A signal processor which acquires a first signal, including a first desired signal portion and a first undesired signal portion, and a second signal, including a second desired signal portion and a second undesired signal portion, wherein the first and second desired signal portions are correlated. The signals may be acquired by propagating energy through a medium and measuring an attenuated signal after transmission or reflection. Alternatively, the signals may be acquired by measuring energy generated by the medium. A processor generates a noise reference signal which is a combination of only the undesired signal portions and is correlated to both the first and second undesired signal portions. The noise reference signal is then used to remove the undesired portion of each of the first and second measured signals via an adaptive noise canceler, preferably of the joint process estimator type. The processor may be employed in conjunction with an adaptive noise canceler in physiological monitors wherein the know properties of energy attenuation through a medium are used to determine physiological characteristics of the medium. Many physiological conditions, such as the pulse of a patient or the concentration of a constituent in a medium, can be determined from the desired portion of the signal after undesired signal portions, such as those caused by erratic motion, are removed.

Patent
   RE38492
Priority
Mar 07 1991
Filed
Mar 11 2002
Issued
Apr 06 2004
Expiry
Mar 07 2011

TERM.DISCL.
Assg.orig
Entity
Large
1008
71
EXPIRED
1. A method of determining an indication of blood oxygen saturation comprising the steps of:
transmitting light of at least first and second wavelengths through body tissue carrying blood to a light-sensitive detector to generate first and second measured intensity signals;
filtering at least one of said first and second intensity signals with an adaptive canceler to provide at least one output signal; and
calculating oxygen saturation based upon said at least one output signal.
0. 33. A method for determining oxygen saturation of blood in body tissue, the method comprising the steps of:
emitting light of at least first and second wavelengths;
detecting the light of at least first and second wavelengths that has passed through body tissue including pulsing blood to produce at least one intensity signal;
processing a representation of the at least one intensity signal using an adaptive algorithm to provide at least one output signal; and
calculating an oxygen saturation of the pulsing blood using the at least one output signal.
16. A pulse oximeter which measures the oxygen saturation of blood in body tissue, said pulse oximeter comprising:
a light emitter adapted to emit light of at least first and second wavelengths;
a light detector responsive to light from said light emitter which has passed through body tissue having blood, said light detector providing intensity signals;
an adaptive filter responsive to said intensity signals to provide at least one filtered signal; and
a oxygen saturation module responsive to at least said filtered signal to calculate oxygen saturation of said blood.
0. 39. A pulse oximeter comprising:
light emitters that emit light of at least first and second wavelengths;
a light detector responsive to the light from the light emitters that has passed through body tissue including pulsing blood, the light detector providing at least one intensity signal;
an analog to digital converter that provides a digital representation of the at least one intensity signal;
a processor including a first routine to adaptively process the digital representation of the at least one intensity signal to provide at least one output signal; and
a second routine responsive to the at least one output signal to calculate oxygen saturation of the blood.
26. A pulse oximeter which measures the oxygen saturation of blood in body tissue, said pulse oximeter comprising:
a light emitter adapted to emit light of at least first and second wavelengths;
a light detector responsive to light from said light emitter which has passed through body tissue having blood, said light detector providing intensity signals;
a digital to analog converter which digitizes the intensity signals from said light detector;
a multiple notch filter responsive to said intensity signals after conversion with said digital to analog converter to provide at least one filtered signal; and
an oxygen saturation module responsive to at least said filtered signal to calculate oxygen saturation of said blood.
28. A pulse oximeter which measures the oxygen saturation of blood in body tissue, said pulse oximeter comprising:
a light emitter adapted to emit light of at least first and second wavelengths;
a light detector responsive to light from said light emitter which has passed through body tissue having blood, said light detector providing intensity signals having desired and undesired signal portions;
an analog to digital converter which digitizes the intensity signals from said light detector;
an adaptive signal processor responsive to that operates to process said intensity signals to adaptively filter said intensity signals to provide processed intensity signals; and
an oxygen saturation module routine responsive to at least one signal said processed intensity signals to calculate oxygen saturation of said blood.
2. The method of claim 1, wherein said step of transmitting light comprises the steps of transmitting a first wavelength in the red wavelength range and a second wavelength in the infrared wavelength range.
3. The method of claim 2, wherein said first and said second signals have at least a desired physiological component and an artifact component.
4. The method of claim 3, wherein said first and second wavelengths are selected based on light absorption characteristics of the physiologic medium, such that a substantially linear relationship exists between the desired physiologic components of said first and second measured signals.
5. The method of claim 1, further comprising the step of converting said first and second intensity signals to a digital representation of said first and second intensity signals, and wherein said step of filtering at least one of said first and second intensity signals with said adaptive canceler comprising filtering said digital representation.
6. The method of claim 1, further comprising the step of filtering said first and second signals with a predetermined filter prior to said filtering at least one of said first and second intensity signals with an adaptive canceler.
7. The method of claim 6, further comprising the step of converting said first and second intensity signals to a digital representation of said first and second intensity signals, and wherein said step of filtering at least one of said first and second intensity signals with an adaptive canceler comprises filtering said digital representation.
8. The method of claim 6, further comprising the step of displaying said oxygen saturation on a display.
9. The method of claim 1, further comprising the step of displaying said oxygen saturation on a display.
10. The method of claim 1, wherein said step of filtering at least one of said first and second intensity signals with an adaptive canceler comprises the steps of:
multiplying at least one of said first and second intensity signals by a predetermined constant and subtracting the result from the other of said first and second intensity signals to provide a reference signal; and
filtering at least one of said first and second intensity signals based upon said reference signal.
11. The method of claim 5, wherein said step of filtering at least one of said first and second intensity signals with an adaptive canceler comprises the steps of:
multiplying at least one of the digital representations of said first and second intensity signals by a predetermined constant and subtracting the result from the other of said first and second intensity signals to provide a reference signal; and
adaptively filtering at least one of the digital representations of said first and second intensity signals based upon said reference signal.
12. The method of claim 11, further comprising the step of filtering said first and second signals with a predetermined filter prior to filtering at least one of said first and second intensity signals with an adaptive canceler.
13. The method of claim 5, where said adaptive canceler is a dynamic multiple notch filter.
14. The method of claim 13, wherein said adaptive canceler adjusts its transfer function in accordance with a predetermined algorithm.
15. The method of claim 14, wherein said predetermined algorithm is a least-squares algorithm.
17. The pulse oximeter of claim 16, further comprising a display coupled to said oxygen saturation module.
18. The pulse oximeter of claim 16, wherein said adaptive filter comprises a first predetermined filter and adaptive correlation canceler an adaptive noise canceler.
19. The pulse oximeter of claim 16, further comprising an analog to digital converter in communication with said light detector, said analog to digital converter providing digital representations of said intensity signals, said analog to digital converter providing said digital representations to said adaptive filter.
20. The pulse oximeter of claim 19, further comprising a signal conditioner coupled between said light detector and said analog to digital converter.
21. The pulse oximeter of claim 16 18, wherein said adaptive filter noise canceler is coupled to comprises a multiplication unit and an adaptive correlation noise canceler .
22. The pulse oximeter of claim 21 wherein said adaptive filter noise canceler further comprises a predetermined filter.
23. The pulse oximeter of claim 16, wherein said adaptive filter is a dynamic multiple notch filter.
24. The pulse oximeter of claim 23, wherein said adaptive filter adjusts its transfer function in accordance with a predetermined algorithm.
25. The pulse oximeter of claim 24, wherein said predetermined algorithm is a least squares lattice.
27. The method of claim 26, wherein said multiple notch filter adjusts its transfer function based on a predetermined algorithm.
29. The pulse oximeter of claim 28, wherein said adaptive signal processor comprises an adaptive noise canceler.
30. The pulse oximeter of claim 29, wherein said adaptive noise canceler comprises a joint process estimator with a least-squares lattice predictor.
31. The pulse oximeter of claim 29, wherein said adaptive noise canceler operates as a multiple notch filter.
32. The pulse oximeter of claim 28, wherein said adaptive signal processor comprises an adaptive filter.
0. 34. The method of claim 33, wherein the representation of the at least one intensity signal is a digital representation.
0. 35. The method of claim 33, further comprising the step of displaying the calculated oxygen saturation of the blood.
0. 36. The method of claim 33, wherein the step of processing comprises processing the representation using a component of an adaptive noise canceler.
0. 37. The method of claim 33, wherein the adaptive algorithm is a least squares algorithm.
0. 38. The method of claim 33, wherein the adaptive algorithm is a least mean square algorithm.
0. 40. The pulse oximeter of claim 39, wherein the first routine comprises an adaptive algorithm.
0. 41. The pulse oximeter of claim 40, wherein the adaptive algorithm comprises a least squares algorithm.
0. 42. The pulse oximeter of claim 40, wherein the adaptive algorithm comprises a least mean square algorithm.
0. 43. The pulse oximeter of claim 41, wherein the adaptive algorithm comprises a least squares lattice algorithm.
0. 44. The pulse oximeter of claim 39, wherein the processor comprises a component of an adaptive noise canceler.

The present application is a continuation of application Ser. No. 08/479,918, now U.S. Pat. No. 5,769,785, filed Jun. 7, 1995, which is a continuation of application Ser. No. 08/249,690, now U.S. Pat. No. 5,482,036, filed May 26, 1994, which is a continuation of application Ser. No. 07/666,060 filed Mar. 7, 1991, now abandoned.

The present invention relates to the field of signal processing. More specifically, the present invention relates to the processing of measured signals to remove undesired portions when little is known about the undesired signal portion.

Signal processors are typically employed to remove undesired portions from a composite measured signal including a desired signal portion and an undesired signal portion. If the undesired signal portion occupies a different frequency spectrum than the desired signal, then conventional filtering techniques such as low pass, band pass, and high pass filtering could be used to separate the desired portion from the total signal. Fixed single or multiple notch filters could also be employed if the undesired signal portion(s) exist at a fixed frequency(s).

However, it is often the case that an overlap in frequency spectrum between the desired and undesired signal portions does exist and the statistical properties of both signal portions change with time. In such cases, conventional filtering techniques are totally ineffective in extracting the desired signal. If, however, a description of the undesired portion can be made available, adaptive noise canceling can be employed to remove the undesired portion of the signal leaving the desired portion available for measurement. Adaptive noise cancelers dynamically change their transfer function to adapt to and remove the undesired signal portions of a composite signal. Adaptive noise cancelers require a noise reference signal which is correlated to the undesired signal portion. The noise reference signal is not necessarily a representation of the undesired signal portion, but has a frequency spectrum which is similar to that of the undesired signal. In many cases, it requires considerable ingenuity to determine a noise reference signal since nothing is a priori known about the undesired signal portion.

One area where composite measured signals comprise a desired signal portion and an undesired signal portion about which no information can easily be determined is physiological monitoring. Physiological monitoring apparatuses generally measure signals derived from a physiological system, such as the human body. Measurements which are typically taken with physiological monitoring systems include electron cardiographs, blood pressure, blood gas saturation (such as oxygen saturation), capnographs, heart rate, respiration rate, and depth of anesthesia, for example. Other types of measurements include those which measure the pressure and quantity of a substance within the body such as breathalizer testing, drug testing, cholesterol testing, glucose testing, arterial carbon dioxide testing, protein testing, and carbon monoxide testing, for example. The source of the undesired signal portion in these measurements is often due to motion of the patient, both external and internal (muscle movement, for example), during the measurement process.

Knowledge of physiological systems, such as the amount of oxygen in a patient's blood, can be critical, for example during surgery. Data can be determined by a lengthy invasive procedure of extracting and testing matter, such as blood, from a patient, or by more expedient, non-invasive measures. Many types of non-invasive measurements can be made by using the known properties of energy attenuation as a selected form of energy passes through a medium.

Energy is caused to be incident on a medium either derived from or contained within a patient and the amplitude of transmitted or reflected energy is then measured. The amount of attenuation of the incident energy caused by the medium is strongly dependent on the thickness and composition of the medium through which the energy must pass as well as the specific form of energy selected. Information about a physiological system can be derived from data taken from the attenuated signal of the incident energy transmitted through the medium if the noise can be removed. However, non-invasive measurements often do not afford the opportunity to selectively observe the interference causing the undesired signal portion, making it difficult to remove.

These undesired signal portions often originate from both AC and DC sources. The first undesired portion is an easily removed DC component caused by transmission of the energy through differing media which are of relatively constant thickness within the body, such as bone, tissue, skin, blood, etc. Second, is an erratic AC component caused when differing media being measured are perturbed and thus, change in thickness while the measurement is being made. Since most materials in and derived from the body are easily compressed, the thickness of such matter changes if the patient moves during a non-invasive physiological measurement. Patient movement can cause the properties of energy attenuation to vary erratically. Traditional signal filtering techniques are frequently totally ineffective and grossly deficient in removing these motion induced effects from a signal. The erratic or unpredictable nature of motion induced undesired signal components is the major obstacle in removing them. Thus, presently available physiological monitors generally become totally inoperative during time periods when the patient moves.

A blood gas monitor is one example of a physiological monitoring system which is based upon the measurement of energy attenuated by biological tissues or substances. Blood gas monitors transmit light into the tissue and measure the attenuation of the light as a function of time. The output signal of a blood gas monitor which is sensitive to the arterial blood flow contains a component which is a waveform representative of the patient's arterial pulse. This type of signal, which contains a component related to the patient's pulse, is called a plethysmographic wave, and is shown in FIG. 1 as curve Y. Plethysmographic waveforms are used in blood pressure or blood gas saturation measurements, for example. As the heart beats the amount of blood in the arteries increases and decreases, causing increases and decreases in energy attenuation, illustrated by the cyclic wave Y in FIG. 1.

Typically, a digit such as a finger, an ear lobe, or other portion of the body where blood flows close to the skin, is employed as the medium through which light energy is transmitted for blood gas attenuation measurements. The finger comprises skin, fat, bone, muscle, etc., shown schematically in FIG. 2, each of which attenuates energy incident on the finger in a generally predictable and constant manner. However, when fleshy portions of the finger are compressed erratically, for example by motion of the finger, energy attenuation becomes erratic.

An example of a more realistic measured waveform S is shown in FIG. 3, illustrating the effect of motion. The desired portion of the signal Y is the waveform representative of the pulse, corresponding to the sawtooth-like pattern wave in FIG. 1. The large, motion-induced excursions in signal amplitude hide the desired signal Y. It is easy to see how even small variations in amplitude make it difficult to distinguish the desired signal Y in the presence of a noise component n.

A specific example of a blood gas monitoring apparatus is a pulse oximeter which measures the saturation of oxygen in the blood. The pumping of the heart forces freshly oxygenated blood into the arteries causing greater energy attenuation. The saturation of oxygenated blood may be determined from the depth of the valleys relative to the peaks of two plethysmographic waveforms measured at separate wavelengths. However, motion induced undesired signal portions, or motion artifacts, must be removed from the measured signal for the oximeter to continue the measurement during periods when the patient moves.

The present invention is a signal processor which acquires a first signal and a second signal that is correlated to the first signal. The first signal comprises a first desired signal portion and a first undesired signal portion. The second signal comprises a second desired signal portion and a second undesired signal portion. The signals may be acquired by propagating energy through a medium and measuring an attenuated signal after transmission or reflection. Alternatively, the signal may be acquired by measuring energy generated by the medium.

The first and second measured signals are processed to generate a noise reference signal which does not contain the desired signal portions from either of the first or second measured signals. The remaining undesired signal portions from the first and second measured signals are combined to form a noise reference signal. This noise reference signal is correlated to the undesired signal portion of each of the first and second measured signals.

The noise reference signal is then used to remove the undesired portion of each of the first and second measured signals via an adaptive noise canceler. An adaptive noise canceler can be described by analogy to a dynamic multiple notch filter which dynamically changes its transfer function in response to the noise reference signal and the measured signals to remove frequencies from the measured signals that are also present in the noise reference signal. Thus, a typical adaptive noise canceler receives the signal from which it is desired to remove noise and a noise reference signal. The output of the adaptive noise canceler is a good approximation to the desired signal with the noise removed.

Physiological monitors can often advantageously employ signal processors of the present invention. Often in physiological measurements a first signal comprising a first desired portion and a first undesired portion and a second signal comprising a second desired portion and a second undesired portion are acquired. The signals may be acquired by propagating energy through a patient's body (or a material which is derived from the body, such as breath, blood, or tissue, for example) and measuring an attenuated signal after transmission or reflection. Alternatively, the signal may be acquired by measuring energy generated by a patient's body, such as in electrocardiography. The signals are processed via the signal processor of the present invention to acquire a noise reference signal which is input to an adaptive noise canceler.

One physiological monitoring apparatus which can advantageously incorporate the features of the present invention is a monitoring system which determines a signal which is representative of the arterial pulse, called a plethysmographic wave. This signal can be used in blood pressure calculations, blood gas saturation measurements, etc. A specific example of such a use is in pulse oximetry which determines the saturation of oxygen in the blood. In this configuration, the desired portion of the signal is the arterial blood contribution to attenuation of energy as it passes through a portion of the body where blood flows close to the skin. The pumping of the heart causes blood flow to increase and decrease in the arteries in a periodic fashion, causing periodic attenuation wherein the periodic waveform is the plethysmographic waveform representative of the pulse.

A physiological monitor particularly adapted to pulse oximetry oxygen saturation measurement comprises two light emitting diodes (LED's) which emit light at different wavelengths to produce first and second signals. A detector registers the attenuation of the two different energy signals after each passes through an absorptive media, for example a digit such as a finger, or an earlobe. The attenuated signals generally comprise both desired and undesired signal portions. A static filtering system, such as a band pass filter, removes a portion of the undesired signal which is static, or constant, or outside of a known bandwidth of interest, leaving an erratic or random undesired signal portion, often caused by motion and often difficult to remove, along with the desired signal portion.

Next, a processor of the present invention removes the desired signal portions from the measured signals yielding a noise reference signal which is a combination of the remaining undesired signal portions. The noise reference signal is correlated to both of the undesired signal portions. The noise reference signal and at least one of the measured signals are input to an adaptive noise canceler which removes the random or erratic portion of the undesired signal. This yields a good approximation to the desired plethysmographic signal as measured at one of the measured signal wavelengths. As is known in the art, quantitative measurements of the amount of oxygenated blood in the body can be determined from the plethysmographic signal in a variety of ways.

One aspect of the present invention is a signal processor comprising a detector for receiving a first signal which travels along a first propagation path and a second signal which travels along a second propagation path wherein a portion of the first and second propagation paths are located in a propagation medium. The first signal has a first desired signal portion and a first undesired signal portion and the second signal has a second desired signal portion and a second undesired signal portion. The first and second undesired signal portions are a result of a perturbation of the propagation medium. This aspect of the invention additionally comprises a reference processor having an input for receiving the first and second signals. The processor is adapted to combine the first and second signals to generate a reference signal having a primary component which is a function of the first and said second undesired signal portions.

The above described aspect of the present invention may further comprise an adaptive signal processor for receiving the reference signal and the first signal and for deriving therefrom an output signal having a primary component which is a function of the first desired signal portion of the first signal. Alternatively, the above described aspect of the present invention may further comprise an adaptive signal processor for receiving the reference signal and the second signal and for deriving therefrom an output signal having a primary component which is a function of the second desired signal portion of the second signal. The adaptive signal processor may comprise an adaptive noise canceler. The adaptive noise canceler may

The present invention is a processor which determines a noise reference signal n'(t) for use in an adaptive noise canceler. An adaptive noise canceler estimates a good approximation Y'(t) to a desired signal Y(t) from a composite signal S(t)=Y(t)+n(t) which, in addition to the desired portion Y(t) comprises an undesired portion n(t). The undesired portion n(t) may contain one or more of a constant portion, a predictable portion, an erratic portion, a random portion, etc. The approximation to the desired signal Y'(t) is derived by removing as many of the undesired portions n(t) from the composite signal S(t) as possible. The constant portion and predictable portion are easily removed with traditional filtering techniques, such as simple subtraction, low pass, band pass, and high pass filtering. The erratic portion is more difficult to remove due to its unpredictable nature. If something is known about the erratic signal, even statistically, it could be removed from the measured signal via traditional filtering techniques. However, it is often the case that no information is known about the erratic portion of the noise. In this case, traditional filtering techniques are usually insufficient. Often no information about the erratic portion of the measured signal is known. Thus, an adaptive noise canceler is utilized in the present invention to remove the erratic portion.

Generally, an adaptive noise canceler has two signal inputs and one output. One of the inputs is the noise reference signal n'(t) which is correlated to the erratic undesired signal positions n(t) present in the composite signal S(t). The other input is for the composite signal S(t). Ideally, the output of the adaptive noise canceler Y'(t) corresponds to the desired signal portion Y(t) only. Often, the most difficult task in the application of adaptive noise cancelers is determining the noise reference signal n'(t) which is correlated to the erratic undesired portion n(t) of the measured signal S(t) since, as discussed above, unpredictable signal portions are usually quite difficult to isolate from the measured signal S(t). In the signal processor of the present invention, a noise reference signal n'(t) is determined from two composite signals measured simultaneously, or nearly simultaneously, at two different wavelengths, λa and λb. The signal processor of the present invention can be advantageously used in a monitoring device, such a monitor being well suited for physiological monitoring.

A block diagram of a generic monitor incorporating a signal processor, or reference processor, according to the present invention and an adaptive noise canceler is shown in FIG. 4. Two measured signals, Sλa(t) and Sλb(t), are acquired by a detector 20. One skilled in the art will realize that for some physiological measurements, more than one detector may be advantageous. Each signal is conditioned by a signal conditioner 22a and 22b. Conditioning includes, but is not limited to, such procedures as filtering the signals to remove constant portions and amplifying the signals for each of manipulation. The signals are then converted to digital data by an analog-to-digital converter 24a and 24b. The first measured signal Sλa(t) comprises a first desired signal portion, labelled herein Yαa(t), and a first undesired signal portion, labelled herein nλa(t). The second measured signal Sλb(t) is at least partially correlated to the first measured signal Sλa(t) and comprises a second desired signal portion, labelled herein Yλb(t), and a second undesired signal portion, labelled herein nλb(t). Typically the first and second undesired signal portions, nλa(t) and nλb(t), are uncorrelated and/or erratic with respect to the desired signal portions Yλa(t) and Yλb(t). The undesired signal portions nλa(t) and nλb(t) are often caused by motion of a patient. The signals Sλa(t) and Sλb(t) are input to a reference processor 26. The reference processor 26 multiplies the second measured signal Sλb(t) by a factor ω and then subtracts the second measured signals Sλb(t) from the first measured signal Sλa(t). The factor ω is determined to cause the desired signal portions Yλa(t) and Yλb(t) to cancel when the two signals Sλa(t) and Sλb(t) are subtracted. Thus, the output of the reference processor 26 is a noise reference signal n'(t)=nλa(t)-ωnλb(t) which is correlated to both of the erratic undesired signal portions nλa(t) and nλb(t). The noise reference signal n'(t) is input, along with one of the measured signals Sλa(t), to an adaptive noise canceler 27 which uses the noise reference signal n'(t) to remove the undesired signal portion nλa(t) or nλb(t) from the measured signal Sλa(t). It will be understood that Sλb(t) could have been input to the adaptive noise canceler 27 along with the noise reference signal n'(t) instead of Sλa(t). The output of the adaptive noise canceler 27 is a good approximation Y'λa(t) to the desired signal Yλa(t). The approximation Y'λa(t) is displayed on the display 28.

An adaptive noise canceler 30, an example of which is shown in block diagram in FIG. 5, is employed to remove the erratic, undesired signal portions nλa(t) and nλb(t) from the measured signals Sλa(t) and Sλb(t). The adaptive noise canceler 30 in FIG. 5 has as one input a sample of the noise reference signal n'(t) which is correlated to the undesired signal portions nλa(t) and nλb(t). The noise reference signal n'(t) is determined from the two measured signals Sλa(t) and Sλb(t) by the processor 26 of the present invention as described herein. A second input to the adaptive noise canceler is a sample of either the first or second measured signal Sλa(t)=Yλa(t)+nλa(t) or Sλb(t)=Yλb(t)+nλb(t).

The adaptive noise canceler 30 functions to remove frequencies common to both the noise reference signal n'(t) and the measured signal Sλa(t) or Sλb(t). Since the noise reference signal n'(t) is correlated to the erratic undesired signal portions nλa(t) and nλb(t), the noise reference signal n'(t) is also erratic. The adaptive noise canceler acts in a manner which may be analogized to a dynamic multiple notch filter based on the spectral distribution of the noise reference signal n'(t).

Referring to FIG. 4a, the transfer function of a multiple notch filter is shown. The notches, or dips in the amplitude of the transfer function, indicate frequencies which are attenuated or removed when a composite measured signal passes through the notch filter. The output of the notch filter is the composite signal having frequencies at which a notch was present removed. In the analogy to an adaptive noise canceler, the frequencies at which notches are present change continuously based upon the inputs to the adaptive noise canceler.

The adaptive noise canceler 30 shown in FIG. 5 produces an output signal, labelled herein Y'λa(t) or Y'λb(t), which is fed back to an internal processor 32 within the adaptive noise canceler 30. The internal processor 32 automatically adjusts its own transfer function according to a predetermined algorithm such that the output of the internal processor 32, labelled b(t), closely resembles the undesired signal portion nλa(t) or nλb(t). The output b(t) of the internal processor 32 is subtracted from the measured signal, Sλa(t) or Sλb(t), yielding a signal Y'λa(t)≈Sλa(t)+nλb(t)-bλb(t) or Y'λb(t)≈Sλb(t)+nλb(t)-bλb(t). The internal processor optimizes Y'λaor Y'λb(t) such that Y'λa(t) or Y'λb(t) is approximately equal to the desired signal Yλa(t) or Yλb(t), respectively.

One algorithm which may be used for the adjustment of the transfer function of the internal processor 32 is a least-squares algorithm, as described in Chapter 6 and Chapter 12 of the book Adaptive Signal Processing by Bernard Widrow and Samuel Stearns, published by Prentice Hall, copyright 1985. This entire book, including Chapters 6 and 12, is hereby incorporated herein by reference.

Adaptive processors 30 have been successfully applied to a number of problems including antenna sidelobe canceling, pattern recognition, the elimination of periodic interference in general, and the elimination of echoes on long distance telephone transmission lines. However, considerable ingenuity is often required to find a suitable noise reference signal n'(t) for a given application since the random or erratic portions nλa(t) or nλb(t) cannot easily be separated from the measured signal Sλa(t) or Sλb(t). If the actual undesired signal portion nλa(t) or nλb(t) were a priori available, techniques such as adaptive noise canceling would not be necessary. The unique determination of a suitable noise reference signal n'(t) from measurements taken by a monitor incorporating a reference processor of the present invention is one aspect of the present invention.

An explanation which describes how the noise reference signal n'(t) may be determined as follows. A first signal is measured at, for example, a wavelength λa, by a detector yielding a signal Sλa(t).

Sλa(t)=Yλa(t)+nλa(t); (1)

Yλa(t) is the desired signal and nλa(t) is the noise component.

A similar measurement is taken simultaneously, or nearly simultaneously, at a different wavelength, λb, yielding:

Sλb(t)=Yλb(t)+nλb. (2)

Note that as long as the measurements, Sλa(t) and Sλb(t), are taken substantially simultaneously, the undesired signal components, nλa(t) and nλb(t), will be correlated because any random or erratic functions will affect each measurement in nearly the same fashion.

To obtain the noise reference signal n'(t), the measured signals Sλa(t) and Sλb(t) are transformed to eliminate the desired signal components. One way of doing this is to find a proportionality constant, ω1, between the desired signals Yλa(t) and Yλb(t) such that:

Yλa(t)=ω1Yλb(t). (3)

This proportionality relationship can be satisfied in many measurements, including but not limited to absorption measurements and physiological measurements. Additionally, in most measurements, the proportionality constant ω1 can be determined such that:

nλa(t)≠ω1nλb(t). (4)

Multiplying equation (2) by ω1 and then subtracting equation (2) from equation (1) results in a single equation wherein the desired signal terms Yλa(t) and Sλb(t) cancel, leaving:

n'(t)=Sλa(t)-ω1Sλb(t)=nλa(t)-ω1nλb(t); (5)

a non-zero signal which is correlated to each undesired signal portion nλa(t) and nλb(t) and can be used as the noise reference signal n'(t) in an adaptive noise canceler.

Adaptive noise canceling is particularly useful in a large number of measurements generally described as absorption measurements. An example of an absorption type monitor which can advantageously employ adaptive noise canceling based upon a noise reference signal n'(t) determined by a processor of the present invention is one which determines the concentration of an energy absorbing constituent within an absorbing material when the material is subject to perturbation. Such perturbations can be caused by forces about which information is desired, or alternatively, by random or erratic forces such as a mechanical force on the material. Random or erratic interference, such as motion, generates undesired noise components in the measured signal. These undesired components can be removed by the adaptive noise canceler if a suitable noise reference signal n'(t) is known.

A schematic N constituent absorbing material comprising a container 42 having N different absorbing constituents, labelled A1, A2, A3, . . . AN, is shown schematically in FIG. 6a. The constituents A3 through AN in FIG. 6a are arranged in a generally orderly, layered fashion within the container 42. An example of a particular type of absorptive system is one in which light energy passes through the container 42 and is absorbed according to the generalized Beer-Lambert Law of light absorption. For light of wavelength λa, this attenuation may be approximated by:

I=IoeNi=0εi,λacpei (6)

Initially transforming the signal by taking the natural log of both sides and manipulating terms, the signal is transformed such that the signal components are combined by addition rather than multiplication, i.e.:

Sλa=ln(Io/I)=ΣNi=0εi,λacixi (7)

where Io is the incident light energy intensity; I is the transmitted light energy intensity: εi,λa is the absorption coefficient of the ith constituent at the wavelength λa; xi(t) is the optical path length of ith layer, i.e., the thickness of material of the ith layer through which optical energy passes; and ci(t) is the concentration of the ith constituent in the volume associated with the thickness xi(t). The absorption coefficients ε1 through εN are known values which are constant at each wavelength. Most concentrations c1(t) through cN(t) are typically unknown, as are most of the optical path lengths xi(t) of each layer. The total optical path length is the sum of each of the individual optical path lengths xi(t) of each layer.

When the material is not subject to any forces which cause perturbation in the thicknesses of the layers, the optical path length of each layer, xi(t), is generally constant. This results in generally constant attenuation of the optical energy and thus, a generally constant offset in the measured signal. Typically, this portion of the signal is of little interest since knowledge about a force which perturbs the material is usually desired. Any signal portion outside of a known bandwidth of interest, including the constant undesired signal portion resulting from the generally constant absorption of the constituents when not subject to perturbation, should be removed. This is easily accomplished by traditional band pass filtering techniques. However, when the material is subject to forces, each layer of constituents may be affected by the perturbation differently than each other layer xi(t) may result in excursions in the measured signal which represent desired information. Other perturbations of the optical path length of each layer xi(t) cause undesired excursions which mask desired information in the measured signal. Undesired signal components associated with undesired excursions must also be removed to obtain desired information from the measured signal.

The adaptive noise canceler removes from the composite signal, measured after being transmitted through or reflected from the absorbing material, the undesired signal components cause by forces which perturb the material differently from the forces which perturbed the material to cause the desired signal component. For the purposes of illustration, it will be assumed that the portion of the measured signal which is deemed the desired signal Yλa(t) is the attenuation term ε5c5x5(t) associated with a constituent of interest, namely A5, and that the layer of constituent A5 is affected by perturbations differently than each of the layers of other constituents A1 through A4 and A6 through AN. An example of such a situation is when layer A5 is subject to forces about which information is desired and, additionally, the entire material is subject to forces which affect each of the layers. In this case, since the total force affecting the layer of constituents A5 is different than the total forces affecting each of the other layers and information is desired about the forces and resultant perturbation of the layer of constituents A5, attenuation terms due to constituents A1 through A4 and A6 through AN make up the undesired signal nλa(t). Even if the additional forces which affect the entire material cause the same perturbation in each layer, including the layer of A5, the total forces on the layer of constituent A5 cause it to have different total perturbation than each of the other layers of constituents A1 through A4 and A6 through AN.

It is often the case that the total perturbation affecting the layers associated with the undesired signal components is caused by random or erratic forces. This causes the thickness of layers to change erratically and the optical path length of each layer, xi(t), to change erratically, thereby producing a random or erratic undesired signal component nλa(t). However, regardless of whether or not the undesired signal portion nλa(t) is erratic, the undesired signal component nλa(t) can be removed via an adaptive noise canceler having as one input a noise reference signal n'(t) determined by a processor of the present invention as long as the perturbation on layers other than the layer of constituents A5 is different than the perturbation on the layer of constituent A5. The adaptive noise canceler yields a good approximation to the desire signal Y'λa(t). From this approximation, the concentration of the constituent of the interest, c5(t) can often be determined since in some physiological measurements, the thickness of the desired signal component, x5(t) in this example, is known or can be determined.

The adaptive noise canceler utilizes a sample of a noise reference signal n'(t) determined from two substantially simultaneously measured signals Sλa(t) and Sλb(t). Sλa(t) is determined as above in equation (7). Sλb(t) is determined similarly at a different wavelength λb. To find the noise reference signal n'(t), attenuated transmitted energy is measured at the two different wavelengths λa and λb and transformed via logarithmic conversion. The signals Sλa(t) and Sλb(t) can then be written (logarithm converted) as: S λ ⁢ ⁢ a ⁢ ⁢ ( t ) = ε 5 ⁢ ⁢ λ ⁢ ⁢ a ⁢ ⁢ c 5 ⁢ ⁢ x 5 ⁢ ⁢ ( t ) + [ ∑ i = 1 4 ⁢ ⁢ ε i ⁢ ⁢ λ ⁢ ⁢ a ⁢ ⁢ c i ⁢ ⁢ x i ⁢ ⁢ ( t ) + ∑ k = 6 N ⁢ ⁢ ε k ⁢ ⁢ λ ⁢ ⁢ a ⁢ ⁢ c k ⁢ ⁢ x k ⁢ ⁢ ( t ) ] ( 8 ) ⁢ = ε 5 ⁢ ⁢ λ ⁢ ⁢ a ⁢ ⁢ c 5 ⁢ ⁢ x 5 ⁢ ⁢ ( t ) + n λ ⁢ ⁢ a ⁢ ⁢ ( t ) ( 9 ) S λ ⁢ ⁢ b ⁢ ⁢ ( t ) = ε 5 ⁢ ⁢ λ ⁢ ⁢ b ⁢ ⁢ c 5 ⁢ ⁢ x 5 ⁢ ⁢ ( t ) + [ ∑ i = 1 4 ⁢ ⁢ ε i ⁢ ⁢ λ ⁢ ⁢ b ⁢ ⁢ c i ⁢ ⁢ x i ⁢ ⁢ ( t ) + ∑ k = 6 N ⁢ ⁢ ε k ⁢ ⁢ λ ⁢ ⁢ b ⁢ ⁢ c k ⁢ ⁢ x k ⁢ ⁢ ( t ) ] ( 10 ) ⁢ = ε 5 ⁢ ⁢ λ ⁢ ⁢ b ⁢ ⁢ c 5 ⁢ ⁢ x 5 ⁢ ⁢ ( t ) + n λb ⁢ ⁢ ( t ) ( 11 )

A further transformation of the signals is the proportionality relationship defining ω2, similarly to equation (3), which allows determination of a noise reference signal n'(t), is:

ε5,λa2ε5,λb; (12)

where

nλa≠ω2nλb. (13)

It is often the case that the both equations (12) and (13) can be simultaneously satisfied. Multiplying equation (11) by ω2 and subtracting the result from equation (9) yields a non-zero noise reference signal which is a linear sum of undesired signal components. n ' ⁡ ( t ) = S λ ⁢ ⁢ a ⁢ ⁢ ( t ) - ω 2 ⁢ ⁢ S λ ⁢ ⁢ b ⁢ ⁢ ( t ) = n λ ⁢ ⁢ a ⁢ ⁢ ( t ) - ω 2 ⁢ ⁢ n λ ⁢ ⁢ b ⁢ ⁢ ( t ) . ( 14 ) ⁢ = ⁢ ∑ i = 1 4 ⁢ ⁢ ε i ⁢ ⁢ λ ⁢ ⁢ a ⁢ ⁢ c i ⁢ ⁢ x i ⁢ ⁢ ( t ) + ∑ k = 6 N ⁢ ⁢ ε k ⁢ ⁢ λ ⁢ ⁢ a ⁢ ⁢ c k ⁢ ⁢ x k ⁢ ⁢ ( t ) - ∑ i = 1 4 ⁢ ⁢ ω 2 ⁢ ⁢ ε i ⁢ ⁢ λ ⁢ ⁢ b ⁢ ⁢ c i ⁢ ⁢ x i ⁢ ⁢ ( t ) - ⁢ ∑ k = 6 N ⁢ ⁢ ω 2 ⁢ ⁢ ε k ⁢ ⁢ λ ⁢ ⁢ b ⁢ ⁢ c k ⁢ ⁢ x k ⁢ ⁢ ( t ) ( 15 ) ⁢ = ∑ i = 1 4 ⁢ ⁢ c i ⁢ ⁢ x i ⁢ ⁢ ( t ) ⁡ [ ε i ⁢ ⁢ λ ⁢ ⁢ a - ω 2 ⁢ ⁢ ε i ⁢ ⁢ λ ⁢ ⁢ b ] + ∑ k = 6 N ⁢ ⁢ c k ⁢ ⁢ x k ⁢ ⁢ ( t ) ⁡ [ ε k ⁢ ⁢ λ ⁢ ⁢ a - ω 2 ⁢ ⁢ ε k ⁢ ⁢ λ ⁢ ⁢ b ] ( 16 )

A sample of this noise reference signal n'(t), and a sample of either measured signal Sλa(t) or Sλb(t), are input to an adaptive noise canceler, one model of which is shown in FIG. 5 and a preferred model of which is discussed herein under the heading PREFERRED ADAPTIVE NOISE CANCELER USING A JOINT PROCESS ESTIMATOR IMPLEMENTATION. The adaptive noise canceler removes the undesired portion of the measured signal nλa(t) or nλb(t), yielding a good approximation to the desired portion of signal Y'λa(t)≈ε5,λac5x5(t). The concentration c5(t) may then be determined from the approximation to the desired signal Y'λa(t) (t) or Y'λb(t) according to:

c5(t)≈Y'λa(t)/ε5,λax5(t)≈Y'λb(t)/ε5,λbx5(t). (17)

As discussed previously, the absorption coefficients are constant at each wavelength λa and λb and the thickness of the desired signal component, x5(t) in this example, is often known or can be determined as a function of time, thereby allowing calculation of the concentration c5(t) of constituent A5.

Referring to FIG. 6b, another material having N different constituents arranged in layers is shown. In this material, two constituents A5 and A6 are found within one layer having thickness x5,6(t)=x5(t)+x6(t), located generally randomly within the layer. This is analogous to combining the layers of constituents A5 and A6 in FIG. 6a. A combination of layers, such as the combination of layers of constituents A5 and A6, is feasible when the two layers are under the same total forces which result in the same perturbation of the optical path lengths x5(t) and x6(t) of the layers.

Often it is desirable to find the concentration or the saturation, i.e., a percent concentration, of one constituent within a given thickness which contains more than one constituent and is subject to unique forces. A determination of the concentration or the saturation of a constituent within a given volume may be made with any number of constituents in the volume subject to the same total forces and therefore under the same perturbation. To determine the saturation of one constituent in a volume comprising many constituents, as many measured signals as there are constituents which absorb incident light energy are necessary. It will be understood that constituents which do not absorb light energy are not consequential in the determination of saturation. To determine the concentration, as many signals as there are constituents which absorb incident light energy are necessary as well as information about the sum of concentrations.

It is often the case that a thickness under unique motion contains only two constituents. For example, it may be desirable to know the concentration or saturation of A5 within a given volume which contains A5 and A6. In this case, the desired signals Yλa(t) and Yλb(t) comprise terms related to both A5 and A6 so that a determination of the concentration or saturation of A5 or A6 in the volume may be made. A determination of saturation is discussed herein. It will be understood that the concentration of A5 in volume containing both A5 and A6 could also be determined if it is known that A5+A6=1, i.e., that there are no constituents in the volume which do not absorb incident light energy at the particular measurement wavelengths chosen. The measured signals Sλa(t) and Sλb(t) can be written (logarithm converted) as:

Sλa(t)=ε5,λac5x5,6(t)+ε6,λac6x5,6(t)+nλa(t) (18)

=Yλa(t)+nλa(t); (19)

Sλb(t)=ε5,λbc5x5,6(t)+ε6,λbc6x5,6(t)+nλb(t) (20)

=Yλb(t)+nλb(t). (21)

Any signal portions outside of a known bandwidth of interest, including the constant undesired signal portion resulting from the generally constant absorption of the constituents when not under perturbation, should be removed to determine an approximation to the desired signal. This is easily accomplished by traditional band pass filtering techniques. As in the previous example, it is often the case that the total perturbation affecting the layers associated with the undesired signal components is caused by random or erratic forces, causing the thickness of each layer, or the optical path length of each layer, xi(t), to change erratically, producing a random or erratic undesired signal component nλa(t). Regardless of whether or not the undesired signal portion nλa(t) is erratic, the undesired signal component nλa(t) can be removed via an adaptive noise canceler having as one input a noise reference signal n'(t) determined by a processor of the present invention as long as the perturbation in layers other than the layer of constituents A5 and A6 is different than the perturbation in the layer of constituents A5 and A6. The erratic undesired signal components nλa(t) and nλb(t) may advantageously be removed from equations (18) and (20), or alternatively equations (19) and (21), by an adaptive noise canceler. The adaptive noise canceler, again, requires a sample of a noise reference signal n'(t).

Two methods which may be used by a processor of the present invention to determine the noise reference signal n'(t) are a ratiometric method and a constant saturation method. The preferred embodiment of a physiological monitor incorporating a processor of the present invention utilizes the ratiometric method wherein the two wavelengths λa and λb, at which the signals Sλa(t) and Sλb(t) are measured, are specifically chosen such that a relationship between the absorption coefficients ε5,λa, ε5,λb, ε6,λa and ε6,λb exists, i.e.:

ε5,λa6,λa5,λb6,λb (22)

The measured signals Sλa(t) and Sλb(t) can be factored and written as:

Sλa(t)=ε6,λa[(ε5,λa6,λa)c5x(t)+c6x(t)]+nλa(t) (23)

Sλb(t)=ε6,λb[(ε5,λb6,λb)c5x(t)+c6x(t)]+nλb(t). (24)

The wavelengths λa and λb, chosen to satisfy equation (22), cause the terms within the square brackets to be equal, thereby causing the desired signal portions Y'λa(t) and Y'λb(t) to be linearly dependent. Then, a proportionality constant ωr3 which causes the desired signal portions Y'λa(t) and Y'λb(t) to be equal and allows determination of a non-zero noise reference signal n'(t) is:

ε6,λar3ε6,λb; (25)

where

nλa≠ωr3nλb. (b 26)

It is often the case that both equations (25) and (26) can be simultaneously satisfied. Additionally, since absorption coefficients of each constituent are constant with respect to wavelength, the proportionality constant ωr3 can be easily determined. Furthermore, absorption coefficients of other constituents A1 through A4 and A7 through AN are generally unequal to the absorption coefficients of A5 and A6. Thus, the undesired noise components nλa and nλb are generally not made linearly dependent by the relationships of equations (22) and (25).

Multiplying equation (24) by ωr3 and subtracting the resulting equation from equation (23), a non-zero noise reference signal is determined by:

n'(t)=Sλa(t)-ωr3Sλb(t)=nλa(t)-ωr3nλb(t). (27)

An alternative method for determining the noise reference signal from the measured signals Sλa(t) and Sλb(t) using a processor of the present invention is the constant saturation approach. In this approach, it is assumed that the saturation of A5 in the volume containing A5 and A6 remains relatively constant, i.e.: Saturation ⁢ ⁢ ( A 5 ⁢ ⁢ ( t ) ) = c 5 ⁢ ⁢ ( t ) ⁢ / ⁡ [ c 5 ⁢ ⁢ ( t ) + c 6 ⁢ ⁢ ( t ) ] ( 28 ) ⁢ = { 1 + [ c 6 ⁢ ⁢ ( t ) ⁢ / ⁢ c 5 ⁢ ⁢ ( t ) ] } - 1 ( 29 )

is substantially constant over many samples of the measured signals Sλa and Sλb. This assumption is accurate over many samples since saturation generally changes relatively slowly in physiological systems.

The constant saturation assumption is equivalent to assuming that:

c5(t)/c6(t)=constant (30)

since the only other term in equation (29) is a constant, namely the numeral 1.

Using this assumption, the proportionality constant ωs3(t) which allows determination of the noise reference signal n'(t) is: ω s3 ⁢ ⁢ ( t ) = ε 5 ⁢ ⁢ λ ⁢ ⁢ a ⁢ ⁢ c 5 ⁢ ⁢ x 5 , 6 ⁢ ⁢ ( t ) + ε 6 ⁢ ⁢ λ ⁢ ⁢ a ⁢ ⁢ c 6 ⁢ ⁢ x 5 , 6 ⁢ ⁢ ( t ) ε 5 ⁢ ⁢ λ ⁢ ⁢ b ⁢ ⁢ c 5 ⁢ ⁢ x 5 , 6 ⁢ ⁢ ( t ) + ε 6 ⁢ ⁢ λ ⁢ ⁢ b ⁢ ⁢ c 6 ⁢ ⁢ x 5 , 6 ⁢ ⁢ ( t ) ( 31 ) ⁢ = Y λ ⁢ ⁢ a ⁢ ⁢ ( t ) ⁢ / ⁢ Y λ ⁢ ⁢ b ⁢ ⁢ ( t ) ( 32 ) ⁢ = ε 5 ⁢ ⁢ λ ⁢ ⁢ a ⁢ ⁢ c 5 + ε 6 ⁢ ⁢ λ ⁢ ⁢ a ⁢ ⁢ c 6 ε 5 ⁢ ⁢ λ ⁢ ⁢ b ⁢ ⁢ c 5 + ε 6 ⁢ ⁢ λ ⁢ ⁢ b ⁢ ⁢ c 6 ( 33 ) ⁢ = ε 5 ⁢ ⁢ λ ⁢ ⁢ a ⁢ ⁢ ( c 5 ⁢ ⁢ ( t ) c 6 ⁢ ⁢ ( t ) ) + ε 6 ⁢ ⁢ λ ⁢ ⁢ a ε 5 ⁢ ⁢ λ ⁢ ⁢ b ⁢ ⁢ ( c 5 ⁢ ⁢ ( t ) c 6 ⁢ ⁢ ( t ) ) + ε 6 ⁢ ⁢ λ ⁢ ⁢ b ( 34 ) ⁢ ≈ Y λ ⁢ ⁢ a ' ⁢ ⁢ ( t ) ⁢ / ⁢ Y λ ⁢ ⁢ b ' ⁢ ⁢ ( t ) = constant ⁢ ⁢ where ( 35 ) ⁢ n λ ⁢ ⁢ a ⁢ ⁢ ( t ) ≠ ω s3 ⁢ ⁢ ( t ) ⁢ ⁢ n λ ⁢ ⁢ b ⁢ ⁢ ( t ) . ( 36 )

It is often the case that both equations (35) and (36) can be simultaneously satisfied to determine the proportionality constant ωs3(t). Additionally, the absorption coefficients at each wavelength ε5,λa, ε6,λa, ε5,λb, and ε6λb are constant and the central assumption of the constant saturation method is that c5(t)/c6(t) is constant over many sample periods. Thus, a new proportionality constant ωa3(t) may be determined every few samples from new approximations to the desired signal as output from the adaptive noise canceler. Thus, the approximations to the desired signals Y'λa(t) and Y'λb(t), found by the adaptive noise canceler for substantially immediately preceding set of samples of the measured signals Sλa(t) and Sλb(t) are used in a processor of the present invention for calculating the proportionality constant, ωs3(t), for the next set of samples of the measured signals Sλa(t) and Sλb(t).

Multiplying equation (20) by ωs3(t) and subtracting the resulting equation from equation (18) yields a non-zero noise reference signal:

n'(t)=Sλa(t)-ωs3(t)Sλb(t)=nλa(t)-ωs3(t)nλb(t). (37)

It will be understood that equation (21) could be multiplied by ωs3(t) and the resulting equation could be subtracted from equation (19) to yield the same noise reference signal n'(t) as given in equation (37).

When using the constant saturation method, it is necessary for the patient to remain motionless for a short period of time such that an accurate initial saturation value can be determined by known methods other than adaptive noise canceling on which all other calculations will be based. With no erratic, motion-induced undesired signal portions, a physiological monitor can very quickly produce an initial value of the saturation of A5 in the volume containing A5 and A6. An example of a saturation calculation is given in the article "SPECTROPHOTOMETRIC DETERMINATION OF OXYGEN SATURATION OF BLOOD INDEPENDENT OF THE PRESENT OF INDOCYANINE GREEN" by G. A. Mook, et al., wherein determination of oxygen saturation in arterial blood is discussed. Another article discussing the calculation of oxygen saturation is "PULSE OXIMETRY: PHYSICAL PRINCIPLES, TECHNICAL REALIZATION AND PRESENT LIMITATIONS" by Michael R. Neuman. Then, with values for Y'λa(t) and Y'λb(t) determined, an adaptive noise canceler may be utilized with a noise reference signal n'(t) determined by the constant saturation method.

Once the noise reference signal n'(t) is determined by the processor of the present invention using either the above described ratiometric or constant saturation methods, the adaptive noise canceler can be implemented in either hardware or software.

The least mean squares (LMS) implementation of the internal processor 32 described above in conjunction with the adaptive noise canceler of FIG. 5 is relatively easy to implement, but lacks the speed of adaptation desirable for most physiological monitoring applications of the present invention. Thus, a faster approach for adaptive noise canceling, called a least-squares lattice joint process estimator model, is preferably used. A joint process estimator 60 is shown diagrammatically in FIG. 7 and is described in detail in Chapter 9 of Adaptive Filter Theory by Simon Haykin, published by Prentice-Hall, copyright 1986. This entire book, including Chapter 9, is hereby incorporated herein by reference. The function of the joint process estimator is to remove the undesired signal portions nλa(t) or nλb(t) from the measured signals Sλa(t) or Sλb(t), yielding a signal Y'λa(t) or Y'λb(t) which is a good approximation to the desired signal Yλa(t) or Yλb(t). Thus, the joint process estimator estimates the value of the desired signal Yλa(t) or Yλb(t). The inputs to the joint process estimator 60 are the noise reference signal n'(t) and the composite measured signal Sλa(t) or Sλb(t). The output is a good approximation to the signal Sλa(t) or Sλb(t) with the noise removed, i.e. a good approximation to Yλa(t) or Yλb(t).

The joint process estimator 60 utilizes, in conjunction, a least square lattice predictor 70 and a regression filter 80. The noise reference signal n'(t) is input to the least square lattice predictor 70 while the measured signal Sλa(t) or Sλb(t) is input to the regression filter 80. For simplicity in the following description, Sλa(t) will be the measured signal from which the desired portion Yλa(t) will be estimated by the joint process estimator 60. However, it will be noted that Sλb(t) could equally well be input to the regression filter 80 and the desired portion Yλb(t) of this signal could equally well be estimated.

The joint process estimator 60 removes all frequencies that are present in both the noise reference signal n'(t) and the measured signal Sλa(t). The undesired signal portion nλa(t) usually comprises frequencies unrelated to those of the desired signal portion Yλa(t). It is highly improbable that the undesired signal portion nλa(t) would be of exactly the same spectral content as the desired signal portion Yλa(t). However, in the unlikely event that the spectral content of Sλa(t) and n'(t) are similar, this approach will not yield accurate results. Functionally, the joint process estimator 60 compares input signal n'(t), which is correlated to the undesired signal portion nλa(t), and input signal Sλa(t) and removes all frequencies which are identical. Thus, the joint process estimator 60 acts as a dynamic multiple notch filter to remove those frequencies in the undesired signal component nλa(t) as they change erratically with the motion of the patient. This yields a signal having substantially the same spectral content as the desired signal Yλa(t). The output of the joint process estimator 60 has substantially the same spectral content and amplitude as the desired signal Yλa(t). Thus, the output Y'λa(t) of the joint process estimator 60 is a very good approximation to the desired signal Yλa(t).

The joint process estimator 60 can be divided into stages, beginning with a zero-stage and terminating in an mth-stage, as shown in FIG. 7. Each stage, except for the zero-stage, is identical to every other stage. The zero-stage is an input stage for the joint process estimator 60. The first stage through the mth-stage work on the signal produced in the immediately previous stage, i.e., the (m-1)th-stage, such that a good approximation to the desired signal Y'λa(t) is produced as output from the mth-stage.

The least-squares lattice predictor 70 comprises registers 90 and 92, summing elements 100 and 102, and delay elements 110. The registers 90 and 92 contain multiplicative values of a forward reflection coefficient Γb,m(t) and a backward reflection coefficient Γb,m(t) which multiply the noise reference signal n'(t) and signals derived from the noise reference signal n'(t). Each stage of the least-squares lattice predictor outputs a forward prediction error fm(t) and a backward prediction error bm(t). The subscript m is indicative of the stage.

For each set of samples, i.e. one sample of the noise reference signal n'(t) derived substantially simultaneously with one sample of the measured signal Sλa(t), the sample of the nose reference signal n'(t) is input to the lead-squares lattice predictor 70. The zero-stage forward predictor error f0(t) and the zero-stage backward prediction error b0(t) are set equal to the noise reference signal n'(t). The backward prediction error b0(t) is delayed by one sample period by the delay element 110 in the first stage of the least-squares lattice predictor 70. Thus, the immediately previous value of the noise reference signal n'(t) is used in calculations involving the first-stage delay element 110. The zero-stage forward prediction error is added to the negative of the delayed zero-stage backward prediction error b0(t-1) multiplied by the forward reflection coefficient value Γf,1(t) register 90 value, to produce a first-stage forward prediction error f1(t). Additionally, the zero-stage forward prediction error f0(t) is multiplied by the backward reflection coefficient value Γb,1 (t) register 92 value and added to the delayed zero-stage backward prediction error b0(t-1) to produce a first-stage backward prediction error b1(t). In each subsequent stage, m, of the least square lattice predictor 70, the previous forward and backward prediction error values, fm-1(t) and bm-1(t-1), the backward prediction error being delayed by one sample period, are used to produce values of the forward and backward prediction errors for the present stage, fm(t) and bm(t).

The backward prediction error bm(t) is fed to the concurrent stage, m, of the regression filter 80. There it is input to a register 96, which contains a multiplicative regression coefficient value κm,λa(t). For example, in the zero-stage of the regression filter 80, the zero-stage backward prediction error b0(t) is multiplied by the zero-stage regression coefficient κ0,λa(t) register 96 value and subtracted from the measured value of the signal Sλa(t) at a summing element 106 to produce a first stage estimation error signal e1,λa(t). The first-stage estimation error signal e1,λa(t) is a first approximation to the desired signal. This first-stage estimation error signal e1,λa(t) is input to the first-stage of the regression filter 80. The first-stage backward prediction error b1(t), multiplied by the first-stage regression coefficient κ1,λa(t) register 96 value is subtracted from the first-stage estimation error signal e1,λa(t) to produce the second-stage estimation error e2,λa(t). The second-stage estimation error signal e2,λa(t) is a second, somewhat better approximation to the desired signal Yλa(t).

The same processes are repeated in the least-squares lattice predictor 70 and the regression filter 80 for each stage until a good approximation to the desired signal Y'λa(t)=em,λa(t) is determined. Each of the signals discussed above, including the forward prediction error fm(t), the backward prediction error bm(t), the estimation error signal em,λa(t), is necessary to calculate the forward reflection coefficient Γf,m(t), the backward reflection coefficient Γb,m(t), and the regression coefficient κm,λa(t) register 90, 92, and 96 values in each stage, m. In addition to the forward prediction error fm(t), the backward prediction error bm(t), and the estimation error em,λa(t) signals, a number of intermediate variables, not shown in FIG. 7 but based on the values labelled in FIG. 7, are required to calculate the forward reflection coefficient Γfm,(t), the backward reflection coefficient Γb,m(t), and the regression coefficient κm,λa(t) register 90, 92, and 96 values.

Intermediate variables include a weighted sum of the forward prediction error squares Fm(t), a weighted sum of the backward prediction error squares βm(t), a scaler parameter Δm(t), a conversion factor γm(t), and another scaler parameter ρm,λa(t). The weighted sum of the forward prediction errors Fm(t) is defined as: F m ⁢ ⁢ ( t ) = ∑ i = 1 t ⁢ ⁢ λ t - i ⁢ &LeftBracketingBar; f m ⁢ ⁢ ( i ) &RightBracketingBar; 2 ; ( 38 )

where λ without a wavelength identifier, a or b, is a constant multiplicative value unrelated to wavelength and is typically less than or equal to one, i.e., λ≦1. The weighted sum of the backward prediction errors βm(t) is defined as: β m ⁢ ⁢ ( t ) = ∑ i = 1 t ⁢ ⁢ λ t - i ⁢ &LeftBracketingBar; b m ⁢ ⁢ ( i ) &RightBracketingBar; 2 ( 39 )

where, again, λ without a wavelength identifier, a or b, is a constant multiplicative value unrelated to wavelength and is typically less than or equal to one, i.e., λ≦1. These weighted sum intermediate error signals can be manipulated such that they are more easily solved for, as described in Chapter 9, §9.3, and defined hereinafter in equations (53) and (54).

The operation of the joint process estimator 60 is as follows. When the joint process estimator 60 is turned on, the initial values of intermediate variable and signal including the parameter Δm-1(t), the weighted sum of the forward prediction error signals Fm-1(t), the weighted sum of the backward prediction error signals βm-1(t), the parameter ρm,λa(t), and the zero-stage estimation error e0,λa(t) are initialized, some to zero and some to a small positive number δ:

Δm-1(0)=0; (40)

Fm-1(0)=δ; (41)

βm-1(0)=δ; (42)

ρm,λa(0)=0; (43)

e0,λa(t)=Sλa(t) for t≧0. (44)

After initialization, a simultaneous sample of the measured signal Sλa(t) and the noise reference signal n'(t) are input to the joint process estimator 60, as shown in FIG. 7. The forward and backward prediction error signals f0t and b0t, and intermediate variables including the weighted sums of the forward and backward error signals ƒ0t and β0t, and the conversion factor τO(t) are calculated for the zero-stage according to:

f0(t)=b0(t)=n'(t) (45)

F0(t)=β0(t)=λF0(t-1)+|n'(t)|2 (46)

γ0(t-1)=1 (47)

where, again, λ without a wavelength identifier, a or b, is a constant multiplicative value unrelated to wavelength.

Forward reflection coefficient Γf,m(t), backward reflection coefficient Γb,m(t), and regression coefficient κm,λa(t) register 90, 92 and 96 values in each stage thereafter are set according to the output of the previous stage. The forward reflection coefficient Γf,1(t), backward reflection coefficient Γb,1(t), and regression coefficient κ1,λa(t) register 90, 92 and 96 values in the first stage are thus set according to algorithm using values in the zero-stage of the joint process estimator 60. In each stage, m≧1, intermediate values and register values including the parameter Δm-1(t); the forward reflection coefficient Γf,m(t) register 90 value; the backward reflection coefficient Γb,m(t) register 92 value; the forward and backward error signals fm(t) and bm(t); the weighted sum of squared forward prediction errors Ff,m(t), as manipulated in § 9.3 of the Haykin book; the weighted sum of squared backward prediction errors βb,m(t), as manipulated in § 9.3 of the Haykin book; the conversion factor γm(t); the parameter ρm,λa(t); the regression coefficient κm,λa(t) register 96 value; and the estimation error em+1,λa(t) value are set according to:

Δm-1(t)=λΔm-1(t-1)+{bm-1(t-1)f*m-1(t-1)} (48)

Γf,m(t)=-{Δm-1(t)/βm-1(t-1} (49)

Γb,m(t)=-{Δ*m-1(t)/Fm-1(t-1)} (50)

fm(t)=fm-1(t)+Γ*f,m(t)bm-1(t-1) (51)

bm(t)=bm-1(t-1)+Γ*b,m(t)fm-1(t) (52)

Fm(t)=Fm-1(t)-{|Δm-1(t)|2m-1(t-1)} (53)

βm(t)=βm-1(t-1)-{|Δm-1(t)|2/Fm-1(t)} (54)

γm(t-1)=γm-1(t-1)-{|bm-1(t-1)(|2m-1(t-1)} (55)

ρm,λa(t)=λρm,λa(t-1)+{bm(t)e*m,λa(t)/γm(t)} (56)

κm,λa(t)={ρm,λa(t)/βm(t)} (57)

em+1,λa(t)=en,λa(t)-κ*m(t)bm(t) (58)

where a (*) denotes a complex conjugate.

These equations cause the error signals fm(t), bm(t), em,λa(t) to be squared or to be multiplied by one another, in effect squaring the errors, and creating new intermediate error values, such as Δm-1(t). The error signals and the intermediate error values are recursively tied together, as shown in the above equations (48) through (58). They interact to minimize the error signals in the next stage.

After a good approximation to the desired signal Y'λa(t) has been determined by the joint process estimator 60, a next set of samples, including a sample of the measured signal Sλa(t) and a sample of the noise reference signal n'(t), are input to the joint process estimator 60. The re-initialization process does not re-occur, such that the forward and backward reflection coefficient Γr,m(t) and Γb,m(t) register 90, 92 values and the regression coefficient κm,λa(t) register 96 value reflect the multiplicative values required to estimate the desired portion Yλa(t) of the sample of Sλa(t) input previously. Thus, information from previous samples is used to estimate the desired signal portion of a present set of samples in each stage.

In a signal processor, such as a physiological monitor, incorporating a reference processor of the present invention to determine a noise reference signal n'(t) for input to an adaptive noise canceler, a joint process estimator 60 type adaptive noise canceler is generally implemented via a software program having an interactive loop. One iteration of the loop is analogous to a single stage of the joint process estimator as shown in FIG. 7. Thus, if a loop is iterated m times, it is equivalent to an m stage joint process estimator 60.

A flow chart of a subroutine to estimate the desired signal portion Yλa(t) of a sample of a measured signal, Sλa(t) is shown in FIG. 8. The flow chart describes how the action of a reference processor for determining the noise reference signal and the joint process estimator 60 would be implemented in software.

A one-time only initialization is performed when the physiological monitor is turned on, as indicated by an "INITIALIZE NOISE CANCELER" box 120. The initialization sets all registers 90, 92, and 96 and delay element variables 110 to the values described above in equations (40) through (44).

Next, a set of simultaneous samples of the measured signals Sλa(t) and Sλb(t) is input to the subroutine represented by the flowchart in FIG. 8. Then a time update of each of the delay element program variable occurs, as indicated in a "TIME UPDATE OF [Z-1] ELEMENTS" box 130, wherein the value stored in each of the delay element variables 110 is set to the value at the input of the delay element variables 110. Thus, the zero-stage backward prediction error b0(t) is stored in the first-stage delay element variable, the first-stage backward prediction error b1(t) is stored in the second-stage delay element variable, and so on.

Then, using the set of measured signal samples Sλs(t) and Sλb(t), the noise reference signal is calculated according to the ratiometric or the constant saturation method described above. This is indicated by a "CALCULATE NOISE REFERENCE (n'(t)) FOR TWO MEASURED SIGNAL SAMPLES" box 140. The ratiometric method is generally preferred since no assumptions about constant saturation values need be made.

A zero-stage order update is performed next as indicated in a "ZERO-STAGE UPDATE" box 150. The zero-stage backward prediction error b0(t), and the zero-stage forward prediction error f0(t) are set equal to the value of the noise reference signal n'(t). Additionally, the weighted sum of the forward prediction errors Fm(t) and the weighted sum of backward prediction errors βm(t) are set equal to the value defined in equation (46).

Next, a loop counter, m, is initialized as indicated in a "m=0" box 160. A maximum value of m, defining the total number of stages to be used by the subroutine corresponding to the flowchart in FIG. 8, is also defined. Typically, the loop is constructed such that it stops iterating once a criterion for convergence upon a best approximation to the desired signal has been met by the joint process estimator 60. Additionally, a maximum number of loop iterations may be chosen at which the loop stops iteration. In a preferred embodiment of a physiological monitor of the present invention, a maximum number of iterations, m=60 to m=80, is advantageously chosen.

Within the loop, the forward and backward reflection coefficient Γf,m(t) and Γb,m(t) register 90 and 92 values in the least-squares lattice filter are calculated first, as indicated by the "ORDER UPDATE MTH CELL OF LSL-LATTICE" box 170 in FIG. 8. This requires calculation of intermediate variable and signal values used in determining register 90, 92, and 96 values in the present stage, the next stage, and in the regression filter 80.

The calculation of regression filter register 96 value κm,λa(t) is performed next, indicated by the "ORDER UPDATE MTH STAGE OF REGRESSION FILTER(S)" box 180. The two order update boxes 170 and 180 are performed in sequence m times, until m has reached its predetermined maximum (in the preferred embodiment, n=60 to m=80) or a solution has been converged upon, as indicated by a YES path from a "DONE" decision box 190. mn a computer subroutine, convergence is determined by checking if the weighted sums of the forward and backward prediction errors Fm(t) and βm(t) are less than a small positive number. An output is calculated next, as indicated by a "CALCULATE OUTPUT" box 200. The output is a good approximation to the desired signal, as determined by the reference processor and joint process estimator 60 subroutine corresponding to the flow chart of FIG. 8. This is displayed (or used in a calculation in another subroutine), as indicated by a "TO DISPLAY" box 210.

A new set of samples of the two measured signals Sλa(t) and Sλb(t) is input to the processor and joint process estimator 60 adaptive noise canceler subroutine corresponding to the flowchart of FIG. 8 and the process reiterates for these samples. Note, however, that the initialization process does not re-occur. New sets of measured signal samples Sλa(t) an Sλb(t) are continuously input to the reference processor and joint process estimator 60 adaptive noise canceler subroutine. The output forms a chain of samples which is representative of a continuous wave. This waveform is a good approximation to the desired signal waveform Y'λa(t) at wavelength λa.

Physiological monitors typically use the approximation of the desired signal Y'λa(t) to calculate another quantity, such as the saturation of one constituent in a volume containing that constituent plus one or more other constituents. Generally, such calculations require information about a desired signal at two wavelengths. In some measurements, this wavelength is λb, the wavelength used in the calculation of the noise reference signal n'(t). For example, the constant saturation method of determining the noise reference signal requires a good approximation of the desired signal portions Yλa(t) and Yλb(t) of both measured signals Sλa(t) and Sλb(t). Then, the saturation is determined from the approximations to both signals, i.e. Y'λa(t) and Y'λb(t).

In other physiological measurements, information about a signal at a third wavelength is necessary. For example, to find the saturation using the ratiometric method, signals Sλa(t) and Sλb(t) are used to find the noise reference signal n'(t). But as discussed previously, λa and λb were chosen to satisfy a proportionately relationship like that of equation (22). This proportionality relationship forces the two desired signal portions Yλa(t) and Yλb(t) to be linearly dependent. Generally, linearly dependant mathematical equations cannot be solved for the unknowns. Analogously, some desirable information cannot be derived from two linearly dependent signals. Thus, to determine the saturation using the ratiometric method, a third signal is simultaneously measured at wavelength λc. The wavelength λc is chosen such that the desired portion Yλc(t) of the measured signal Sλc(t) is not linearly dependent with the desired portions Yλa(t) and Yλb(t) of the measured signals Sλa(t) and Sλb(t). Since all measurements are taken substantially simultaneously, the noise reference signal n'(t) is correlated to the undesired signal portions nλa, nλb, and nλc of each of the measured signals Sλa(t), Sλb(t), and Sλc(t) can be used to estimate approximations to the desired signal portions Yλa(t), Yλb(t), and Yλc(t), for all three measured signals Sλa(t), Sλb(t), Sλc(t). Using the ratiometric method, estimation of the desired signal portions Yλa(t) and Yλc(t) of two measured signals Sλa(t) and Sλc(t), chosen correctly, is usually satisfactory to determine most physiological data.

A joint process estimator 60 having two regression filters 80a and 80b is shown in FIG. 9. A first regression filter 80a accepts a measured signal Sλa(t). A second regression filter 80b accepts a measured signal Sλb(t) or the ratiometric method is used to determine the noise reference signal n'(t). The first and second regression filters 80a and 80b are independent. The backward prediction error bm(t) is input to each regression filter 80a and 80b, the input for the second regression filter 80b bypassing the first regression filter 80a.

The second regression filter 80b comprises registers 98, and summing elements 108 arranged similarly to those in the first regression filter 80a. The second regression filter 80b operates via an additional intermediate variable in conjunction with those defined by equations (48) through (58), i.e.:

ρm,λb(t)=λρm,λb(t-1)+{bm(t)e*m,λb(t)/γm(t)}; or (59)

ρm,λc(t)=λρm,λc(t-1)+{bm(t)e*m,λc(t)/γm(t)}; and (60)

ρ0,λb(0)=0; or (61)

ρ0,λc(0)=0. (62)

The second regression filter 80b has an error signal value defined similar to the first regression filter error signal values, em+1,λa(t), i.e.:

em+1,λb(t)=em,λb(t)-κ*m,λb(t)bm(t); or (63)

em+,λc(t)=em,λc(t)-κ*m,λb(t)bm(t); and (64)

e0,λb(t)=Sλb(t) for t≧0; or (65)

e0,λc(t)=Sλc(t) for t≧0. (66)

The second regression filter has a regression coefficient κm,λb(t) register 98 value defined similarly to the first regression filter error signal values, i.e.:

κm,λb(t)={ρm,λb(t)/βm(t)}; or (67)

κm,λc(t)={ρm,λc(t)/βm(t)}; (68)

These values are used in conjunction with those intermediate variable values, signal values, register and register values defined in equations (40) through (58). These signals are calculated in an order defined by placing the additional signals immediately adjacent a similar signal for the wavelength λa.

For the ratiometric method, Sλc(t) is input to the second regression filter 80b. The output of the second regression filter 80b is then a good approximation to the desired signal Y'λc(t). For the constant saturation method, Sλb(t) is input to the second regression filter 80b. The output is then a good approximation to the desired signal Y'λb(t).

The addition of the second regression filter 80b does not substantially change the computer program subroutine represented by the flowchart of FIG. 8. Instead of an order update of the mth stage of only one regression filter, an order update of the mth stage of both regression filters 80a and 80b is performed. This is characterized by the plural designation in the "ORDER UPDATE OF mth STAGE OF REGRESSION FILTER(S)" box 180 in FIG. 8. Since the regression filters 80a and 80b operate independently, independent calculations can be performed in the reference processor and joint process estimator 60 adaptive noise canceler subroutine modeled by the flowchart of FIG. 8.

Once good approximations to the desired signals, Y'λa(t) and Y'λc(t) for the ratiometric method and Y'λa(t) and Y'λb(t) for the constant saturation method, have been determined by the joint process estimator 60, the saturation of A5 in a volume containing A5 and A6, for example, may be calculated according to various known methods. Mathematically, the approximations to the desired signals can be written:

Y'λa(t)≈ε5,λac5x5,6(t)+ε6,λac6x5,6(t); and (69)

Y'λc(t)≈ε5,λcc5x5,6(t)+ε6,λcc6x5,6(t). (70)

for the ratiometric method using wavelengths λa and λc. For the constant saturation method, the approximations to the desired signals can be written in terms of λa and λb as:

Y'λa(t)≈ε5,λac5x5,6(t)+ε6,λac6x5,6(t); and (71)

Y'λb(t)≈ε5,λbc5x5,6(t)+ε6,λbc6x5,6(t). (72)

This is equivalent to two equations having three unknowns, namely c5(t), c6(t) and x5,6(t). In both the ratiometric and the constant saturation cases, the saturation can be determined by acquiring approximations to the desired signal portions at two different, yet proximate times t1 and t2 over which the saturation of A5 in the volume containing A5 and A6 does not change substantially. For example, for the desired signals estimated by the ratiometric method, at times t1 and t2:

Y'λa(t1)≈ε5,λac5x5,6(t1)+ε6,λac6x5,6(t1) (73)

Y'λc(t1)≈ε5,λcc5x5,6(t1)+ε6,λcc6x5,6(t1) (74)

Y'λa(t2)≈ε5,λac5x5,6(t2)+ε6,λac6x5,6(t2) (75)

Y'λc(t2)≈ε5,λcc5x5,6(t2)+ε6,λcc6x5,6(t2) (76)

Then, difference signals may be determined which relate the signals of equation (73) through (76), i.e.:

ΔYλa≈Y'λa(t1)-Y'λa(t2)=ε5,λac5Δx+ε6,λac6Δx; and (77)

ΔYλc≈Y'λc(t1)-Y'λc(t2)=ε5,λcc5Δx+ε6,λcc6Δx; (78)

where Δx=x5,6(t1)-x5,6(t2) The average saturation at time t=(t1+t2)/2 is: Saturation ⁢ ⁢ ( t ) = c 5 ⁢ ⁢ ( t ) ⁢ / ⁡ [ c 5 ⁢ ⁢ ( t ) + c 6 ⁢ ⁢ ( t ) ] ( 79 ) ⁢ = ε 6 ⁢ ⁢ λ ⁢ ⁢ a - ε 6 ⁢ ⁢ λ ⁢ ⁢ b ⁢ ⁢ ( Δ ⁢ ⁢ Y λ ⁢ ⁢ a Δ ⁢ ⁢ Y λ ⁢ ⁢ b ) ε 6 ⁢ ⁢ λ ⁢ ⁢ a - ε 5 ⁢ ⁢ λ ⁢ ⁢ a - ( ε 6 ⁢ ⁢ λ ⁢ ⁢ b - ε 5 ⁢ ⁢ λ ⁢ ⁢ b ) ⁢ ⁢ ( Δ ⁢ ⁢ Y λ ⁢ ⁢ a Δ ⁢ ⁢ Y λ ⁢ ⁢ b ) ( 80 )

It will be understood that the Δx term drops out from the saturation calculation because of the division. Thus, knowledge of the thickness of the desired constituents is not required to calculate saturation.

A specific example of a physiological monitor utilizing a processor of the present invention to determine a noise reference signal n'(t) for input to an adaptive noise canceler that removes erratic motion-induced undesired signal portions is a pulse oximeter. A pulse oximeter typically causes energy to propagate through a medium where blood flows close to the surface for example, an ear lobe, or a digit such as a finger, or a forehead. An attenuated signal is measured after propagation through or reflection from the medium. The pulse oximeter estimates the saturation of oxygenated blood available to the body for use.

Freshly oxygenated blood is pumped at high pressure from the heart into the arteries for use by the body. The volume of blood in the arteries varies with the heartbeat, giving rise to a variation in absorption of energy at the rate of the heartbeat, or the pulse.

Oxygen depleted, or deoxygenated, blood is returned to the heart by the veins along with unused oxygenated blood. The volume of blood in the veins varies with the rate of breathing, which is typically much slower than the heartbeat. Thus, when there is no motion induced variation in the thickness of the veins, venous blood causes a low frequency variation in absorption of energy. When there is motion induced variation in the thickness of veins, the low frequency variation in absorption is coupled with the erratic variation in absorption due to motion artifact.

In absorption measurements using the transmission of energy through a medium, two light emitting diodes (LED's) are positioned on one side of a portion of the body where blood flows close to the surface, such as a finger, and a photodetector is positioned on the opposite side of the finger. Typically, in pulse oximetry measurements, one LED emits a visible wavelength, preferably red, and the other LED emits an infrared wavelength. However, one skilled in the art will realize that other wavelength combinations could be used.

The finger comprises skin, tissue, muscle, both arterial blood and venous blood, fat, etc., each of which absorbs light energy differently due to different absorption coefficients, different concentrations, and different thicknesses. When the patient is not moving, absorption is substantially constant except for the flow of blood. This constant attenuation can be determined and subtracted from the signal via traditional filtering techniques. When the patient moves, the absorption becomes erratic. Erratic motion induced noise typically cannot be predetermined and subtracted from the measured signal via traditional filtering techniques. Thus, determining the saturation of oxygenated arterial blood becomes more difficult.

A schematic of a physiological monitor for pulse oximetry is shown in FIG. 10. Two LED's 300 and 302, one LED 300 emitting red wavelengths and another LED 302 emitting infrared wavelengths, are placed adjacent a finger 310. A photodetector 320, which produces an electrical signal corresponding to the attenuated visible and infrared light energy signals is located opposite the LED's 300 and 302. The photodetector 320 is connected to a single channel of common processing circuitry including an amplifier 330 which is in turn connected to a band pass filter 340. The band pass filter 340 passes signal into a synchronized demodulator 350 which has a plurality of output channels. One output channel is for signals corresponding to visible wavelengths and another output channel is for signals corresponding to infrared wavelengths.

The output channels of the synchronized demodulator for signals corresponding to both the visible and infrared wavelengths are each connected to separate paths, each path comprising further processing circuitry. Each path includes a DC offset removal element 360 and 362, such as a differential amplifier, a programmable gain amplifier 370 and 372 and a low pass filter 380 and 382. The output of each low pass filter 380 and 382 is amplified in a second programmable gain amplifier 390 and 392 and then input to a multiplexer 400.

The multiplexer 400 is connected to an analog-to-digital converter 410 which is in turn connected to a microprocessor 420. Control lines between the microprocessor 420 and the multiplexer 400, the microprocessor 420 and the analog-to-digital converter 410, and the microprocessor 420 and each programmable gain amplifier 370, 372, 390, and 392 are formed. The microprocessor 420 has additional control lines, one of which leads to a display 430 and the other of which leads to an LED driver 440 situated in a feedback loop with the two LED's 300 and 302.

The LED's 300 and 302 each emits energy which is absorbed by the finger 310 and received by the photodetector 320. The photodetector 320 produces an electrical signal which corresponds to the intensity of the light energy striking the photodetector 320 surface. The amplifier 330 amplifies this electrical signal for ease of processing. The band pass filter 340 then removes unwanted high and low frequencies. The synchronized demodulator 350 separates the electrical signal into electrical signals corresponding to the red and infrared light energy components. A predetermined reference voltage, Vref, is subtracted by the DC offset removal element 360 and 362 from each of the separate signals to remove substantially constant absorption which corresponds to absorption when there is not motion induced undesired signal component. Then the first programmable gain amplifiers 370 and 372 amplify each signal for ease of manipulation. The low pass filters 380 and 382 integrate each signal to remove unwanted high frequency components and the second programmable gain amplifiers 390 and 392 amplify each signal for further ease of processing.

The multiplexer 400 acts as an analog switch between the electrical signals corresponding to the red and the infrared light energy, allowing first a signal corresponding to the red light to enter the analog-to-digital converter 410 and then a signal corresponding to the infrared light to enter the analog-to-digital converter 410. This eliminates the need for multiple analog-to-digital convertors 410. The analog-to-digital convertor 410 inputs the data into the microprocessor 420 for calculation of a noise reference signal via the processing technique of the noise reference signal via the processing technique of the present invention and removal of undesired signal portions via an adaptive noise canceler. The microprocessor 420 centrally controls the multiplexer 400, the analog-to-digital converter 410, and the first and second programmable gain amplifiers 370 and 390 for both the red and the infrared channels. Additionally, the microprocessor 420 controls the intensity of the LED's 302 and 304 through the LED driver 440 in a servo loop to keep the average intensity received at the photodetector 320 within an appropriate range. Within the microprocessor 420 a noise reference signal n'(t) is calculated via either the constant saturation method or the ratiometric method, as described above, the ratiometric method being generally preferred. This signal is used in an adaptive noise canceler of the joint process estimator type 60, described above.

The multiplexer 400 time multiplexes, or sequentially switches between, the electrical signals corresponding to the red and the infrared light energy. This allows a single channel to be used to detect and begin processing the electrical signals. For example, the red LED 300 is energized first and the attenuated signal is measured at the photodetector 320. An electrical signal corresponding to the intensity of the attenuated red light energy is passed to the common processing circuitry. The infrared LED 302 is energized next and the attenuated signal is measured at the photodetector 320. An electrical signal corresponding to the intensity of the attenuated infrared light energy is passed to the common processing circuitry. Then, the red LED 300 is energized again and the corresponding electrical signal is passed to the common processing circuitry. The sequential energization of LED's 300 and 302 occurs continuously while the pulse oximeter is operating.

The processing circuitry is divided into distinct paths after the synchronized demodulator 350 to ease time constraints generated by time multiplexing. In the preferred embodiment of the pulse oximeter shown in FIG. 10, a sample rate, or LED energization rate, of 1000 Hz is advantageously employed. Thus, electrical signals reach the synchronized demodulator 350 at a rate of 1000 Hz. Time multiplexing is not used in place of the separate paths due to settling time constraints of the low pass filters 380, 382, and 384.

In FIG. 10, a third LED 304 is shown adjacent the finger, located near the LED's 300 and 302. The third LED 304 is used to measure a third signal Sλc(t) to be used to determine saturation using the ratiometric method. The third LED 304 is time multiplexed with the red and infrared LED's 300 and 302. Thus, a third signal is input to the common processing circuitry in sequence with the signals from the red and infrared LED's 300 and 302. After passing through and being processed by the operational amplifier 330, the band pass filter 340, and the synchronized demodulator 350, the third electrical signal corresponding to light energy at wavelength λc is input to a separate path including a DC offset removal element 364, a first programmable gain amplifier 374, a low pass filter 384, and a second programmable gain amplifier 394. The third signal is then input to the multiplexer 400.

The dashed line connection for the third LED 304 indicates that this third LED 304 is incorporated into the pulse oximeter when the ratiometric method is used; it is unnecessary for the constant saturation method. When the third LED 304 is used, the multiplexer 400 acts as an analog switch between all three LED 300, 302, and 304 signals. If the third LED 304 is utilized, feedback loops between the microprocessor 420 and the first and second programmable gain amplifier 374 and 394 in the λc wavelength path are also formed.

For pulse oximeter measurements using the ratiometric method, the signals (logarithm converted) transmitted through the finger 310 at each wavelength λa, λb, and λc are:

Sλa(t)=Sλred1(t)=εHbO2,λaCAHbO2XA(t)+εHb,λaC1HbXA(t)+εHbO2,λaCVHbO2Xv(t)+εHb,λaCVHbXV(t)+nλa(t). (81)

Sλb(t)=Sλred2(t)=εHbO2,λbCAHbO2XA(t)+εHb,λbCAHbXA(t)+εHbO2,λbCVHbO2XV(t)+εHb,λbCVHbXV(t)+nλb(t). (82)

Sλc(t)=SλIR(t)=εHbO2,λcCAHbO2XA(t)+εHb,λcCAHbXA(t)+εHbO2,λcCVHbO2XV(t)+εHb,λcCVHbXV+nλc(t). (83)

In equations (81) through (83), XA(t) is the lump-sum thickness of the arterial blood in the finger; XV(t) is the lump-sum thickness of venous blood in the finger; εHbO2,λa εHbO2,λb, εHbO2,λc, εHb,λa, εHb,λb, and εHb,λc are the absorption coefficients of the oxygenated and non-oxygenated hemoglobin, at each wavelength measured; and cHbO2(t) and cHb(t) with the superscript designations A and V are the concentrations of the oxygenated and non-oxygenated arterial blood and venous blood, respectively.

For the ratiometric method, the wavelengths chosen are typically two in the visible red range, i.e., λa and λb, and one in the infrared range, i.e., λc. As described above, the measurement wavelengths λa and λb are advantageously chosen to satisfy a proportionality relationship which removes the desired signal portion Yλa(t) and Yλb(t), yielding a noise reference signal n'(t). In the preferred embodiment, the ratiometric method is used to determine the noise reference signal n'(t) by picking two wavelengths that cause the desired portions Yλa(t) and Yλb(t) of the measured signals Sλa(t) and Sλb(t) to become linearly dependent similarly to equation (22); i.e. wavelengths λa and λb which satisfy:

εHbO2,λaHb,λaHbO2,λbHb,λb (84)

Typical wavelength values chosen are λa=650 nm and λb=685 nm. Additionally a typical wavelength value for λc is λc=940 nm. By picking wavelengths λa and λb to satisfy equation (84) the venous portion of the measured signal is also caused to become linearly dependent even though it is not a portion of the desired signal. Thus, the venous portion of the signal is removed with the desired portion. The proportionality relationship between equations (81) and (82) which allows determination of a non-zero noise reference signal n'(t), similarly to equation (25) is:

ωr4Hb,λcHb,λb; where (85)

nλa(t)≠ωr4nλb(t). (86)

In pulse oximetry, both equations (85) and (86) can typically be satisfied simultaneously.

FIG. 11 is a graph of the absorption coefficients of oxygenated and deoxygenated hemoglobin (εHbO2 and εHb) vs. wavelength (λ). FIG. 12 is a graph of the ratio of absorption coefficients vs. wavelength, i.e., εHbHbO2 vs. λ over the range of wavelength within circle 13 in FIG. 11. Anywhere a horizontal line touches the curve of FIG. 12 twice, as does line 400, the condition of equation (84) is satisfied. FIG. 13 shows an exploded view of the area of FIG. 11 within the circle 13. Values of εHbO2 and εHb at the wavelengths where a horizontal line touches the curve of FIG. 12 twice can then be determined from the data in FIG. 13 to solve for the proportionality relationship of equation (85).

A special case of the ratiometric method is when the absorption coefficients εHbO2 and εHb are equal at a wavelength. Arrow 410 in FIG. 11 indicates one such location, called an isobestic point. FIG. 13 shows an exploded view of the isobestic point. To use isobestic points with the ratiometric method, two wavelengths at isobestic points are determined to satisfy equation (84).

Multiplying equation (82) by ωr4 and then subtracting equation (82) from equation (81), a non-zero noise reference signal n'(t) is determined by:

n'(t)=Sλa(t)-ωr4Sλb(t)=nλa(t)-ωr4nλb. (87)

This noise reference signal n'(t) has spectral content corresponding to the erratic, motion-induced noise. When it is input to an adaptive noise canceler, with either signals Sλa(t) and Sλc(t) or Sλb(t) and Sλc(t) input to two regression filters 80a and 80b, the adaptive noise canceler will function much like an adaptive multiple notch filter and remove frequency components present in both the noise reference signal n'(t) and the measured signals from the measured signals Sλa(t) and Sλc(t) or Sλb(t) and Sλc(t). Thus, the adaptive noise canceler is able to remove erratic noise caused in the venous portion of the measured signals Sλa(t), Sλb(t), and Sλc(t) even though the venous portion of the measured signals Sλa(t) and Sλb(t) was not incorporated in the noise reference signal n'(t). However, the low frequency absorption caused by venous blood moving through the veins is generally not one of the frequencies incorporated into the noise reference signal n'(t). Thus, the adaptive noise canceler generally will not remove this portion of the undesired signal. However, a band pass filter applied to the approximations to the desired signals Y'λa(t) and Yλc(t) or Yλb(t) and Y'λc(t) can remove this portion of the undesired signal corresponding to the low frequency venous absorption.

For pulse oximetry measurements using the constant saturation method, the signals (logarithm converted) transmitted through the finger 310 at each wavelength λa and λb are:

Sλa(t)=Sλred1(t)=εHbO2,λaCAHbO2XA(t)+εHb,λaCAHbXA(t)+εHbO2,λaCVHbO2Xv(t)+εHb,λaCVHbXV(t)+nλa(t). (88)

Sλb(t)=SλIR(t)=εHbO2,λbCAHbO2XA(t)+εHb,λbCAHbXA(t)+εHbO2,λbCVHbO2XV(t)+εHb,λbCVHbXV(t)+nλb(t). (89)

For the constant saturation method, the wavelengths chosen are typically one in the visible red range, i.e., λa, and one in the infrared range, i.e., λb. Typical wavelength values chosen are λa=660 nm and λb=940 nm. Using the constant saturation method, it is assumed that CHbO2(t)/CHb(t)=constant. The saturation of oxygenated arterial blood changes slowly, it at all, with respect to the sample rate, making this a valid assumption. The proportionality factor between equation (88) and (89) can then be written as: ω s4 ⁡ ( t ) = ε Hb02 ⁢ ⁢ λ ⁢ ⁢ a ⁢ ⁢ c Hb02 ⁢ ⁢ x ⁢ ⁢ ( t ) + ε Hb ⁢ ⁢ λ ⁢ ⁢ a ⁢ ⁢ c Hb ⁢ ⁢ x ⁢ ⁢ ( t ) ε Hb02 ⁢ ⁢ λ ⁢ ⁢ b ⁢ ⁢ c Hb02 ⁢ ⁢ x ⁢ ⁢ ( t ) + ε Hb ⁢ ⁢ λ ⁢ ⁢ b ⁢ ⁢ c Hb ⁢ ⁢ x ⁢ ⁢ ( t ) ( 90 ) ⁢ ≈ Y λ ⁢ ⁢ a ' ⁢ ⁢ ( t ) ⁢ / ⁢ Y λ ⁢ ⁢ b ' ⁢ ⁢ ( t ) ; where ( 91 ) n λ ⁢ ⁢ a ⁢ ⁢ ( t ) ≠ ω s4 ⁢ ⁢ ( t ) ⁢ ⁢ n λ ⁢ ⁢ b ⁢ ⁢ ( t ) . ( 92 )

In pulse oximetry, it is typically the case that both equation (91) and (92) can be satisfied simultaneously.

Multiplying equation (89) by ωs4(t) and then subtracting equation (89) from equation (88), a non-zero noise reference signal n'(t) is determined by:

n'(t)= (93)

Sλa(t)-ωS4(t)Sλb(t)=εHbO2,λacVHbO2xV(t)+εHb,λacVHbxV(t)+nλa(t)-ωs4HbO2,λbcVHbO2xV(t)+εHb,λbcVHbxV(t)+nλb(t)]. (94)

The constant saturation assumption does not cause the venous contribution to the absorption to be canceled along with the desired signal portions Yλa(t) and Yλb(t), as did the relationship of equation (84) used in the ratiometric method. Thus, frequencies associated with both the low frequency modulated absorption due to venous absorption when the patient is still and the erratically modulated absorption due to venous absorption when the patient is moving are represented in the noise reference signal n'(t). Thus, the adaptive canceler can remove both erratically modulated absorption due to venous blood in the finger under motion and the constant low frequency cyclic absorption of venous blood.

Using either method, a noise reference signal n'(t) is determined by the processor of the present invention for use in an adaptive noise canceler which is defined by software in the microprocessor. The preferred adaptive noise canceler is the joint process estimator 60 described above.

Illustrating the operation of the ratiometric method of the present invention, FIGS. 14, 15 and 16 show signals measured for use in determining the saturation of oxygenated arterial blood using a reference processor of the present invention which employs the ratiometric method, i.e., the signals Sλa(t)=Sλred1(t), Sλb(t)=Sλred2(t), and Sλc(t)=SλIR(t). A first segment 14a, 15a, and 16a of each of the signals is relatively undistributed by motion artifact, i.e., the patient did not move substantially during the time period in which these segments were measured. These segments 14a, 15a, and 16a are thus generally representative of the described plethysmographic waveform at each of the measured wavelengths. A second segment 14b, 15b and 16b of each of the signals is affected by motion artifact, i.e., the patient did move during the time period in which these segments were measured. Each of these segments 14b, 15b, and 16 shows large motion induced excursions in the measured signal. A third segment 14c, 15c, and 16c of each of the signals is again relatively unaffected by motion artifact and is thus generally representative of the desired plethysmographic waveform at each of the measured wavelengths.

FIG. 17 shows the noise reference signal n'(t)=nλar4nλb(t), as determined by a reference processor of the present invention utilizing the ratiometric method. As discussed previously, the noise reference signal n'(t) is correlated to the undesired signal portions nλa, nλb, and nλc. Thus, a first segment 17a of the noise reference signal n'(t) is generally flat, corresponding to the fact that there is very little motion induced noise in the first segments 14a, 15a, and 16a of each signal. A second segment 17b of the noise reference signal n'(t) exhibits large excursions, corresponding to the large motion induced excursions in each of the measured signals. A third segment 17c of the noise reference signal n'(t) is generally flat, again corresponding to the lack of motion artifact in the third segments 14a, 14b, and 14c of each measured signal.

FIGS. 18 and 19 show the approximation Y'λa(t) and Y'λc(t) to the desired signals Yλa(t) and Yλc(t) as estimated by the joint process estimator 60 using a noise reference signal n'(t) determined by the ratiometric method. Note that the scale of FIGS. 14 through 19 is not the same for each figure to better illustrate changes in each signal. FIGS. 18 and 19 illustrate the effect of the joint process estimator adaptive noise canceler using the nose reference signal n'(t) as determined by the reference processor of the present invention using the ratiometric method. Segments 18b and 19b are not dominated by motion induced noise as were segments 14b, 15b, and 16b of the measured signals. Additionally, segments 18a, 19a, 18c, and 19c have not been substantially changed from the measured signal segments 14a, 15a, 16a, 14c, 15c, and 16c where there was no motion induced noise.

Illustrating the operation of the constant saturation method of the present invention. FIGS. 20 and 21 show signals measured for input to a reference processor of the present invention which employs the constant saturation method, i.e., the signals Sλa(t)=Sλred1(t) and Sλb(t)=SλIR(t). A first segment 20a and 21a of each of the signals is relatively undistributed by motion artifact, i.e., the patient did not move substantially during the time period in which these segments were measured. These segments 20a and 21a are thus generally representative of the desired plethysmographic waveform at each of the measured wavelengths. A second segment 20b and 21b of each of the signals is affected by motion artifact, i.e., the patient did move during the time period in which these segments were measured. Each of these segments 20b and 21b shows large motion induced excursions in the measured signal. A third segment 20c and 21c of each of the signals is again relatively unaffected by motion artifact and is thus generally representative of the desired plethysmographic waveform at each of the measured wavelengths.

FIG. 22 shows the noise reference signal n'(t)=nλa(t)-ωs4nλb(t), as determined by a reference processor of the present invention utilizing the constant saturation method. Again, the noise reference signal n'(t) is correlated to the undesired signal portions nλa and nλb. Thus, a first segment 22a of the noise reference signal n'(t) is generally flat, corresponding to the fact that there is very little motion induced noise in the first segments 20a and 21a of each signal. A second segment 22b of the noise reference signal n'(t) exhibits large excursions, corresponding to the large motion induced excursions in each of the measured signals. A third segment 22c of the noise reference signal n'(t) is generally flat, again corresponding to the lack of motion artifact in the third segments 20b and 21c of each measured signal.

FIGS. 23 and 24 show the approximations Y'λa(t) and Y'λb(t) to the desired signals Y'λa(t) and Y'λb(t) as estimated by the joint process estimator 60 using a noise reference signal n'(t) determined by the constant saturation method. Note that the scale of FIGS. 20 and 24 is not the same for each figure to better illustrate changes in each signal. FIGS. 23 and 24 illustrate the effect of the joint process estimator adaptive noise canceler using the noise reference signal n'(t) as determined by a reference processor of the present invention utilizing the constant saturation method. Segments 23b and 24b are not dominated by motion induced noise as were segments 20b and 21b of the measured signals. Additionally, segments 23a, 24a, 23c, and 24c have not been substantially changed from the measured signal segments 20a, 21a, 20c, and 21c where there was no motion induced noise.

A copy of a computer program subroutine written in the C programming language, calculates a noise reference signal n'(t) using the ratiometric method and, using a joint process estimator 60, estimates the desired signal portions of two measured signals, each having an undesired portion which is correlated to the noise reference signal n'(t) and one of which was not used to calculate the noise reference signal n'(t), is appended in Appendix A. For example, Sλa(t)=Sλred1(t)=Sλ650nm(t) and Sλc(t)=SλIR(t)=Sλ940nm(t) can be input to the computer subroutine. One skilled in the art will realize that Sλa(t)=Sλred2(t)=Sλ685nm(t) and Sλc(t)=SλIR(t)=Sλ940nm(t) will also work. This subroutine is one way to implement the steps illustrated in the flowchart of FIG. 8 for a monitor particularly adapted for pulse oximetry.

The program estimates the desired signal portions of two light energy signals, one preferably corresponding to light in the visible red range and the other preferably corresponding to light in the infrared range such that a determination of the amount of oxygen available to the body, or the saturation of oxygen in the arterial blood, may be made. The calculation of the saturation is performed in a separate subroutine. Various methods for calculation of the oxygen saturation are known to those skilled in the art. One such calculation is described in the articles by G. A. Mook, et al, and Michael R. Neuman cited above. Once the concentration of oxygenated hemoglobin and deoxygenated hemoglobin are determined, the value of the saturation is determined similarly to equations (73) through (80) wherein measurements at times t1 and t2 are made at different, yet proximate times over which the saturation is relatively constant. For pulse oximetry, the average saturation at time t=(t1+t2)/2 is then determined by: Saturation ⁢ ⁢ ( t ) = C Hb02 ⁢ ⁢ ( t ) ⁢ / ⁡ [ C Hb02 ⁢ ⁢ ( t ) + C Hb ⁢ ⁢ ( t ) ] . ( 95 ) ⁢ = ε Hb ⁢ ⁢ λ ⁢ ⁢ a - ε Hb ⁢ ⁢ λ ⁢ ⁢ b ⁢ ⁢ ( Δ ⁢ ⁢ Y λ ⁢ ⁢ a Δ ⁢ ⁢ Y λ ⁢ ⁢ b ) ε Hb ⁢ ⁢ λ ⁢ ⁢ a - ε Hb02 ⁢ ⁢ λ ⁢ ⁢ a - ( ε Hb ⁢ ⁢ λ ⁢ ⁢ b - ε Hb02 ⁢ ⁢ λ ⁢ ⁢ b ) ⁢ ⁢ ( Δ ⁢ ⁢ Y λ ⁢ ⁢ a Δ ⁢ ⁢ Y λ ⁢ ⁢ b ) ( 96 )

Using the ratiometric method, three signals Sλa(t), Sλb(t), and Sλc(t) are input to the subroutine. Sλa(t) and Sλb(t) are used to calculate the noise reference signal n'(t). As described above, the wavelengths of light at which Sλa(t) and Sλb(t) are measured are chosen to satisfy the relationship of equation (84). Once the noise reference signal n'(t) is determined, the desired signal portions Yλa(t) and Yλc(t0 of the measured signals Sλa(t0 and Sλc(t) are estimated for use in calculation of the oxygen saturation.

The correspondence of the program variables to the variables defined in the discussion of the joint process estimator is as follows:

Δm(t)=nc[].Delta

Γf,m(t)=nc[].fref

Γb,m(t)=nc[].bref

fm(t)=nc[].ferr

bm(t)=nc[].berr

m(t)=nc[].Fswsqr

βm(t)=nc[].Bswsqr

γm(t)=nc[].Gamma

ρm,λa(t)=nc[].Roh_a

ρm,λc(t)=nc[].Roh_c

em,λa(t)=nc[].err_a

em,λc(t)=nc[].err_c

κm,λa(t)=nc[].K_a

κm,λc(t)=nc[].K_c

A first portion of the program performs the initialization of the registers 90, 92, 96, and 98 and intermediate variable values as in the "INITIALIZE NOISE CANCELER" box 120 and equations (40) through (44) and equations (61), (62), (65), and (66). A second portion of the program performs the time updates of the delay element variables 110 where the value at the input of each delay element variable 110 is stored in the delay element variable 110 as in the "TIME UPDATE OF [Z-1] ELEMENTS" box 130.

A third portion of the program calculates the noise reference signal, as in the "CALCULATE NOISE REFERENCE (n+(t)) FOR TWO MEASURED SIGNAL SAMPLES" box 140 using the proportionality constant ωr4 determined by the ratiometric method as in equation (85).

A fourth portion of the program performs the zero-stage update as in the "ZERO-STAGE UPDATE" box 150 where the zero-stage forward prediction error fo(t) and the zero-stage backward prediction error bo(t) are set equal to the value of the noise reference signal n'(t) just calculated. Additionally, zero-stage values of intermediate variables ℑ0(t) and β0(t) (nc[].Fswsqr and nc[].Bswsqr in the program) are calculated for use in setting register 90, 92, 96, and 98 values in the least-squares lattice predictor 70 and the regression filters 80a and 80b.

A fifth portion of the program is an iterative loop wherein the loop counter, m, is reset to zero with a maximum of m=NC_CELLS, as in the "m=0" box 160 in FIG. 8. NC_CELLS is a predetermined maximum value of iterations for the loop. A typical value of NC_CELLS is between 60 and 80, for example. The conditions of the loop are set such that the loop iterates a minimum of five times and continues to iterate until a test for conversion is met or m=NC_CELLS. The test for conversion is whether or not the sum of the weighted sum of forward prediction errors plus the weighted sum of backward prediction errors is less than a small number, typically 0.00001 (i.e, ℑm(t)+βm(t) ≦0.00001).

A sixth portion of the program calculates the forward and backward reflection coefficient Γm/(t) and Γm,b(t) register 90 and 92 values (nc[].fref and nc[].bref in the program) as in the "ORDER UPDATE mth-STAGE OF LSL-PREDICTOR" box 170 and equations (49) and (50). Then forward and backward prediction errors fm(t) and bm(t) (nc[].ferr and nc[].berr in the program) are calculated as in equations (51) and (52). Additionally, intermediate variables ℑm(t), βm(t) and γm(t) (nc[].Fswsqr, nc[].Bswsqr, nc[].Gamma in the program) are calculated, as in equations (53), (54), and (55). The first cycle of the loop uses the values for nc[0].Fswsqr and nc[0].Bswsqr calculated in the ZERO-STAGE UPDATE portion of the program.

A seventh portion of the program, still within the loop, calculates the regression coefficient κm,λa(t) and εm,λc(t) register 96 and 98 values (nc[].K_a and nc[].K_c in the program) in both regression filters, as in the "ORDER UPDATE mth STAGE OF REGRESSION FILTERS(S)" box 180 and equations (57) through (68). Intermediate error signals and variables em,λa(t), em,λc(t), ρm,λa(t), and ρm,λc(t) (nc[].err_a and nc[].err_c, nc[].roh_a, and nc[].roh_c in the subroutine) are also calculated as in equations (58), (64), (56), and (60), respectively.

The test for convergence of the joint process estimator is performed each time the loop iterates, analogously to the "DONE" box 190. If the sum of the weighted sums of the forward and backward prediction errors ℑm(t)+βm(t) is less than or equal to 0.00001, the loop terminates. Otherwise, the sixth and seventh portions of the program repeat.

When either the convergence test is passes for m=NC_CELLS, an eight portion of the program calculates the output of the joint process estimator 60 adaptive noise canceler as in the "CALCULATE OUTPUT" box 200. This output is good approximation to both of the desired signals Y'λa(t) and Y'λc(t) for the set of samples Sλa(t), Sλb(t), and Sλc(t) input to the program. After many sets of samples are processed by the joint process estimator, a compilation of the outputs provides output waves which are good approximations to the plethysmographic wave at each wavelength, λa and λc.

Another copy of a computer program subroutine, written in the C programming language, which calculates a noise reference signal n'(t) using the constant saturation method and, using a joint process estimator 60, estimates a good approximation to the desired signal portions of two measured signals, each having an undesired portion which is correlated to the noise reference signal n'(t) and each having been used to calculate the noise reference signal n'(t), is appended in Appendix B. This subroutine is another way to implement the steps illustrated in the flowchart of FIG. 8 for a monitor particularly adapted for pulse oximetry. The two signals are measured at two different wavelengths λa and λb, where λa is typically in the visible region and λb is typically in the infrared region. For example, in one embodiment of the present invention, tailored specifically to perform pulse oximetry using the constant saturation method, λa=660 nm and λb=940 nm.

The correspondence of the program variables to the variables defined in the discussion of the joint process estimator is as follows:

Δm(t)=nc[].Delta

Γf,m(t)=nc[].fref

Γb,m(t)=nc[].bref

fm(t)=nc['].ferr

bm(t)=nc[].berr

m(t)=nc[].Fswsqr

βm(t)=nc[].Bswsqr

γm(t)=nc[].Gamma

ρm,λa(t)=nc[].Roh_a

ρm,λc(t)=nc[].Roh_b

em,λa(t)=nc[].err_a

em,λb(t)=nc[].err_b

κm,λa(t)=nc[].K_a

κm,λb(t)=nc[].K_b

First and second portions of the subroutine are the same as the first and second portions of the above described subroutine tailored for the ratiometric method of determining the noise reference signal n'(t).

A third portion of the subroutine calculates the noise reference signal, as in the "CALCULATE NOISE REFERENCE (n'(t)) FOR TWO MEASURED SIGNAL SAMPLES" box 140 for signals Sλa(t) and Sλb(t) using the a proportionality constant ωs4(t) determined by the constant saturation method as in equations (90) and (91). The saturation is calculated in a separate subroutine and a value of ωs4(t) is imported to the present subroutine for estimating the desired portions Yλa(t) and Yλb(t) of the composite measured signals Sλa(t) and Sλb(t).

Fourth, fifth, and sixth portions of the subroutine are similar to the fourth, fifth, and sixth portions of the above described program tailored for the ratiometric method. However, the signals being used to estimate the desired signal portions Yλa(t) and Yλb(t) in the present subroutine tailored for the constant saturation method, are Sλa(t) and Sλb(t), the same signals that were used to calculate the noise reference signal n'(t).

A seventh portion of the program, still within the loop begun in the fifth portion of the program, calculates the regression coefficient register 96 and 98 values κm,λa(t) and εm,λb(5) (nc[].K_a and nc[].K_b in the program) in both regression filters, as in the "ORDER UPDATE mth STAGE OF REGRESSION FILTER(S)" box 180 and equations (57) through (67). Intermediate error signals and variables εm,λa(t), em,λb(t), ρm,λa(t), and ρm,λb(t) (nc[].err_a and nc[].err_b, nc[].roh_a, and nc[].rob_b in the subroutine) are also calculated as in equations (58), (63), (56), and (59), respectively.

The loop iterates until the test for convergence is passed, the test being the same as described above for the subroutine tailored for the ratiometric method. The output of the present subroutine is a good approximation to the desired signals Y'λa(t) and Y'λb(t) for the set of samples Sλa(t) and Sλb(t) input to the program. After approximations to the desired signal portions of many sets of measured signal samples are estimated by the joint process estimator, a compilation of the outputs provides waves which are good approximations to the plethysmographic wave at each wavelength, λa and λb. The estimating process of the iterative loop is the same in either subroutine, only the sample values Sλa(t) and Sλc(t) or Sλa(t) and Sλb(t) input to the subroutine for use in estimation of the desired signal portions Yλa(t) and Yλc(t) or Yλa(t) and Yλb(t) and how the noise reference signal n'(t) is calculated are different for the ratiometric method and the constant saturation methods.

Independent of the method used, ratiometric or constant saturation, the approximations to the desired signal values Y'λa(t) and Y'λc(t) or Y'λa(t) and Y'λb(t) are input to a separate subroutine in which the saturation of oxygen in the arterial blood is calculated. If the constant saturation method is used, the saturation calculation subroutine also determines a value for the proportionality constant ωs4(t) as defined in equations (90) and (91) and discussed above. The concentration of oxygenated arterial blood can be found from the approximations to the desired signal values since the desired signals are made up to terms comprising x(t), the thickness of arterial blood in the finger; absorption coefficients of oxygenated and de-oxygenated hemoglobin, at each measured wavelength; and CHbO2(t) and CHB(t), the concentrations of oxygenated and de-oxygenated hemoglobin, respectively. The saturation is a ratio of the concentration of one constituent, A5, with respect to the total concentration of constituents in the volume containing A5 and A6. Thus, the thickness, x(t), is divided out of the saturation calculation and need not be predetermined. Additionally, the absorption coefficients are constant at each wavelength. The saturation of oxygenated arterial blood is then determined as in equations (95) and (96).

While one embodiment of a physiological monitor incorporating a processor of the present invention for determining a noise reference signal for use in an adaptive noise canceler to remove erratic noise components from a physiological measurement has been described in the form of a pulse oximeter, it will be obvious to one skilled in the art that other types of physiological monitors may also employ the above described techniques for noise reduction on a composite measured signal in the presence of noise.

Furthermore, it will be understood that transformations of measured signals other than logarithmic conversion and determination of a proportionality factor which allows removal of the desired signal portions for determination of a noise reference signal are possible. Additionally, although the proportionality factor ω has been described herein as a ratio of a portion of a first signal to a portion of a second signal, a similar proportionality constant determined as a ratio of a portion of a second signal to a portion of a first signal could equally well be utilized in the processor of the present invention. In the latter case, a noise reference signal would generally resemble n'(t)=nλb(t)-ωnλa(t).

It will also be obvious to one skilled in the art that for most physiological measurements, two wavelengths may be determined which will enable a signal to be measured which is indicative of a quantity of a component about which information is desired. Information about a constituent of any energy absorbing physiological material may be determined by a physiological monitor incorporating a signal processor of the present invention and an adaptive noise canceler by determining wavelengths which are absorbed primarily by the constituent of interest. For most physiological measurements, this is a simple determination.

Moreover, one skilled in the art will realize that any portion of a patient or a material derived from a patient may be used to take measurements for a physiological monitor incorporating a processor of the present invention and an adaptive noise canceler. Such areas include a digital such as a finger, but are not limited to a finger.

One skilled in the art will realize that many different types of physiological monitors may employ a signal processor of the present invention in conjunction with an adaptive noise canceler. Other types of physiological monitors include, but are not limited to, electron cardiographs, blood pressure monitors, blood gas saturation (other than oxygen saturation) monitors, capnographs, heart rate monitors, respiration monitors, or depth of anesthesia monitors. Additionally, monitors which measure the pressure and quantity of a substance within the body such as a breathalizer, a drug monitor, a cholesterol monitor, a glucose monitor, a carbon dioxide monitor, a glucose monitor, or a carbon monoxide monitor may also employ the above described techniques for removal of undesired signal portions.

Furthermore, one skilled in the art will realize that the above described techniques of noise removal from a composite signal including noise components can also be performed on signals made up of reflected energy, rather than transmitted energy. One skilled in the art will also realize that a desired portion of a measured signal of any type of energy, including but not limited to sound energy, X-ray energy, gamma ray energy, or light energy can be estimated by the noise removal techniques described above. Thus, one skilled in the art will realize that the processor of the present invention and an adaptive noise canceler can be applied in such monitors as those using ultrasound where a signal is transmitted through a portion of the body and reflected back from within the body back through this portion of the body. Additionally, monitors such as echo cardiographs may also utilize the techniques of the present invention since they too rely on transmission and reflection.

While the present invention has been described in terms of a physiological monitor, one skilled in the art will realize that the signal processing techniques of the present invention can be applied in many areas, including but not limited to the processing of a physiological signal. The present invention may be applied in any situation where a signal processor comprising a detector receives a first signal which includes a first desired signal portion and a first undesired signal portion and a second signal which includes a second desired signal portion and a second undesired signal portion. The first and second signals propagate through a common medium and the first and second desired signal portions are correlated with one another. Additionally, at least a portion of the first and second undesired signal portions are correlated with one another due to a perturbation of the medium while the first and second signals are propagating through the medium. The processor receives the first and second signals and combines the first and second signals to generate a noise reference signal in which the primary component is derived from the first and second undesired signal portions. Thus, the signal processor of the present invention is readily applicable to numerous signal processing areas.

/************************************************************
**********************APPENDIX A*************************
***********************Least Square Lattice*********************
*************************Noise Cancelling*********************
/* Example for ratiometric approach to noise cancelling */
#define LAMBDA 0.95
void OxiLSL_NC ( int reSet,
int passes,
int *signal_1,
int *signal_2,
int *signal_3,
int *target_1,
int *target_2,) {
int i, ii, k, m, n, contraction;
static int *s_a, *s_b, *s_c, *out_a, *out_c;
static float Delta_sqr, scale, noise_ref;
if( reset == TRUE) {
s_a = signal_1;
s_b = signal_2;
s_c = signal_3;
out_a = target_1;
out_c = target_2;
factor = 1.5;
scale = 1.0/4160.0;
/* noise canceller initialization at tiue t=0 */
nc[0].berr = 0.0;
nc[0].Gamma = 1.0;
for(m=0; m<NC_CELLS; m++) {
nc[m].err_a = 0.0;
nc[m].err_b = 0.0;
nc[m].Roh_a = 0.0;
nc[m].Roh_c = 0.0;
nc[m].Delta = 0.0;
nc[m].Fswsqr = 0.00001;
nc[m].Bswsqr = 0.00001;
}
}
/*================ END INITIALIZATION ================*/
For (k=0; k<passes; k++){
contraction = FALSE;
for(m=0; m<NC_CELLS; m++) { /* Update delay elements */
nc[m].berr1 = nc[m ].berr;
nc[m].Bswsqr1 = nc[m].Bswsqr;
}
noise_ref = factor * log(1.0 - (*s_a) * scale)
= log(1.0 - (*s_b) * scale) ;
nc[0].err_n = log(1.0 - (*s_b) * scale);
nc[0].err_b = log(1.0 - (*s_c) * scale);
++s_a;
++s_b;
++s_c;
nc[0].ferr = noise_ref ;
nc[0].berr = noise_ref ;
nc[0].Fswsqr = LAMBDA * nc[0].Fswsqr +
noise_ref * noise_ref;
nc[0].Bswsqr = nc[0].Fswsqr;
/* Order Update */
for(n=1;( n < NC_CELLS) && (contraction == FALSE); n++) {
/* Adaptive Lattice Section */
m = n - 1;
ii = n - 1;
nc[m].Delta *= LAMBDA;
nc[m].Delta += nc[m].berr1 * nc[m].ferr / nc[m].Gamma ;
Delta_sqr = nc[m].Delta * nc[m].Delta;
nc[n]fref = -nc[m].Delta / nc[m].Bswsqr1;
nc[n].bref = -nc[m].Delta / nc[m].Fswsqr;
nc[n].ferr = nc[m].ferr + nc[n].fref * nc[m].berr1;
nc[n].berr = nc[m].berr1 + nc[n].bref * nc[m].ferr;
nc[n].Fswsqr = nc[m].Fswsqr - Delta_sqr / nc[m].Bswsqr1;
nc[n].Bswsqr = nc[m].Bswsqr1 - Delta_sqr / nc[m].Fswsqr;
if( (nc[n].Fswsqr + nc[n].Bswsqr) > 0.00001 ∥ (n < 5) ) {
nc[n].Gamma = nc[m].Gamma - nc[m].berr1 *
nc[m].berr1 / nc[m].Bswsqr1;
if(nc[n].Gamma < 0.05) nc[n].Gamma = 0.05;
if(nc[n].Gamma > 1.00) nc[n].Gamma = 1.00;
/* Joint Process Estimation Section */
nc[m].Roh_a *= LAMBDA;
nc[m].Roh_a += nc[m].berr * nc[m].err_a / nc[m].Gamma ;
nc[m].k_a = nc[m].Roh_a / nc[m].Bswsqr;
nc[n].err_a = nc[m].err_a - nc[m].k_a * nc[m].berr;
nc[m].Roh_c *= LAMBDA;
nc[m].Roh_c += nc[m].berr* nc[m].err_b / nc[m].Gamma;
nc[m].k_c = nc[m].Roh_c / nc[m].Bswsqr;
nc[n].err_b = nc[m].err_b - nc[m].k_c * nc[m].berr;
}
else {
contraction = TRUE;
for(i=n; i<NC_CELLS; i++) {
nc[i].err_a = 0.0;
nc[i].Roh_a = 0.0;
nc[i].err_b = 0.0;
nc[i].Roh_c = 0.0;
nc[i].Delta = 0.0;
nc[i].Fswsqr = 0.00001;
nc[i].Bswsqr = 0.00001;
nc[i].Bswsqr1 = 0.00001;
}
}
}
*out_a++ = (int) ((-exp(nc[ii].err_a) +1.0) / scale) ;
*out_c++ = (int) ((-exp(nc[ii].err_b) +1.0) / scale) ;
}
}
/******************* Least Square Lattice ***********************
******************* ***********************
************************************************************/
/***********************************************************
********************** APPENDIX B *************************
******************** Least Square Lattice ***********************
************************Noise Cancelling ************************/
/* Example for constant saturation approach to noise cancelling */
#define LAMBDA 0.95
void OxilSL_NC ( int reset,
int passes,
int sat_factor,
int *signal_1,
int signal_2,
int target_1,
int target_2) {
int i, ii, k, m, n, contraction;
static int *s_a, *s_b, *s_c, *out_b;
static int Delta_sqr, scale, noise_ref;
if( reset == TRUE){
s_a = signal_1;
s_b = signal_2;
out_a = target_1;
out_b = target_2;
scale = 1.0/4160.0;
/*noise canceller initialization at time t=0 */
nc[0].berr = 0.0;
nc[0].Gamma = 1.0;
for(m=0; m<NC_CELLS; m++) {
nc[m].err_a = 0.0;
nc[m].err_b = 0.0;
nc[m].Roh_a = 0.0;
nc[m].Roh_b = 0.0;
nc[m].Delta = 0.0;
nc[m].Fswsqr = 0.00001;
nc[m].Bswsqr = 0.00001;
}
}
/*================ END INITIALIZATION ================*/
For (k=0; k<passes; k++) {
contraction = FALSE;
for(m=0; ms<NC_CELLS; m++) { /*Update delay elements */
nc[m].berr1 = nc[m].berr;
nc[m].Bswsqr1 = nc[m].Bswsqr;
}
noise_ref = sat_factor * log(1.0 - (*s_a) * scale)
- log(1.0 - (*s_b) * scale) ;
nc[0].err_a = log(1.0 - (*s_a) * scale);
nc[0].err_b = log(1.0 - (*s_b) * scale);
++s_a;
++s_b;
nc[0].ferr = noise_ref ;
nc[0].berr = noise_ref ;
nc[0].Fswsqr = LAMBDA * nc[0].Fswsqr +
noise_ref * noise_ref;
nc[0].Bswsqr = nc[0].Fswsqr;
/* Order Update */
for(n=1;( n < NC_CELLS) &&
(contraction == FALSE); n++) {
/* Adaptive Lattice Section */
m = n-1;
ii = n-1;
nc[m].Delta *= LAMBDA;
nc[m].Delta += nc[m].berr1 * nc[m].ferr / nc[m].Gamma ;
Delta_sqr = nc[m].Delta * nc[m].Delta;
nc[n].fref = -nc[m].Delta / nc[m].Bswsqr1;
nc[n].bref = -nc[m].Delta / nc[m].Fswsqr;
nc[n].ferr = nc[m].ferr + nc[n].fref * nc[m].berr1;
nc[n].berr = nc[m].berr1 + nc[n].bref * nc[m].ferr;
nc[n].Fswsqr = nc[m].Fswsqr - Delta_sqr / nc[m].Bswsqr1;
nc[n].Bswsqr = nc[m].Bswsqr1 - Delta_sqr / nc[m].Fswsqr;
if( (nc[n].Fswsqr + nc[n].Bswsqr) > 0.00001 ∥ (n < 5) ) {
nc[n].Gamma = nc[m].Gamma - nc[m].berr1 *
nc[m].berr1 / nc[m].Bswsqr1;
if(nc[n].Gamma < 0.05) nc[n].Gamma = 0.05;
if(nc[n].Gamma > 1.00) nc[n].Gamma = 1.00;
/* Joint Process Estimation Section */
nc[m].Roh_a *= LAMBDA;
nc[m].Roh_a += nc[m]berr * nc[m].err_a / nc[m].Gamma ;
nc[m].k_a = nc[m].Roh_a / nc[m].Bswsqr;
nc[m].err_a = nc[m]err_a - nc[m].k_a * nc[m].berr;
nc[m].Roh_b *= LAMBDA;
nc[m].Roh_b += nc[m]berr * nc[m].err_b / nc[m].Gamma ;
nc[m].k_b = nc[m].Roh_b / nc[m].Bswsqr;
nc[n].err_b = nc[m].err_b - nc[m].k_b * nc[m].berr;
}
else {
contraction = TRUE;
for(i=n; i<NC_CELLS; i++) {
nc[i].err_a = 0.0;
nc[i].Roh_a = 0.0;
nc[i].err_b = 0.0;
nc[i].Roh_b = 0.0;
nc[i].Delta = 0.0;
nc[i].Fswsqr = 0.00001;
nc[i].Bswsqr = 0.00001;
nc[i].Bswsqr1 = 0.00001;
}
}
}
*out_a++ = (int) ((-exp(nc[ii].err_a) +1.0) /
scale) ;
*out_b++ = (int) ((-exp(nc[ii].err_b) +1.0) /
scale) ;
}
}
/******************* Least Square Lattice ***********************
******************* ***********************
************************************************************/

Kiani, Massi E., Diab, Mohamed Kheir

Patent Priority Assignee Title
10007758, Mar 04 2009 Masimo Corporation Medical monitoring system
10010276, Oct 07 2013 Masimo Corporation Regional oximetry user interface
10028699, Sep 14 2007 MEDTRONIC MONITORING, INC Adherent device for sleep disordered breathing
10032002, Mar 04 2009 JPMorgan Chase Bank, National Association Medical monitoring system
10039482, Oct 12 2006 Masimo Corporation System and method for monitoring the life of a physiological sensor
10052037, Jul 22 2010 Masimo Corporation Non-invasive blood pressure measurement system
10058275, Jul 25 2003 Masimo Corporation Multipurpose sensor port
10064562, Oct 12 2006 Masimo Corporation Variable mode pulse indicator
10086138, Jan 28 2014 Masimo Corporation Autonomous drug delivery system
10092200, Dec 09 2006 JPMorgan Chase Bank, National Association Plethysmograph variability processor
10092249, Oct 14 2005 Masimo Corporation Robust alarm system
10098550, Mar 30 2010 Masimo Corporation Plethysmographic respiration rate detection
10098591, Mar 08 2004 Masimo Corporation Physiological parameter system
10098610, Oct 15 2009 Masimo Corporation Physiological acoustic monitoring system
10123726, Mar 01 2005 Cercacor Laboratories, Inc. Configurable physiological measurement system
10130289, Jan 07 1999 Masimo Corporation Pulse and confidence indicator displayed proximate plethysmograph
10130291, Aug 11 2004 Masimo Corporation Method for data reduction and calibration of an OCT-based physiological monitor
10149616, Feb 09 2012 JPMorgan Chase Bank, National Association Wireless patient monitoring device
10154815, Oct 07 2014 Masimo Corporation Modular physiological sensors
10159412, Dec 01 2010 Cercacor Laboratories, Inc. Handheld processing device including medical applications for minimally and non invasive glucose measurements
10182764, Feb 27 2003 NELLCOR PURITAN BENNETT IRELAND Method of analyzing and processing signals
10188296, Feb 09 2012 Masimo Corporation Wireless patient monitoring device
10188331, Jul 29 2009 Masimo Corporation Non-invasive physiological sensor cover
10188348, Jun 05 2006 Masimo Corporation Parameter upgrade system
10194847, Oct 12 2006 Masimo Corporation Perfusion index smoother
10194848, Jul 29 2009 Masimo Corporation Non-invasive physiological sensor cover
10201298, Jan 24 2003 Masimo Corporation Noninvasive oximetry optical sensor including disposable and reusable elements
10205272, Mar 11 2009 Masimo Corporation Magnetic connector
10205291, Feb 06 2015 Masimo Corporation Pogo pin connector
10213108, Mar 25 2002 Masimo Corporation Arm mountable portable patient monitor
10219706, Mar 25 2002 Masimo Corporation Physiological measurement device
10219746, Oct 12 2006 Masimo Corporation Oximeter probe off indicator defining probe off space
10226187, Aug 31 2015 Masimo Corporation Patient-worn wireless physiological sensor
10226576, May 15 2006 Masimo Corporation Sepsis monitor
10231657, Sep 04 2014 Masimo Corporation Total hemoglobin screening sensor
10231670, Jun 19 2014 CERCACOR LABORATORIES, INC Proximity sensor in pulse oximeter
10231676, Jan 25 1999 JPMorgan Chase Bank, National Association Dual-mode patient monitor
10245508, Nov 22 2000 Intel Corporation Method and system for providing interactive services over a wireless communications network
10251585, Mar 01 2005 Cercacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
10251586, Apr 21 2007 Masimo Corporation Tissue profile wellness monitor
10255994, Mar 04 2009 Masimo Corporation Physiological parameter alarm delay
10258265, Jul 03 2008 CERCACOR LABORATORIES, INC Multi-stream data collection system for noninvasive measurement of blood constituents
10258266, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
10271748, May 06 2010 Masimo Corporation Patient monitor for determining microcirculation state
10271749, Feb 25 2011 Masimo Corporation Patient monitor for monitoring microcirculation
10278626, Mar 17 2006 Masimo Corporation Apparatus and method for creating a stable optical interface
10278648, Jan 04 2012 Masimo Corporation Automated CCHD screening and detection
10279247, Dec 13 2013 Masimo Corporation Avatar-incentive healthcare therapy
10292628, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
10292657, Feb 16 2009 Masimo Corporation Ear sensor
10292664, May 02 2008 Masimo Corporation Monitor configuration system
10299708, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
10299709, Oct 13 2011 Masimo Corporation Robust fractional saturation determination
10305775, Nov 05 2012 Cercacor Laboratories, Inc. Physiological test credit method
10307111, Feb 09 2012 Masimo Corporation Patient position detection system
10325681, Mar 04 2009 Masimo Corporation Physiological alarm threshold determination
10327337, Feb 06 2015 Masimo Corporation Fold flex circuit for LNOP
10327683, Mar 01 2005 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
10327713, Feb 24 2017 Masimo Corporation Modular multi-parameter patient monitoring device
10332630, Feb 13 2011 JPMorgan Chase Bank, National Association Medical characterization system
10335033, Mar 25 2002 Masimo Corporation Physiological measurement device
10335068, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
10335072, Jun 03 1998 Masimo Corporation Physiological monitor
10342470, Oct 12 2006 Masimo Corporation System and method for monitoring the life of a physiological sensor
10342487, May 19 2009 Masimo Corporation Disposable components for reusable physiological sensor
10342497, Oct 15 2009 Masimo Corporation Physiological acoustic monitoring system
10349895, Oct 15 2009 Masimo Corporation Acoustic respiratory monitoring sensor having multiple sensing elements
10349898, Jan 04 2012 Masimo Corporation Automated CCHD screening and detection
10354504, Dec 21 2009 Masimo Corporation Modular patient monitor
10357206, Jun 05 2000 Masimo Corporation Variable indication estimator
10357209, Oct 15 2009 Masimo Corporation Bidirectional physiological information display
10366787, Mar 04 2009 Masimo Corporation Physiological alarm threshold determination
10368787, Mar 04 2008 Masimo Corporation Flowometry in optical coherence tomography for analyte level estimation
10376190, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
10376191, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
10383520, Sep 18 2014 MASIMO SEMICONDUCTOR, INC Enhanced visible near-infrared photodiode and non-invasive physiological sensor
10383527, Aug 31 2015 Masimo Corporation Wireless patient monitoring systems and methods
10388120, Feb 24 2017 Masimo Corporation Localized projection of audible noises in medical settings
10398320, Sep 17 2009 Masimo Corporation Optical-based physiological monitoring system
10405804, Oct 13 2010 Masimo Corporation Physiological measurement logic engine
10405809, Sep 14 2007 MEDTRONIC MONITORING, INC Injectable device for physiological monitoring
10413666, May 20 2009 Masimo Corporation Hemoglobin display and patient treatment
10420493, Nov 29 2005 Masimo Corporation Optical sensor including disposable and reusable elements
10433776, Jul 02 2001 Masimo Corporation Low power pulse oximeter
10441181, Mar 13 2013 Masimo Corporation Acoustic pulse and respiration monitoring system
10441196, Jan 23 2015 Masimo Corporation Nasal/oral cannula system and manufacturing
10448844, Aug 31 2015 Masimo Corporation Systems and methods for patient fall detection
10448871, Jul 02 2015 Masimo Corporation Advanced pulse oximetry sensor
10456038, Mar 15 2013 CERCACOR LABORATORIES, INC Cloud-based physiological monitoring system
10463284, Nov 29 2006 Cercacor Laboratories, Inc. Optical sensor including disposable and reusable elements
10463340, Oct 15 2009 JPMorgan Chase Bank, National Association Acoustic respiratory monitoring systems and methods
10470695, Jul 02 2015 Masimo Corporation Advanced pulse oximetry sensor
10478107, Jul 29 2009 Masimo Corporation Non-invasive physiological sensor cover
10503379, Mar 25 2012 Masimo Corporation Physiological monitor touchscreen interface
10505311, Aug 15 2017 Masimo Corporation Water resistant connector for noninvasive patient monitor
10512436, Oct 13 2011 Masimo Corporation System for displaying medical monitoring data
10524706, May 05 2008 Masimo Corporation Pulse oximetry system with electrical decoupling circuitry
10524738, May 04 2015 CERCACOR LABORATORIES, INC Noninvasive sensor system with visual infographic display
10531811, Sep 28 2010 Masimo Corporation Depth of consciousness monitor including oximeter
10531819, Apr 17 2012 Masimo Corporation Hypersaturation index
10531835, Nov 05 2003 Masimo Corporation Pulse oximeter access apparatus and method
10532174, Feb 21 2014 Masimo Corporation Assistive capnography device
10537285, Mar 04 2016 Masimo Corporation Nose sensor
10542903, Jun 07 2012 JPMorgan Chase Bank, National Association Depth of consciousness monitor
10548561, Dec 30 2008 Masimo Corporation Acoustic sensor assembly
10555678, Aug 05 2013 Masimo Corporation Blood pressure monitor with valve-chamber assembly
10568514, Sep 18 2014 MASIMO SEMICONDUCTOR, INC. Enhanced visible near-infrared photodiode and non-invasive physiological sensor
10568553, Feb 06 2015 Masimo Corporation Soft boot pulse oximetry sensor
10575779, Mar 14 2013 Masimo Corporation Patient monitor placement indicator
10582886, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
10588518, Sep 20 2006 Masimo Corporation Congenital heart disease monitor
10588553, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
10588554, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
10588556, Jul 29 2009 Masimo Corporation Non-invasive physiological sensor cover
10595747, Oct 16 2009 Masimo Corporation Respiration processor
10599814, Sep 14 2007 Medtronic Monitoring, Inc. Dynamic pairing of patients to data collection gateways
10610138, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
10610139, Jan 16 2013 Masimo Corporation Active-pulse blood analysis system
10617302, Jul 07 2016 Masimo Corporation Wearable pulse oximeter and respiration monitor
10617335, Oct 07 2013 Masimo Corporation Regional oximetry sensor
10617338, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
10624563, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
10624564, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
10631765, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
10637181, Aug 15 2017 Masimo Corporation Water resistant connector for noninvasive patient monitor
10638961, Jul 02 2015 Masimo Corporation Physiological measurement devices, systems, and methods
10646146, Jul 02 2015 Masimo Corporation Physiological monitoring devices, systems, and methods
10667762, Feb 24 2017 Masimo Corporation Modular multi-parameter patient monitoring device
10667764, Apr 19 2018 Masimo Corporation Mobile patient alarm display
10672260, Mar 13 2013 Masimo Corporation Systems and methods for monitoring a patient health network
10674948, Apr 17 2012 Mastmo Corporation Hypersaturation index
10687715, Jan 10 2011 Masimo Corporation Non-invasive intravascular volume index monitor
10687743, Jul 02 2015 Masimo Corporation Physiological measurement devices, systems, and methods
10687744, Jul 02 2015 Masimo Corporation Physiological measurement devices, systems, and methods
10687745, Jul 02 2015 Masimo Corporation Physiological monitoring devices, systems, and methods
10702194, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
10702195, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
10709366, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
10721785, Jan 18 2017 Masimo Corporation Patient-worn wireless physiological sensor with pairing functionality
10722159, Jul 02 2015 Masimo Corporation Physiological monitoring devices, systems, and methods
10729335, Dec 01 2010 Cercacor Laboratories, Inc. Handheld processing device including medical applications for minimally and non invasive glucose measurements
10729362, Mar 08 2010 Masimo Corporation Reprocessing of a physiological sensor
10729384, Jan 04 2012 Masimo Corporation Automated condition screening and detection
10729402, Dec 04 2009 Masimo Corporation Calibration for multi-stage physiological monitors
10736518, Aug 31 2015 Masimo Corporation Systems and methods to monitor repositioning of a patient
10743803, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
10750983, Nov 24 2009 Cercacor Laboratories, Inc. Physiological measurement system with automatic wavelength adjustment
10750984, Dec 22 2016 Cercacor Laboratories, Inc. Methods and devices for detecting intensity of light with translucent detector
10758166, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
10765367, Oct 07 2014 Masimo Corporation Modular physiological sensors
10772542, Oct 12 2006 Masimo Corporation Method and apparatus for calibration to reduce coupling between signals in a measurement system
10779098, Jul 10 2018 Masimo Corporation Patient monitor alarm speaker analyzer
10779737, Oct 22 2009 Medtronic Monitoring, Inc. Method and apparatus for remote detection and monitoring of functional chronotropic incompetence
10784634, Feb 06 2015 Masimo Corporation Pogo pin connector
10791971, Aug 11 2004 Masimo Corporation Method for data reduction and calibration of an OCT-based physiological monitor
10799160, Oct 07 2013 Masimo Corporation Regional oximetry pod
10799163, Oct 12 2006 Masimo Corporation Perfusion index smoother
10813598, Oct 15 2009 Masimo Corporation System and method for monitoring respiratory rate measurements
10825568, Oct 11 2013 Masimo Corporation Alarm notification system
10827961, Aug 29 2012 Masimo Corporation Physiological measurement calibration
10828007, Oct 11 2013 Masimo Corporation Acoustic sensor with attachment portion
10832818, Oct 11 2013 Masimo Corporation Alarm notification system
10833983, Sep 20 2012 Masimo Corporation Intelligent medical escalation process
10849554, Apr 18 2017 Masimo Corporation Nose sensor
10855023, Mar 11 2009 Masimo Corporation Magnetic connector for a data communications cable
10856750, Apr 28 2017 Masimo Corporation Spot check measurement system
10856788, Mar 01 2005 Cercacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
10863938, Oct 12 2006 Masimo Corporation System and method for monitoring the life of a physiological sensor
10869602, Mar 25 2002 Masimo Corporation Physiological measurement communications adapter
10874797, Jan 17 2006 Masimo Corporation Drug administration controller
10881951, Dec 13 2013 Masimo Corporation Avatar-incentive healthcare therapy
10912500, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
10912501, Jul 03 2008 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
10912502, Jul 03 2008 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
10912524, Sep 22 2006 Masimo Corporation Modular patient monitor
10918281, Apr 26 2017 Masimo Corporation Medical monitoring device having multiple configurations
10918341, Dec 22 2006 Masimo Corporation Physiological parameter system
10925544, Oct 15 2009 Masimo Corporation Acoustic respiratory monitoring sensor having multiple sensing elements
10925550, Oct 13 2011 Masimo Corporation Medical monitoring hub
10932705, May 08 2017 Masimo Corporation System for displaying and controlling medical monitoring data
10932729, Jun 06 2018 Masimo Corporation Opioid overdose monitoring
10939877, Oct 14 2005 Masimo Corporation Robust alarm system
10939878, Jun 06 2018 Masimo Corporation Opioid overdose monitoring
10943450, Dec 21 2009 Masimo Corporation Modular patient monitor
10945648, Jul 03 2008 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
10952614, Aug 17 2011 Masimo Corporation Modulated physiological sensor
10952641, Sep 15 2008 Masimo Corporation Gas sampling line
10953156, May 20 2009 Masimo Corporation Hemoglobin display and patient treatment
10955270, Oct 27 2011 Masimo Corporation Physiological monitor gauge panel
10956950, Feb 24 2017 Masimo Corporation Managing dynamic licenses for physiological parameters in a patient monitoring environment
10959652, Jul 02 2001 Masimo Corporation Low power pulse oximeter
10973447, Jan 24 2003 Masimo Corporation Noninvasive oximetry optical sensor including disposable and reusable elements
10980432, Aug 05 2013 Masimo Corporation Systems and methods for measuring blood pressure
10980455, Jul 02 2001 Masimo Corporation Low power pulse oximeter
10980457, Apr 21 2007 Masimo Corporation Tissue profile wellness monitor
10980507, Oct 15 2009 Masimo Corporation Physiological acoustic monitoring system
10984911, Mar 01 2005 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
10987066, Oct 31 2017 Masimo Corporation System for displaying oxygen state indications
10991135, Aug 11 2015 Masimo Corporation Medical monitoring analysis and replay including indicia responsive to light attenuated by body tissue
10993643, Oct 12 2006 Masimo Corporation Patient monitor capable of monitoring the quality of attached probes and accessories
10993662, Mar 04 2016 Masimo Corporation Nose sensor
11000232, Jun 19 2014 Masimo Corporation Proximity sensor in pulse oximeter
11006867, Oct 12 2006 Masimo Corporation Perfusion index smoother
11020029, Jul 25 2003 Masimo Corporation Multipurpose sensor port
11020084, Sep 20 2012 Masimo Corporation Acoustic patient sensor coupler
11022466, Jul 17 2013 Masimo Corporation Pulser with double-bearing position encoder for non-invasive physiological monitoring
11024064, Feb 24 2017 Masimo Corporation Augmented reality system for displaying patient data
11026604, Jul 13 2017 CERCACOR LABORATORIES, INC Medical monitoring device for harmonizing physiological measurements
11033210, Mar 04 2008 Masimo Corporation Multispot monitoring for use in optical coherence tomography
11069461, Aug 01 2012 Masimo Corporation Automated assembly sensor cable
11071480, Apr 17 2012 Masimo Corporation Hypersaturation index
11076777, Oct 13 2016 Masimo Corporation Systems and methods for monitoring orientation to reduce pressure ulcer formation
11076782, Oct 07 2013 Masimo Corporation Regional oximetry user interface
11082786, Jul 10 2018 Masimo Corporation Patient monitor alarm speaker analyzer
11083397, Feb 09 2012 Masimo Corporation Wireless patient monitoring device
11086609, Feb 24 2017 Masimo Corporation Medical monitoring hub
11087875, Mar 04 2009 Masimo Corporation Medical monitoring system
11089963, Aug 31 2015 Masimo Corporation Systems and methods for patient fall detection
11089982, Oct 13 2011 Masimo Corporation Robust fractional saturation determination
11095068, Aug 15 2017 Masimo Corporation Water resistant connector for noninvasive patient monitor
11096631, Feb 24 2017 Masimo Corporation Modular multi-parameter patient monitoring device
11103134, Sep 18 2014 MASIMO SEMICONDUCTOR, INC. Enhanced visible near-infrared photodiode and non-invasive physiological sensor
11103143, Sep 17 2009 Masimo Corporation Optical-based physiological monitoring system
11109770, Jun 21 2011 Masimo Corporation Patient monitoring system
11109814, Mar 08 2004 Masimo Corporation Physiological parameter system
11109818, Apr 19 2018 Masimo Corporation Mobile patient alarm display
11114188, Oct 06 2009 Cercacor Laboratories, Inc. System for monitoring a physiological parameter of a user
11132117, Mar 25 2012 Masimo Corporation Physiological monitor touchscreen interface
11133105, Mar 04 2009 Masimo Corporation Medical monitoring system
11145408, Mar 04 2009 Masimo Corporation Medical communication protocol translator
11147518, Oct 07 2013 Masimo Corporation Regional oximetry signal processor
11153089, Jul 06 2016 Masimo Corporation Secure and zero knowledge data sharing for cloud applications
11158421, Mar 04 2009 Masimo Corporation Physiological parameter alarm delay
11172890, Jan 04 2012 Masimo Corporation Automated condition screening and detection
11176801, Aug 19 2011 Masimo Corporation Health care sanitation monitoring system
11178776, Feb 06 2015 Masimo Corporation Fold flex circuit for LNOP
11179111, Jan 04 2012 Masimo Corporation Automated CCHD screening and detection
11179114, Oct 13 2011 Masimo Corporation Medical monitoring hub
11185262, Mar 10 2017 Masimo Corporation Pneumonia screener
11191484, Apr 29 2016 Masimo Corporation Optical sensor tape
11191485, Jun 05 2006 Masimo Corporation Parameter upgrade system
11202571, Jul 07 2016 Masimo Corporation Wearable pulse oximeter and respiration monitor
11207007, Mar 17 2006 Masimo Corporation Apparatus and method for creating a stable optical interface
11219391, Jul 02 2001 Masimo Corporation Low power pulse oximeter
11224363, Jan 16 2013 Masimo Corporation Active-pulse blood analysis system
11224381, Oct 12 2006 Masimo Corporation Oximeter probe off indicator defining probe off space
11229374, Dec 09 2006 Masimo Corporation Plethysmograph variability processor
11229408, Dec 22 2006 Masimo Corporation Optical patient monitor
11234602, Jul 22 2010 Masimo Corporation Non-invasive blood pressure measurement system
11234655, Jan 20 2007 Masimo Corporation Perfusion trend indicator
11241199, Oct 13 2011 Masimo Corporation System for displaying medical monitoring data
11259745, Jan 28 2014 Masimo Corporation Autonomous drug delivery system
11272839, Oct 12 2018 Masimo Corporation System for transmission of sensor data using dual communication protocol
11272852, Jun 21 2011 Masimo Corporation Patient monitoring system
11272883, Mar 04 2016 Masimo Corporation Physiological sensor
11289199, Jan 19 2010 JPMorgan Chase Bank, National Association Wellness analysis system
11291061, Jan 18 2017 Masimo Corporation Patient-worn wireless physiological sensor with pairing functionality
11291415, May 04 2015 Cercacor Laboratories, Inc. Noninvasive sensor system with visual infographic display
11298021, Oct 19 2017 Masimo Corporation Medical monitoring system
11317837, Oct 12 2006 Masimo Corporation System and method for monitoring the life of a physiological sensor
11330996, May 06 2010 Masimo Corporation Patient monitor for determining microcirculation state
11331013, Sep 04 2014 Masimo Corporation Total hemoglobin screening sensor
11331042, May 19 2009 Masimo Corporation Disposable components for reusable physiological sensor
11331043, Feb 16 2009 Masimo Corporation Physiological measurement device
11342072, Oct 06 2009 Cercacor Laboratories, Inc. Optical sensing systems and methods for detecting a physiological condition of a patient
11363960, Feb 25 2011 Masimo Corporation Patient monitor for monitoring microcirculation
11367529, Nov 05 2012 Cercacor Laboratories, Inc. Physiological test credit method
11369293, Jul 29 2009 Masimo Corporation Non-invasive physiological sensor cover
11389093, Oct 11 2018 Masimo Corporation Low noise oximetry cable
11399722, Mar 30 2010 Masimo Corporation Plethysmographic respiration rate detection
11399774, Oct 13 2010 Masimo Corporation Physiological measurement logic engine
11406286, Oct 11 2018 Masimo Corporation Patient monitoring device with improved user interface
11410507, Feb 24 2017 Masimo Corporation Localized projection of audible noises in medical settings
11412939, Aug 31 2015 Masimo Corporation Patient-worn wireless physiological sensor
11412964, May 05 2008 Masimo Corporation Pulse oximetry system with electrical decoupling circuitry
11417426, Feb 24 2017 Masimo Corporation System for displaying medical monitoring data
11426103, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
11426104, Aug 11 2004 Masimo Corporation Method for data reduction and calibration of an OCT-based physiological monitor
11426105, Mar 04 2008 Masimo Corporation Flowometry in optical coherence tomography for analyte level estimation
11426125, Feb 16 2009 Masimo Corporation Physiological measurement device
11430572, Mar 01 2005 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
11432771, Feb 16 2009 Masimo Corporation Physiological measurement device
11437768, Feb 06 2015 Masimo Corporation Pogo pin connector
11439329, Jul 13 2011 Masimo Corporation Multiple measurement mode in a physiological sensor
11445948, Oct 11 2018 Masimo Corporation Patient connector assembly with vertical detents
11452449, Oct 30 2012 Masimo Corporation Universal medical system
11464410, Oct 12 2018 Masimo Corporation Medical systems and methods
11484205, Mar 25 2002 Masimo Corporation Physiological measurement device
11484229, Jul 03 2008 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
11484230, Jul 03 2008 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
11484231, Mar 08 2010 Masimo Corporation Reprocessing of a physiological sensor
11488711, Oct 11 2013 Masimo Corporation Alarm notification system
11488715, Feb 13 2011 Masimo Corporation Medical characterization system
11504002, Sep 20 2012 Masimo Corporation Physiological monitoring system
11504058, Dec 02 2016 Masimo Corporation Multi-site noninvasive measurement of a physiological parameter
11504062, Mar 14 2013 Masimo Corporation Patient monitor placement indicator
11504066, Sep 04 2015 Cercacor Laboratories, Inc. Low-noise sensor system
11515664, Mar 11 2009 Masimo Corporation Magnetic connector
11534087, Nov 24 2009 Cercacor Laboratories, Inc. Physiological measurement system with automatic wavelength adjustment
11534110, Apr 18 2017 Masimo Corporation Nose sensor
11545263, Mar 01 2005 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
11557407, Aug 01 2012 Masimo Corporation Automated assembly sensor cable
11559227, Jul 29 2009 Masimo Corporation Non-invasive physiological sensor cover
11559275, Dec 30 2008 Masimo Corporation Acoustic sensor assembly
11564593, Sep 15 2008 Masimo Corporation Gas sampling line
11564642, Jun 06 2018 Masimo Corporation Opioid overdose monitoring
11571152, Dec 04 2009 Masimo Corporation Calibration for multi-stage physiological monitors
11576582, Aug 31 2015 Masimo Corporation Patient-worn wireless physiological sensor
11581091, Aug 26 2014 VCCB HOLDINGS, INC. Real-time monitoring systems and methods in a healthcare environment
11596363, Sep 12 2013 Cercacor Laboratories, Inc. Medical device management system
11596365, Feb 24 2017 Masimo Corporation Modular multi-parameter patient monitoring device
11602289, Feb 06 2015 Masimo Corporation Soft boot pulse oximetry sensor
11605188, Aug 11 2015 Masimo Corporation Medical monitoring analysis and replay including indicia responsive to light attenuated by body tissue
11607139, Sep 20 2006 Masimo Corporation Congenital heart disease monitor
11622733, May 02 2008 Masimo Corporation Monitor configuration system
11627919, Jun 06 2018 Masimo Corporation Opioid overdose monitoring
11637437, Apr 17 2019 Masimo Corporation Charging station for physiological monitoring device
11638532, Jul 03 2008 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
11642036, Jul 03 2008 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
11642037, Jul 03 2008 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
11645905, Mar 13 2013 Masimo Corporation Systems and methods for monitoring a patient health network
11647914, Jul 03 2008 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
11647923, Apr 21 2007 Masimo Corporation Tissue profile wellness monitor
11653862, May 22 2015 CERCACOR LABORATORIES, INC Non-invasive optical physiological differential pathlength sensor
11660028, Mar 04 2008 Masimo Corporation Multispot monitoring for use in optical coherence tomography
11672447, Oct 12 2006 Masimo Corporation Method and apparatus for calibration to reduce coupling between signals in a measurement system
11673041, Dec 13 2013 Masimo Corporation Avatar-incentive healthcare therapy
11678829, Apr 17 2019 Masimo Corporation Physiological monitoring device attachment assembly
11679579, Dec 17 2015 Masimo Corporation Varnish-coated release liner
11684296, Dec 21 2018 CERCACOR LABORATORIES, INC Noninvasive physiological sensor
11690574, Nov 05 2003 Masimo Corporation Pulse oximeter access apparatus and method
11696712, Jun 13 2014 VCCB HOLDINGS, INC. Alarm fatigue management systems and methods
11699526, Oct 11 2013 Masimo Corporation Alarm notification system
11701043, Apr 17 2019 Masimo Corporation Blood pressure monitor attachment assembly
11705666, Aug 15 2017 Masimo Corporation Water resistant connector for noninvasive patient monitor
11706029, Jul 06 2016 Masimo Corporation Secure and zero knowledge data sharing for cloud applications
11717194, Oct 07 2013 Masimo Corporation Regional oximetry pod
11717210, Sep 28 2010 Masimo Corporation Depth of consciousness monitor including oximeter
11717218, Oct 07 2014 Masimo Corporation Modular physiological sensor
11721105, Feb 13 2020 Masimo Corporation System and method for monitoring clinical activities
11724031, Jan 17 2006 Masimo Corporation Drug administration controller
11730379, Mar 20 2020 Masimo Corporation Remote patient management and monitoring systems and methods
11744471, Sep 17 2009 Masimo Corporation Optical-based physiological monitoring system
11747178, Oct 27 2011 Masimo Corporation Physiological monitor gauge panel
11751773, Jul 03 2008 Masimo Corporation Emitter arrangement for physiological measurements
11751780, Oct 07 2013 Masimo Corporation Regional oximetry sensor
11752262, May 20 2009 Masimo Corporation Hemoglobin display and patient treatment
11759130, Oct 12 2006 Masimo Corporation Perfusion index smoother
11766198, Feb 02 2018 CERCACOR LABORATORIES, INC Limb-worn patient monitoring device
11779247, Jul 29 2009 Masimo Corporation Non-invasive physiological sensor cover
11786183, Oct 13 2011 Masimo Corporation Medical monitoring hub
11803623, Oct 18 2019 Masimo Corporation Display layout and interactive objects for patient monitoring
11812229, Jul 10 2018 Masimo Corporation Patient monitor alarm speaker analyzer
11813036, Apr 26 2017 Masimo Corporation Medical monitoring device having multiple configurations
11816771, Feb 24 2017 Masimo Corporation Augmented reality system for displaying patient data
11816973, Aug 19 2011 Masimo Corporation Health care sanitation monitoring system
11825536, Jan 18 2017 Masimo Corporation Patient-worn wireless physiological sensor with pairing functionality
11830349, Feb 24 2017 Masimo Corporation Localized projection of audible noises in medical settings
11832940, Aug 27 2019 CERCACOR LABORATORIES, INC Non-invasive medical monitoring device for blood analyte measurements
11839470, Jan 16 2013 Masimo Corporation Active-pulse blood analysis system
11839498, Oct 14 2005 Masimo Corporation Robust alarm system
11844634, Apr 19 2018 Masimo Corporation Mobile patient alarm display
11848515, Mar 11 2009 Masimo Corporation Magnetic connector
11850024, Sep 18 2014 MASIMO SEMICONDUCTOR, INC. Enhanced visible near-infrared photodiode and non-invasive physiological sensor
11857315, Oct 12 2006 Masimo Corporation Patient monitor capable of monitoring the quality of attached probes and accessories
11857319, Oct 12 2006 Masimo Corporation System and method for monitoring the life of a physiological sensor
11864890, Dec 22 2016 Cercacor Laboratories, Inc. Methods and devices for detecting intensity of light with translucent detector
11864922, Sep 04 2015 CERCACOR LABORATORIES, INC Low-noise sensor system
11872156, Aug 22 2018 Masimo Corporation Core body temperature measurement
11877824, Aug 17 2011 Masimo Corporation Modulated physiological sensor
11877867, Feb 16 2009 Masimo Corporation Physiological measurement device
11879960, Feb 13 2020 Masimo Corporation System and method for monitoring clinical activities
11883129, Apr 24 2018 CERCACOR LABORATORIES, INC Easy insert finger sensor for transmission based spectroscopy sensor
11883190, Jan 28 2014 Masimo Corporation Autonomous drug delivery system
11886858, Feb 24 2017 Masimo Corporation Medical monitoring hub
11887728, Sep 20 2012 Masimo Corporation Intelligent medical escalation process
11894640, Feb 06 2015 Masimo Corporation Pogo pin connector
11900775, Dec 21 2009 Masimo Corporation Modular patient monitor
11901070, Feb 24 2017 Masimo Corporation System for displaying medical monitoring data
11903140, Feb 06 2015 Masimo Corporation Fold flex circuit for LNOP
6822564, Jan 24 2002 JPMorgan Chase Bank, National Association Parallel measurement alarm processor
6842635, Aug 13 1998 Whitland Research Limited Optical device
6850787, Jun 29 2001 JPMorgan Chase Bank, National Association Signal component processor
6850788, Mar 25 2002 JPMorgan Chase Bank, National Association Physiological measurement communications adapter
6920345, Jan 24 2003 Masimo Corporation Optical sensor including disposable and reusable elements
6934570, Jan 08 2002 JPMorgan Chase Bank, National Association Physiological sensor combination
6950687, Dec 09 1999 JPMorgan Chase Bank, National Association Isolation and communication element for a resposable pulse oximetry sensor
6961598, Feb 22 2002 Masimo Corporation Pulse and active pulse spectraphotometry
6970792, Dec 04 2002 Masimo Corporation Systems and methods for determining blood oxygen saturation values using complex number encoding
6979812, Aug 26 1999 JPMorgan Chase Bank, National Association Systems and methods for indicating an amount of use of a sensor
6985764, May 03 2001 JPMorgan Chase Bank, National Association Flex circuit shielded optical sensor
6996427, Jan 07 1999 JPMorgan Chase Bank, National Association Pulse oximetry data confidence indicator
6999904, Jun 05 2000 JPMorgan Chase Bank, National Association Variable indication estimator
7003338, Jul 08 2003 CERCACOR LABORATORIES, INC Method and apparatus for reducing coupling between signals
7024233, Jan 07 1999 JPMorgan Chase Bank, National Association Pulse oximetry data confidence indicator
7027849, Nov 22 2002 CERCACOR LABORATORIES, INC Blood parameter measurement system
7030749, Jan 24 2002 JPMorgan Chase Bank, National Association Parallel measurement alarm processor
7039449, Dec 09 1999 JPMorgan Chase Bank, National Association Resposable pulse oximetry sensor
7041060, Jun 26 1996 JPMorgan Chase Bank, National Association Rapid non-invasive blood pressure measuring device
7044918, Dec 30 1998 JPMorgan Chase Bank, National Association Plethysmograph pulse recognition processor
7096054, Aug 01 2002 JPMorgan Chase Bank, National Association Low noise optical housing
7142901, Sep 25 2002 JPMorgan Chase Bank, National Association Parameter compensated physiological monitor
7149561, Aug 18 2000 Masimo Corporation Optical spectroscopy pathlength measurement system
7184809, Nov 08 2005 Woolsthorpe Technologies, LLC Pulse amplitude indexing method and apparatus
7186966, Aug 26 1999 JPMorgan Chase Bank, National Association Amount of use tracking device and method for medical product
7190261, Jan 24 2002 JPMorgan Chase Bank, National Association Arrhythmia alarm processor
7215984, Oct 07 1994 JPMorgan Chase Bank, National Association Signal processing apparatus
7215986, Oct 07 1994 JPMorgan Chase Bank, National Association Signal processing apparatus
7215987, Nov 08 2005 Woolsthorpe Technologies Method and apparatus for processing signals reflecting physiological characteristics
7225006, Jan 23 2003 JPMorgan Chase Bank, National Association Attachment and optical probe
7225007, Jan 24 2003 Masimo Corporation Optical sensor including disposable and reusable elements
7239905, Jun 07 1995 Masimo Corporation Active pulse blood constituent monitoring
7245953, Apr 12 1999 Intel Corporation Reusable pulse oximeter probe and disposable bandage apparatii
7254431, Aug 28 2003 JPMorgan Chase Bank, National Association Physiological parameter tracking system
7254434, Oct 14 2003 JPMorgan Chase Bank, National Association Variable pressure reusable sensor
7269537, Feb 26 2005 Infrasound sensor with disturbance filtering
7272425, Dec 09 1999 JPMorgan Chase Bank, National Association Pulse oximetry sensor including stored sensor data
7274955, Sep 25 2002 JPMorgan Chase Bank, National Association Parameter compensated pulse oximeter
7280858, Jan 05 2004 JPMorgan Chase Bank, National Association Pulse oximetry sensor
7292883, Mar 31 2004 JPMorgan Chase Bank, National Association Physiological assessment system
7295866, Jul 02 2001 JPMorgan Chase Bank, National Association Low power pulse oximeter
7328053, Oct 06 1993 JPMorgan Chase Bank, National Association Signal processing apparatus
7332784, Mar 10 1998 JPMorgan Chase Bank, National Association Method of providing an optoelectronic element with a non-protruding lens
7340287, May 03 2001 JPMorgan Chase Bank, National Association Flex circuit shielded optical sensor
7343186, Jul 07 2004 Masimo Corporation Multi-wavelength physiological monitor
7355512, Jan 24 2002 JPMorgan Chase Bank, National Association Parallel alarm processor
7371981, Feb 20 2004 JPMorgan Chase Bank, National Association Connector switch
7373193, Nov 07 2003 JPMorgan Chase Bank, National Association Pulse oximetry data capture system
7373194, Jun 29 2001 JPMorgan Chase Bank, National Association Signal component processor
7377794, Mar 01 2005 CERCACOR LABORATORIES, INC Multiple wavelength sensor interconnect
7377899, Jun 29 2001 JPMorgan Chase Bank, National Association Sine saturation transform
7395104, Mar 06 2004 KEHAAI, INC Methods and devices for non-invasively measuring quantitative information of substances in living organisms
7415297, Mar 08 2004 JPMorgan Chase Bank, National Association Physiological parameter system
7428432, Jan 25 1999 JPMorgan Chase Bank, National Association Systems and methods for acquiring calibration data usable in a pulse oximeter
7438683, Mar 04 2004 JPMorgan Chase Bank, National Association Application identification sensor
7440787, Dec 04 2002 Masimo Corporation Systems and methods for determining blood oxygen saturation values using complex number encoding
7454240, Mar 07 1991 JPMorgan Chase Bank, National Association Signal processing apparatus
7467002, Jun 29 2001 JPMorgan Chase Bank, National Association Sine saturation transform
7471969, Mar 25 1999 JPMorgan Chase Bank, National Association Pulse oximeter probe-off detector
7471971, Apr 14 1997 JPMorgan Chase Bank, National Association Signal processing apparatus and method
7477924, May 02 2006 Covidien LP Medical sensor and technique for using the same
7483729, Nov 05 2003 JPMorgan Chase Bank, National Association Pulse oximeter access apparatus and method
7483730, Mar 21 1991 JPMorgan Chase Bank, National Association Low-noise optical probes for reducing ambient noise
7483731, Sep 30 2005 Covidien LP Medical sensor and technique for using the same
7486979, Sep 30 2005 Covidien LP Optically aligned pulse oximetry sensor and technique for using the same
7489958, Apr 14 1997 JPMorgan Chase Bank, National Association Signal processing apparatus and method
7496391, Jun 07 1995 JPMorgan Chase Bank, National Association Manual and automatic probe calibration
7499740, Feb 25 2004 Covidien LP Techniques for detecting heart pulses and reducing power consumption in sensors
7499741, Apr 14 1997 JPMorgan Chase Bank, National Association Signal processing apparatus and method
7499835, Jun 05 2000 JPMorgan Chase Bank, National Association Variable indication estimator
7500950, Jul 25 2003 JPMorgan Chase Bank, National Association Multipurpose sensor port
7509154, Oct 07 1994 JPMorgan Chase Bank, National Association Signal processing apparatus
7509494, Mar 01 2002 JPMorgan Chase Bank, National Association Interface cable
7522948, May 02 2006 Covidien LP Medical sensor and technique for using the same
7526328, Jun 07 1995 JPMorgan Chase Bank, National Association Manual and automatic probe calibration
7530942, Oct 18 2005 JPMorgan Chase Bank, National Association Remote sensing infant warmer
7530949, Jan 25 1999 JPMorgan Chase Bank, National Association Dual-mode pulse oximeter
7530955, Oct 07 1994 JPMorgan Chase Bank, National Association Signal processing apparatus
7555327, Sep 30 2005 Covidien LP Folding medical sensor and technique for using the same
7563110, Mar 01 2005 CERCACOR LABORATORIES, INC Multiple wavelength sensor interconnect
7574244, Aug 08 2005 Covidien LP Compliant diaphragm medical sensor and technique for using the same
7574245, Sep 27 2006 Covidien LP Flexible medical sensor enclosure
7590439, Aug 08 2005 Covidien LP Bi-stable medical sensor and technique for using the same
7596398, Mar 01 2005 CERCACOR LABORATORIES, INC Multiple wavelength sensor attachment
7618375, Jun 26 1996 JPMorgan Chase Bank, National Association Rapid non-invasive blood pressure measuring device
7628760, Feb 28 2007 Semler Scientific, Inc.; SEMLER SCIENTIFIC, INC Circulation monitoring system and method
7647083, Mar 01 2005 CERCACOR LABORATORIES, INC Multiple wavelength sensor equalization
7647084, Aug 08 2005 Covidien LP Medical sensor and technique for using the same
7650177, Sep 29 2005 Covidien LP Medical sensor for reducing motion artifacts and technique for using the same
7657294, Aug 08 2005 Covidien LP Compliant diaphragm medical sensor and technique for using the same
7657295, Aug 08 2005 Covidien LP Medical sensor and technique for using the same
7657296, Aug 08 2005 Covidien LP Unitary medical sensor assembly and technique for using the same
7658652, Sep 29 2006 Covidien LP Device and method for reducing crosstalk
7676253, Sep 29 2005 Covidien LP Medical sensor and technique for using the same
7680522, Sep 29 2006 Covidien LP Method and apparatus for detecting misapplied sensors
7684842, Sep 29 2006 Covidien LP System and method for preventing sensor misuse
7684843, Aug 08 2005 Covidien LP Medical sensor and technique for using the same
7689259, Apr 17 2000 Covidien LP Pulse oximeter sensor with piece-wise function
7693559, Aug 08 2005 Covidien LP Medical sensor having a deformable region and technique for using the same
7720516, Oct 10 1996 Nellcor Puritan Bennett LLC Motion compatible sensor for non-invasive optical blood analysis
7729733, Mar 01 2005 CERCACOR LABORATORIES, INC Configurable physiological measurement system
7729736, Sep 29 2005 Covidien LP Medical sensor and technique for using the same
7734320, Dec 09 1999 JPMorgan Chase Bank, National Association Sensor isolation
7738937, Aug 08 2005 Covidien LP Medical sensor and technique for using the same
7761127, Mar 01 2005 CERCACOR LABORATORIES, INC Multiple wavelength sensor substrate
7761128, Jun 03 1998 JPMorgan Chase Bank, National Association Physiological monitor
7764982, Mar 01 2005 CERCACOR LABORATORIES, INC Multiple wavelength sensor emitters
7774037, Jul 04 1998 Whitland Research Limited Non-invasive measurement of blood analytes
7791155, Dec 22 2006 Masimo Corporation Detector shield
7794266, Sep 29 2006 Covidien LP Device and method for reducing crosstalk
7796403, Sep 28 2006 Covidien LP Means for mechanical registration and mechanical-electrical coupling of a faraday shield to a photodetector and an electrical circuit
7801581, Aug 18 2000 Masimo Corporation Optical spectroscopy pathlength measurement system
7822452, Aug 11 2004 Masimo Corporation Method for data reduction and calibration of an OCT-based blood glucose monitor
7844314, Mar 25 2002 JPMorgan Chase Bank, National Association Physiological measurement communications adapter
7844315, Mar 25 2002 JPMorgan Chase Bank, National Association Physiological measurement communications adapter
7848891, Sep 29 2006 Covidien LP Modulation ratio determination with accommodation of uncertainty
7865222, Jul 08 2003 CERCACOR LABORATORIES, INC Method and apparatus for reducing coupling between signals in a measurement system
7865224, Jun 14 1995 Nellcor Puritan Bennett LLC Method and apparatus for estimating a physiological parameter
7869849, Sep 26 2006 Covidien LP Opaque, electrically nonconductive region on a medical sensor
7869850, Sep 29 2005 Covidien LP Medical sensor for reducing motion artifacts and technique for using the same
7873497, Jun 05 2000 JPMorgan Chase Bank, National Association Variable indication estimator
7880606, Jan 24 2002 JPMorgan Chase Bank, National Association Physiological trend monitor
7880626, Oct 12 2006 JPMorgan Chase Bank, National Association System and method for monitoring the life of a physiological sensor
7880884, Jun 30 2008 Covidien LP System and method for coating and shielding electronic sensor components
7881762, Sep 30 2005 Covidien LP Clip-style medical sensor and technique for using the same
7887345, Jun 30 2008 Covidien LP Single use connector for pulse oximetry sensors
7890153, Sep 28 2006 Covidien LP System and method for mitigating interference in pulse oximetry
7891355, Jun 03 1998 JPMorgan Chase Bank, National Association Physiological monitor
7894868, Jun 03 1998 JPMorgan Chase Bank, National Association Physiological monitor
7894869, Mar 09 2007 Covidien LP Multiple configuration medical sensor and technique for using the same
7899507, Jun 03 1998 JPMorgan Chase Bank, National Association Physiological monitor
7899510, Sep 29 2005 Covidien LP Medical sensor and technique for using the same
7904130, Sep 29 2005 Covidien LP Medical sensor and technique for using the same
7904132, Jun 29 2001 JPMorgan Chase Bank, National Association Sine saturation transform
7910875, Aug 26 1999 JPMorgan Chase Bank, National Association Systems and methods for indicating an amount of use of a sensor
7919713, Apr 16 2007 JPMorgan Chase Bank, National Association Low noise oximetry cable including conductive cords
7931599, Jun 14 1995 Covidien LP Method and apparatus for estimating a physiological parameter
7937128, Jul 09 2004 JPMorgan Chase Bank, National Association Cyanotic infant sensor
7937129, Mar 21 2005 JPMorgan Chase Bank, National Association Variable aperture sensor
7937130, Mar 07 1991 JPMorgan Chase Bank, National Association Signal processing apparatus
7941199, May 15 2006 Masimo Corporation Sepsis monitor
7951086, Jun 26 1996 JPMorgan Chase Bank, National Association Rapid non-invasive blood pressure measuring device
7957780, Mar 01 2005 CERCACOR LABORATORIES, INC Physiological parameter confidence measure
7962188, Oct 14 2005 JPMorgan Chase Bank, National Association Robust alarm system
7962190, Oct 06 1993 JPMorgan Chase Bank, National Association Signal processing apparatus
7976472, Sep 07 2004 JPMorgan Chase Bank, National Association Noninvasive hypovolemia monitor
7988637, Dec 30 1998 JPMorgan Chase Bank, National Association Plethysmograph pulse recognition processor
7990382, Jan 03 2006 JPMorgan Chase Bank, National Association Virtual display
7991446, Jan 25 1999 JPMorgan Chase Bank, National Association Systems and methods for acquiring calibration data usable in a pulse oximeter
8000761, Dec 09 1999 JPMorgan Chase Bank, National Association Resposable pulse oximetry sensor
8019400, Oct 07 1994 JPMorgan Chase Bank, National Association Signal processing apparatus
8028701, May 31 2006 JPMorgan Chase Bank, National Association Respiratory monitoring
8036727, Aug 11 2004 Masimo Corporation Methods for noninvasively measuring analyte levels in a subject
8036728, Oct 07 1994 JPMorgan Chase Bank, National Association Signal processing apparatus
8046040, Jan 07 1999 JPMorgan Chase Bank, National Association Pulse oximetry data confidence indicator
8046041, Oct 07 1994 JPMorgan Chase Bank, National Association Signal processing apparatus
8046042, Oct 07 1994 JPMorgan Chase Bank, National Association Signal processing apparatus
8048040, Sep 13 2007 JPMorgan Chase Bank, National Association Fluid titration system
8050728, Mar 01 2005 CERCACOR LABORATORIES, INC Multiple wavelength sensor drivers
8060171, Sep 29 2005 Covidien LP Medical sensor for reducing motion artifacts and technique for using the same
8062221, Sep 30 2005 Covidien LP Sensor for tissue gas detection and technique for using the same
8068891, Sep 29 2006 Covidien LP Symmetric LED array for pulse oximetry
8070508, Dec 31 2007 Covidien LP Method and apparatus for aligning and securing a cable strain relief
8071935, Jun 30 2008 Covidien LP Optical detector with an overmolded faraday shield
8073518, May 02 2006 Covidien LP Clip-style medical sensor and technique for using the same
8078246, Apr 17 2000 Covidien LP Pulse oximeter sensor with piece-wise function
8092379, Sep 29 2005 Covidien LP Method and system for determining when to reposition a physiological sensor
8092993, Dec 31 2007 Covidien LP Hydrogel thin film for use as a biosensor
8112375, Mar 31 2008 Covidien LP Wavelength selection and outlier detection in reduced rank linear models
8116841, Sep 14 2007 MEDTRONIC MONITORING, INC Adherent device with multiple physiological sensors
8118620, Oct 12 2007 JPMorgan Chase Bank, National Association Connector assembly with reduced unshielded area
8126528, Oct 07 1994 JPMorgan Chase Bank, National Association Signal processing apparatus
8128572, Oct 07 1994 JPMorgan Chase Bank, National Association Signal processing apparatus
8130105, Mar 01 2005 CERCACOR LABORATORIES, INC Noninvasive multi-parameter patient monitor
8133176, Apr 14 1999 Covidien LP Method and circuit for indicating quality and accuracy of physiological measurements
8145287, Jun 07 1995 JPMorgan Chase Bank, National Association Manual and automatic probe calibration
8145288, Aug 22 2006 Covidien LP Medical sensor for reducing signal artifacts and technique for using the same
8175667, Sep 29 2006 Covidien LP Symmetric LED array for pulse oximetry
8175671, Sep 22 2006 Covidien LP Medical sensor for reducing signal artifacts and technique for using the same
8175672, Apr 12 1999 JPMorgan Chase Bank, National Association Reusable pulse oximeter probe and disposable bandage apparatii
8180420, Apr 14 1997 JPMorgan Chase Bank, National Association Signal processing apparatus and method
8182443, Jan 17 2006 JPMorgan Chase Bank, National Association Drug administration controller
8190223, Mar 01 2005 Masimo Corporation Noninvasive multi-parameter patient monitor
8190224, Sep 22 2006 Covidien LP Medical sensor for reducing signal artifacts and technique for using the same
8190225, Sep 22 2006 Covidien LP Medical sensor for reducing signal artifacts and technique for using the same
8190227, Apr 14 1997 JPMorgan Chase Bank, National Association Signal processing apparatus and method
8195264, Sep 22 2006 Covidien LP Medical sensor for reducing signal artifacts and technique for using the same
8199007, Dec 31 2007 Covidien LP Flex circuit snap track for a biometric sensor
8203438, Jul 29 2008 JPMorgan Chase Bank, National Association Alarm suspend system
8203704, Aug 04 2008 Masimo Corporation Multi-stream sensor for noninvasive measurement of blood constituents
8204566, Aug 11 2004 Masimo Corporation Method and apparatus for monitoring blood constituent levels in biological tissue
8216136, Mar 05 2009 NELLCOR PURITAN BENNETT IRELAND Systems and methods for monitoring heart rate and blood pressure correlation
8219170, Sep 20 2006 Covidien LP System and method for practicing spectrophotometry using light emitting nanostructure devices
8219172, Mar 17 2006 Masimo Corporation System and method for creating a stable optical interface
8221319, Mar 25 2009 Covidien LP Medical device for assessing intravascular blood volume and technique for using the same
8224411, Mar 01 2005 CERCACOR LABORATORIES, INC Noninvasive multi-parameter patient monitor
8224412, Apr 17 2000 Covidien LP Pulse oximeter sensor with piece-wise function
8228181, Jan 24 2002 JPMorgan Chase Bank, National Association Physiological trend monitor
8229533, Oct 16 1995 JPMorgan Chase Bank, National Association Low-noise optical probes for reducing ambient noise
8233954, Sep 30 2005 Covidien LP Mucosal sensor for the assessment of tissue and blood constituents and technique for using the same
8233955, Nov 29 2005 Masimo Corporation Optical sensor including disposable and reusable elements
8244325, Jan 24 2003 Masimo Corporation Noninvasive oximetry optical sensor including disposable and reusable elements
8249686, Sep 14 2007 MEDTRONIC MONITORING, INC Adherent device for sleep disordered breathing
8255026, Oct 12 2006 JPMorgan Chase Bank, National Association Patient monitor capable of monitoring the quality of attached probes and accessories
8255027, Mar 01 2005 CERCACOR LABORATORIES, INC Multiple wavelength sensor substrate
8255028, Jun 03 1998 JPMorgan Chase Bank, National Association Physiological monitor
8255029, Feb 27 2003 NELLCOR PURITAN BENNETT IRELAND Method of analyzing and processing signals
8260391, Sep 12 2005 Covidien LP Medical sensor for reducing motion artifacts and technique for using the same
8260577, Jun 05 2000 JPMorgan Chase Bank, National Association Variable indication estimator
8265723, Oct 12 2006 Masimo Corporation Oximeter probe off indicator defining probe off space
8265724, Mar 09 2007 Covidien LP Cancellation of light shunting
8274360, Oct 12 2007 JPMorgan Chase Bank, National Association Systems and methods for storing, analyzing, and retrieving medical data
8280469, Mar 09 2007 Covidien LP Method for detection of aberrant tissue spectra
8280473, Oct 12 2006 JPMorgan Chase Bank, National Association Perfusion index smoother
8285356, Sep 14 2007 MEDTRONIC MONITORING, INC Adherent device with multiple physiological sensors
8301217, Mar 01 2005 CERCACOR LABORATORIES, INC Multiple wavelength sensor emitters
8306596, Aug 11 2004 Masimo Corporation Method for data reduction and calibration of an OCT-based physiological monitor
8310336, Oct 10 2008 JPMorgan Chase Bank, National Association Systems and methods for storing, analyzing, retrieving and displaying streaming medical data
8311601, Jun 30 2009 Covidien LP Reflectance and/or transmissive pulse oximeter
8311602, Aug 08 2005 Covidien LP Compliant diaphragm medical sensor and technique for using the same
8315683, Sep 20 2006 JPMorgan Chase Bank, National Association Duo connector patient cable
8315685, Sep 27 2006 Covidien LP Flexible medical sensor enclosure
8337403, Mar 04 2004 JPMorgan Chase Bank, National Association Patient monitor having context-based sensitivity adjustments
8346328, Dec 21 2007 Covidien LP Medical sensor and technique for using the same
8346330, Oct 13 2008 JPMorgan Chase Bank, National Association Reflection-detector sensor position indicator
8352004, Dec 21 2007 Covidien LP Medical sensor and technique for using the same
8352009, Sep 30 2005 Covidien LP Medical sensor and technique for using the same
8352010, Sep 30 2005 Covidien LP Folding medical sensor and technique for using the same
8353842, Feb 18 2005 JPMorgan Chase Bank, National Association Portable patient monitor
8355766, Oct 12 2007 JPMorgan Chase Bank, National Association Ceramic emitter substrate
8359080, Oct 07 1994 JPMorgan Chase Bank, National Association Signal processing apparatus
8364220, Sep 25 2008 Covidien LP Medical sensor and technique for using the same
8364223, Jun 03 1998 JPMorgan Chase Bank, National Association Physiological monitor
8364226, Oct 06 1993 JPMorgan Chase Bank, National Association Signal processing apparatus
8366613, Dec 26 2007 Covidien LP LED drive circuit for pulse oximetry and method for using same
8374665, Apr 21 2007 Masimo Corporation Tissue profile wellness monitor
8374688, Sep 14 2007 MEDTRONIC MONITORING, INC System and methods for wireless body fluid monitoring
8385995, Aug 28 2003 JPMorgan Chase Bank, National Association Physiological parameter tracking system
8385996, Mar 01 2005 CERCACOR LABORATORIES, INC Multiple wavelength sensor emitters
8386002, Sep 30 2005 Covidien LP Optically aligned pulse oximetry sensor and technique for using the same
8391941, Jul 17 2009 Covidien LP System and method for memory switching for multiple configuration medical sensor
8396527, Sep 22 2006 Covidien LP Medical sensor for reducing signal artifacts and technique for using the same
8399822, Aug 26 1999 JPMorgan Chase Bank, National Association Systems and methods for indicating an amount of use of a sensor
8401602, Oct 13 2008 JPMorgan Chase Bank, National Association Secondary-emitter sensor position indicator
8405608, Jan 25 1999 JPMorgan Chase Bank, National Association System and method for altering a display mode
8412317, Apr 18 2008 MEDTRONIC MONITORING, INC Method and apparatus to measure bioelectric impedance of patient tissue
8414499, Dec 09 2006 JPMorgan Chase Bank, National Association Plethysmograph variability processor
8417309, Sep 30 2008 Covidien LP Medical sensor
8417310, Aug 10 2009 Covidien LP Digital switching in multi-site sensor
8418524, Jun 12 2009 JPMorgan Chase Bank, National Association Non-invasive sensor calibration device
8423106, Jul 07 2004 Masimo Corporation Multi-wavelength physiological monitor
8423112, Sep 30 2008 Covidien LP Medical sensor and technique for using the same
8428675, Aug 19 2009 Covidien LP Nanofiber adhesives used in medical devices
8428967, Sep 14 2009 Cercacor Laboratories, Inc. Spot check monitor credit system
8430817, Oct 15 2009 JPMorgan Chase Bank, National Association System for determining confidence in respiratory rate measurements
8437822, Mar 28 2008 Covidien LP System and method for estimating blood analyte concentration
8437825, Jul 03 2008 Masimo Corporation Contoured protrusion for improving spectroscopic measurement of blood constituents
8437826, May 02 2006 Covidien LP Clip-style medical sensor and technique for using the same
8442608, Dec 28 2007 Covidien LP System and method for estimating physiological parameters by deconvolving artifacts
8447374, Dec 04 2002 Masimo Corporation Systems and methods for determining blood oxygen saturation values using complex number encoding
8452364, Dec 28 2007 Covidien LP System and method for attaching a sensor to a patient's skin
8452366, Mar 16 2009 Covidien LP Medical monitoring device with flexible circuitry
8457703, Jul 02 2001 JPMorgan Chase Bank, National Association Low power pulse oximeter
8457707, Sep 20 2006 JPMorgan Chase Bank, National Association Congenital heart disease monitor
8460189, Sep 14 2007 MEDTRONIC MONITORING, INC Adherent cardiac monitor with advanced sensing capabilities
8463349, Oct 07 1994 JPMorgan Chase Bank, National Association Signal processing apparatus
8471713, Jul 24 2009 Masimo Corporation Interference detector for patient monitor
8473020, Jul 29 2009 Masimo Corporation Non-invasive physiological sensor cover
8478376, Jul 30 2009 NELLCOR PURITAN BENNETT IRELAND Systems and methods for determining physiological information using selective transform data
8478538, May 07 2009 NELLCOR PURITAN BENNETT IRELAND Selection of signal regions for parameter extraction
8483787, Mar 01 2005 Cercacor Laboratories, Inc. Multiple wavelength sensor drivers
8483788, Feb 28 2010 Covidien LP Motion compensation in a sensor
8483790, Oct 18 2002 Covidien LP Non-adhesive oximeter sensor for sensitive skin
8489364, Jun 05 2000 JPMorgan Chase Bank, National Association Variable indication estimator
8494786, Jul 30 2009 Covidien LP Exponential sampling of red and infrared signals
8498684, Jun 29 2001 JPMorgan Chase Bank, National Association Sine saturation transform
8505821, Jun 30 2009 Covidien LP System and method for providing sensor quality assurance
8509869, May 15 2009 Covidien LP Method and apparatus for detecting and analyzing variations in a physiologic parameter
8515509, Aug 04 2008 CERCACOR LABORATORIES, INC Multi-stream emitter for noninvasive measurement of blood constituents
8528185, Aug 08 2005 Covidien LP Bi-stable medical sensor and technique for using the same
8529301, Oct 12 2007 JPMorgan Chase Bank, National Association Shielded connector assembly
8532727, Jan 25 1999 JPMorgan Chase Bank, National Association Dual-mode pulse oximeter
8532728, Mar 25 1999 JPMorgan Chase Bank, National Association Pulse oximeter probe-off detector
8532932, Jun 30 2008 NELLCOR PURITAN BENNETT IRELAND Consistent signal selection by signal segment selection techniques
8547209, Jul 29 2008 JPMorgan Chase Bank, National Association Alarm suspend system
8548548, Mar 25 2002 JPMorgan Chase Bank, National Association Physiological measurement communications adapter
8548549, Aug 11 2004 Masimo Corporation Methods for noninvasively measuring analyte levels in a subject
8548550, Nov 29 2005 Masimo Corporation Optical sensor including disposable and reusable elements
8560032, Mar 01 2005 Cercacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
8560034, Oct 06 1993 JPMorgan Chase Bank, National Association Signal processing apparatus
8570167, Jan 24 2002 JPMorgan Chase Bank, National Association Physiological trend monitor
8570503, Aug 04 2008 Masimo Corporation Heat sink for noninvasive medical sensor
8571617, Mar 04 2008 Masimo Corporation Flowometry in optical coherence tomography for analyte level estimation
8571618, Sep 28 2009 MASIMO LABORATORIES, INC Adaptive calibration system for spectrophotometric measurements
8571619, May 20 2009 JPMorgan Chase Bank, National Association Hemoglobin display and patient treatment
8577431, Jul 03 2008 Masimo Corporation Noise shielding for a noninvasive device
8577434, Dec 27 2007 Covidien LP Coaxial LED light sources
8577436, Aug 22 2006 Covidien LP Medical sensor for reducing signal artifacts and technique for using the same
8581732, Mar 01 2005 Carcacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
8584345, Mar 08 2010 JPMorgan Chase Bank, National Association Reprocessing of a physiological sensor
8588880, Feb 16 2009 JPMorgan Chase Bank, National Association Ear sensor
8591430, Sep 14 2007 MEDTRONIC MONITORING, INC Adherent device for respiratory monitoring
8600467, Nov 29 2006 MASIMO LABORATORIES, INC Optical sensor including disposable and reusable elements
8600469, Sep 29 2005 Covidien LP Medical sensor and technique for using the same
8606342, Feb 22 2002 Masimo Corporation Pulse and active pulse spectraphotometry
8626255, Mar 01 2005 Masimo Corporation Noninvasive multi-parameter patient monitor
8630691, Aug 04 2008 Masimo Corporation Multi-stream sensor front ends for noninvasive measurement of blood constituents
8634889, Mar 01 2005 CERCACOR LABORATORIES, INC Configurable physiological measurement system
8634891, May 20 2009 Covidien LP Method and system for self regulation of sensor component contact pressure
8636667, Jul 06 2009 NELLCOR PURITAN BENNETT IRELAND Systems and methods for processing physiological signals in wavelet space
8641631, Apr 08 2004 JPMorgan Chase Bank, National Association Non-invasive monitoring of respiratory rate, heart rate and apnea
8649839, Oct 10 1996 Covidien LP Motion compatible sensor for non-invasive optical blood analysis
8652060, Jan 20 2007 JPMorgan Chase Bank, National Association Perfusion trend indicator
8660626, Sep 28 2006 Covidien LP System and method for mitigating interference in pulse oximetry
8663107, May 15 2006 Masimo Corporation Sepsis monitor
8666468, May 06 2010 Masimo Corporation Patient monitor for determining microcirculation state
8667967, May 31 2006 JPMorgan Chase Bank, National Association Respiratory monitoring
8670811, Jun 30 2009 JPMorgan Chase Bank, National Association Pulse oximetry system for adjusting medical ventilation
8670814, Oct 16 1995 JPMorgan Chase Bank, National Association Low-noise optical probes for reducing ambient noise
8676286, Jul 08 2003 Cercacor Laboratories, Inc. Method and apparatus for reducing coupling between signals in a measurement system
8682407, Jul 09 2004 JPMorgan Chase Bank, National Association Cyanotic infant sensor
8684925, Sep 14 2007 MEDTRONIC MONITORING, INC Injectable device for physiological monitoring
8688183, Sep 03 2009 Masimo Corporation Emitter driver for noninvasive patient monitor
8690799, Oct 15 2009 JPMorgan Chase Bank, National Association Acoustic respiratory monitoring sensor having multiple sensing elements
8700112, Oct 13 2008 JPMorgan Chase Bank, National Association Secondary-emitter sensor position indicator
8702627, Oct 15 2009 JPMorgan Chase Bank, National Association Acoustic respiratory monitoring sensor having multiple sensing elements
8706179, Oct 15 1998 JPMorgan Chase Bank, National Association Reusable pulse oximeter probe and disposable bandage apparatii
8712494, May 03 2010 Masimo Corporation Reflective non-invasive sensor
8715206, Oct 15 2009 JPMorgan Chase Bank, National Association Acoustic patient sensor
8718735, Mar 01 2005 Cercacor Laboratories, Inc. Physiological parameter confidence measure
8718737, Apr 14 1997 JPMorgan Chase Bank, National Association Method and apparatus for demodulating signals in a pulse oximetry system
8718752, Mar 12 2008 MEDTRONIC MONITORING, INC Heart failure decompensation prediction based on cardiac rhythm
8720249, May 12 2009 JPMorgan Chase Bank, National Association Non-invasive sensor calibration device
8721541, Jun 03 1998 JPMorgan Chase Bank, National Association Physiological monitor
8721542, Mar 08 2004 JPMorgan Chase Bank, National Association Physiological parameter system
8723677, Oct 20 2010 Masimo Corporation Patient safety system with automatically adjusting bed
8740792, Jul 12 2010 Masimo Corporation Patient monitor capable of accounting for environmental conditions
8740816, Dec 30 2008 Masimo Corporation Acoustic sensor assembly
8750980, Apr 05 2010 Corventis, Inc. Method and apparatus for personalized physiologic parameters
8754776, Jul 24 2009 Masimo Corporation Interference detector for patient monitor
8755535, Oct 15 2009 JPMorgan Chase Bank, National Association Acoustic respiratory monitoring sensor having multiple sensing elements
8755856, Oct 07 1994 JPMorgan Chase Bank, National Association Signal processing apparatus
8755872, Jul 28 2011 Masimo Corporation Patient monitoring system for indicating an abnormal condition
8761850, Oct 13 2008 JPMorgan Chase Bank, National Association Reflection-detector sensor position indicator
8764671, Jun 28 2007 JPMorgan Chase Bank, National Association Disposable active pulse sensor
8768423, Mar 04 2008 Masimo Corporation Multispot monitoring for use in optical coherence tomography
8771204, Dec 30 2008 JPMorgan Chase Bank, National Association Acoustic sensor assembly
8781543, Jun 07 1995 JPMorgan Chase Bank, National Association Manual and automatic probe calibration
8781544, Mar 27 2007 CERCACOR LABORATORIES, INC Multiple wavelength optical sensor
8781549, Jan 24 2003 Masimo Corporation Noninvasive oximetry optical sensor including disposable and reusable elements
8788003, Aug 11 2004 Masimo Corporation Monitoring blood constituent levels in biological tissue
8790257, Sep 14 2007 MEDTRONIC MONITORING, INC Multi-sensor patient monitor to detect impending cardiac decompensation
8790259, Oct 22 2009 MEDTRONIC MONITORING, INC Method and apparatus for remote detection and monitoring of functional chronotropic incompetence
8801613, Dec 04 2009 JPMorgan Chase Bank, National Association Calibration for multi-stage physiological monitors
8821397, Sep 28 2010 JPMorgan Chase Bank, National Association Depth of consciousness monitor including oximeter
8821415, Oct 15 2009 JPMorgan Chase Bank, National Association Physiological acoustic monitoring system
8830449, Apr 18 2011 Masimo Corporation Blood analysis system
8831700, Mar 17 2006 Masimo Corporation Apparatus and method for creating a stable optical interface
8840549, Sep 22 2006 Masimo Corporation Modular patient monitor
8845543, Apr 14 1997 Masimo Corporation Signal processing apparatus and method
8847740, Jul 29 2008 Masimo Corporation Alarm suspend system
8849365, Mar 01 2005 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
8852094, Dec 22 2006 JPMorgan Chase Bank, National Association Physiological parameter system
8868150, Nov 29 2005 Masimo Corporation Optical sensor including disposable and reusable elements
8870792, Oct 15 2009 JPMorgan Chase Bank, National Association Physiological acoustic monitoring system
8886271, Jul 29 2009 Masimo Corporation Non-invasive physiological sensor cover
8888539, Oct 12 2007 Masimo Corporation Shielded connector assembly
8888708, Apr 14 1997 JPMorgan Chase Bank, National Association Signal processing apparatus and method
8892180, Jun 29 2001 JPMorgan Chase Bank, National Association Sine saturation transform
8897847, Mar 23 2009 JPMorgan Chase Bank, National Association Digit gauge for noninvasive optical sensor
8897850, Dec 31 2007 Covidien LP Sensor with integrated living hinge and spring
8897868, Sep 14 2007 MEDTRONIC MONITORING, INC Medical device automatic start-up upon contact to patient tissue
8909310, Aug 04 2008 Masimo Corporation Multi-stream sensor front ends for noninvasive measurement of blood constituents
8911377, Sep 15 2008 JPMorgan Chase Bank, National Association Patient monitor including multi-parameter graphical display
8912909, Mar 01 2005 Cercacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
8914088, Sep 30 2008 Covidien LP Medical sensor and technique for using the same
8920317, Jul 25 2003 Masimo Corporation Multipurpose sensor port
8921699, Apr 16 2007 JPMorgan Chase Bank, National Association Low noise oximetry cable including conductive cords
8922382, Oct 12 2006 JPMorgan Chase Bank, National Association System and method for monitoring the life of a physiological sensor
8929964, Mar 01 2005 Cercacor Laboratories, Inc. Multiple wavelength sensor drivers
8932219, Mar 05 2009 NELLCOR PURITAN BENNETT IRELAND Systems and methods for monitoring heart rate and blood pressure correlation
8942777, Oct 06 1993 JPMorgan Chase Bank, National Association Signal processing apparatus
8948834, Oct 06 1993 JPMorgan Chase Bank, National Association Signal processing apparatus
8948835, Dec 04 2002 Masimo Corporation Systems and methods for determining blood oxygen saturation values using complex number encoding
8965471, Apr 21 2007 Masimo Corporation Tissue profile wellness monitor
8965473, Sep 29 2005 Covidien LP Medical sensor for reducing motion artifacts and technique for using the same
8965498, Apr 05 2010 MEDTRONIC MONITORING, INC Method and apparatus for personalized physiologic parameters
8983564, Oct 12 2006 JPMorgan Chase Bank, National Association Perfusion index smoother
8989831, May 19 2009 Masimo Corporation Disposable components for reusable physiological sensor
8996085, Oct 14 2005 JPMorgan Chase Bank, National Association Robust alarm system
8998809, May 15 2006 CERCACOR LABORATORIES, INC Systems and methods for calibrating minimally invasive and non-invasive physiological sensor devices
9010634, Jun 30 2009 Covidien LP System and method for linking patient data to a patient and providing sensor quality assurance
9028429, Dec 30 2008 Masimo Corporation Acoustic sensor assembly
9031627, Jul 15 2008 NELLCOR PURITAN BENNETT IRELAND Signal processing systems and methods using multiple signals
9037207, May 20 2009 JPMorgan Chase Bank, National Association Hemoglobin display and patient treatment
9060721, Mar 04 2008 Masimo Corporation Flowometry in optical coherence tomography for analyte level estimation
9066666, Feb 25 2011 Masimo Corporation Patient monitor for monitoring microcirculation
9066680, Oct 15 2009 Masimo Corporation System for determining confidence in respiratory rate measurements
9066691, Jul 15 2008 NELLCOR PURITAN BENNETT IRELAND Using a continuous wavelet transform to generate a reference signal
9072474, Nov 05 2003 JPMorgan Chase Bank, National Association Pulse oximeter access apparatus and method
9078560, Aug 11 2004 Masimo Corporation Method for data reduction and calibration of an OCT-based physiological monitor
9084569, Jul 08 2003 Cercacor Laboratories, Inc. Method and apparatus for reducing coupling between signals in a measurement system
9095316, Apr 20 2011 JPMorgan Chase Bank, National Association System for generating alarms based on alarm patterns
9106038, Oct 15 2009 JPMorgan Chase Bank, National Association Pulse oximetry system with low noise cable hub
9107625, May 05 2008 JPMorgan Chase Bank, National Association Pulse oximetry system with electrical decoupling circuitry
9107626, Oct 12 2006 Masimo Corporation System and method for monitoring the life of a physiological sensor
9113831, Mar 25 2002 Masimo Corporation Physiological measurement communications adapter
9113832, Mar 25 2002 Masimo Corporation Wrist-mounted physiological measurement device
9119595, Oct 13 2008 Masimo Corporation Reflection-detector sensor position indicator
9131881, Apr 17 2012 JPMorgan Chase Bank, National Association Hypersaturation index
9131882, Mar 01 2005 Cercacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
9131883, Jan 24 2002 Masimo Corporation Physiological trend monitor
9131917, Dec 30 2008 Masimo Corporation Acoustic sensor assembly
9138180, May 03 2010 Masimo Corporation Sensor adapter cable
9138182, Nov 29 2006 Cercacor Laboratories, Inc. Optical sensor including disposable and reusable elements
9138192, Jun 05 2000 JPMorgan Chase Bank, National Association Variable indication estimator
9142117, Oct 12 2007 JPMorgan Chase Bank, National Association Systems and methods for storing, analyzing, retrieving and displaying streaming medical data
9153112, Dec 21 2009 Masimo Corporation Modular patient monitor
9153121, Jul 29 2008 Masimo Corporation Alarm suspend system
9161696, Sep 22 2006 Masimo Corporation Modular patient monitor
9161713, Mar 04 2004 JPMorgan Chase Bank, National Association Multi-mode patient monitor configured to self-configure for a selected or determined mode of operation
9167995, Mar 01 2005 Cercacor Laboratories, Inc. Physiological parameter confidence measure
9173615, Apr 05 2010 Medtronic Monitoring, Inc. Method and apparatus for personalized physiologic parameters
9176141, May 15 2006 Cercacor Laboratories, Inc. Physiological monitor calibration system
9186089, Sep 14 2007 MEDTRONIC MONITORING, INC Injectable physiological monitoring system
9186102, Sep 03 2009 Masimo Corporation Emitter driver for noninvasive patient monitor
9192312, May 06 2010 Masimo Corporation Patient monitor for determining microcirculation state
9192329, Oct 12 2006 JPMorgan Chase Bank, National Association Variable mode pulse indicator
9192336, Feb 27 2003 NELLCOR PURITAN BENNETT IRELAND Method of analyzing and processing signals
9192351, Jul 22 2011 Masimo Corporation Acoustic respiratory monitoring sensor with probe-off detection
9195385, Mar 25 2012 JPMorgan Chase Bank, National Association Physiological monitor touchscreen interface
9198616, Feb 27 2003 NELLCOR PURITAN BENNETT IRELAND Method of analyzing and processing signals
9211072, Jun 28 2007 Masimo Corporation Disposable active pulse sensor
9211095, Oct 13 2010 Masimo Corporation Physiological measurement logic engine
9218454, Mar 04 2009 Masimo Corporation Medical monitoring system
9220459, Feb 27 2003 NELLCOR PURITAN BENNETT IRELAND Method of analyzing and processing signals
9220460, Feb 27 2003 NELLCOR PURITAN BENNETT IRELAND Method of analyzing and processing signals
9226696, Oct 20 2010 Masimo Corporation Patient safety system with automatically adjusting bed
9241662, Mar 01 2005 Cercacor Laboratories, Inc. Configurable physiological measurement system
9245668, Jun 29 2011 Masimo Corporation Low noise cable providing communication between electronic sensor components and patient monitor
9259185, Feb 16 2009 Masimo Corporation Ear sensor
9277880, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
9289167, Apr 14 1997 JPMorgan Chase Bank, National Association Signal processing apparatus and method
9295421, Jul 29 2009 Masimo Corporation Non-invasive physiological sensor cover
9307928, Mar 30 2010 Masimo Corporation Plethysmographic respiration processor
9323894, Aug 19 2011 JPMorgan Chase Bank, National Association Health care sanitation monitoring system
9326712, Jun 02 2010 Masimo Corporation Opticoustic sensor
9333316, Jan 17 2006 JPMorgan Chase Bank, National Association Drug administration controller
9339220, Jul 07 2004 Masimo Corporation Multi-wavelength physiological monitor
9341565, Jul 07 2004 Masimo Corporation Multiple-wavelength physiological monitor
9351673, Apr 14 1997 Masimo Corporation Method and apparatus for demodulating signals in a pulse oximetry system
9351675, Mar 01 2005 Cercacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
9364181, Jan 08 2002 JPMorgan Chase Bank, National Association Physiological sensor combination
9370325, May 20 2009 Apple Inc Hemoglobin display and patient treatment
9370326, Oct 12 2006 Masimo Corporation Oximeter probe off indicator defining probe off space
9370335, Oct 15 2009 Masimo Corporation Physiological acoustic monitoring system
9375185, Jan 25 1999 JPMorgan Chase Bank, National Association Systems and methods for acquiring calibration data usable in a pulse oximeter
9380969, Jul 30 2009 Covidien LP Systems and methods for varying a sampling rate of a signal
9386953, Dec 09 1999 JPMorgan Chase Bank, National Association Method of sterilizing a reusable portion of a noninvasive optical probe
9386961, Oct 15 2009 Masimo Corporation Physiological acoustic monitoring system
9392945, Jan 04 2012 JPMorgan Chase Bank, National Association Automated CCHD screening and detection
9392975, Jun 30 2008 NELLCOR PURITAN BENNETT IRELAND Consistent signal selection by signal segment selection techniques
9397448, Oct 12 2007 Masimo Corporation Shielded connector assembly
9408542, Jul 22 2010 Masimo Corporation Non-invasive blood pressure measurement system
9411936, Sep 14 2007 MEDTRONIC MONITORING, INC Dynamic pairing of patients to data collection gateways
9436645, Oct 13 2011 Masimo Corporation Medical monitoring hub
9445759, Dec 22 2011 CERCACOR LABORATORIES, INC Blood glucose calibration system
9451897, Dec 14 2009 MEDTRONIC MONITORING, INC Body adherent patch with electronics for physiologic monitoring
9474474, Mar 14 2013 Masimo Corporation Patient monitor as a minimally invasive glucometer
9480422, Jul 09 2004 Masimo Corporation Cyanotic infant sensor
9480435, Feb 09 2012 Masimo Corporation Configurable patient monitoring system
9492110, Jun 03 1998 Masimo Corporation Physiological monitor
9510779, Sep 17 2009 Masimo Corporation Analyte monitoring using one or more accelerometers
9517024, Sep 17 2009 Masimo Corporation Optical-based physiological monitoring system
9532722, Jun 21 2011 Masimo Corporation Patient monitoring system
9538949, Sep 28 2010 Masimo Corporation Depth of consciousness monitor including oximeter
9538960, Sep 14 2007 Medtronic Monitoring, Inc. Injectable physiological monitoring system
9538980, Oct 15 2009 Masimo Corporation Acoustic respiratory monitoring sensor having multiple sensing elements
9549696, Mar 01 2005 Cercacor Laboratories, Inc. Physiological parameter confidence measure
9554737, Aug 11 2004 Masimo Corporation Noninvasively measuring analyte levels in a subject
9560996, Oct 30 2012 Masimo Corporation Universal medical system
9560998, Oct 12 2006 Masimo Corporation System and method for monitoring the life of a physiological sensor
9566019, May 31 2006 Masimo Corporation Respiratory monitoring
9579020, Sep 14 2007 MEDTRONIC MONITORING, INC Adherent cardiac monitor with advanced sensing capabilities
9579039, Jan 10 2011 JPMorgan Chase Bank, National Association Non-invasive intravascular volume index monitor
9579050, Jan 24 2002 Masimo Corporation Physiological trend monitor
9591975, Jul 03 2008 Masimo Corporation Contoured protrusion for improving spectroscopic measurement of blood constituents
9615757, Oct 22 2009 MEDTRONIC MONITORING, INC Method and apparatus for remote detection and monitoring of functional chronotropic incompetence
9622692, May 16 2011 Masimo Corporation Personal health device
9622693, Dec 04 2002 Masimo Corporation Systems and methods for determining blood oxygen saturation values using complex number encoding
9636055, Jan 07 1999 JPMorgan Chase Bank, National Association Pulse and confidence indicator displayed proximate plethysmograph
9636056, Jan 24 2002 Masimo Corporation Physiological trend monitor
9649054, Aug 26 2010 Masimo Corporation Blood pressure measurement method
9662052, Mar 08 2010 Masimo Corporation Reprocessing of a physiological sensor
9668679, Aug 11 2004 Masimo Corporation Method for data reduction and calibration of an OCT-based physiological monitor
9668680, Sep 03 2009 Masimo Corporation Emitter driver for noninvasive patient monitor
9675286, Dec 30 1998 JPMorgan Chase Bank, National Association Plethysmograph pulse recognition processor
9687160, Sep 20 2006 JPMorgan Chase Bank, National Association Congenital heart disease monitor
9693719, Jan 24 2003 Masimo Corporation Noninvasive oximetry optical sensor including disposable and reusable elements
9693737, Oct 13 2010 Masimo Corporation Physiological measurement logic engine
9697928, Aug 01 2012 Masimo Corporation Automated assembly sensor cable
9717425, Jul 03 2008 Masimo Corporation Noise shielding for a noninvaise device
9717458, Oct 20 2012 Masimo Corporation Magnetic-flap optical sensor
9724016, Oct 16 2009 MASIMO CORP Respiration processor
9724024, Mar 01 2010 JPMorgan Chase Bank, National Association Adaptive alarm system
9724025, Jan 16 2013 Masimo Corporation Active-pulse blood analysis system
9730640, Mar 25 1999 Masimo Corporation Pulse oximeter probe-off detector
9743887, Nov 05 2003 Masimo Corporation Pulse oximeter access apparatus and method
9749232, Sep 20 2012 Masimo Corporation Intelligent medical network edge router
9750442, Mar 09 2013 Masimo Corporation Physiological status monitor
9750443, Mar 01 2005 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
9750461, Jan 02 2013 Masimo Corporation Acoustic respiratory monitoring sensor with probe-off detection
9770182, Sep 14 2007 MEDTRONIC MONITORING, INC Adherent device with multiple physiological sensors
9775545, Sep 28 2010 JPMorgan Chase Bank, National Association Magnetic electrical connector for patient monitors
9775546, Apr 17 2012 Masimo Corporation Hypersaturation index
9775570, Mar 01 2010 Masimo Corporation Adaptive alarm system
9778079, Oct 27 2011 Masimo Corporation Physiological monitor gauge panel
9782077, Aug 17 2011 Masimo Corporation Modulated physiological sensor
9782110, Jun 02 2010 Masimo Corporation Opticoustic sensor
9787568, Nov 05 2012 CERCACOR LABORATORIES, INC Physiological test credit method
9788735, Mar 25 2002 Masimo Corporation Body worn mobile medical patient monitor
9788768, Aug 28 2003 JPMorgan Chase Bank, National Association Physiological parameter tracking system
9795300, Mar 25 2002 Masimo Corporation Wearable portable patient monitor
9795310, May 06 2010 Masimo Corporation Patient monitor for determining microcirculation state
9795358, Dec 30 2008 Masimo Corporation Acoustic sensor assembly
9795739, May 20 2009 Masimo Corporation Hemoglobin display and patient treatment
9801556, Feb 25 2011 Masimo Corporation Patient monitor for monitoring microcirculation
9801588, Jul 08 2003 Cercacor Laboratories, Inc. Method and apparatus for reducing coupling between signals in a measurement system
9808188, Oct 13 2011 Masimo Corporation Robust fractional saturation determination
9814418, Jun 29 2001 Masimo Corporation Sine saturation transform
9820691, Sep 13 2007 JPMorgan Chase Bank, National Association Fluid titration system
9833152, Sep 17 2009 Masimo Corporation Optical-based physiological monitoring system
9833180, Mar 04 2008 Masimo Corporation Multispot monitoring for use in optical coherence tomography
9839379, Oct 07 2013 Masimo Corporation Regional oximetry pod
9839381, Nov 24 2009 CERCACOR LABORATORIES, INC Physiological measurement system with automatic wavelength adjustment
9847002, Dec 21 2009 Masimo Corporation Modular patient monitor
9848800, Oct 16 2009 MASIMO CORP Respiratory pause detector
9848806, Jul 02 2001 JPMorgan Chase Bank, National Association Low power pulse oximeter
9848807, Apr 21 2007 Masimo Corporation Tissue profile wellness monitor
9861304, Nov 29 2006 Cercacor Laboratories, Inc. Optical sensor including disposable and reusable elements
9861305, Oct 12 2006 Masimo Corporation Method and apparatus for calibration to reduce coupling between signals in a measurement system
9867578, Oct 15 2009 Masimo Corporation Physiological acoustic monitoring system
9872623, Mar 25 2002 Masimo Corporation Arm mountable portable patient monitor
9876320, May 03 2010 Masimo Corporation Sensor adapter cable
9877686, Oct 15 2009 Masimo Corporation System for determining confidence in respiratory rate measurements
9891079, Jul 17 2013 Masimo Corporation Pulser with double-bearing position encoder for non-invasive physiological monitoring
9895107, May 19 2009 Masimo Corporation Disposable components for reusable physiological sensor
9913617, Oct 13 2011 Masimo Corporation Medical monitoring hub
9924893, Mar 17 2006 Masimo Corporation Apparatus and method for creating a stable optical interface
9924897, Jun 12 2014 Masimo Corporation Heated reprocessing of physiological sensors
9936917, Mar 14 2013 Masimo Corporation Patient monitor placement indicator
9943269, Oct 13 2011 Masimo Corporation System for displaying medical monitoring data
9949676, Oct 12 2006 JPMorgan Chase Bank, National Association Patient monitor capable of monitoring the quality of attached probes and accessories
9955937, Sep 20 2012 Masimo Corporation Acoustic patient sensor coupler
9980667, Jul 29 2009 Masimo Corporation Non-invasive physiological sensor cover
9986919, Jun 21 2011 Masimo Corporation Patient monitoring system
9986952, Mar 14 2013 Masimo Corporation Heart sound simulator
9989560, Jul 24 2009 Masimo Corporation Interference detector for patient monitor
9993207, Oct 13 2011 Masimo Corporation Medical monitoring hub
D554263, Feb 18 2005 JPMorgan Chase Bank, National Association Portable patient monitor
D566282, Feb 18 2005 JPMorgan Chase Bank, National Association Stand for a portable patient monitor
D587657, Oct 12 2007 JPMorgan Chase Bank, National Association Connector assembly
D609193, Oct 12 2007 JPMorgan Chase Bank, National Association Connector assembly
D614305, Feb 29 2008 JPMorgan Chase Bank, National Association Connector assembly
D621516, Aug 25 2008 Masimo Corporation Patient monitoring sensor
D755392, Feb 06 2015 Masimo Corporation Pulse oximetry sensor
D788312, Feb 07 2013 Masimo Corporation Wireless patient monitoring device
D835282, Apr 28 2017 Masimo Corporation Medical monitoring device
D835283, Apr 28 2017 Masimo Corporation Medical monitoring device
D835284, Apr 28 2017 Masimo Corporation Medical monitoring device
D835285, Apr 28 2017 Masimo Corporation Medical monitoring device
D890708, Aug 15 2017 Masimo Corporation Connector
D897098, Oct 12 2018 Masimo Corporation Card holder set
D906970, Aug 15 2017 Masimo Corporation Connector
D916135, Oct 11 2018 Masimo Corporation Display screen or portion thereof with a graphical user interface
D917550, Oct 11 2018 Masimo Corporation Display screen or portion thereof with a graphical user interface
D917564, Oct 11 2018 Masimo Corporation Display screen or portion thereof with graphical user interface
D917704, Aug 16 2019 Masimo Corporation Patient monitor
D919094, Aug 16 2019 Masimo Corporation Blood pressure device
D919100, Aug 16 2019 Masimo Corporation Holder for a patient monitor
D921202, Aug 16 2019 Masimo Corporation Holder for a blood pressure device
D925597, Oct 31 2017 Masimo Corporation Display screen or portion thereof with graphical user interface
D927699, Oct 18 2019 Masimo Corporation Electrode pad
D933232, May 11 2020 Masimo Corporation Blood pressure monitor
D933233, Aug 16 2019 Masimo Corporation Blood pressure device
D933234, Aug 16 2019 Masimo Corporation Patient monitor
D950738, Oct 18 2019 Masimo Corporation Electrode pad
D965789, May 11 2020 Masimo Corporation Blood pressure monitor
D967433, Aug 16 2019 Masimo Corporation Patient monitor
D973072, Sep 30 2020 Masimo Corporation Display screen or portion thereof with graphical user interface
D973685, Sep 30 2020 Masimo Corporation Display screen or portion thereof with graphical user interface
D973686, Sep 30 2020 Masimo Corporation Display screen or portion thereof with graphical user interface
D974193, Jul 27 2020 Masimo Corporation Wearable temperature measurement device
D979516, May 11 2020 Masimo Corporation Connector
D980091, Jul 27 2020 Masimo Corporation Wearable temperature measurement device
D985498, Aug 16 2019 Masimo Corporation Connector
D989112, Sep 20 2013 Masimo Corporation Display screen or portion thereof with a graphical user interface for physiological monitoring
D989327, Oct 12 2018 Masimo Corporation Holder
ER1649,
ER1777,
ER2016,
ER2198,
ER31,
ER3807,
ER419,
ER5816,
ER5918,
ER612,
ER6654,
ER6678,
ER6997,
ER7053,
ER8765,
ER9655,
RE41317, Oct 15 1998 JPMorgan Chase Bank, National Association Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices
RE41912, Oct 15 1998 JPMorgan Chase Bank, National Association Reusable pulse oximeter probe and disposable bandage apparatus
RE42753, Jun 07 1995 Masimo Corporation Active pulse blood constituent monitoring
RE43169, Oct 15 1998 JPMorgan Chase Bank, National Association Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices
RE43860, Oct 15 1998 JPMorgan Chase Bank, National Association Reusable pulse oximeter probe and disposable bandage apparatus
RE44823, Oct 15 1998 Masimo Corporation Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices
RE44875, Jun 07 1995 Masimo Corporation Active pulse blood constituent monitoring
RE47218, Mar 01 2010 Masimo Corporation Adaptive alarm system
RE47244, Jul 29 2008 Masimo Corporation Alarm suspend system
RE47249, Jul 29 2008 Masimo Corporation Alarm suspend system
RE47353, Jul 29 2008 Masimo Corporation Alarm suspend system
RE47882, Mar 01 2010 Masimo Corporation Adaptive alarm system
RE49007, Mar 01 2010 Masimo Corporation Adaptive alarm system
RE49034, Jan 24 2002 Masimo Corporation Physiological trend monitor
Patent Priority Assignee Title
3638640,
3647299,
3704706,
3991277, Feb 15 1973 Frequency division multiplex system using comb filters
3998550, Oct 14 1974 Minolta Camera Corporation Photoelectric oximeter
4038536, Mar 29 1976 Rockwell International Corporation Adaptive recursive least mean square error filter
4063551, Apr 06 1976 Unisen, Inc. Blood pulse sensor and readout
4086915, Apr 30 1975 SMITHS INDUSTRIES MEDICAL SYSTEMS, INC Ear oximetry process and apparatus
4095117, Jun 30 1974 Medicor Muvek Circuit for defining the dye dilution curves in vivo and in vitro for calculating the cardiac blood flowrate value per minute
4238746, Mar 20 1978 The United States of America as represented by the Secretary of the Navy Adaptive line enhancer
4243935, May 18 1979 The United States of America as represented by the Secretary of the Navy Adaptive detector
4266554, Jun 22 1978 Minolta Camera Kabushiki Kaisha Digital oximeter
4305398, Aug 22 1979 MINOLTA CAMERA KABUSHIKI KAISHA, A CORP OF JAPAN Eye fundus oximeter
4407290, Apr 01 1981 BOC GROUP, INC THE, 100 MOUNTAIN AVENUE, MURRAY HILL, NEW PROVIDENCE, NEW JERSEY, 07974, A CORP OF DE Blood constituent measuring device and method
4446871, Jan 25 1980 Minolta Kabushiki Kaisha Optical analyzer for measuring a construction ratio between components in the living tissue
4519396, Mar 30 1979 AHP LEASING, INC ; COROMETRICS MEDICAL SYSTEMS, INC ; AHP SUBSIDIARY HOLDING CORPORATION Fetal heart rate monitor apparatus and method for combining electrically and mechanically derived cardiographic signals
4537200, Jul 07 1983 The Board of Trustees of the Leland Stanford Junior University ECG enhancement by adaptive cancellation of electrosurgical interference
4586513, Feb 19 1982 Minolta Camera Kabushiki Kaisha Noninvasive device for photoelectrically measuring the property of arterial blood
4617589, Dec 17 1984 RCA LICENSING CORPORATION, TWO INDEPENDENCE WAY, PRINCETON, NJ 08540, A CORP OF DE Adaptive frame comb filter system
4649505, Jul 02 1984 Ericsson Inc Two-input crosstalk-resistant adaptive noise canceller
4653498, Sep 02 1982 Nellcor Puritan Bennett Incorporated Pulse oximeter monitor
4694833, Feb 19 1982 Minolta Camera Kabushiki Kaisha Noninvasive device for photoelectrically measuring the property of arterial blood
4714341, Feb 23 1984 Minolta Camera Kabushiki Kaisha Multi-wavelength oximeter having a means for disregarding a poor signal
4751931, Sep 22 1986 Allegheny-Singer Research Institute Method and apparatus for determining his-purkinje activity
4773422, Apr 30 1987 FIRST BANK NATIONAL ASSOCIATION Single channel pulse oximeter
4781200, Oct 04 1985 Ambulatory non-invasive automatic fetal monitoring system
4799493, Mar 13 1987 Cardiac Pacemakers, Inc. Dual channel coherent fibrillation detection system
4800495, Aug 18 1986 Nellcor Puritan Bennett Method and apparatus for processing signals used in oximetry
4802486, Apr 01 1985 Nellcor Puritan Bennett Incorporated Method and apparatus for detecting optical pulses
4807631, Oct 09 1987 CRITIKON COMPANY, L L C Pulse oximetry system
4819646, Aug 18 1986 Nellcor Puritan Bennett Feedback-controlled method and apparatus for processing signals used in oximetry
4824242, Sep 26 1986 SensorMedics Corporation Non-invasive oximeter and method
4848901, Oct 08 1987 CRITIKON COMPANY, L L C Pulse oximeter sensor control system
4858199, Sep 06 1988 Mobile Oil Corporation Method and apparatus for cancelling nonstationary sinusoidal noise from seismic data
4859056, Aug 18 1986 Nellcor Puritan Bennett Multiple-pulse method and apparatus for use in oximetry
4860759, Sep 08 1987 INDUSIND BANK LIMITED Vital signs monitor
4863265, Oct 16 1987 Mine Safety Applicances Company Apparatus and method for measuring blood constituents
4867571, Sep 26 1986 SensorMedics Corporation Wave form filter pulse detector and method for modulated signal
4869253, Aug 18 1986 Nellcor Puritan Bennett Method and apparatus for indicating perfusion and oxygen saturation trends in oximetry
4869254, Mar 30 1988 Nellcor Puritan Bennett Incorporated Method and apparatus for calculating arterial oxygen saturation
4883353, Feb 11 1988 Puritan-Bennett Corporation Pulse oximeter
4883356, Sep 13 1988 The Perkin-Elmer Corporation Spectrometer detector mounting assembly
4892101, Aug 18 1986 Nellcor Puritan Bennett Method and apparatus for offsetting baseline portion of oximeter signal
4907594, Jul 18 1987 Nicolay GmbH Method for the determination of the saturation of the blood of a living organism with oxygen and electronic circuit for performing this method
4911167, Apr 01 1985 Nellcor Puritan Bennett Incorporated Method and apparatus for detecting optical pulses
4913150, Aug 18 1986 Nellcor Puritan Bennett Method and apparatus for the automatic calibration of signals employed in oximetry
4927264, Dec 02 1987 Omron Tateisi Electronics Co. Non-invasive measuring method and apparatus of blood constituents
4928692, Apr 01 1985 Nellcor Puritan Bennett Incorporated Method and apparatus for detecting optical pulses
4934372, Apr 01 1985 Nellcor Puritan Bennett Incorporated Method and apparatus for detecting optical pulses
4942877, Sep 05 1986 Minolta Camera Kabushiki Kaisha Device for measuring oxygen saturation degree in arterial blood
4948248, Jul 22 1988 Invivo Research Inc. Blood constituent measuring device and method
4955379, Aug 14 1987 NATIONAL RESEARCH DEVELOPMENT CORPORATION, A BRITISH CORP Motion artefact rejection system for pulse oximeters
4956867, Apr 20 1989 Massachusetts Institute of Technology Adaptive beamforming for noise reduction
4960126, Jan 15 1988 INDUSIND BANK LIMITED ECG synchronized pulse oximeter
5042499, Sep 30 1988 UPS AVIATION TECHNOLOGIES, INC Noninvasive electrocardiographic method of real time signal processing for obtaining and displaying instantaneous fetal heart rate and fetal heart rate beat-to-beat variability
5057695, Dec 19 1988 Otsuka Electronics Co., Ltd. Method of and apparatus for measuring the inside information of substance with the use of light scattering
5246002, Feb 11 1992 Nellcor Puritan Bennett Noise insensitive pulse transmittance oximeter
5259381, Aug 18 1986 Nellcor Puritan Bennett Apparatus for the automatic calibration of signals employed in oximetry
5273036, Apr 03 1991 E FOR M CORPORATION Apparatus and method for monitoring respiration
5431170, May 26 1990 JPMorgan Chase Bank, National Association Pulse responsive device
5482036, Mar 07 1991 JPMorgan Chase Bank, National Association Signal processing apparatus and method
5490505, Oct 06 1993 JPMorgan Chase Bank, National Association Signal processing apparatus
5769785, Mar 07 1991 JPMorgan Chase Bank, National Association Signal processing apparatus and method
5842981, Jul 17 1996 INDUSIND BANK LIMITED Direct to digital oximeter
DE3323862,
EP335357,
EP341327,
EP760223,
EP761159,
GB2166326,
GB2235288,
///////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Mar 11 2002Masimo Corporation(assignment on the face of the patent)
Apr 23 2014Masimo CorporationJPMorgan Chase Bank, National AssociationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0327840864 pdf
Apr 23 2014MASIMO AMERICAS, INC JPMorgan Chase Bank, National AssociationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0327840864 pdf
Apr 23 2014MASIMO AMERICAS, INC JPMorgan Chase Bank, National AssociationCORRECTIVE ASSIGNMENT TO CORRECT THE NATURE OF CONVEYANCE PREVIOUSLY RECORDED AT REEL: 032784 FRAME: 0864 ASSIGNOR S HEREBY CONFIRMS THE SECURITY AGREEMENT 0330320426 pdf
Apr 23 2014Masimo CorporationJPMorgan Chase Bank, National AssociationCORRECTIVE ASSIGNMENT TO CORRECT THE NATURE OF CONVEYANCE PREVIOUSLY RECORDED AT REEL: 032784 FRAME: 0864 ASSIGNOR S HEREBY CONFIRMS THE SECURITY AGREEMENT 0330320426 pdf
Apr 05 2018JPMorgan Chase Bank, National AssociationMasimo CorporationRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0474430109 pdf
Apr 05 2018JPMorgan Chase Bank, National AssociationMASIMO AMERICAS, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0474430109 pdf
Date Maintenance Fee Events
Sep 14 2007M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Oct 24 2011REM: Maintenance Fee Reminder Mailed.
Mar 09 2012EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Apr 06 20074 years fee payment window open
Oct 06 20076 months grace period start (w surcharge)
Apr 06 2008patent expiry (for year 4)
Apr 06 20102 years to revive unintentionally abandoned end. (for year 4)
Apr 06 20118 years fee payment window open
Oct 06 20116 months grace period start (w surcharge)
Apr 06 2012patent expiry (for year 8)
Apr 06 20142 years to revive unintentionally abandoned end. (for year 8)
Apr 06 201512 years fee payment window open
Oct 06 20156 months grace period start (w surcharge)
Apr 06 2016patent expiry (for year 12)
Apr 06 20182 years to revive unintentionally abandoned end. (for year 12)