A blood constituent monitoring method for inducing an active pulse in the blood volume of a patient. The induction of an active pulse results in a cyclic, and periodic change in the flow of blood through a fleshy medium under test. By actively inducing a change of the blood volume, modulation of the volume of blood can be obtained to provide a greater signal to noise ratio. This allows for the detection of constituents in blood at concentration levels below those previously detectable in a non-invasive system. Radiation which passes through the fleshy medium is detected by a detector which generates a signal indicative of the intensity of the detected radiation. signal processing is performed on the electrical signal to isolate those optical characteristics of the electrical signal due to the optical characteristics of the blood.

Patent
   RE42753
Priority
Jun 07 1995
Filed
Jul 02 2009
Issued
Sep 27 2011
Expiry
Jun 07 2015
Assg.orig
Entity
Large
640
195
EXPIRED
0. 21. A system for non-invasively monitoring a blood constituent in a living subject, said system comprising:
a light source configured to be positioned at a measurement site and further configured to irradiate a fleshy medium of a living subject with radiation at a plurality of wavelengths selected for attenuation sensitivity to at least one of a plurality of blood constituents;
an optical detector configured to be positioned at said measurement site to detect light which has been attenuated by said fleshy medium at said measurement site, said optical detector configured to generate an output signal indicative of an intensity of said radiation after attenuation through said fleshy medium;
a signal processor responsive to said output signal to analyze said output signal to extract portions of said signal due to optical characteristics of said blood to determine a level of at least one selected constituent within said subject's bloodstream; and
a pressure application device configured to be positioned at a location different from said measurement site to avoid applying direct pressure to said measurement site while causing a change in a volume of blood in the fleshy medium at said measurement site sufficient to alter said output signal to increase a likelihood that said signal processor can determine said level, wherein said change in said volume of blood comprises causing evacuation of a volume of blood at said measurement site.
0. 1. A system for non-invasively monitoring concentrations of blood constituents in a living subject, said system comprising:
a light source configured to be positioned at a measurement site and further configured to irradiate a fleshy medium of a living subject with radiation at a plurality of wavelengths selected for attenuation sensitivity to at least one of a plurality of blood constituent concentrations, said plurality of blood constituent concentrations including a glucose concentration;
an optical detector configured to be positioned at said measurement site to detect only light which has been attenuated by said fleshy medium at said measurement site, said optical detector configured to generate an output signal indicative of an intensity of said radiation after attenuation through said fleshy medium;
a signal processor responsive to said output signal to analyze said output signal to extract portions of said signal due to optical characteristics of said blood to determine a concentration of at least one selected constituent within said subject's bloodstream; and
a pressure application device configured to be positioned at a location different from said measurement site to avoid applying direct pressure to said measurement site while causing a change in a volume of blood in the fleshy medium at said measurement site sufficient to alter said output signal to increase a likelihood that said signal processor can determine at least said glucose concentration.
0. 2. The system of claim 1, wherein said change in said volume of blood alters said output signal such that a difference in said output signal at a full blood volume and said output signal at said changed output volume comprises about 1 to about 10 percent.
0. 3. The system of claim 2, wherein said difference comprises about 10 percent.
0. 4. The system of claim 1, wherein at least one of said plurality of wavelengths comprises about 660 nanometers (nm).
0. 5. The system of claim 4, wherein said at least one wavelength is selected for attenuation sensitivity to a hemoglobin concentration.
0. 6. The method of claim 1, wherein said light source comprises two or more light emitting diodes.
0. 7. A method of non-invasively monitoring concentrations of blood constituents in a living subject, said method comprising:
irradiating a fleshy medium of a living subject at a measurement site with radiation at a plurality of wavelengths selected for attenuation sensitivity to at least one of a plurality of blood constituent concentrations, said plurality, of blood constituent concentrations including a glucose concentration;
detecting at said measurement site only light which has been attenuated by said fleshy medium;
outputting a signal indicative of the intensity of said radiation after attenuation through said fleshy medium;
extracting portions of said signal due to optical characteristics of said blood to determine a concentration of at least one selected constituent within said subject's bloodstream;
using a device external to said fleshy medium, changing a volume of blood in the fleshy medium at said measurement site sufficient to alter said output signal to increase a likelihood that at least said glucose concentration can be determined without applying direct mechanical pressure to said fleshy medium at said measurement site; and
causing said glucose concentration to be displayed.
0. 8. A method of non-invasively monitoring glucose concentrations in a living subject, said method comprising:
applying pressure at a first location to a fleshy medium to increase a likelihood of determining a glucose concentration in a living subject;
detecting only light attenuated by said fleshy medium at a second location different from said first location, wherein said applying pressure does not apply direct mechanical pressure to said second location;
outputting a signal indicative of said detected attenuated light, wherein said signal includes information about said glucose concentration at a resolution differentiable from noise or other blood constituents;
determining at least said glucose concentration; and
causing said glucose concentration to be displayed.
0. 9. A system for non-invasively monitoring concentrations of blood constituents in a living subject, said system comprising:
a light source configured to be positioned at a measurement site and further configured to irradiate a fleshy medium of a living subject with radiation at a plurality of wavelengths selected for attenuation sensitivity to at least one of a plurality of blood constituent concentrations, said plurality of blood constituent concentrations including a glucose concentration, wherein said light source comprises two or more light emitting diodes;
an optical detector configured to be positioned at said measurement site to detect light which has been attenuated by said fleshy medium, said optical detector configured to generate an output signal indicative of the intensity of said radiation after attenuation through said fleshy medium;
a signal processor responsive to said output signal to analyze said output signal to extract portions of said signal due to optical characteristics of said blood to determine a concentration of at least one selected constituent within said subject's bloodstream; and
a pressure application device configured to be positioned at a location different from said measurement site to avoid applying direct pressure to said measurement site while causing a change in a volume of blood in the fleshy medium at said measurement site sufficient to alter said output signal to increase a likelihood that said signal processor can determine at least said glucose concentration.
0. 10. The system of claim 9, wherein said optical detector detects light which has been attenuated by said fleshy medium at one location.
0. 11. The system of claim 9, wherein the pressure application device comprises an inflatable bladder.
0. 12. The system of claim 9, further comprising a temperature variation element.
0. 13. The system of claim 12, wherein said temperature variation element cyclically varies the temperature of said fleshy medium in order to induce a change in the flow of blood in said fleshy medium.
0. 14. The system of claim 9, wherein said two or more light emitting diodes are configured to produce light at a plurality of wavelengths, each wavelength selected for attenuation sensitivity to determine a concentration of said at least one selected constituent.
0. 15. A method of non-invasively monitoring concentrations of blood constituents in a living subject, said method comprising:
irradiating a fleshy medium of a living subject at a measurement site with radiation at a plurality of wavelengths selected for attenuation sensitivity to at least one of a plurality of blood constituent concentrations, said plurality of blood constituent concentrations including a glucose concentration, wherein irradiating comprises using two or more light emitting diodes;
detecting at said measurement site light which has been attenuated by said fleshy medium;
outputting a signal indicative of the detected light;
extracting portions of said signal due to optical characteristics of said blood to determine a concentration of at least one selected constituent within said subject's bloodstream;
using a device external to said fleshy medium, changing a volume of blood in the fleshy medium at said measurement site sufficient to alter said output signal to increase a likelihood that at least said glucose concentration can be determined without applying direct mechanical pressure to said fleshy medium at said measurement site; and
causing said glucose concentration to be displayed.
0. 16. The method of claim 15, wherein the step of detecting further comprise detecting at said measurement site light which has been attenuated by said fleshy medium at one location.
0. 17. A method of non-invasively monitoring glucose concentrations in a living subject, said method comprising:
irradiating a fleshy medium of a living subject using two or more light emitting diodes;
applying pressure at a first location to a fleshy medium to increase a likelihood of determining a glucose concentration in a living subject;
detecting light attenuated by said fleshy medium at a second location different from said first location, wherein said applying pressure does not apply direct mechanical pressure to said fleshy medium at said second location;
outputting a signal indicative of said detected attenuated light, wherein said signal includes information about said glucose concentration at a resolution differentiable from noise or other blood constituents;
determining at least said glucose concentration; and
causing glucose concentration to be displayed.
0. 18. The method of claim 17, wherein the step of detecting further comprises detecting light attenuated through a single location of said fleshy medium.
0. 19. The method of claim 17, wherein applying pressure comprises inflating a bladder.
0. 20. The method of claim 17, further comprising cyclically varying the temperature of said fleshy medium in order to induce a change in the flow of blood in said fleshy medium.
0. 22. The system of claim 21, wherein said at least one selected constituent within said subject's bloodstream comprises glucose.
0. 23. The system of claim 21, wherein said at least one selected constituent within said subject's bloodstream comprises hemoglobin.
0. 24. The system of claim 21, wherein said at least one selected constituent within said subject's bloodstream comprises oxyhemoglobin.
0. 25. The system of claim 21, wherein said at least one selected constituent within said subject's bloodstream comprises carboxyhemoglobin.
0. 26. The system of claim 21, wherein a measure of said at least one selected constituent within said subject's bloodstream comprises oxygen saturation.
0. 27. The system of claim 21, wherein a measure of said at least one selected constituent within said subject's bloodstream comprises venous oxygen saturation.
0. 28. The system of claim 21, wherein said at least one selected constituent within said subject's bloodstream comprises protein.
0. 29. The system of claim 21, wherein said at least one selected constituent within said subject's bloodstream comprises fat.
0. 30. The system of claim 21, wherein said at least one selected constituent within said subject's bloodstream comprises cholesterol.
0. 31. The system of claim 21, wherein said at least one selected constituent within said subject's bloodstream comprises a therapeutic drug.
0. 32. The system of claim 21, wherein said at least one selected constituent within said subject's bloodstream comprises a drug of abuse.


where pl represents the path length through the medium, c represents the concentration of the substance within, the medium, ε represents the absorbtion (extinction) coefficient of the substance and lo is the initial intensity of the light from the light source. For optical media which have several constituents, the optical intensity of the light received from the illuminated medium is proportional to the exponent of the path length through the medium times the concentration of the first substance times the optical absorption coefficient associated with the first substance, plus the path length times the concentration of the second substance times the optical absorption coefficient associated with the second substance, etc. That is,
l=loe−(pl*c1*ε1+pl*c2*ε2+etc.)  (2)
where εn represents the optical absorption (extinction) coefficient of the nth constituent and cn represents the concentration of the nth constituent.

Due to the parameters required by the Beer-Lambert law, the difficulties in detecting glucose concentration arise from the difficulty in determining the exact path length through a medium (resulting from transforming the multi-path signal to an equivalent single-path signal), as well as difficulties encountered due to low signal strength resultant from a low concentration of blood glucose. Path length through a medium such as a fingertip or earlobe is very difficult to determine, because not only are optical wavelengths absorbed differently by the fleshy medium, but also the signals are scattered within the medium and transmitted through different paths. Furthermore, as indicated by the above equation (2), the measured signal intensity at a given wavelength does not vary linearly with respect to the path length. Therefore, variations in path length of multiple paths of light through the medium do not result in a linear averaging of the multiple path lengths. Thus, it is often very difficult to determine an exact path length through a fingertip or earlobe for each wavelength.

In conventional spectroscopic blood constituent measurements, such a blood oxygen saturation, light is transmitted at various wavelengths through the fleshy medium. The fleshy medium (containing blood) attenuates the incident light and the detected signal can be used to calculate certain saturation values. In conventional spectroscopic blood constituent measurements, the heart beat provides a minimal modulation to the detected attenuated signal in order to allow a computation based upon the AC portion of the detected signal with respect to the DC portion of the detected signal, as disclosed in U.S. Pat. No. 4,407,290. This AC/DC operation normalizes the signal and accounts for variations in the pathlengths, as well understood in the art.

However, the natural heart beat generally provides approximately a 1-10% modulation (AC portion of the total signal) of the detected signal when light is transmitted through a patient's digit or the like. That is, the variation in attenuation of the signal due to blood may be only 1% of the total attenuation (other attenuation being due to muscle, bone, flesh, etc.). In fact, diabetes patients typically have even lower modulation (e.g., 0.01-0.1%). Therefore, the attenuation variation (AC portion of the total attenuation) due to natural pulse can be extremely small. In addition, the portion of the pulse modulation which is due to glucose is roughly only 9% of the pulse (approximately 1/11) at a wavelength of 1330-1340 nm where glucose absorbs effectively. Furthermore, to resolve glucose from 5 mg/dl to 1005 mg/dl in increments or steps of 5 mg/dl, requires resolution of 1/200 of the 9% of the modulation which is due to glucose. Accordingly, by way of three different examples—one for a healthy individual, one for a diabetic with a strong pulse, and one for a diabetic with a weak pulse—for absorption at 1330 nm, the system would require resolution as follows.

Required Total Resolution is product of a-c: 1/100* 1/11* 1/200= 1/220,000

Required total resolution is product of a-c: 1/100* 1/11* 1/200= 1/220,000

Required total resolution is product of a-c: 1/10,000* 1/11* 1/200= 1/220,000

As seen from the above three examples which provide the range of modulation typically expected among human patients, the total resolution requirements range from 1 in 220,000 to 1 in 22,000,000 in order to detect the attenuation which is due to glucose based on the natural pulse for the three examples. This is such a small portion that accurate measurement is very difficult. In most cases, the noises accounts for a greater portion of the AC portion (natural modulation due to pulse) of the signal than the glucose, leaving glucose undetectable. Even with state of the art noise reduction processing as described in U.S. patent application Ser. No. 08/249,690, filed May 26, 1994, now U.S. Pat. No. 5,482,036, signals may be resolved to a level of approximately 1/250,000. This is for an 18-bit system. With a 16-bit system, resolution is approximately 1/65,000. In addition, LEDs are often noisy such that even if resolution in the system is available to 1/250,000, the noise from the LEDs leave glucose undetectable.

To overcome these obstacles, it has been determined that by actively inducing a change in the flow of blood in the medium under test such that the blood flow varies in a controlled manner periodically, modulation can be obtained such that the portion of the attenuated signal due to blood becomes a greater portion of the total signal than with modulation due to the natural pulse. This leads to the portion of total attenuation due to glucose in the blood being a greater portion of the total signal. In addition, the signal can be normalized to account for factors such as source brightness, detector responsiveness, tissue or bone variation. Changes in blood flow can be induced in several ways, such as physically perturbing the medium under test or changing the temperature of the medium under test. In the present embodiment, by actively inducing a pulse, a 10% modulation in attenuation ( 1/10 of the total attenuation) is obtained, regardless of the patient's natural pulse modulation (whether or not the patient is diabetic). Accordingly, at 1330 nm with actively induced changes in blood flow, the resolution required is 1/10* 1/11* 1/200 or 1/22,000 (where 1/10 is the active pulse attenuation modulation (the modulation obtained by induced blood flow changes), 1/11 is the portion of the modulation due to glucose, and 1/200 the resolution required to obtain glucose in 5 mg/dl increments from 5-1005 mg/dl). As will be understood from the discussion above, such resolution can be obtained, even in a 16 bit system. In addition, the resolution is obtainable beyond the noise floor, as described herein.

In conventional blood constituent measurement through spectroscopy, perturbation of the medium under test has been avoided because oxygen (the most commonly desired parameter) is not evenly dispersed in the arterial and venous blood. Therefore, perturbation obscures the ability to determine the arterial oxygen saturation because that venous and arterial blood become intermingled. However, glucose is evenly dispersed in blood fluids, so the mixing of venous and arterial blood and interstitial fluids should have no significant effect on the glucose measurements. It should be appreciated that this technique will be effective for any substance evenly dispersed in the body fluids (e.g., blood, interstitial fluids, etc.).

One aspect of the present invention involves a system for non-invasively monitoring a blood constituent concentration in a living subject. The system comprises a light source which emits radiation at a plurality of wavelengths and an active pulse inducement device which, independent of the natural flow of blood in the fleshy medium, causes a periodic change in the volume of blood in the fleshy medium. An optical detector positioned to detect light which has propagated through the fleshy medium is configured to generate an output signal indicative of the intensity of the radiation after attenuation through the fleshy medium. A signal processor responds to the output signal to analyze the output signal to extract portions of the signal due to optical characteristics of the blood to determine the concentration of the constituent within the subject's bloodstream.

In one embodiment, of the system further comprises a receptacle which receives the fleshy medium, the receptacle further having an inflatable bladder.

In one embodiment, the system has a temperature variation element in the receptacle, the temperature variation element varies (e.g., increases) the temperature of the fleshy medium in order to induce a change (e.g., increase) in the flow of blood in the fleshy medium.

Another aspect of the present invention involves a system for non-invasively monitoring blood glucose concentration within a patient's bloodstream. A light source emits optical radiation at a plurality of frequencies, and a sensor receives a fleshy medium of the patient, the fleshy medium having flowing blood. A fluid (e.g., blood and interstitial fluids) volume change inducement device causes a cyclic change in the volume of blood in the fleshy medium. An optical detector positioned to receive the optical radiation after transmission through a portion of the fleshy medium responds to the detection of the optical radiation to generate an output signal indicative of the intensity of the optical radiation. A signal processor coupled to the detector receives the output signal, and responds to the output signal to generate a value representative of the glucose concentration in the blood of the patient.

Yet another aspect of the present invention involves a method of non-invasively determining a concentration of a blood constituent. The method comprises a plurality of steps. Optical radiation is transmitted through a medium having flowing fluid, wherein the fluid has a concentration of the fluid constituent. A periodic change in the volume of the fluid in the medium is actively induced. The optical optical radiation after transmission through at least a portion of the medium is detected and a signal indicative of the optical characteristics of the medium is generated. The signal is analyzed to determine the concentration of the blood constituent. In one embodiment, the fluid constituent comprises blood glucose.

A further aspect of the present invention involves a method of actively varying the attenuation of optical radiation due to blood in a fleshy medium. The method comprises a plurality of steps. Optical radiation is transmitted through the fleshy medium. A periodic change in the volume of blood is actively influenced in the medium The optical radiation is detected after attenuation through the fleshy medium and an output signal indicative of the intensity of the attenuated signal is generated.

FIG. 1 depicts an embodiment of a blood glucose monitor of the present invention.

FIG. 2 depicts an example of a physiological monitor in accordance with the teachings of the present invention.

FIG. 2A illustrates an example of a low noise emitter current driver with accompanying digital to analog converter.

FIG. 2B depicts an embodiment of FIG. 2 with added function for normalizing instabilities in emitters of FIG. 2.

FIG. 2C illustrates a comparison between instabilites in selected emitters.

FIG. 3 illustrates the front end analog signal conditioning circuitry and the analog to digital conversion circuitry of the physiological monitor of FIG. 2.

FIG. 4 illustrates further detail of the digital signal processing circuitry of FIG. 2.

FIG. 5 illustrates additional detail of the operations performed by the digital signal processing circuitry of FIG. 2.

FIG. 6 illustrates additional detail regarding the demodulation module of FIG. 5.

FIG. 7 illustrates additional detail regarding the decimation module of FIG. 5. FIG.

FIG. 8 represents a more detailed block diagram of the operations of the glucose calculation module of FIG. 5.

FIG. 9 illustrates the extinction coefficient versus wavelength for several blood constituents.

FIGS. 10-12 depict one embodiment of a probe which can be used to induce an active pulse in accordance with the principals of the present invention.

FIG. 13 depicts an example of the an active pulse signal where the modulation is 10% of the entire attenuation through the finger.

FIG. 1 depicts one embodiment of a blood glucose monitor system 100 in accordance with the teachings of the present invention. The glucose monitor 100 of FIG. 1 has an emitter 110 such as light emitting diodes or a light with a filter wheel as disclosed in U.S. patent application Ser. No. 08/479,164, now U.S. Pat. No. 5,743,262 Masimo. 014A) entitled Blood Glucose Monitoring System, filed on the same day as this application, and assigned to the assignee of this application, which application is incorporated by reference herein.

The filter wheel with a broadband light is depicted in FIG. 1. This arrangement comprises a filter wheel 110A, a motor 110B, and a broadband light source 110C. Advantageously, this unit can be made relatively inexpensively as a replaceable unit. The filter wheel is advantageously made in accordance with U.S. patent application Ser. No. 08/486,798 now U.S. Pat. No. 5,760,910 entitled Optical Filter for Spectroscopic Measurement and Method of Producing the Optical Filter, filed on the same date as this application, and assigned to the assignee of this application, which application is incorporated herein by reference.

The monitor system 100 has a detector 140, such as a photodetector. The blood glucose monitor 100 also has a pressure inducing cuff 150 to physically squeeze a digit 130 in order to periodically induce a “pulse” in the fluid (i.e., actively vary the flow of fluid) in a digit 130. In other words, a device influences a change in the volume of blood in the digit or other fleshy medium. A window 111 is positioned to allow light from the emitter 110 to pass through the window 11 and transmit through the digit 130. This intentional active perturbation of the blood in the digit or medium under test is further referred to herein as an “active pulse.” The blood glucose monitor also has a display 160 which may be used to indicate such parameters as glucose concentration and signal quality. Advantageously, the blood glucose monitor also has a power switch 154, a start switch 156 and a trend data switch 158.

Other methods of inducing a pulse are also possible. For instance, the fleshy medium under test, such as the patient's digit, could be perturbed with a pressure device 152 (depicted in dotted lines in FIG. 1). Other methods of inducing a pulse could be utilized such as temperature fluctuations or other physiological changes which result in a fluctuation (modulation) of blood volume through the fleshy medium. All external methods (as opposed to the natural heart beat) actively vary the blood volume in the medium under test are collectively referred to herein as inducing an “active pulse.” In the present embodiment, 10% modulation in the total attenuation is obtained through the active induction of a pulse. The 10% modulation is selected as a level of minimal perturbation to the system. Too much perturbation of the medium will change the optical characteristics of the medium under test. For instance, with substantial modulation (e.g., 40-50%), the perturbation could impact scattering within the medium under test differently for different wavelengths, thus causing inacurate measurements.

The pressure device 152, the cuff 150 and the use of temperature to induce a pulse in the fleshy medium are advantageous in that they can be used with minimal or no movement of the fleshy medium in the area through which light is transmitted. This is possible through inducing the pulse at a location proximal or distal from the area receiving the incident light. The advantage of minimal movement is that movement in the area of the fleshy medium under test causes variation in the detected signal other than due to the varying fluid volume (e.g., blood and interstitial fluid) flow. For instance, physical perturbation in the area of light transmission can cause changes in the light coupling to the medium under test resulting in variations in attenuation which are not due to changes in fluid volume in the area of light transmission. These other variations comprise additional noise that should be removed for accurate measurement.

FIGS. 2-4 depict a schematic block diagram of the blood glucose monitoring system 100 in accordance with the teachings of the present invention. FIG. 2 illustrates a general hardware block diagram. A sensor 300 has multiple light emitters 301-305 such as LED's. In the present embodiment, each LED 301-305 emits light at a different wavelength.

As well understood in the art, because Beer-Lambert's law contains a term for each constituent which attenuates the signal, one wavelength is provided for each constituent which is accounted for. For increased precision, the wavelengths are chosen at points where attenuation for each particular constituent is the greatest and attenuation by other constituents is less significant. FIG. 9 depicts the extinction coefficient on a log scale vs. wavelength for principal blood constituents. The curve 162 represents the extinction coefficient for oxyhemoglobin; the curve 164 represents the extinction coefficient for hemoglobin; the curve 165 represents the extinction coefficient for carboxyhemoglobin; and the curve 166 represents the extinction coefficient for water. Depicted on the same horizontal axis with a different vertical axis is a curve 168 which represents the extinction coefficient for glucose in body fluids. It should be noted that the curve 168 is placed above the other curves and is greatly amplified, and therefore is not to scale on the graph. If the glucose curve were graphed on the same scale as the other constituents, it would simply appear as flat line at ‘0’ on the vertical axis in the wavelength range from 900-1400 mm. The provision for a seperate vertical axis provides for amplification in order to illustrate at which wavelengths glucose attenuates the most in the range of interest. The vertical axis for the glucose curve 168 also represents a different value. In FIG. 9, the vertical axis for the curve 168 is in terms of the absolute transmission on the following log scale:
[log(log(average water))]−[log(log(6400 mg/dl glucose))]

However, for purposes of choosing appropriate wavelengths, the scale is of less significance that the points at which Glucose and the other constituents show good attenuation and the attenuation is not totally obscured by other constituents in the medium.

In the present embodiment, advantageous wavelengths for the emitters 301-305 (or to obtain with the filter wheel and signal processing) are 660 nm (good attenuation hemoglobin), 905 nm (good attenuation from oxyhemoglobin), 1270 nm (good attenuation by water, and little attenuation by other constituents) 1330-1340 nm (good attenuation due to Glucose in the area of the graph labelled A of FIG. 9, not totally obscured by the attenuation due to water), and 1050 nm (an additional point for good attenuation from Glucose). The use of two wavelengths to account for glucose attenuation provides overspecification of the equations. Overspecification of the equations discussed below increases resolution. Additional wavelengths to account for other constituents such as fats and proteins or others could also be included. For instance, an additional wavelength at 1100 nm could be added (good attenuation from-proteins) and 920 nm (good attenuation from fats). Another constituent often of interest is carboxyhemoglobin. A wavelength for carboxyhemoglobin is advantageously selected at 700-730 nm.

In addition to using multiple precise LEDs, an optical spectroscopic system for generating the optical characteristics over many wavelengths can be used. Such a device is disclosed in U.S. patent application Ser. No. 08/479,164, entitled Blood Glucose Monitoring System, filed on the same day as this application, and assigned to the assignee of this application.

The sensor 300 further comprises a detector 320 (e.g., a photodetector), which produces an electrical signal corresponding to the attenuated light energy signals. The detector 320 is located so as to receive the light from the emitters 301-305 after it has propagated through at least a portion of the medium under test. In the embodiment depicted in FIG. 2, the detector 320 is located opposite the LED's 301-305. The detector 320 is coupled to front end analog signal conditioning circuity 330.

The front end analog signal conditioning circuitry 330 has outputs coupled to analog to digital conversion circuit 332. The analog to digital conversion circuitry 332 has outputs coupled to a digital signal processing system 334. The digital signal processing system 334 provides the desired parameter as an output for a display 336. The display 336 provides a reading of the blood glucose concentration.

The signal processing system also provides an emitter current control output 337 to a digital-to-analog converter circuit 338 which provides control information for emitter drivers 340. The emitter drivers 340 couple to the emitters; 301-305. The digital signal processing system 334 also provides a gain control output 342 for the front end analog signal conditioning circuitry 330.

FIG. 2A illustrates a preferred embodiment for the emitter drivers 340 and the digital to analog conversion circuit 338. The driver depicted in FIG. 2a is depicted for two LEDs coupled back-to-back. However, additional LEDs (preferably coupled back-to-back to conserve connections) can be coupled to the D/A converter 325 through additional multiplexing circuitry (not shown). As depicted in FIG. 2A, the driver comprises first and second input latches 321, 322, a synchronizing latch 323, a voltage reference 324, a digital to analog conversion circuit 325, first and second switch banks 326, 327, first and second voltage to current converters 328, 329 and the LED emitters 301, 302 corresponding to the LED emitters 301-302 of FIG. 2.

The preferred driver depicted in FIG. 2A is advantageous in that much of the noise in the blood glucose system 100 of FIG. 2 is caused by the LED emitters 301-305. Therefore, the emitter driver circuit of FIG. 2A is designed to minimize the noise from the emitters 301-305. The first and second input latches 321, 324 are connected directly to the DSP bus. Therefore, these latches significantly minimize the bandwidth (resulting in noise) present on the DSP bus which passes through to the driver circuitry of FIG. 2A. The output of the first and second input latches only changes when these latches detect their address on the DSP bus. The first input latch receives the setting for the digital to analog converter circuit 325. The second input latch receives switching control data for the switch banks 326, 327. The synchronizing latch accepts the synchronizing pulses which maintain synchronization between the activation of emitters 301, 302 (and the other emitters 303-305 not depicted in FIG. 2a) and the analog to digital conversion circuit 332.

The voltage reference is also chosen as a low noise DC voltage reference for the digital to analog conversion circuit 325. In addition, in the present embodiment, the voltage reference has an lowpass output filter with a very low corner frequency (e.g., 1 Hz in the present embodiment). The digital to analog converter 325 also has a lowpass filter at its output with a very low corner frequency (e.g., 1 Hz). The digital to analog converter provides signals for each of the emitters 301, 302 (and the remaining emitters 303-305, not depicted in FIG. 2a).

In the present embodiment, the output of the voltage to current converters 328, 329 are switched such that with the emitters 301, 302 connected in back-to-back configuration, only one emitter is active an any given time. A refusal position for the switch 326 is also provided to allow the emitters 301 and 302 to both be off when one of the other emitters 303-305 is on with a similar switching circuit. In addition, the voltage to current converter for the inactive emitter is switched off at its input as well, such that it is completely deactivated. This reduces noise from the switching and voltage to current conversion circuitry. In the present embodiment, low noise voltage to current converters are selected (e.g., Op 27 Op Amps), and the feedback loop is configured to have a low pass filter to reduce noise. In the present embodiment, the low pass filtering function of the voltage to current converter 328, 329 has a corner frequency just above the switching speed for the emitters. Accordingly, the preferred driver circuit of FIG. 2a, minimizes the noise of the emitters 301, 302.

As represented in FIG. 2, the light emitters 301-305 each emits energy which is absorbed by the finger 310 and received by the detector 320. The detector 320 produces an electrical signal which corresponds to the intensity of the light energy striking the photodetector 320. The front end analog signal conditioning circuitry 330 receives the intensity signals and filters and conditions these signals as further described below for further processing. The resultant signals are provided to the analog-to-digital conversion circuitry 332 which converts the analog signals to digital signals for further processing by the digital signal processing system 334. The digital signal processing system 334 utilizes the signals in order to provide blood glucose concentration. In the present embodiment, the output of the digital signal processing system 334 provides a value for glucose saturation to the display 336. Advantageously, the signal processing system 334 also store data over a period of time in order to generate trend data and perform other analysis on the data over time.

The digital signal processing system 334 also provides control for driving the light emitters 301-305 with an emitter current control signal on the emitter current control output 337. This value is a digital value which is converted by the digital-to-analog conversion circuit 338 which provides a control signal to the emitter current drivers 340. The emitter current drivers 340 provide the appropriate current drive for the emitters 301-305.

In the present embodiment, the emitters 301-305 are driven via the emitter current driver 340 to provide light transmission with digital modulation at 625 Hz. In the present embodiment, the light emitters 301-305 are driven at a power level which provides an acceptable intensity for detection by the detector and for conditioning by the front end analog signal conditioning circuitry 330. Once this energy level is determined for a given patient by the digital signal processing system 334, the current level for the emitters is maintained constant. It should be understood, however, that the current could be adjusted for changes in the ambient room light and other changes which would effect the voltage input to the front end analog signal conditioning circuitry 330. In the present invention, light emitters are modulated as follows: for one complete 625 Hz cycle for the first wavelength, the first emitter 301 is activated for the first tenth of the cycle, and off for the remaining nine-tenths of the cycle; for one complete 625 Hz second wavelength cycle, the second light emitter 302 is activated for the one tenth of the cycle and off for the remaining nine-tenths cycle; for one 625 Hz third wavelength cycle, the third light emitter 303 is activated for one tenth cycle and is off for the remaining nine-tenths cycle; for one 625 Hz fourth wavelength cycle, the fourth light emitter 304 is activated for one tenth cycle and is off for the remaining nine-tenths cycle; and for one 625 Hz fifth wavelength cycle, the fifth light emitter 305 is activated for one tenth cycle and is off for the remaining nine-tenths cycle. In order to receive only one signal at a time, the emitters are cycled on and off alternatively, in sequence, with each only active for a tenth cycle per 625 Hz cycle and a tenth cycle separating the active times.

The light signal is attenuated (amplitude modulated) by the blood (with the volume of blood changing through cyclic active pulse in the present embodiment) through the finger 310 (or other sample medium). In the present embodiment, the fingertip 130 is physiologically altered on a periodic basis by the pressure device 150 (or the active pulse device) so that approximately 10% amplitude modulation is achieved. That is, enough-pressure is applied to the fingertip 310 to evacuate a volume of body fluid such that the variation in the overall difference in optical attenuation observed between the finger tip 310 when full of blood and the finger tip 310 when blood is evacuated, is approximately 10%. For example, if the transmission of optical radiation through the fingertip 310 is approximately 0.4%, then the fingertip 310 would have to be physiologically altered to evacuate enough blood so that the attenuation of the fingertip having fluid evacuated would be on the order to 0.36%. FIG. 13 depicts an example of the an active pulse signal where the modulation is 10% of the entire attenuation through the finger. The 10% is obtained by varying the volume of blood enough to obtain the cyclic modulation depicted in FIG. 13. As explained above, the 10% modulation is chosen as sufficient to obtain information regarding glucose concentrations, yet cause minimal perturbation to the system. Minimal perturbation is advantageous due to the optical variations caused by perturbing the system. The level of perturbation is advantageously below a level that causes significant variations in optical properties in the system, which variations affect different wavelengths differently.

In one advantageous embodiment, physiological altering of the fingertip 310 is accomplished by the application of periodic gentle pressure to the patient's finger 310 with the pressure cuff 150 (FIG. 1). The finger 310 could also be perturbed by the pressure device 152 (FIG. 1) or with temperature.

The modulation is performed at a selected rate. A narrow band pass filter may then be employed to isolate the frequency of interest. In the present embodiment, the modulation obtained through influencing an active pulse preferably occurs at a rate just above the normal heart rate (for instance, 4 Hz). In one embodiment, the system checks the heart rate and sets the active pulse rate such that it is above the natural heart rate, and also away from harmonics of the natural pulse rate. This allows for easy filtering with a very narrow band-pass filter with a center frequency of at the selected active pulse rate (e.g., 4 Hz or the rate automatically selected by the system to be away from the fundamental natural heart rate frequency and any harmonics to the fundamental frequency). However, a frequency in or below the range of normal heart rate could also be used. Indeed, in one embodiment, the frequency tracks the heart rate, in which case the active pulse operates in conjunction with the natural pulse to increase the change in volume of flow with each heart beat.

The attenuated (amplitude modulated) signal is detected by the photodetector 320 at the 625 Hz carrier frequency for each emitter. Because only a single photodetector is used, the photodetector 320 receives all the emitter signals to form a composite time division signal. In the present embodiment, a photodetector is provided which is a sandwich-type photodetector with a first layer which is transparent to infrared wavelengths but detects red wavelengths and a second layer which detects infrared wavelengths. One suitable photodetector is a K1713-05 photodiode made by Hamamatsu Corp. This photodetector provides for detection by the infrared layer of a relatively large spectrum of infrared wavelengths, as well as detection of a large spectrum of wavelengths in the red range by the layer which detects red wavelengths, with a single photodetector. Alternatively, multiple photodetectors could be utilized for the wavelengths in the system.

The composite time division signal is provided to the front analog signal conditioning circuitry 330. Additional detail regarding the front end analog signal conditioning circuitry 330 and the analog to digital converter circuit 332 is illustrated in FIG. 3. As depicted in FIG. 3, the front end circuity 300 has a preamplifier 342, a high pass filter 344, an amplifier 346, a programmable gain amplifier 348, and a low pass filter 350. The preamplifier 342 is a transimpedance amplifier that converts the composite current signal from the photodetector 320 to a corresponding voltage signal, and amplifies the signal. In the present embodiments, the preamplifier has a predetermined gain to boost the signal amplitude for ease of processing. In the present embodiment, the source voltages for the preamplifier 342 are −15 VDC and +15 VDC. As will be understood, the attenuated signal contains a component representing ambient light as well as the component representing the light at each wavelength transmitted by each emitter 301-305 as the case may be in time. If there is light in the vicinity of the sensor 300 other than from the emitters 301-305, this ambient light is detected by the photodetector 320. Accordingly, the gain of the preamplifier is selected in order to prevent the ambient light in the signal from saturating the preamplifier under normal and reasonable operating conditions.

The output of the preamplifier 342 couples as an input to the high pass filter 344. The output of the preamplifier also provides a first input 347 to the analog to digital conversion circuit 332. In the present embodiment, the high pass filter is a single-pole filter with a corner frequency of about ½-1 Hz. However, the corner frequency is readily raised to about 90 Hz in one embodiment. As will be understood; the 625 Hz carrier frequency of the emitter signals is well above a 90 Hz corner frequency. The high-pass filter 344 has an output coupled as an input to an amplifier 346. In the present embodiment, the amplifier 346 comprises a unity gain transimpedance amplifier. However, the gain of the amplifier 346 is adjustable by the variation of a single resistor. The gain of the amplifier 346 would be increased if the gain of the preamplifier 342 is decreased to compensate for the effects of ambient light.

The output of the amplifier 346 provides an input to a programmable gain amplifier 348. The programmable gain amplifier 348 also accepts a programming input from the digital signal processing system 334 on a gain control signal line 343. The gain of the programmable gain amplifier 348 is digitally programmable. The gain is adjusted dynamically at initialization or sensor placement for changes in the medium under test from patient to patient. For example, the signal from different fingers differs somewhat. Therefore, a dynamically adjustable amplifier is provided by the programmable gain amplifier 348 in order to obtain a signal suitable for processing.

The output of the programmable gain amplifier 348 couples as an input to a low-pass filter 350. Advantageously, the low pass filter 350 is a single-pole filter with a corner frequency of approximately 10 Khz in the present embodiment. This low pass filter provides antialiasing in the present embodiment.

The output of the low-pass filter 350 provides a second S input 352 to the analog-to-digital conversion circuit 332. FIG. 3 also depicts additional details of the analog-to-digital conversion circuit. In the present embodiment, the analog-to-digital conversion circuit 332 comprises a first analog-to-digital converter 354 and a second analog-to-digital converter 356. Advantageously, the first analog-to-digital converter 354 accepts signals from the first input 347 to the analog-to-digital conversion circuit 332, and the second analog to digital converter 356 accepts signals on the second input 352 to the analog-to-digital conversion circuitry 332.

In one advantageous embodiment, the first analog-to-digital converter 354 is a diagnostic analog-to-digital converter. The diagnostic task (performed by the digital signal processing system) is to read the output of the detector as amplified by the preamplifier 342 in order to determine if the signal is saturating the input to the high-pass filter 344. In the present embodiment, if the input to the high pass filter 344 becomes saturated, the front end analog signal conditioning circuits 330 provides a ‘0’ output. Alternatively, the first analog-to-digital converter 354 remains unused.

The second analog-to-digital converter 352 accepts the conditioned composite analog signal from the front end signal conditioning circuitry 330 and converts the signal to digital form. In the present embodiment, the second analog to digital converter 356 comprises a single-channel, delta-sigma converter. This converter is advantageous in that it is low cost, and exhibits low noise characteristics. In addition, by using a single-channel converter, there is no need to tune two or more channels to each other. The delta-sigma converter is also advantageous in that it exhibits noise shaping, for improved noise control. An exemplary analog to digital converter is an Analog Devices AD1877JR. In the present embodiment; the second analog to digital converter 356 samples the signal at a 50 Khz sample rate. The output of the second analog to digital converter 356 provides data samples at 50 Khz to the digital signal processing system 334 (FIG. 2).

The digital signal processing system 334 is illustrated in additional detail in FIG. 4. In the present embodiment, the digital signal processing system comprises a microcontroller 360, a digital signal processor 362, a program memory 364, a sample buffer 366, a data memory 368, a read only memory 370 and communication registers 372. In the present embodiment, the digital signal processor 362 is an Analog Devices AD 21020. In the present embodiment, the microcontroller 360 comprises a Motorola 68HC05, with built in program memory. In the present embodiment, the sample buffer 366 is a buffer which accepts the 50 Khz sample data from the analog to digital conversion circuit 332 for storage in the data memory 368. In the present embodiment, the data memory 368 comprises 32 KWords (words being 40 bits in the present embodiment) of dynamic random access memory.

The microcontroller 360 is connected to the DSP 362 via a conventional JTAG Tap line. The microcontroller 360 transmits the boot loader for the DSP 362 to the program memory 364 via the Tap line, and then allows the DSP 362 to boot from the program memory 364. The boot loader in program memory 364 then causes the transfer of the operating instructions for the DSP 362 from the read only memory 370 to the program memory 364. Advantageously, the program memory 364 is a very high speed memory for the DSP 362.

The microcontroller 360 provides the emitter current control and gain control signals via the communications register 372.

FIGS. 5-8 depict functional block diagrams of the operations of the glucose monitoring system carried out by the digital signal processing system 334. The signal processing functions described below are carried out by the DSP 362 in the present embodiment with the microcontroller 360 providing system management. In the present embodiment, the operation is software/firmware controlled. FIG. 5 depicts a generalized functional block diagram for the operations performed on the 50 Khz sample data entering the digital signal processing system 334. As illustrated in FIG. 5, a demodulation, as represented in a demodulation module 400, is first performed. Decimation, as represented in a decimation module 402 is then performed on the resulting data. Then, the glucose concentration is determined, as represented in a Glucose Calculation module 408.

In general, the demodulation operation separates each emitter signal from the composite signal and removes the 625 Hz carrier frequency, leaving raw data points. The raw data points are provided at 625 Hz intervals to the decimation operation which reduces the samples by an order of 10 to samples at 62.5 Hz. The decimation operation also provides some filtering on the samples. The resulting data is subjected to normalization (which essentially generates a normalized AC/DC signal) and then glucose concentration is determined in the Glucose Calculation module 408.

FIG. 6 illustrates the operation of the demodulation module 400. The modulated signal format is depicted in FIG. 6. The pulses for the first three wavelengths of one full 625 Hz cycle of the composite signal is depicted in FIG. 6 with the first tenth cycle being the active first emitter light plus ambient light signal, the second tenth cycle being an ambient light signal, the third tenth cycle being the active second emitter light plus ambient light signal, and the fourth tenth cycle being an ambient light signal, and so forth for each emitter. The sampling frequency is selected at 50 Khz so that the single full cycle at 625 Hz described above comprises 80 samples of data, eight samples relating to the first emitter wavelength plus ambient light, eight samples relating to ambient light, eight samples relating to the second emitter wavelength plus ambient light, eight more samples related to ambient light and so forth until there are eight samples of each emitter wavelength followed by eight samples of ambient light.

Because the signal processing system 334 controls the activation of the light emitters 301-305, the entire system is synchronous. The data is synchronously divided (and thereby demodulated) into the eight-sample packets, with a time division demultiplexing operation as represented in a demultiplexing module 421. One eight-sample packet 422 represents the first emitter wavelength plus ambient light signal; a second eight-sample packet 424 represents an ambient light signal; a third eight-sample packet 426 represents the attenuated second emitter wavelength light plus ambient light signal; and a fourth eight-sample packet 428 represents the ambient light signal. Again, this continues until there is a eight-sample packet for each emitter active period with an accompanying eight-sample packet for the corresponding ambient light period. A select signal synchronously controls the demultiplexing operation so as to divide the time-division multiplexed composite signal at the input of the demultiplexer 421 into its representative subparts or packets.

A sum of the four last samples from each packet is then calculated, as represented in the summing operations 430, 432, 434, 436 of FIG. 6. It should be noted that similar operations are performed on the remaining wavelengths. In other words, at the output of the demodulation operation, five channels are provided in the present embodiment. However, only two channels for two wavelengths are depicted in FIG. 6 for simplicity in illustration. The last four samples are used from each packet because a low pass filter in the analog to digital converter 356 of the present embodiment has a settling time. Thus, collecting the last four samples from each eight-sample packet allows the previous signal to clear. The summing operations 430, 432, 434, 436 provide integration which enhances noise immunity. The sum of the respective ambient light samples is then subtracted from the sum of the emitter samples, as represented in the subtraction modules 438, 440. The subtraction operation provides some attenuation of the ambient light signal present in the data. In the present embodiment, it has been found that approximately 20 dB attenuation of the ambient light is provided by the operations of the subtraction modules 438, 440. The resultant emitter wavelength sum values are divided by four, as represented in the divide by four modules 442, 444. Each resultant value provides one sample each of the emitter wavelength signals at 625 Hz.

It should be understood that the 625 Hz carrier frequency has been removed by the demodulation operation 400. The 625 Hz sample data at the output of the demodulation operation 400 is sample data without the carrier frequency. In order to satisfy Nyquist sampling requirements, less than 10 Hz is needed (with an active pulse of about 4 Hz in the present embodiment). Accordingly, the 625 Hz resolution is reduced to 62.5 Hz in the decimation operation.

FIG. 7 illustrates the operations of the decimation module 402 for the first two wavelengths. The same operations are also performed on the other wavelength data. Each emitter's sample data is provided at 625 Hz to respective buffer/filters 450, 452. In the present embodiment, the buffer/filters are 519 samples deep. Advantageously, the buffer filters 450, 452 function as continuous first-in, first-out buffers. The 519 samples are subjected to low-pass filtering. Preferably, the low-pass filtering has a cutoff frequency of approximately 7.5 Hz with attenuation of approximately −110 dB. The buffer/filters 450, 452 form a Finite Impulse Response (FIR) filter with coefficients for 519 taps. In order to reduce the sample frequency by ten, the low-pass filter calculation is performed every ten samples, as represented in respective wavelength decimation by 10 modules 454, 456. In other words, with the transfer of each new ten samples into the buffer/filters 450, 452, a new low pass filter calculation is performed by multiplying the impulse response (coefficients) by the 519 filter taps. Each filter calculation provides one output sample for each respective emitter wavelength output buffers 458, 460. In the present embodiment, the output buffers 458, 460 are also continuous FIFO buffers that hold 570 samples of data. The 570 samples provide respective samples or packets (also denoted “snapshot” herein) of samples. As depicted in FIG. 5, the output buffers provide sample data for Glucose Calculation Module 408 for two wavelengths.

FIG. 8 illustrates additional functional operation details of the Glucose Calculation module 408. As represented in FIG. 8, the Glucose Calculation operation accepts packets of samples for each wavelength (e.g., 570 samples at 62.5 Hz in the present embodiment) representing the attenuated wavelength signals, with the carrier frequency removed. The respective packets for each wavelength signal are normalized with a log function, as represented in the log modules 480, 482. Again, at this point, only two channels are illustrated in FIG. 8. However, in the present embodiment, five channels are provided, one for each wavelength. The normalization effectively creates an AC/DC normalized signal, this normalization is followed by removal of the DC portion of the signals, as represented in the DC Removal modules 484, 486. In the present embodiment, the DC removal involves ascertaining the DC value of the first one of the samples (or the mean of the first several or the mean of an entire snapshot) from each of the respective wavelength snapshots, and removing this DC value from all samples in the respective packets.

Once the DC signal is removed, the signals are subjected to bandpass filtering, as represented in Bandpass Filter modules 488, 490. In the present embodiment, with 570 samples in each packet, the bandpass filters are configured with 301 taps to provide a FIR filter with a linear phase response and little or no distortion. In the present embodiment, the bandpass filter has a narrow passband from 3.7-4.3 Hz. This provides a narrow passband which eliminates most noise and leaves the portion of the signal due to the active pulse. The 301 taps slide over the 570 samples in order to obtain 270 filtered samples representing the filtered signal of the first emitter wavelength and 270 filtered samples representing the filtered signal of the second emitter wavelength, continuing for each emitter wavelength. In an ideal case, the bandpass filters 488, 490 assist in removing the DC in the signal. However, the DC removal operation 484, 486 also assists in DC removal in the present embodiment.

After filtering, the last 120 samples from each packet (of now 270 samples in the present embodiment) are selected for further processing as represented in Select Last 120 Samples modules 492, 494. The last 120 samples are selected in order to provide settling time for the system.

The RMS for the samples is then determined for each of the 120-sample packets (for each wavelength). The process to obtain the overall RMS values is represented in the RMS modules 495-499.

The resultant RMS values for each wavelength provide normalized intensity values for forming equations according to Beer-Lambert's law. In other words, for Beer-Lambert equation
l=loe−(pl*c1*ε1+pl*c2*ε2+etc.)  (3)

then taking the log of operations 480-482:
ln(I)=ln(lo)−(pl*c11+pl*c22+etc.)  (4)

Then performing DC removal though the DC removal operations 484, 486 and Band pass filter operations 488, 490, the the normalized equation becomes:
lnonλ=−(pl*c11+pl*c22+etc.)  (5)

The RMS values (blocks 495-499) for each wavelength provide lnormλ for the left side of Equation (7). The extinction coefficients are known for the selected wavelengths.

As will be understood, each equation has a plurality of unknowns. Specifically, each equation will have an unknown term which is the product of concentration and pathlength for each of the constituents of concern (hemoglobin, oxyhemoglobin, glucose and water in the present embodiment). Once a normalized Beer-Lambert equation is formed for each wavelength RMS value (the RMS value representing the normalized intensity for that wavelength), a matrix is formed as follows:
lnomλ1=−(ε1λ1c12λ1c23λ1c34λ1c45λ1c5)pl  (6)
lnomλ2=−(ε1λ2c12λ2c23λ2c34λ2c45λ2c5)pl  (7)
lnomλ3=−(ε1λ3c12λ3c23λ3c34λ3c45λ3c5)pl  (8)
lnomλ4=−(ε1λ4c12λ4c23λ4c34λ4c45λ4c5)pl  (9)
lnomλ5=−(ε1λ5c12λ5c23λ5c34λ5c45λ5c5)pl  (10)
where

C1=concentration of water

C2=concentration of hemoglobin

C3=concentration of oxyhemoglobin

C4=concentration of Glucose

C5=concentration of Glucose

and

ε1λn=extinction coefficient for water at λn

ε2λn=extinction coefficient for hemoglobin at λn

ε3λn=extinction coefficient for oxyhemoglobin at λn

ε4λn=extinction coefficient for Glucose at λn

ε5λn=extinction coefficient for Glucose at λn

The equations are solved using conventional matrix algebra in order to solve for the product of concentration times pathlength for each constituent, as represented in the Matrix block 489.

In order to remove the path length term, in the present embodiment where glucose is desired, a ratio is performed of the product of pathlength times concentration for glucose to the product of pathlength times the concentration of water as represented in a ratio block 487. Since the pathlength is substantially the same for each wavelength due to normalization (i.e., taking AC/DC) and due to minimal perturbation (e.g., 10%), the pathlength terms cancel, and the ratio indicates the concentration of glucose to water (preferably, this is scaled to mg/dL). The glucose concentration is provided to the display 336.

It should be noted that it may also be possible to create an empirical table by way of experiment which correlates ratios of one or more of the concentration times path length terms to blood glucose concentration.

Even with the emitter driver circuit of FIG. 2A discussed above, infrared LEDs with the longer wavelengths are also inherently unstable with respect to their power transmission. Accordingly, in one advantageous embodiment, the instabilities for the source LEDs can be corrected to accommodate for the instabilities depicted in FIG. 2C. As illustrated in FIG. 2C, two curves are depicted representing transmitted power over time. A first curve labelled AA represents power transmission from LEDs having wavelengths of 660 nm and 905 nm. As illustrated, these emitters have relatively stable power transmission over time. A second curve labelled BB represents power transmission from an emitter with a wavelength of approximately 1330 nm. As illustrated, typical emitters of this wavelength have unstable power transmission over time.

Accordingly, in one embodiment, the emitters in the 1300 nm range are selected as with an integrated photodetector. An appropriate laser diode is an SCW-1300-CD made by Laser Diode, Inc. An appropriate LED is an Apitaxx ETX1300T. With such an emitter, a configuration as depicted in FIG. 2B can be used, whereby the internal photodiode in the emitter is also sampled to detect the initial intensity lo times a constant (α). In general, the signal detected after transmission through the finger is divided by the αo signal. In this manner, the instability can be normalized because the instability present in the attenuated signal due to instability in the emitter will also be present in the measured αo signal.

FIG. 2B depicts such an embodiment illustrating only one emitter 301 (of the emitters 301-305). However, all or several of the emitters 301-305 could be emitters having an internal photodiode. As depicted in FIG. 2B, the emitter 301 has an internal photodiode 301a and its LED 301b. As depicted in FIG. 2B, light emitted from the LED 301b in the emitter 301 is detected by a photodiode 301a. The signal from the photodiode 301a is provided to front end analog signal conditioning circuitry 330A. The analog signal conditioning circuitry 330A similar to the analog signal conditioning circuitry 330. However, because the photodiode 301a detects a much stronger intensity compared to the detector 320 (due to attenuation by tissue), different amplification may be required.

After analog signal conditioning in the front end anaolog signal conditioning circuity 330A, the signal from the photodiode 301a is converted to digital form with an analog to digital conversion circuit 332a. Again, it should be understood that the analog to digital conversion circuit 332a can be the same configuration as the analog to digital conversion circuit 332. However, because the signal from the photodiode 301a and the detector 320 appear at the same time, two channels are required.

The attenuated light signal through the finger is detected with the detector 320 and passed through front end analog signal conditioning circuit 330 and is converted-to-digital form in analog to digital conversion circuit 332, as described in further detail below. The signal representing the intensity of the light transmitted through the finger 310 is divided as represented by the division block 333 by the signal which represents the intensity of light from the LED 301b detected by the photodiode 301a.

In this manner, the variations or instability in the initial intensity lo cancel through the division leaving a corrected intensity which is divided by the constant α. When the log is performed as discussed below, and bandpass filtering is performed, the constant .alpha. term is removed leaving a clean signal.

Mathmatically, this can be understood by representing the attenuated signal under Beer-Lambert's Law and the signal from the photodiode 301a as αlo as discussed above:

Thus, the signal emerging from the analog to digital conversion circuit 332 is as follows:
l=loeΣ(−ε*pl*c)

Dividing Equation 3 by α*lo and simplifying provides the signal after the division operation 333:
=(eΣ(−ε*pl*c))/α

Thus providing a normalized intensity signal for the input to the digital signal processing circuit 334.

FIG. 10 depicts a perspective view of one alternative embodiment of an inflatable bladder sensor 500 which can be used to induce an active pulse in accordance with the teachings of the present invention. This inflatable bladder sensor 500 is for a bed-side blood glucose monitor. The inflatable bladder sensor 500 has electrical connections 502 for coupling the device to the blood glucose system 299.

Typically, the electrical connection 502 carries sufficient conductors to power the emitters 301-305 and to receive a detector signal from the detector 320.

The inflatable bladder sensor 500 has a curved upper surface 504 and vertical sides 506. The inflatable bladder sensor 500 also has an fluid pressure supply tube 508. In one advantageous embodiment, the supply tube cycles air into and out of an inflatable bladder within the inflatable bladder sensor 500. The fluid supply tube 508 couples to the bedside glucose monitoring system which is equipped with a cycling pump to induce pressure and remove pressure from the supply tube 508. In one embodiment, a pressure relief valve 510 is located on the upper surface 504 to allow release of pressure in the inflatable bladder.

FIG. 11 depicts a cross-sectional view along the inflatable bladder sensor 500 of FIG. 10. As depicted in FIG. 11, a human digit or finger 512 is positioned inside the sensor 500. The finger 512 is positioned is supported by a pad 514 in the area of light transmission. A flexible inflatable bladder 516 surrounds the finger proximally from the area of light transmission. The pad has an an aperture 518 to enable emitters 301-305 to provide unobstructed optical transmission to the surface of finger 512.

Surrounded by the padding 514 and opposite the emitters 301-305 is the detector 320. The detector 320 is positioned within an aperture 520 in the pad 514 to ensure that photodetector is separated from the finger 512. A serpentine arrow is shown extending from the light emitters 301-305 to the detector 320 to illustrate the direction of propagation of light energy through the finger 512.

Relief valve 510 enables manual and automatic release of pressure in the inflatable bladder 516. Relief valve 510 has a valve plate 522 which is spring biased to seal an aperture 524 using spring 532. The valve plate is connected to relief valve shaft 526. A valve button 530 is coupled to the valve shaft. The valve shaft extends through a valve housing 531 which forms a cylindrical sleeve shape. The valve housing is coupled to the upper surface 504 of sensor 500. The valve housing has an aperture 523 which allows air to readily escape from the relief valve. Preferably, the relief valve is designed to ensure that the pressure is not high enough to cause damage to nerves. Accordingly, if the pressure increases beyond a certain point, the relief valve allows the excess fluid to escape, thereby reducing the pressure to the maximum allowable limit. Such pressure relief valves are well understood in the art. Relief valve 510 could also be a spring-loaded needle-type valve.

FIG. 12 depicts a sectional view along line 12-12 of FIG. 11 to illustrate the state of the sensor 500 when the inflatable bladder 516 is deflated. FIG. 12a depicts the same sectional view as FIG. 12 with the bladder 516 inflated.

With this configuration, the blood glucose system can cycle fluid into and out of the inflatable bladder 516 at the selected rate to actively induce a pulse of sufficient magnitude as discussed above.

Additional Application of Active Pulse

As discussed in the co-pending U.S. patent application Ser. No. 08/320,154 filed Oct. 7, 1994, now U.S. Pat. No. 5,632,272 which is incorporated herein by reference, a saturation transform may be applied to each 120 sample packet. It has been found that a second maxima representing venous oxygen saturation exists in the Master Power Curve during motion of the patient. In view of this, it is possible to utilize the inducement of a pulse disclosed herein through physically perturbing the medium under test in order to obtain the second maxima in the Master Power Curve, and thereby obtain the venous oxygen saturation if desired. The modulation may be lower than 10% because hemoglobin and oxyhemoglobin concentrations are higher than glucose and absorbtion at 660 nm and 905 nm are relatively strong. Thus, modulation from 1-5% may provide adequate results.

Although the preferred embodiment of the present invention has been described and illustrated above, those skilled in the art will appreciate that various changes and modifications to the present invention do not depart from the spirit of the invention. For example, the principles and method of the present invention could be used to detect trace elements within the bloodstream (e.g., for drug testing, etc.). Accordingly, the scope of the present invention is limited only by the scope of the following appended claims.

Kiani-Azarbayjany, Esmaiel, Lepper, Jr., James M., Diab, Mohamed Kheir

Patent Priority Assignee Title
10007758, Mar 04 2009 Masimo Corporation Medical monitoring system
10010276, Oct 07 2013 Masimo Corporation Regional oximetry user interface
10032002, Mar 04 2009 JPMorgan Chase Bank, National Association Medical monitoring system
10039482, Oct 12 2006 Masimo Corporation System and method for monitoring the life of a physiological sensor
10052037, Jul 22 2010 Masimo Corporation Non-invasive blood pressure measurement system
10058275, Jul 25 2003 Masimo Corporation Multipurpose sensor port
10064562, Oct 12 2006 Masimo Corporation Variable mode pulse indicator
10086138, Jan 28 2014 Masimo Corporation Autonomous drug delivery system
10092249, Oct 14 2005 Masimo Corporation Robust alarm system
10098550, Mar 30 2010 Masimo Corporation Plethysmographic respiration rate detection
10098591, Mar 08 2004 Masimo Corporation Physiological parameter system
10098610, Oct 15 2009 Masimo Corporation Physiological acoustic monitoring system
10123726, Mar 01 2005 Cercacor Laboratories, Inc. Configurable physiological measurement system
10130289, Jan 07 1999 Masimo Corporation Pulse and confidence indicator displayed proximate plethysmograph
10130291, Aug 11 2004 Masimo Corporation Method for data reduction and calibration of an OCT-based physiological monitor
10149616, Feb 09 2012 JPMorgan Chase Bank, National Association Wireless patient monitoring device
10154815, Oct 07 2014 Masimo Corporation Modular physiological sensors
10159412, Dec 01 2010 Cercacor Laboratories, Inc. Handheld processing device including medical applications for minimally and non invasive glucose measurements
10188296, Feb 09 2012 Masimo Corporation Wireless patient monitoring device
10188331, Jul 29 2009 Masimo Corporation Non-invasive physiological sensor cover
10188348, Jun 05 2006 Masimo Corporation Parameter upgrade system
10194847, Oct 12 2006 Masimo Corporation Perfusion index smoother
10194848, Jul 29 2009 Masimo Corporation Non-invasive physiological sensor cover
10201298, Jan 24 2003 Masimo Corporation Noninvasive oximetry optical sensor including disposable and reusable elements
10205272, Mar 11 2009 Masimo Corporation Magnetic connector
10205291, Feb 06 2015 Masimo Corporation Pogo pin connector
10213108, Mar 25 2002 Masimo Corporation Arm mountable portable patient monitor
10219706, Mar 25 2002 Masimo Corporation Physiological measurement device
10219746, Oct 12 2006 Masimo Corporation Oximeter probe off indicator defining probe off space
10226187, Aug 31 2015 Masimo Corporation Patient-worn wireless physiological sensor
10226576, May 15 2006 Masimo Corporation Sepsis monitor
10231657, Sep 04 2014 Masimo Corporation Total hemoglobin screening sensor
10231670, Jun 19 2014 CERCACOR LABORATORIES, INC Proximity sensor in pulse oximeter
10231676, Jan 25 1999 JPMorgan Chase Bank, National Association Dual-mode patient monitor
10251585, Mar 01 2005 Cercacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
10251586, Apr 21 2007 Masimo Corporation Tissue profile wellness monitor
10255994, Mar 04 2009 Masimo Corporation Physiological parameter alarm delay
10258265, Jul 03 2008 CERCACOR LABORATORIES, INC Multi-stream data collection system for noninvasive measurement of blood constituents
10258266, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
10271748, May 06 2010 Masimo Corporation Patient monitor for determining microcirculation state
10271749, Feb 25 2011 Masimo Corporation Patient monitor for monitoring microcirculation
10278626, Mar 17 2006 Masimo Corporation Apparatus and method for creating a stable optical interface
10278648, Jan 04 2012 Masimo Corporation Automated CCHD screening and detection
10279247, Dec 13 2013 Masimo Corporation Avatar-incentive healthcare therapy
10292628, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
10292657, Feb 16 2009 Masimo Corporation Ear sensor
10292664, May 02 2008 Masimo Corporation Monitor configuration system
10299708, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
10299709, Oct 13 2011 Masimo Corporation Robust fractional saturation determination
10305775, Nov 05 2012 Cercacor Laboratories, Inc. Physiological test credit method
10307111, Feb 09 2012 Masimo Corporation Patient position detection system
10325681, Mar 04 2009 Masimo Corporation Physiological alarm threshold determination
10327337, Feb 06 2015 Masimo Corporation Fold flex circuit for LNOP
10327683, Mar 01 2005 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
10327713, Feb 24 2017 Masimo Corporation Modular multi-parameter patient monitoring device
10332630, Feb 13 2011 JPMorgan Chase Bank, National Association Medical characterization system
10335033, Mar 25 2002 Masimo Corporation Physiological measurement device
10335068, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
10335072, Jun 03 1998 Masimo Corporation Physiological monitor
10342470, Oct 12 2006 Masimo Corporation System and method for monitoring the life of a physiological sensor
10342487, May 19 2009 Masimo Corporation Disposable components for reusable physiological sensor
10342497, Oct 15 2009 Masimo Corporation Physiological acoustic monitoring system
10349895, Oct 15 2009 Masimo Corporation Acoustic respiratory monitoring sensor having multiple sensing elements
10349898, Jan 04 2012 Masimo Corporation Automated CCHD screening and detection
10354504, Dec 21 2009 Masimo Corporation Modular patient monitor
10357209, Oct 15 2009 Masimo Corporation Bidirectional physiological information display
10366787, Mar 04 2009 Masimo Corporation Physiological alarm threshold determination
10368787, Mar 04 2008 Masimo Corporation Flowometry in optical coherence tomography for analyte level estimation
10376190, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
10376191, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
10383520, Sep 18 2014 MASIMO SEMICONDUCTOR, INC Enhanced visible near-infrared photodiode and non-invasive physiological sensor
10383527, Aug 31 2015 Masimo Corporation Wireless patient monitoring systems and methods
10388120, Feb 24 2017 Masimo Corporation Localized projection of audible noises in medical settings
10398320, Sep 17 2009 Masimo Corporation Optical-based physiological monitoring system
10405804, Oct 13 2010 Masimo Corporation Physiological measurement logic engine
10413666, May 20 2009 Masimo Corporation Hemoglobin display and patient treatment
10420493, Nov 29 2005 Masimo Corporation Optical sensor including disposable and reusable elements
10433776, Jul 02 2001 Masimo Corporation Low power pulse oximeter
10441181, Mar 13 2013 Masimo Corporation Acoustic pulse and respiration monitoring system
10441196, Jan 23 2015 Masimo Corporation Nasal/oral cannula system and manufacturing
10448844, Aug 31 2015 Masimo Corporation Systems and methods for patient fall detection
10448871, Jul 02 2015 Masimo Corporation Advanced pulse oximetry sensor
10456038, Mar 15 2013 CERCACOR LABORATORIES, INC Cloud-based physiological monitoring system
10463284, Nov 29 2006 Cercacor Laboratories, Inc. Optical sensor including disposable and reusable elements
10463340, Oct 15 2009 JPMorgan Chase Bank, National Association Acoustic respiratory monitoring systems and methods
10470695, Jul 02 2015 Masimo Corporation Advanced pulse oximetry sensor
10478107, Jul 29 2009 Masimo Corporation Non-invasive physiological sensor cover
10503379, Mar 25 2012 Masimo Corporation Physiological monitor touchscreen interface
10505311, Aug 15 2017 Masimo Corporation Water resistant connector for noninvasive patient monitor
10512436, Oct 13 2011 Masimo Corporation System for displaying medical monitoring data
10524706, May 05 2008 Masimo Corporation Pulse oximetry system with electrical decoupling circuitry
10524738, May 04 2015 CERCACOR LABORATORIES, INC Noninvasive sensor system with visual infographic display
10531811, Sep 28 2010 Masimo Corporation Depth of consciousness monitor including oximeter
10531819, Apr 17 2012 Masimo Corporation Hypersaturation index
10532174, Feb 21 2014 Masimo Corporation Assistive capnography device
10537285, Mar 04 2016 Masimo Corporation Nose sensor
10542903, Jun 07 2012 JPMorgan Chase Bank, National Association Depth of consciousness monitor
10548561, Dec 30 2008 Masimo Corporation Acoustic sensor assembly
10555678, Aug 05 2013 Masimo Corporation Blood pressure monitor with valve-chamber assembly
10568514, Sep 18 2014 MASIMO SEMICONDUCTOR, INC. Enhanced visible near-infrared photodiode and non-invasive physiological sensor
10568553, Feb 06 2015 Masimo Corporation Soft boot pulse oximetry sensor
10575779, Mar 14 2013 Masimo Corporation Patient monitor placement indicator
10582886, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
10588518, Sep 20 2006 Masimo Corporation Congenital heart disease monitor
10588553, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
10588554, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
10588556, Jul 29 2009 Masimo Corporation Non-invasive physiological sensor cover
10595747, Oct 16 2009 Masimo Corporation Respiration processor
10610138, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
10610139, Jan 16 2013 Masimo Corporation Active-pulse blood analysis system
10617302, Jul 07 2016 Masimo Corporation Wearable pulse oximeter and respiration monitor
10617335, Oct 07 2013 Masimo Corporation Regional oximetry sensor
10617338, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
10624563, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
10624564, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
10631765, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
10637181, Aug 15 2017 Masimo Corporation Water resistant connector for noninvasive patient monitor
10638961, Jul 02 2015 Masimo Corporation Physiological measurement devices, systems, and methods
10646146, Jul 02 2015 Masimo Corporation Physiological monitoring devices, systems, and methods
10667762, Feb 24 2017 Masimo Corporation Modular multi-parameter patient monitoring device
10667764, Apr 19 2018 Masimo Corporation Mobile patient alarm display
10672260, Mar 13 2013 Masimo Corporation Systems and methods for monitoring a patient health network
10674948, Apr 17 2012 Mastmo Corporation Hypersaturation index
10687715, Jan 10 2011 Masimo Corporation Non-invasive intravascular volume index monitor
10687743, Jul 02 2015 Masimo Corporation Physiological measurement devices, systems, and methods
10687744, Jul 02 2015 Masimo Corporation Physiological measurement devices, systems, and methods
10687745, Jul 02 2015 Masimo Corporation Physiological monitoring devices, systems, and methods
10702194, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
10702195, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
10709366, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
10721785, Jan 18 2017 Masimo Corporation Patient-worn wireless physiological sensor with pairing functionality
10722159, Jul 02 2015 Masimo Corporation Physiological monitoring devices, systems, and methods
10729335, Dec 01 2010 Cercacor Laboratories, Inc. Handheld processing device including medical applications for minimally and non invasive glucose measurements
10729362, Mar 08 2010 Masimo Corporation Reprocessing of a physiological sensor
10729384, Jan 04 2012 Masimo Corporation Automated condition screening and detection
10729402, Dec 04 2009 Masimo Corporation Calibration for multi-stage physiological monitors
10736518, Aug 31 2015 Masimo Corporation Systems and methods to monitor repositioning of a patient
10743803, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
10750983, Nov 24 2009 Cercacor Laboratories, Inc. Physiological measurement system with automatic wavelength adjustment
10750984, Dec 22 2016 Cercacor Laboratories, Inc. Methods and devices for detecting intensity of light with translucent detector
10758166, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
10765367, Oct 07 2014 Masimo Corporation Modular physiological sensors
10772542, Oct 12 2006 Masimo Corporation Method and apparatus for calibration to reduce coupling between signals in a measurement system
10779098, Jul 10 2018 Masimo Corporation Patient monitor alarm speaker analyzer
10784634, Feb 06 2015 Masimo Corporation Pogo pin connector
10791971, Aug 11 2004 Masimo Corporation Method for data reduction and calibration of an OCT-based physiological monitor
10799160, Oct 07 2013 Masimo Corporation Regional oximetry pod
10799163, Oct 12 2006 Masimo Corporation Perfusion index smoother
10813598, Oct 15 2009 Masimo Corporation System and method for monitoring respiratory rate measurements
10825568, Oct 11 2013 Masimo Corporation Alarm notification system
10827961, Aug 29 2012 Masimo Corporation Physiological measurement calibration
10828007, Oct 11 2013 Masimo Corporation Acoustic sensor with attachment portion
10832818, Oct 11 2013 Masimo Corporation Alarm notification system
10833983, Sep 20 2012 Masimo Corporation Intelligent medical escalation process
10849554, Apr 18 2017 Masimo Corporation Nose sensor
10855023, Mar 11 2009 Masimo Corporation Magnetic connector for a data communications cable
10856750, Apr 28 2017 Masimo Corporation Spot check measurement system
10856788, Mar 01 2005 Cercacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
10863938, Oct 12 2006 Masimo Corporation System and method for monitoring the life of a physiological sensor
10869602, Mar 25 2002 Masimo Corporation Physiological measurement communications adapter
10874797, Jan 17 2006 Masimo Corporation Drug administration controller
10881951, Dec 13 2013 Masimo Corporation Avatar-incentive healthcare therapy
10912500, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
10912501, Jul 03 2008 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
10912502, Jul 03 2008 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
10912524, Sep 22 2006 Masimo Corporation Modular patient monitor
10918281, Apr 26 2017 Masimo Corporation Medical monitoring device having multiple configurations
10918341, Dec 22 2006 Masimo Corporation Physiological parameter system
10925544, Oct 15 2009 Masimo Corporation Acoustic respiratory monitoring sensor having multiple sensing elements
10925550, Oct 13 2011 Masimo Corporation Medical monitoring hub
10932705, May 08 2017 Masimo Corporation System for displaying and controlling medical monitoring data
10932729, Jun 06 2018 Masimo Corporation Opioid overdose monitoring
10939877, Oct 14 2005 Masimo Corporation Robust alarm system
10939878, Jun 06 2018 Masimo Corporation Opioid overdose monitoring
10943450, Dec 21 2009 Masimo Corporation Modular patient monitor
10945648, Jul 03 2008 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
10952614, Aug 17 2011 Masimo Corporation Modulated physiological sensor
10952641, Sep 15 2008 Masimo Corporation Gas sampling line
10953156, May 20 2009 Masimo Corporation Hemoglobin display and patient treatment
10955270, Oct 27 2011 Masimo Corporation Physiological monitor gauge panel
10956950, Feb 24 2017 Masimo Corporation Managing dynamic licenses for physiological parameters in a patient monitoring environment
10959652, Jul 02 2001 Masimo Corporation Low power pulse oximeter
10973447, Jan 24 2003 Masimo Corporation Noninvasive oximetry optical sensor including disposable and reusable elements
10980432, Aug 05 2013 Masimo Corporation Systems and methods for measuring blood pressure
10980455, Jul 02 2001 Masimo Corporation Low power pulse oximeter
10980457, Apr 21 2007 Masimo Corporation Tissue profile wellness monitor
10980507, Oct 15 2009 Masimo Corporation Physiological acoustic monitoring system
10984911, Mar 01 2005 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
10987066, Oct 31 2017 Masimo Corporation System for displaying oxygen state indications
10991135, Aug 11 2015 Masimo Corporation Medical monitoring analysis and replay including indicia responsive to light attenuated by body tissue
10993643, Oct 12 2006 Masimo Corporation Patient monitor capable of monitoring the quality of attached probes and accessories
10993662, Mar 04 2016 Masimo Corporation Nose sensor
11000232, Jun 19 2014 Masimo Corporation Proximity sensor in pulse oximeter
11006867, Oct 12 2006 Masimo Corporation Perfusion index smoother
11020029, Jul 25 2003 Masimo Corporation Multipurpose sensor port
11020084, Sep 20 2012 Masimo Corporation Acoustic patient sensor coupler
11022466, Jul 17 2013 Masimo Corporation Pulser with double-bearing position encoder for non-invasive physiological monitoring
11024064, Feb 24 2017 Masimo Corporation Augmented reality system for displaying patient data
11026604, Jul 13 2017 CERCACOR LABORATORIES, INC Medical monitoring device for harmonizing physiological measurements
11033210, Mar 04 2008 Masimo Corporation Multispot monitoring for use in optical coherence tomography
11069461, Aug 01 2012 Masimo Corporation Automated assembly sensor cable
11071480, Apr 17 2012 Masimo Corporation Hypersaturation index
11076777, Oct 13 2016 Masimo Corporation Systems and methods for monitoring orientation to reduce pressure ulcer formation
11076782, Oct 07 2013 Masimo Corporation Regional oximetry user interface
11082786, Jul 10 2018 Masimo Corporation Patient monitor alarm speaker analyzer
11083397, Feb 09 2012 Masimo Corporation Wireless patient monitoring device
11086609, Feb 24 2017 Masimo Corporation Medical monitoring hub
11087875, Mar 04 2009 Masimo Corporation Medical monitoring system
11089963, Aug 31 2015 Masimo Corporation Systems and methods for patient fall detection
11089982, Oct 13 2011 Masimo Corporation Robust fractional saturation determination
11095068, Aug 15 2017 Masimo Corporation Water resistant connector for noninvasive patient monitor
11096631, Feb 24 2017 Masimo Corporation Modular multi-parameter patient monitoring device
11103134, Sep 18 2014 MASIMO SEMICONDUCTOR, INC. Enhanced visible near-infrared photodiode and non-invasive physiological sensor
11103143, Sep 17 2009 Masimo Corporation Optical-based physiological monitoring system
11109770, Jun 21 2011 Masimo Corporation Patient monitoring system
11109814, Mar 08 2004 Masimo Corporation Physiological parameter system
11109818, Apr 19 2018 Masimo Corporation Mobile patient alarm display
11114188, Oct 06 2009 Cercacor Laboratories, Inc. System for monitoring a physiological parameter of a user
11132117, Mar 25 2012 Masimo Corporation Physiological monitor touchscreen interface
11133105, Mar 04 2009 Masimo Corporation Medical monitoring system
11145408, Mar 04 2009 Masimo Corporation Medical communication protocol translator
11147518, Oct 07 2013 Masimo Corporation Regional oximetry signal processor
11153089, Jul 06 2016 Masimo Corporation Secure and zero knowledge data sharing for cloud applications
11158421, Mar 04 2009 Masimo Corporation Physiological parameter alarm delay
11172890, Jan 04 2012 Masimo Corporation Automated condition screening and detection
11176801, Aug 19 2011 Masimo Corporation Health care sanitation monitoring system
11178776, Feb 06 2015 Masimo Corporation Fold flex circuit for LNOP
11179111, Jan 04 2012 Masimo Corporation Automated CCHD screening and detection
11179114, Oct 13 2011 Masimo Corporation Medical monitoring hub
11185262, Mar 10 2017 Masimo Corporation Pneumonia screener
11191484, Apr 29 2016 Masimo Corporation Optical sensor tape
11191485, Jun 05 2006 Masimo Corporation Parameter upgrade system
11202571, Jul 07 2016 Masimo Corporation Wearable pulse oximeter and respiration monitor
11207007, Mar 17 2006 Masimo Corporation Apparatus and method for creating a stable optical interface
11219391, Jul 02 2001 Masimo Corporation Low power pulse oximeter
11224363, Jan 16 2013 Masimo Corporation Active-pulse blood analysis system
11224381, Oct 12 2006 Masimo Corporation Oximeter probe off indicator defining probe off space
11229374, Dec 09 2006 Masimo Corporation Plethysmograph variability processor
11229408, Dec 22 2006 Masimo Corporation Optical patient monitor
11234602, Jul 22 2010 Masimo Corporation Non-invasive blood pressure measurement system
11234655, Jan 20 2007 Masimo Corporation Perfusion trend indicator
11241199, Oct 13 2011 Masimo Corporation System for displaying medical monitoring data
11259745, Jan 28 2014 Masimo Corporation Autonomous drug delivery system
11272839, Oct 12 2018 Masimo Corporation System for transmission of sensor data using dual communication protocol
11272852, Jun 21 2011 Masimo Corporation Patient monitoring system
11272883, Mar 04 2016 Masimo Corporation Physiological sensor
11289199, Jan 19 2010 JPMorgan Chase Bank, National Association Wellness analysis system
11291061, Jan 18 2017 Masimo Corporation Patient-worn wireless physiological sensor with pairing functionality
11291415, May 04 2015 Cercacor Laboratories, Inc. Noninvasive sensor system with visual infographic display
11298021, Oct 19 2017 Masimo Corporation Medical monitoring system
11317837, Oct 12 2006 Masimo Corporation System and method for monitoring the life of a physiological sensor
11330996, May 06 2010 Masimo Corporation Patient monitor for determining microcirculation state
11331013, Sep 04 2014 Masimo Corporation Total hemoglobin screening sensor
11331042, May 19 2009 Masimo Corporation Disposable components for reusable physiological sensor
11331043, Feb 16 2009 Masimo Corporation Physiological measurement device
11342072, Oct 06 2009 Cercacor Laboratories, Inc. Optical sensing systems and methods for detecting a physiological condition of a patient
11363960, Feb 25 2011 Masimo Corporation Patient monitor for monitoring microcirculation
11367529, Nov 05 2012 Cercacor Laboratories, Inc. Physiological test credit method
11369293, Jul 29 2009 Masimo Corporation Non-invasive physiological sensor cover
11389093, Oct 11 2018 Masimo Corporation Low noise oximetry cable
11399722, Mar 30 2010 Masimo Corporation Plethysmographic respiration rate detection
11399774, Oct 13 2010 Masimo Corporation Physiological measurement logic engine
11406286, Oct 11 2018 Masimo Corporation Patient monitoring device with improved user interface
11410507, Feb 24 2017 Masimo Corporation Localized projection of audible noises in medical settings
11412939, Aug 31 2015 Masimo Corporation Patient-worn wireless physiological sensor
11412964, May 05 2008 Masimo Corporation Pulse oximetry system with electrical decoupling circuitry
11417426, Feb 24 2017 Masimo Corporation System for displaying medical monitoring data
11426103, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
11426104, Aug 11 2004 Masimo Corporation Method for data reduction and calibration of an OCT-based physiological monitor
11426105, Mar 04 2008 Masimo Corporation Flowometry in optical coherence tomography for analyte level estimation
11426125, Feb 16 2009 Masimo Corporation Physiological measurement device
11430572, Mar 01 2005 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
11432771, Feb 16 2009 Masimo Corporation Physiological measurement device
11437768, Feb 06 2015 Masimo Corporation Pogo pin connector
11439329, Jul 13 2011 Masimo Corporation Multiple measurement mode in a physiological sensor
11445948, Oct 11 2018 Masimo Corporation Patient connector assembly with vertical detents
11452449, Oct 30 2012 Masimo Corporation Universal medical system
11464410, Oct 12 2018 Masimo Corporation Medical systems and methods
11484205, Mar 25 2002 Masimo Corporation Physiological measurement device
11484229, Jul 03 2008 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
11484230, Jul 03 2008 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
11484231, Mar 08 2010 Masimo Corporation Reprocessing of a physiological sensor
11488711, Oct 11 2013 Masimo Corporation Alarm notification system
11488715, Feb 13 2011 Masimo Corporation Medical characterization system
11504002, Sep 20 2012 Masimo Corporation Physiological monitoring system
11504058, Dec 02 2016 Masimo Corporation Multi-site noninvasive measurement of a physiological parameter
11504062, Mar 14 2013 Masimo Corporation Patient monitor placement indicator
11504066, Sep 04 2015 Cercacor Laboratories, Inc. Low-noise sensor system
11515664, Mar 11 2009 Masimo Corporation Magnetic connector
11534087, Nov 24 2009 Cercacor Laboratories, Inc. Physiological measurement system with automatic wavelength adjustment
11534110, Apr 18 2017 Masimo Corporation Nose sensor
11545263, Mar 01 2005 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
11557407, Aug 01 2012 Masimo Corporation Automated assembly sensor cable
11559227, Jul 29 2009 Masimo Corporation Non-invasive physiological sensor cover
11559275, Dec 30 2008 Masimo Corporation Acoustic sensor assembly
11564593, Sep 15 2008 Masimo Corporation Gas sampling line
11564642, Jun 06 2018 Masimo Corporation Opioid overdose monitoring
11571152, Dec 04 2009 Masimo Corporation Calibration for multi-stage physiological monitors
11576582, Aug 31 2015 Masimo Corporation Patient-worn wireless physiological sensor
11581091, Aug 26 2014 VCCB HOLDINGS, INC. Real-time monitoring systems and methods in a healthcare environment
11596363, Sep 12 2013 Cercacor Laboratories, Inc. Medical device management system
11596365, Feb 24 2017 Masimo Corporation Modular multi-parameter patient monitoring device
11602289, Feb 06 2015 Masimo Corporation Soft boot pulse oximetry sensor
11605188, Aug 11 2015 Masimo Corporation Medical monitoring analysis and replay including indicia responsive to light attenuated by body tissue
11607139, Sep 20 2006 Masimo Corporation Congenital heart disease monitor
11622733, May 02 2008 Masimo Corporation Monitor configuration system
11627919, Jun 06 2018 Masimo Corporation Opioid overdose monitoring
11637437, Apr 17 2019 Masimo Corporation Charging station for physiological monitoring device
11638532, Jul 03 2008 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
11642036, Jul 03 2008 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
11642037, Jul 03 2008 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
11645905, Mar 13 2013 Masimo Corporation Systems and methods for monitoring a patient health network
11647914, Jul 03 2008 Masimo Corporation User-worn device for noninvasively measuring a physiological parameter of a user
11647923, Apr 21 2007 Masimo Corporation Tissue profile wellness monitor
11653862, May 22 2015 CERCACOR LABORATORIES, INC Non-invasive optical physiological differential pathlength sensor
11660028, Mar 04 2008 Masimo Corporation Multispot monitoring for use in optical coherence tomography
11672447, Oct 12 2006 Masimo Corporation Method and apparatus for calibration to reduce coupling between signals in a measurement system
11673041, Dec 13 2013 Masimo Corporation Avatar-incentive healthcare therapy
11678829, Apr 17 2019 Masimo Corporation Physiological monitoring device attachment assembly
11679579, Dec 17 2015 Masimo Corporation Varnish-coated release liner
11684296, Dec 21 2018 CERCACOR LABORATORIES, INC Noninvasive physiological sensor
11690574, Nov 05 2003 Masimo Corporation Pulse oximeter access apparatus and method
11696712, Jun 13 2014 VCCB HOLDINGS, INC. Alarm fatigue management systems and methods
11699526, Oct 11 2013 Masimo Corporation Alarm notification system
11701043, Apr 17 2019 Masimo Corporation Blood pressure monitor attachment assembly
11705666, Aug 15 2017 Masimo Corporation Water resistant connector for noninvasive patient monitor
11706029, Jul 06 2016 Masimo Corporation Secure and zero knowledge data sharing for cloud applications
11717194, Oct 07 2013 Masimo Corporation Regional oximetry pod
11717210, Sep 28 2010 Masimo Corporation Depth of consciousness monitor including oximeter
11717218, Oct 07 2014 Masimo Corporation Modular physiological sensor
11721105, Feb 13 2020 Masimo Corporation System and method for monitoring clinical activities
11724031, Jan 17 2006 Masimo Corporation Drug administration controller
11730379, Mar 20 2020 Masimo Corporation Remote patient management and monitoring systems and methods
11744471, Sep 17 2009 Masimo Corporation Optical-based physiological monitoring system
11747178, Oct 27 2011 Masimo Corporation Physiological monitor gauge panel
11751773, Jul 03 2008 Masimo Corporation Emitter arrangement for physiological measurements
11751780, Oct 07 2013 Masimo Corporation Regional oximetry sensor
11752262, May 20 2009 Masimo Corporation Hemoglobin display and patient treatment
11759130, Oct 12 2006 Masimo Corporation Perfusion index smoother
11766198, Feb 02 2018 CERCACOR LABORATORIES, INC Limb-worn patient monitoring device
11779247, Jul 29 2009 Masimo Corporation Non-invasive physiological sensor cover
11786183, Oct 13 2011 Masimo Corporation Medical monitoring hub
11803623, Oct 18 2019 Masimo Corporation Display layout and interactive objects for patient monitoring
11812229, Jul 10 2018 Masimo Corporation Patient monitor alarm speaker analyzer
11813036, Apr 26 2017 Masimo Corporation Medical monitoring device having multiple configurations
11816771, Feb 24 2017 Masimo Corporation Augmented reality system for displaying patient data
11816973, Aug 19 2011 Masimo Corporation Health care sanitation monitoring system
11825536, Jan 18 2017 Masimo Corporation Patient-worn wireless physiological sensor with pairing functionality
11830349, Feb 24 2017 Masimo Corporation Localized projection of audible noises in medical settings
11832940, Aug 27 2019 CERCACOR LABORATORIES, INC Non-invasive medical monitoring device for blood analyte measurements
11839470, Jan 16 2013 Masimo Corporation Active-pulse blood analysis system
11839498, Oct 14 2005 Masimo Corporation Robust alarm system
11844634, Apr 19 2018 Masimo Corporation Mobile patient alarm display
11848515, Mar 11 2009 Masimo Corporation Magnetic connector
11850024, Sep 18 2014 MASIMO SEMICONDUCTOR, INC. Enhanced visible near-infrared photodiode and non-invasive physiological sensor
11857315, Oct 12 2006 Masimo Corporation Patient monitor capable of monitoring the quality of attached probes and accessories
11857319, Oct 12 2006 Masimo Corporation System and method for monitoring the life of a physiological sensor
11864890, Dec 22 2016 Cercacor Laboratories, Inc. Methods and devices for detecting intensity of light with translucent detector
11864922, Sep 04 2015 CERCACOR LABORATORIES, INC Low-noise sensor system
11872156, Aug 22 2018 Masimo Corporation Core body temperature measurement
11877824, Aug 17 2011 Masimo Corporation Modulated physiological sensor
11877867, Feb 16 2009 Masimo Corporation Physiological measurement device
11879960, Feb 13 2020 Masimo Corporation System and method for monitoring clinical activities
11883129, Apr 24 2018 CERCACOR LABORATORIES, INC Easy insert finger sensor for transmission based spectroscopy sensor
11883190, Jan 28 2014 Masimo Corporation Autonomous drug delivery system
11886858, Feb 24 2017 Masimo Corporation Medical monitoring hub
11887728, Sep 20 2012 Masimo Corporation Intelligent medical escalation process
11894640, Feb 06 2015 Masimo Corporation Pogo pin connector
11900775, Dec 21 2009 Masimo Corporation Modular patient monitor
11901070, Feb 24 2017 Masimo Corporation System for displaying medical monitoring data
11903140, Feb 06 2015 Masimo Corporation Fold flex circuit for LNOP
8203438, Jul 29 2008 JPMorgan Chase Bank, National Association Alarm suspend system
8229533, Oct 16 1995 JPMorgan Chase Bank, National Association Low-noise optical probes for reducing ambient noise
8306596, Aug 11 2004 Masimo Corporation Method for data reduction and calibration of an OCT-based physiological monitor
8359080, Oct 07 1994 JPMorgan Chase Bank, National Association Signal processing apparatus
8364226, Oct 06 1993 JPMorgan Chase Bank, National Association Signal processing apparatus
8374665, Apr 21 2007 Masimo Corporation Tissue profile wellness monitor
8430817, Oct 15 2009 JPMorgan Chase Bank, National Association System for determining confidence in respiratory rate measurements
8437825, Jul 03 2008 Masimo Corporation Contoured protrusion for improving spectroscopic measurement of blood constituents
8463349, Oct 07 1994 JPMorgan Chase Bank, National Association Signal processing apparatus
8471713, Jul 24 2009 Masimo Corporation Interference detector for patient monitor
8515509, Aug 04 2008 CERCACOR LABORATORIES, INC Multi-stream emitter for noninvasive measurement of blood constituents
8529301, Oct 12 2007 JPMorgan Chase Bank, National Association Shielded connector assembly
8532727, Jan 25 1999 JPMorgan Chase Bank, National Association Dual-mode pulse oximeter
8547209, Jul 29 2008 JPMorgan Chase Bank, National Association Alarm suspend system
8548549, Aug 11 2004 Masimo Corporation Methods for noninvasively measuring analyte levels in a subject
8548550, Nov 29 2005 Masimo Corporation Optical sensor including disposable and reusable elements
8560032, Mar 01 2005 Cercacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
8560034, Oct 06 1993 JPMorgan Chase Bank, National Association Signal processing apparatus
8570167, Jan 24 2002 JPMorgan Chase Bank, National Association Physiological trend monitor
8570503, Aug 04 2008 Masimo Corporation Heat sink for noninvasive medical sensor
8571617, Mar 04 2008 Masimo Corporation Flowometry in optical coherence tomography for analyte level estimation
8577431, Jul 03 2008 Masimo Corporation Noise shielding for a noninvasive device
8588880, Feb 16 2009 JPMorgan Chase Bank, National Association Ear sensor
8626255, Mar 01 2005 Masimo Corporation Noninvasive multi-parameter patient monitor
8630691, Aug 04 2008 Masimo Corporation Multi-stream sensor front ends for noninvasive measurement of blood constituents
8641631, Apr 08 2004 JPMorgan Chase Bank, National Association Non-invasive monitoring of respiratory rate, heart rate and apnea
8666468, May 06 2010 Masimo Corporation Patient monitor for determining microcirculation state
8676286, Jul 08 2003 Cercacor Laboratories, Inc. Method and apparatus for reducing coupling between signals in a measurement system
8688183, Sep 03 2009 Masimo Corporation Emitter driver for noninvasive patient monitor
8690799, Oct 15 2009 JPMorgan Chase Bank, National Association Acoustic respiratory monitoring sensor having multiple sensing elements
8700112, Oct 13 2008 JPMorgan Chase Bank, National Association Secondary-emitter sensor position indicator
8702627, Oct 15 2009 JPMorgan Chase Bank, National Association Acoustic respiratory monitoring sensor having multiple sensing elements
8706179, Oct 15 1998 JPMorgan Chase Bank, National Association Reusable pulse oximeter probe and disposable bandage apparatii
8715206, Oct 15 2009 JPMorgan Chase Bank, National Association Acoustic patient sensor
8718737, Apr 14 1997 JPMorgan Chase Bank, National Association Method and apparatus for demodulating signals in a pulse oximetry system
8721541, Jun 03 1998 JPMorgan Chase Bank, National Association Physiological monitor
8723677, Oct 20 2010 Masimo Corporation Patient safety system with automatically adjusting bed
8740792, Jul 12 2010 Masimo Corporation Patient monitor capable of accounting for environmental conditions
8740816, Dec 30 2008 Masimo Corporation Acoustic sensor assembly
8754776, Jul 24 2009 Masimo Corporation Interference detector for patient monitor
8755535, Oct 15 2009 JPMorgan Chase Bank, National Association Acoustic respiratory monitoring sensor having multiple sensing elements
8755872, Jul 28 2011 Masimo Corporation Patient monitoring system for indicating an abnormal condition
8761850, Oct 13 2008 JPMorgan Chase Bank, National Association Reflection-detector sensor position indicator
8768423, Mar 04 2008 Masimo Corporation Multispot monitoring for use in optical coherence tomography
8771204, Dec 30 2008 JPMorgan Chase Bank, National Association Acoustic sensor assembly
8781543, Jun 07 1995 JPMorgan Chase Bank, National Association Manual and automatic probe calibration
8781544, Mar 27 2007 CERCACOR LABORATORIES, INC Multiple wavelength optical sensor
8781549, Jan 24 2003 Masimo Corporation Noninvasive oximetry optical sensor including disposable and reusable elements
8788003, Aug 11 2004 Masimo Corporation Monitoring blood constituent levels in biological tissue
8801613, Dec 04 2009 JPMorgan Chase Bank, National Association Calibration for multi-stage physiological monitors
8821397, Sep 28 2010 JPMorgan Chase Bank, National Association Depth of consciousness monitor including oximeter
8821415, Oct 15 2009 JPMorgan Chase Bank, National Association Physiological acoustic monitoring system
8830449, Apr 18 2011 Masimo Corporation Blood analysis system
8831700, Mar 17 2006 Masimo Corporation Apparatus and method for creating a stable optical interface
8840549, Sep 22 2006 Masimo Corporation Modular patient monitor
8845543, Apr 14 1997 Masimo Corporation Signal processing apparatus and method
8847740, Jul 29 2008 Masimo Corporation Alarm suspend system
8852094, Dec 22 2006 JPMorgan Chase Bank, National Association Physiological parameter system
8868150, Nov 29 2005 Masimo Corporation Optical sensor including disposable and reusable elements
8870792, Oct 15 2009 JPMorgan Chase Bank, National Association Physiological acoustic monitoring system
8886271, Jul 29 2009 Masimo Corporation Non-invasive physiological sensor cover
8888539, Oct 12 2007 Masimo Corporation Shielded connector assembly
8888708, Apr 14 1997 JPMorgan Chase Bank, National Association Signal processing apparatus and method
8892180, Jun 29 2001 JPMorgan Chase Bank, National Association Sine saturation transform
8909310, Aug 04 2008 Masimo Corporation Multi-stream sensor front ends for noninvasive measurement of blood constituents
8911377, Sep 15 2008 JPMorgan Chase Bank, National Association Patient monitor including multi-parameter graphical display
8920317, Jul 25 2003 Masimo Corporation Multipurpose sensor port
8921699, Apr 16 2007 JPMorgan Chase Bank, National Association Low noise oximetry cable including conductive cords
8948835, Dec 04 2002 Masimo Corporation Systems and methods for determining blood oxygen saturation values using complex number encoding
8965471, Apr 21 2007 Masimo Corporation Tissue profile wellness monitor
8983564, Oct 12 2006 JPMorgan Chase Bank, National Association Perfusion index smoother
8989831, May 19 2009 Masimo Corporation Disposable components for reusable physiological sensor
8996085, Oct 14 2005 JPMorgan Chase Bank, National Association Robust alarm system
8998809, May 15 2006 CERCACOR LABORATORIES, INC Systems and methods for calibrating minimally invasive and non-invasive physiological sensor devices
9028429, Dec 30 2008 Masimo Corporation Acoustic sensor assembly
9037207, May 20 2009 JPMorgan Chase Bank, National Association Hemoglobin display and patient treatment
9060721, Mar 04 2008 Masimo Corporation Flowometry in optical coherence tomography for analyte level estimation
9066680, Oct 15 2009 Masimo Corporation System for determining confidence in respiratory rate measurements
9078560, Aug 11 2004 Masimo Corporation Method for data reduction and calibration of an OCT-based physiological monitor
9084569, Jul 08 2003 Cercacor Laboratories, Inc. Method and apparatus for reducing coupling between signals in a measurement system
9095316, Apr 20 2011 JPMorgan Chase Bank, National Association System for generating alarms based on alarm patterns
9107625, May 05 2008 JPMorgan Chase Bank, National Association Pulse oximetry system with electrical decoupling circuitry
9113831, Mar 25 2002 Masimo Corporation Physiological measurement communications adapter
9113832, Mar 25 2002 Masimo Corporation Wrist-mounted physiological measurement device
9119595, Oct 13 2008 Masimo Corporation Reflection-detector sensor position indicator
9131881, Apr 17 2012 JPMorgan Chase Bank, National Association Hypersaturation index
9131882, Mar 01 2005 Cercacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
9131883, Jan 24 2002 Masimo Corporation Physiological trend monitor
9131917, Dec 30 2008 Masimo Corporation Acoustic sensor assembly
9138180, May 03 2010 Masimo Corporation Sensor adapter cable
9138182, Nov 29 2006 Cercacor Laboratories, Inc. Optical sensor including disposable and reusable elements
9142117, Oct 12 2007 JPMorgan Chase Bank, National Association Systems and methods for storing, analyzing, retrieving and displaying streaming medical data
9153112, Dec 21 2009 Masimo Corporation Modular patient monitor
9153121, Jul 29 2008 Masimo Corporation Alarm suspend system
9161696, Sep 22 2006 Masimo Corporation Modular patient monitor
9161713, Mar 04 2004 JPMorgan Chase Bank, National Association Multi-mode patient monitor configured to self-configure for a selected or determined mode of operation
9167995, Mar 01 2005 Cercacor Laboratories, Inc. Physiological parameter confidence measure
9176141, May 15 2006 Cercacor Laboratories, Inc. Physiological monitor calibration system
9186102, Sep 03 2009 Masimo Corporation Emitter driver for noninvasive patient monitor
9192312, May 06 2010 Masimo Corporation Patient monitor for determining microcirculation state
9192329, Oct 12 2006 JPMorgan Chase Bank, National Association Variable mode pulse indicator
9192351, Jul 22 2011 Masimo Corporation Acoustic respiratory monitoring sensor with probe-off detection
9195385, Mar 25 2012 JPMorgan Chase Bank, National Association Physiological monitor touchscreen interface
9211072, Jun 28 2007 Masimo Corporation Disposable active pulse sensor
9211095, Oct 13 2010 Masimo Corporation Physiological measurement logic engine
9218454, Mar 04 2009 Masimo Corporation Medical monitoring system
9226696, Oct 20 2010 Masimo Corporation Patient safety system with automatically adjusting bed
9241662, Mar 01 2005 Cercacor Laboratories, Inc. Configurable physiological measurement system
9245668, Jun 29 2011 Masimo Corporation Low noise cable providing communication between electronic sensor components and patient monitor
9259185, Feb 16 2009 Masimo Corporation Ear sensor
9277880, Jul 03 2008 Masimo Corporation Multi-stream data collection system for noninvasive measurement of blood constituents
9289167, Apr 14 1997 JPMorgan Chase Bank, National Association Signal processing apparatus and method
9295421, Jul 29 2009 Masimo Corporation Non-invasive physiological sensor cover
9307928, Mar 30 2010 Masimo Corporation Plethysmographic respiration processor
9323894, Aug 19 2011 JPMorgan Chase Bank, National Association Health care sanitation monitoring system
9326712, Jun 02 2010 Masimo Corporation Opticoustic sensor
9351673, Apr 14 1997 Masimo Corporation Method and apparatus for demodulating signals in a pulse oximetry system
9351675, Mar 01 2005 Cercacor Laboratories, Inc. Noninvasive multi-parameter patient monitor
9370325, May 20 2009 Apple Inc Hemoglobin display and patient treatment
9370326, Oct 12 2006 Masimo Corporation Oximeter probe off indicator defining probe off space
9370335, Oct 15 2009 Masimo Corporation Physiological acoustic monitoring system
9386953, Dec 09 1999 JPMorgan Chase Bank, National Association Method of sterilizing a reusable portion of a noninvasive optical probe
9386961, Oct 15 2009 Masimo Corporation Physiological acoustic monitoring system
9392945, Jan 04 2012 JPMorgan Chase Bank, National Association Automated CCHD screening and detection
9397448, Oct 12 2007 Masimo Corporation Shielded connector assembly
9408542, Jul 22 2010 Masimo Corporation Non-invasive blood pressure measurement system
9436645, Oct 13 2011 Masimo Corporation Medical monitoring hub
9445759, Dec 22 2011 CERCACOR LABORATORIES, INC Blood glucose calibration system
9474474, Mar 14 2013 Masimo Corporation Patient monitor as a minimally invasive glucometer
9480435, Feb 09 2012 Masimo Corporation Configurable patient monitoring system
9492110, Jun 03 1998 Masimo Corporation Physiological monitor
9510779, Sep 17 2009 Masimo Corporation Analyte monitoring using one or more accelerometers
9517024, Sep 17 2009 Masimo Corporation Optical-based physiological monitoring system
9532722, Jun 21 2011 Masimo Corporation Patient monitoring system
9538949, Sep 28 2010 Masimo Corporation Depth of consciousness monitor including oximeter
9538980, Oct 15 2009 Masimo Corporation Acoustic respiratory monitoring sensor having multiple sensing elements
9549696, Mar 01 2005 Cercacor Laboratories, Inc. Physiological parameter confidence measure
9554737, Aug 11 2004 Masimo Corporation Noninvasively measuring analyte levels in a subject
9560996, Oct 30 2012 Masimo Corporation Universal medical system
9560998, Oct 12 2006 Masimo Corporation System and method for monitoring the life of a physiological sensor
9566019, May 31 2006 Masimo Corporation Respiratory monitoring
9579039, Jan 10 2011 JPMorgan Chase Bank, National Association Non-invasive intravascular volume index monitor
9579050, Jan 24 2002 Masimo Corporation Physiological trend monitor
9591975, Jul 03 2008 Masimo Corporation Contoured protrusion for improving spectroscopic measurement of blood constituents
9622692, May 16 2011 Masimo Corporation Personal health device
9622693, Dec 04 2002 Masimo Corporation Systems and methods for determining blood oxygen saturation values using complex number encoding
9636055, Jan 07 1999 JPMorgan Chase Bank, National Association Pulse and confidence indicator displayed proximate plethysmograph
9636056, Jan 24 2002 Masimo Corporation Physiological trend monitor
9649054, Aug 26 2010 Masimo Corporation Blood pressure measurement method
9662052, Mar 08 2010 Masimo Corporation Reprocessing of a physiological sensor
9668679, Aug 11 2004 Masimo Corporation Method for data reduction and calibration of an OCT-based physiological monitor
9668680, Sep 03 2009 Masimo Corporation Emitter driver for noninvasive patient monitor
9675286, Dec 30 1998 JPMorgan Chase Bank, National Association Plethysmograph pulse recognition processor
9687160, Sep 20 2006 JPMorgan Chase Bank, National Association Congenital heart disease monitor
9693719, Jan 24 2003 Masimo Corporation Noninvasive oximetry optical sensor including disposable and reusable elements
9693737, Oct 13 2010 Masimo Corporation Physiological measurement logic engine
9697928, Aug 01 2012 Masimo Corporation Automated assembly sensor cable
9717425, Jul 03 2008 Masimo Corporation Noise shielding for a noninvaise device
9717458, Oct 20 2012 Masimo Corporation Magnetic-flap optical sensor
9724016, Oct 16 2009 MASIMO CORP Respiration processor
9724024, Mar 01 2010 JPMorgan Chase Bank, National Association Adaptive alarm system
9724025, Jan 16 2013 Masimo Corporation Active-pulse blood analysis system
9730640, Mar 25 1999 Masimo Corporation Pulse oximeter probe-off detector
9749232, Sep 20 2012 Masimo Corporation Intelligent medical network edge router
9750442, Mar 09 2013 Masimo Corporation Physiological status monitor
9750443, Mar 01 2005 Cercacor Laboratories, Inc. Multiple wavelength sensor emitters
9750461, Jan 02 2013 Masimo Corporation Acoustic respiratory monitoring sensor with probe-off detection
9775545, Sep 28 2010 JPMorgan Chase Bank, National Association Magnetic electrical connector for patient monitors
9775546, Apr 17 2012 Masimo Corporation Hypersaturation index
9775570, Mar 01 2010 Masimo Corporation Adaptive alarm system
9778079, Oct 27 2011 Masimo Corporation Physiological monitor gauge panel
9782077, Aug 17 2011 Masimo Corporation Modulated physiological sensor
9782110, Jun 02 2010 Masimo Corporation Opticoustic sensor
9787568, Nov 05 2012 CERCACOR LABORATORIES, INC Physiological test credit method
9788735, Mar 25 2002 Masimo Corporation Body worn mobile medical patient monitor
9795300, Mar 25 2002 Masimo Corporation Wearable portable patient monitor
9795310, May 06 2010 Masimo Corporation Patient monitor for determining microcirculation state
9795358, Dec 30 2008 Masimo Corporation Acoustic sensor assembly
9795739, May 20 2009 Masimo Corporation Hemoglobin display and patient treatment
9801556, Feb 25 2011 Masimo Corporation Patient monitor for monitoring microcirculation
9801588, Jul 08 2003 Cercacor Laboratories, Inc. Method and apparatus for reducing coupling between signals in a measurement system
9808188, Oct 13 2011 Masimo Corporation Robust fractional saturation determination
9814418, Jun 29 2001 Masimo Corporation Sine saturation transform
9820691, Sep 13 2007 JPMorgan Chase Bank, National Association Fluid titration system
9833152, Sep 17 2009 Masimo Corporation Optical-based physiological monitoring system
9833180, Mar 04 2008 Masimo Corporation Multispot monitoring for use in optical coherence tomography
9839379, Oct 07 2013 Masimo Corporation Regional oximetry pod
9839381, Nov 24 2009 CERCACOR LABORATORIES, INC Physiological measurement system with automatic wavelength adjustment
9847002, Dec 21 2009 Masimo Corporation Modular patient monitor
9848800, Oct 16 2009 MASIMO CORP Respiratory pause detector
9848806, Jul 02 2001 JPMorgan Chase Bank, National Association Low power pulse oximeter
9848807, Apr 21 2007 Masimo Corporation Tissue profile wellness monitor
9861304, Nov 29 2006 Cercacor Laboratories, Inc. Optical sensor including disposable and reusable elements
9861305, Oct 12 2006 Masimo Corporation Method and apparatus for calibration to reduce coupling between signals in a measurement system
9867578, Oct 15 2009 Masimo Corporation Physiological acoustic monitoring system
9872623, Mar 25 2002 Masimo Corporation Arm mountable portable patient monitor
9876320, May 03 2010 Masimo Corporation Sensor adapter cable
9877686, Oct 15 2009 Masimo Corporation System for determining confidence in respiratory rate measurements
9891079, Jul 17 2013 Masimo Corporation Pulser with double-bearing position encoder for non-invasive physiological monitoring
9895107, May 19 2009 Masimo Corporation Disposable components for reusable physiological sensor
9913617, Oct 13 2011 Masimo Corporation Medical monitoring hub
9924893, Mar 17 2006 Masimo Corporation Apparatus and method for creating a stable optical interface
9924897, Jun 12 2014 Masimo Corporation Heated reprocessing of physiological sensors
9936917, Mar 14 2013 Masimo Corporation Patient monitor placement indicator
9943269, Oct 13 2011 Masimo Corporation System for displaying medical monitoring data
9949676, Oct 12 2006 JPMorgan Chase Bank, National Association Patient monitor capable of monitoring the quality of attached probes and accessories
9955937, Sep 20 2012 Masimo Corporation Acoustic patient sensor coupler
9980667, Jul 29 2009 Masimo Corporation Non-invasive physiological sensor cover
9986919, Jun 21 2011 Masimo Corporation Patient monitoring system
9986952, Mar 14 2013 Masimo Corporation Heart sound simulator
9989560, Jul 24 2009 Masimo Corporation Interference detector for patient monitor
9993207, Oct 13 2011 Masimo Corporation Medical monitoring hub
D755392, Feb 06 2015 Masimo Corporation Pulse oximetry sensor
D788312, Feb 07 2013 Masimo Corporation Wireless patient monitoring device
D835282, Apr 28 2017 Masimo Corporation Medical monitoring device
D835283, Apr 28 2017 Masimo Corporation Medical monitoring device
D835284, Apr 28 2017 Masimo Corporation Medical monitoring device
D835285, Apr 28 2017 Masimo Corporation Medical monitoring device
D890708, Aug 15 2017 Masimo Corporation Connector
D897098, Oct 12 2018 Masimo Corporation Card holder set
D906970, Aug 15 2017 Masimo Corporation Connector
D916135, Oct 11 2018 Masimo Corporation Display screen or portion thereof with a graphical user interface
D917550, Oct 11 2018 Masimo Corporation Display screen or portion thereof with a graphical user interface
D917564, Oct 11 2018 Masimo Corporation Display screen or portion thereof with graphical user interface
D917704, Aug 16 2019 Masimo Corporation Patient monitor
D919094, Aug 16 2019 Masimo Corporation Blood pressure device
D919100, Aug 16 2019 Masimo Corporation Holder for a patient monitor
D921202, Aug 16 2019 Masimo Corporation Holder for a blood pressure device
D925597, Oct 31 2017 Masimo Corporation Display screen or portion thereof with graphical user interface
D927699, Oct 18 2019 Masimo Corporation Electrode pad
D933232, May 11 2020 Masimo Corporation Blood pressure monitor
D933233, Aug 16 2019 Masimo Corporation Blood pressure device
D933234, Aug 16 2019 Masimo Corporation Patient monitor
D950738, Oct 18 2019 Masimo Corporation Electrode pad
D965789, May 11 2020 Masimo Corporation Blood pressure monitor
D967433, Aug 16 2019 Masimo Corporation Patient monitor
D973072, Sep 30 2020 Masimo Corporation Display screen or portion thereof with graphical user interface
D973685, Sep 30 2020 Masimo Corporation Display screen or portion thereof with graphical user interface
D973686, Sep 30 2020 Masimo Corporation Display screen or portion thereof with graphical user interface
D974193, Jul 27 2020 Masimo Corporation Wearable temperature measurement device
D979516, May 11 2020 Masimo Corporation Connector
D980091, Jul 27 2020 Masimo Corporation Wearable temperature measurement device
D985498, Aug 16 2019 Masimo Corporation Connector
D989112, Sep 20 2013 Masimo Corporation Display screen or portion thereof with a graphical user interface for physiological monitoring
D989327, Oct 12 2018 Masimo Corporation Holder
ER1649,
ER1777,
ER2016,
ER2198,
ER31,
ER3807,
ER419,
ER5816,
ER5918,
ER612,
ER6654,
ER6678,
ER6997,
ER7053,
ER8765,
ER9655,
RE44823, Oct 15 1998 Masimo Corporation Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices
RE47218, Mar 01 2010 Masimo Corporation Adaptive alarm system
RE47244, Jul 29 2008 Masimo Corporation Alarm suspend system
RE47249, Jul 29 2008 Masimo Corporation Alarm suspend system
RE47353, Jul 29 2008 Masimo Corporation Alarm suspend system
RE47882, Mar 01 2010 Masimo Corporation Adaptive alarm system
RE49007, Mar 01 2010 Masimo Corporation Adaptive alarm system
RE49034, Jan 24 2002 Masimo Corporation Physiological trend monitor
Patent Priority Assignee Title
3482565,
3704708,
3771857,
3914464,
3981568, Nov 13 1972 Optical Coating Laboratory, Inc. Striped dichroic filter with butted stripes and dual lift-off method for making the same
4406289, Sep 12 1980 Nederlandse Centrale Organisatie Voor Toegepast-Natuurwetenschappelijk Device for the indirect, non-invasive and continuous measurement of blood pressure
4407290, Apr 01 1981 BOC GROUP, INC THE, 100 MOUNTAIN AVENUE, MURRAY HILL, NEW PROVIDENCE, NEW JERSEY, 07974, A CORP OF DE Blood constituent measuring device and method
4883055, Mar 11 1988 Puritan-Bennett Corporation Artificially induced blood pulse for use with a pulse oximeter
4927264, Dec 02 1987 Omron Tateisi Electronics Co. Non-invasive measuring method and apparatus of blood constituents
4957371, Dec 11 1987 Raytheon Company Wedge-filter spectrometer
4960128, Nov 14 1988 JPMorgan Chase Bank, National Association Method and apparatus for continuously and non-invasively measuring the blood pressure of a patient
4964408, Apr 29 1988 JPMorgan Chase Bank, National Association Oximeter sensor assembly with integral cable
5007423, Oct 04 1989 OMRON HEALTHCARE CO , LTD Oximeter sensor temperature control
5041187, Apr 29 1988 JPMorgan Chase Bank, National Association Oximeter sensor assembly with integral cable and method of forming the same
5069213, Apr 29 1988 JPMorgan Chase Bank, National Association Oximeter sensor assembly with integral cable and encoder
5077476, Jun 27 1990 Futrex, Inc. Instrument for non-invasive measurement of blood glucose
5111817, Dec 29 1988 Medical Physics, Inc. Noninvasive system and method for enhanced arterial oxygen saturation determination and arterial blood pressure monitoring
5163438, Nov 14 1988 JPMorgan Chase Bank, National Association Method and apparatus for continuously and noninvasively measuring the blood pressure of a patient
5183042, May 23 1989 MORROW & CO PARTNERSHIP; PEURA, ROBERT A ; LOCK, J PAUL; WELLS, STEPHEN Electromagnetic method and apparatus to measure constituents of human or animal tissue
5200855, Jul 12 1991 JDS Uniphase Corporation Absorbing dichroic filters
5282467, Aug 13 1992 Duke University Non-invasive method for detecting deep venous thrombosis in the human body
5337744, Jul 14 1993 JPMorgan Chase Bank, National Association Low noise finger cot probe
5348003, Sep 03 1992 Nellcor Puritan Bennett Incorporated Method and apparatus for chemical analysis
5361758, Jun 09 1988 Nellcor Puritan Bennett LLC Method and device for measuring concentration levels of blood constituents non-invasively
5372135, Dec 31 1991 MORROW & CO PARTNERSHIP; PEURA, ROBERT A ; LOCK, J PAUL; WELLS, STEPHEN Blood constituent determination based on differential spectral analysis
5372136, Oct 16 1990 FRESENIUS MEDICAL CARE HOLDINGS, INC System and method for noninvasive hematocrit monitoring
5379774, Oct 23 1990 Sankyo Company Limited Measurement of arterial elasticity and the frequency characteristic of the compliance of an artery
5398681, Dec 10 1992 SUNSHINE MEDICAL INSTRUMENTS, INC Pocket-type instrument for non-invasive measurement of blood glucose concentration
5413100, Jul 17 1991 Non-invasive method for the in vivo determination of the oxygen saturation rate of arterial blood, and device for carrying out the method
5416325, Apr 29 1993 Arch Development Corporation Fourier transform infrared spectrometer
5416579, Jul 23 1993 Nova Chem BV Method for determining concentration in a solution using attenuated total reflectance spectrometry
5431170, May 26 1990 JPMorgan Chase Bank, National Association Pulse responsive device
5452717, Jul 14 1993 JPMorgan Chase Bank, National Association Finger-cot probe
5482036, Mar 07 1991 JPMorgan Chase Bank, National Association Signal processing apparatus and method
5490505, Oct 06 1993 JPMorgan Chase Bank, National Association Signal processing apparatus
5494043, May 04 1993 JPMorgan Chase Bank, National Association Arterial sensor
5522388, Sep 22 1993 Kowa Company Ltd. Pulse spectrometer
5529755, Feb 22 1994 Minolta Co., Ltd. Apparatus for measuring a glucose concentration
5533511, Jan 05 1994 JPMorgan Chase Bank, National Association Apparatus and method for noninvasive blood pressure measurement
5562002, Feb 03 1995 SENSIDYNE INC Positive displacement piston flow meter with damping assembly
5590649, Apr 15 1994 JPMorgan Chase Bank, National Association Apparatus and method for measuring an induced perturbation to determine blood pressure
5602924, Dec 07 1992 JPMorgan Chase Bank, National Association Electronic stethescope
5632272, Mar 07 1991 JPMorgan Chase Bank, National Association Signal processing apparatus
5638816, Jun 07 1995 Masimo Corporation Active pulse blood constituent monitoring
5638818, Mar 21 1991 JPMorgan Chase Bank, National Association Low noise optical probe
5645440, Oct 16 1995 JPMorgan Chase Bank, National Association Patient cable connector
5685299, Oct 06 1993 JPMorgan Chase Bank, National Association Signal processing apparatus
5743262, Jun 07 1995 CERCACOR LABORATORIES, INC Blood glucose monitoring system
5758644, Jun 07 1995 JPMorgan Chase Bank, National Association Manual and automatic probe calibration
5760910, Jun 07 1995 CERCACOR LABORATORIES, INC Optical filter for spectroscopic measurement and method of producing the optical filter
5769785, Mar 07 1991 JPMorgan Chase Bank, National Association Signal processing apparatus and method
5782757, Mar 21 1991 JPMorgan Chase Bank, National Association Low-noise optical probes
5785659, Apr 15 1994 JPMorgan Chase Bank, National Association Automatically activated blood pressure measurement device
5791347, Apr 15 1994 JPMorgan Chase Bank, National Association Motion insensitive pulse detector
5810734, Apr 15 1994 JPMorgan Chase Bank, National Association Apparatus and method for measuring an induced perturbation to determine a physiological parameter
5823950, Jun 07 1995 JPMorgan Chase Bank, National Association Manual and automatic probe calibration
5830131, Apr 15 1994 JPMorgan Chase Bank, National Association Apparatus and method for measuring an induced perturbation to determine a physical condition of the human arterial system
5833618, Apr 15 1994 JPMorgan Chase Bank, National Association Apparatus and method for measuring an induced perturbation to determine a physiological parameter
5860919, Jun 07 1995 Masimo Corporation Active pulse blood constituent monitoring method
5890929, Jun 03 1997 JPMorgan Chase Bank, National Association Shielded medical connector
5904654, Oct 20 1995 JPMorgan Chase Bank, National Association Exciter-detector unit for measuring physiological parameters
5919134, Apr 14 1997 JPMorgan Chase Bank, National Association Method and apparatus for demodulating signals in a pulse oximetry system
5934925, Oct 16 1995 JPMorgan Chase Bank, National Association Patient cable connector
5940182, Jun 07 1995 CERCACOR LABORATORIES, INC Optical filter for spectroscopic measurement and method of producing the optical filter
5995855, Feb 11 1998 JPMorgan Chase Bank, National Association Pulse oximetry sensor adapter
5997343, Mar 19 1998 JPMorgan Chase Bank, National Association Patient cable sensor switch
6002952, Apr 14 1997 JPMorgan Chase Bank, National Association Signal processing apparatus and method
6011986, Jun 07 1995 JPMorgan Chase Bank, National Association Manual and automatic probe calibration
6027452, Jun 26 1996 JPMorgan Chase Bank, National Association Rapid non-invasive blood pressure measuring device
6036642, Mar 07 1991 JPMorgan Chase Bank, National Association Signal processing apparatus and method
6045509, Apr 15 1994 JPMorgan Chase Bank, National Association Apparatus and method for measuring an induced perturbation to determine a physiological parameter
6067462, Apr 14 1997 JPMorgan Chase Bank, National Association Signal processing apparatus and method
6081735, Oct 06 1993 JPMorgan Chase Bank, National Association Signal processing apparatus
6088607, Mar 21 1991 JPMorgan Chase Bank, National Association Low noise optical probe
6110522, Jun 07 1995 CERCACOR LABORATORIES, INC Blood glucose monitoring system
6144868, Oct 15 1998 JPMorgan Chase Bank, National Association Reusable pulse oximeter probe and disposable bandage apparatus
6151516, Jun 07 1995 Masimo Corporation Active pulse blood constituent monitoring
6152754, Dec 21 1999 JPMorgan Chase Bank, National Association Circuit board based cable connector
6157850, Mar 07 1991 JPMorgan Chase Bank, National Association Signal processing apparatus
6165005, Mar 19 1998 JPMorgan Chase Bank, National Association Patient cable sensor switch
6184521, Jan 06 1998 JPMorgan Chase Bank, National Association Photodiode detector with integrated noise shielding
6191860, Aug 06 1999 ORSENSE LTD Optical shutter, spectrometer and method for spectral analysis
6206830, Mar 07 1991 JPMorgan Chase Bank, National Association Signal processing apparatus and method
6213952, Sep 28 1999 Orsense Ltd. Optical device for non-invasive measurement of blood related signals utilizing a finger holder
6229856, Apr 14 1997 JPMorgan Chase Bank, National Association Method and apparatus for demodulating signals in a pulse oximetry system
6236872, Mar 07 1991 JPMorgan Chase Bank, National Association Signal processing apparatus
6256523, Mar 21 1991 JPMorgan Chase Bank, National Association Low-noise optical probes
6263222, Mar 07 1991 JPMorgan Chase Bank, National Association Signal processing apparatus
6278522, Jun 07 1995 CERCACOR LABORATORIES, INC Optical filter for spectroscopic measurement and method of producing the optical filter
6280213, Oct 16 1995 JPMorgan Chase Bank, National Association Patient cable connector
6285896, Jul 13 1998 JPMorgan Chase Bank, National Association Fetal pulse oximetry sensor
6321100, Jul 13 1999 JPMorgan Chase Bank, National Association Reusable pulse oximeter probe with disposable liner
6334065, May 27 1999 JPMorgan Chase Bank, National Association Stereo pulse oximeter
6343224, Oct 15 1998 JPMorgan Chase Bank, National Association Reusable pulse oximeter probe and disposable bandage apparatus
6349228, Feb 11 1998 JPMorgan Chase Bank, National Association Pulse oximetry sensor adapter
6360114, Mar 25 1999 JPMorgan Chase Bank, National Association Pulse oximeter probe-off detector
6371921, Apr 15 1994 JPMorgan Chase Bank, National Association System and method of determining whether to recalibrate a blood pressure monitor
6377829, Dec 09 1999 JPMorgan Chase Bank, National Association Resposable pulse oximetry sensor
6388240, Aug 26 1999 JPMorgan Chase Bank, National Association Shielded optical probe and method having a longevity indication
6397091, Jun 07 1995 JPMorgan Chase Bank, National Association Manual and automatic probe calibration
6400971, Oct 12 1999 Orsense Ltd. Optical device for non-invasive measurement of blood-related signals and a finger holder therefor
6400972, Jun 17 1998 ORSENSE LTD Non-invasive method and system of optical measurements for determining the concentration of a substance in blood
6430525, Jun 05 2000 JPMorgan Chase Bank, National Association Variable mode averager
6463311, Dec 23 1999 JPMorgan Chase Bank, National Association Plethysmograph pulse recognition processor
6470199, Jun 21 2000 JPMorgan Chase Bank, National Association Elastic sock for positioning an optical probe
6501975, Mar 07 1991 JPMorgan Chase Bank, National Association Signal processing apparatus and method
6515273, Aug 26 1999 JPMorgan Chase Bank, National Association System for indicating the expiration of the useful operating life of a pulse oximetry sensor
6519487, Oct 15 1998 JPMorgan Chase Bank, National Association Reusable pulse oximeter probe and disposable bandage apparatus
6525386, Mar 10 1998 JPMorgan Chase Bank, National Association Non-protruding optoelectronic lens
6526300, Jun 18 1999 JPMorgan Chase Bank, National Association Pulse oximeter probe-off detection system
6541756, Mar 21 1991 JPMorgan Chase Bank, National Association Shielded optical probe having an electrical connector
6542764, Dec 01 1999 JPMorgan Chase Bank, National Association Pulse oximeter monitor for expressing the urgency of the patient's condition
6580086, Aug 26 1999 JPMorgan Chase Bank, National Association Shielded optical probe and method
6584336, Jan 25 1999 JPMorgan Chase Bank, National Association Universal/upgrading pulse oximeter
6587704, Jun 16 1999 ORSENSE LTD Method for non-invasive optical measurements of blood parameters
6595316, Jul 18 2001 JPMorgan Chase Bank, National Association Tension-adjustable mechanism for stethoscope earpieces
6597933, Feb 11 1998 JPMorgan Chase Bank, National Association Pulse oximetry sensor adapter
6606511, Jan 07 1999 JPMorgan Chase Bank, National Association Pulse oximetry pulse indicator
6632181, Jun 26 1996 JPMorgan Chase Bank, National Association Rapid non-invasive blood pressure measuring device
6640116, Aug 18 2000 Masimo Corporation Optical spectroscopy pathlength measurement system
6643530, Apr 14 1997 JPMorgan Chase Bank, National Association Method and apparatus for demodulating signals in a pulse oximetry system
6650917, Mar 07 1991 JPMorgan Chase Bank, National Association Signal processing apparatus
6654624, Mar 25 1999 JPMorgan Chase Bank, National Association Pulse oximeter probe-off detector
6658276, Jan 25 1999 JPMorgan Chase Bank, National Association Pulse oximeter user interface
6661161, Jun 27 2002 JPMorgan Chase Bank, National Association Piezoelectric biological sound monitor with printed circuit board
6671531, Dec 09 1999 JPMorgan Chase Bank, National Association Sensor wrap including foldable applicator
6678543, Jun 07 1995 JPMorgan Chase Bank, National Association Optical probe and positioning wrap
6684090, Jan 07 1999 JPMorgan Chase Bank, National Association Pulse oximetry data confidence indicator
6684091, Oct 15 1998 JPMorgan Chase Bank, National Association Reusable pulse oximeter probe and disposable bandage method
6697656, Jun 27 2000 JPMorgan Chase Bank, National Association Pulse oximetry sensor compatible with multiple pulse oximetry systems
6697658, Jul 02 2001 JPMorgan Chase Bank, National Association Low power pulse oximeter
6699194, Apr 14 1997 JPMorgan Chase Bank, National Association Signal processing apparatus and method
6711424, Dec 22 1999 Orsense Ltd. Method of optical measurement for determing various parameters of the patient's blood
6714804, Jun 03 1998 JPMorgan Chase Bank, National Association Stereo pulse oximeter
6721585, Oct 15 1998 JPMorgan Chase Bank, National Association Universal modular pulse oximeter probe for use with reusable and disposable patient attachment devices
6725075, Dec 09 1999 JPMorgan Chase Bank, National Association Resposable pulse oximetry sensor
6731963, Mar 09 1999 ORSENSE LTD Device for enhancement and quality improvement of blood-related signals for use in a system for non-invasive measurements of blood-related signals
6735459, Oct 15 1998 JPMorgan Chase Bank, National Association Reusable pulse oximeter probe and disposable bandage apparatus
6745060, Mar 07 1991 JPMorgan Chase Bank, National Association Signal processing apparatus
6760607, Dec 29 2000 JPMorgan Chase Bank, National Association Ribbon cable substrate pulse oximetry sensor
6770028, Jan 25 1999 JPMorgan Chase Bank, National Association Dual-mode pulse oximeter
6771994, Jun 18 1999 JPMorgan Chase Bank, National Association Pulse oximeter probe-off detection system
6782276, Mar 23 2000 Apple Inc Signaling aggregator and method for use in a signaling network
6792300, Mar 21 1991 JPMorgan Chase Bank, National Association Low-noise optical probes for reducing light piping
6804002, Jun 11 2000 Orsense Ltd. Method and device for measuring concentration of glucose or other substances in blood
6813511, Mar 21 1991 JPMorgan Chase Bank, National Association Low-noise optical probes for reducing ambient noise
6816741, Dec 30 1998 JPMorgan Chase Bank, National Association Plethysmograph pulse recognition processor
6822564, Jan 24 2002 JPMorgan Chase Bank, National Association Parallel measurement alarm processor
6826419, Mar 07 1991 JPMorgan Chase Bank, National Association Signal processing apparatus and method
6830711, Mar 10 1998 JPMorgan Chase Bank, National Association Mold tool for an optoelectronic element
6850787, Jun 29 2001 JPMorgan Chase Bank, National Association Signal component processor
6850788, Mar 25 2002 JPMorgan Chase Bank, National Association Physiological measurement communications adapter
6852083, Apr 15 1994 JPMorgan Chase Bank, National Association System and method of determining whether to recalibrate a blood pressure monitor
6861639, Aug 26 1999 JPMorgan Chase Bank, National Association Systems and methods for indicating an amount of use of a sensor
6898452, Jun 03 1998 JPMorgan Chase Bank, National Association Stereo pulse oximeter
6920345, Jan 24 2003 Masimo Corporation Optical sensor including disposable and reusable elements
6931268, Jun 07 1995 Masimo Corporation Active pulse blood constituent monitoring
6934570, Jan 08 2002 JPMorgan Chase Bank, National Association Physiological sensor combination
6939305, Jun 26 1996 JPMorgan Chase Bank, National Association Rapid non-invasive blood pressure measuring device
6943348, Oct 19 1999 JPMorgan Chase Bank, National Association System for detecting injection holding material
6950687, Dec 09 1999 JPMorgan Chase Bank, National Association Isolation and communication element for a resposable pulse oximetry sensor
6961598, Feb 22 2002 Masimo Corporation Pulse and active pulse spectraphotometry
6970792, Dec 04 2002 Masimo Corporation Systems and methods for determining blood oxygen saturation values using complex number encoding
6979812, Aug 26 1999 JPMorgan Chase Bank, National Association Systems and methods for indicating an amount of use of a sensor
6985764, May 03 2001 JPMorgan Chase Bank, National Association Flex circuit shielded optical sensor
6993371, Feb 11 1998 JPMorgan Chase Bank, National Association Pulse oximetry sensor adaptor
6996427, Jan 07 1999 JPMorgan Chase Bank, National Association Pulse oximetry data confidence indicator
6999904, Jun 05 2000 JPMorgan Chase Bank, National Association Variable indication estimator
7003338, Jul 08 2003 CERCACOR LABORATORIES, INC Method and apparatus for reducing coupling between signals
7003339, Apr 14 1997 JPMorgan Chase Bank, National Association Method and apparatus for demodulating signals in a pulse oximetry system
7015451, Jan 25 2002 JPMorgan Chase Bank, National Association Power supply rail controller
7024233, Jan 07 1999 JPMorgan Chase Bank, National Association Pulse oximetry data confidence indicator
7027849, Nov 22 2002 CERCACOR LABORATORIES, INC Blood parameter measurement system
7030749, Jan 24 2002 JPMorgan Chase Bank, National Association Parallel measurement alarm processor
7039449, Dec 09 1999 JPMorgan Chase Bank, National Association Resposable pulse oximetry sensor
7041060, Jun 26 1996 JPMorgan Chase Bank, National Association Rapid non-invasive blood pressure measuring device
7044918, Dec 30 1998 JPMorgan Chase Bank, National Association Plethysmograph pulse recognition processor
20020077535,
20040116788,
20040176671,
20040225205,
20040249252,
D353195, May 28 1993 JPMorgan Chase Bank, National Association Electronic stethoscope housing
D353196, May 28 1993 JPMorgan Chase Bank, National Association Stethoscope head
D361840, Apr 21 1994 JPMorgan Chase Bank, National Association Stethoscope head
D362063, Apr 21 1994 JPMorgan Chase Bank, National Association Stethoscope headset
D363120, Apr 21 1994 JPMorgan Chase Bank, National Association Stethoscope ear tip
D393830, Oct 16 1995 JPMorgan Chase Bank, National Association Patient cable connector
JP3126104,
RE38476, Mar 07 1991 JPMorgan Chase Bank, National Association Signal processing apparatus
RE38492, Mar 07 1991 JPMorgan Chase Bank, National Association Signal processing apparatus and method
WO9004353,
WO9217765,
WO9320745,
WO9639926,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jul 02 2009Masimo Laboratories, Inc.(assignment on the face of the patent)
Aug 02 2010MASIMO LABORATORIES, INC CERCACOR LABORATORIES, INC CHANGE OF NAME SEE DOCUMENT FOR DETAILS 0281920453 pdf
Mar 08 2016CERCACOR LABORATORIES, INC Masimo CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0380490074 pdf
Date Maintenance Fee Events
Aug 05 2019EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Sep 27 20144 years fee payment window open
Mar 27 20156 months grace period start (w surcharge)
Sep 27 2015patent expiry (for year 4)
Sep 27 20172 years to revive unintentionally abandoned end. (for year 4)
Sep 27 20188 years fee payment window open
Mar 27 20196 months grace period start (w surcharge)
Sep 27 2019patent expiry (for year 8)
Sep 27 20212 years to revive unintentionally abandoned end. (for year 8)
Sep 27 202212 years fee payment window open
Mar 27 20236 months grace period start (w surcharge)
Sep 27 2023patent expiry (for year 12)
Sep 27 20252 years to revive unintentionally abandoned end. (for year 12)