD | Light-emitting device including phosphorus layer covering side surfaces of substrate and light-emitting device package including the same |
9893251, | Feb 24 2016 | Samsung Electronics Co., Ltd. | Light-emitting device packages and methods of manufacturing the same |
9897266, | Mar 11 2016 | Samsung Electronics Co., Ltd. | Light source module and lighting apparatus including the same |
9897789, | Oct 17 2014 | Samsung Electronics Co., Ltd. | Light emitting device package and lighting device having the same |
9899565, | Sep 07 2015 | Samsung Electronics Co., Ltd. | Method of manufacturing semiconductor substrate including separating two semiconductor layers from a growth substrate |
9899584, | Nov 10 2014 | Samsung Electronics Co., Ltd. | Semiconductor device and package including solder bumps with strengthened intermetallic compound |
9903994, | Apr 17 2014 | Samsung Electronics Co., Ltd. | Light emitting device, backlight unit and display apparatus |
9905543, | Feb 26 2016 | Samsung Electronics Co., Ltd. | Light-emitting diode (LED) device |
9905739, | Nov 09 2015 | Samsung Electronics Co., Ltd. | Light emitting packages |
9911381, | Nov 05 2014 | Samsung Electronics Co., Ltd. | Display device and display panel |
9917231, | Nov 10 2014 | Samsung Electronics Co., Ltd. | Fluoride phosphor and light emitting device, and methods of manufacturing the same |
9927653, | Oct 28 2003 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing optical film |
9929190, | Oct 30 2002 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
9929320, | Dec 18 2014 | Samsung Electronics Co., Ltd. | Wavelength conversion film and light emitting device package including the same |
9935086, | Mar 03 2016 | Samsung Electronics Co., Ltd. | Package substrate and light emitting device package |
9941443, | Jan 09 2014 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
9947530, | Jun 14 2016 | Samsung Electronics Co., Ltd. | Method of manufacturing nitride semiconductor substrate |
9947568, | Feb 20 2013 | SEMICONDUCTOR ENERGY LABORATORY CO , LTD | Peeling method, semiconductor device, and peeling apparatus |
9954028, | Aug 11 2016 | Samsung Electronics Co., Ltd. | Light emitting device package and display device using the same |
9954142, | Oct 05 2015 | Samsung Electronics Co., Ltd. | Material layer stack, light emitting element, light emitting package, and method of fabricating light emitting element |
9966369, | May 17 2016 | Samsung Electronics Co., Ltd. | Light emitting device package |
9978907, | Aug 18 2015 | Samsung Electronics Co., Ltd.; Seoul National University R&DB Foundation | Semiconductor ultraviolet light emitting device having improved light extraction efficiency |
9989197, | Jun 05 2015 | Samsung Electronics Co., Ltd. | Optical device and light source module including the same |
9991426, | Mar 28 2016 | Samsung Electronics Co., Ltd. | Light-emitting device package |
9995960, | Aug 19 2015 | Samsung Electronics Co., Ltd. | Connector, light source module including the connector, and light source module array including the light source module |
9997561, | Apr 08 2016 | Samsung Electronics Co., Ltd. | Light emitting diode module, display panel having the same and method of manufacturing the same |
9997663, | Oct 22 2008 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device |
9997668, | Aug 25 2014 | Samsung Electronics Co., Ltd. | Semiconductor light-emitting device |
9997670, | Jun 21 2016 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device package |
ER271, | |||
ER5238, | |||
ER7166, | |||
ER8774, | |||
RE46851, | Sep 01 2004 | Samsung Electronics Co., Ltd. | High power light emitting diode package |
RE47417, | Oct 19 2007 | Samsung Electronics Co., Ltd. | Semiconductor light emitting device, method of manufacturing the same, and semiconductor light emitting device package using the same |
Patent | Priority | Assignee | Title |
5008218, | Sep 20 1988 | Hitachi, Ltd. | Method for fabricating a thin film transistor using a silicide as an etch mask |
5468521, | Oct 28 1991 | Canon Kabushiki Kaisha | Method for forming a photoelectric deposited film |
5527649, | May 28 1993 | DAI NIPPON PRINTING CO , LTD | Method for forming a substrate having a light shielding layer |
5589962, | Jun 08 1992 | Hitachi, Ltd. | Active matrix display device using aluminum alloy in scanning signal line or video signal line |
5693541, | Aug 26 1994 | Semiconductor Energy Laboratory Co., Ltd | Method for manufacturing a semiconductor device using a silicon nitride mask |
5733804, | Dec 22 1995 | Thomson Licensing | Fabricating fully self-aligned amorphous silicon device |
5747121, | Feb 08 1995 | FUJIFILM Corporation | Optical compensatory sheet |
5767930, | May 20 1994 | Mitsubishi Denki Kabushiki Kaisha | Active-matrix liquid crystal display and fabrication method thereof |
5807772, | Jun 09 1992 | Semiconductor Energy Laboratory Co., Ltd. | Method for forming semiconductor device with bottom gate connected to source or drain |
5840616, | May 22 1991 | Canon Kabushiki Kaisha | Method for preparing semiconductor member |
5888839, | May 02 1994 | JAPAN DISPLAY WEST INC | Method of manufacturing semiconductor chips for display |
5926735, | Feb 22 1996 | SEMICONDUCTOR ENERGY LABORATORY CO , LTD ; Sharp Kabushiki Kaisha | Method of forming semiconductor device |
6444507, | Oct 22 1996 | Seiko Epson Corporation | Fabrication process for thin film transistors in a display or electronic device |
JP61231714, | |||
JP6291291, | |||
JP8288522, | |||
JP862591, | |||
JPO9809333, | |||
RE33882, | Oct 01 1982 | Seiko Epson Corporation | Liquid crystal display device |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 03 2002 | Seiko Epson Corporation | (assignment on the face of the patent) | / | |||
Jan 11 2012 | Seiko Epson Corporation | SAMSUNG LED CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027524 | /0837 | |
Apr 03 2012 | SAMSUNG LED CO , LTD | SAMSUNG ELECTRONICS CO , LTD | MERGER SEE DOCUMENT FOR DETAILS | 028744 | /0272 |
Date | Maintenance Fee Events |
Mar 10 2004 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Sep 03 2004 | ASPN: Payor Number Assigned. |
Mar 07 2008 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Mar 15 2012 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Mar 21 2012 | ASPN: Payor Number Assigned. |
Mar 21 2012 | RMPN: Payer Number De-assigned. |
Date | Maintenance Schedule |
Mar 16 2007 | 4 years fee payment window open |
Sep 16 2007 | 6 months grace period start (w surcharge) |
Mar 16 2008 | patent expiry (for year 4) |
Mar 16 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 16 2011 | 8 years fee payment window open |
Sep 16 2011 | 6 months grace period start (w surcharge) |
Mar 16 2012 | patent expiry (for year 8) |
Mar 16 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 16 2015 | 12 years fee payment window open |
Sep 16 2015 | 6 months grace period start (w surcharge) |
Mar 16 2016 | patent expiry (for year 12) |
Mar 16 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |