A single chip camera which includes an intergrated integrated image acquisition portion and control portion and which has double sampling/noise reduction capabilities thereon. Part of the intergrated integrated structure reduces the noise that is picked up during imaging.

Patent
   RE42974
Priority
Jan 28 1994
Filed
Apr 09 2009
Issued
Nov 29 2011
Expiry
Jan 28 2014
Assg.orig
Entity
Large
3
97
EXPIRED
31. A method of controlling a single chip camera, comprising:
integrating, on a single substrate, an image acquisition portion and a control portion, both of which are formed using a logic family that is compatible with CMOS, said image acquisition portion integrated in said substrate including an array of photoreceptors with output nodes, and a signal controlling device, controlling said photoreceptors and a timing circuit integrated within the same substrate that houses the array of photoreceptors, controlling a timing of operation of said array of photoreceptors, and also integrating at least two charge storage elements on said substrate;
first, shorting together specified nodes of said two charge storage elements;
after said first shorting, sampling voltages on said charge storage elements, said voltages being related to one another.
9. A single chip camera device, comprising:
a substrate, having integrated thereon an image acquisition portion and a control portion, both of which are formed using a logic family that is compatible with CMOS;
said image acquisition portion integrated in said substrate including an array of photoreceptors;
said control portion integrated in said substrate including a signal controlling device, controlling said photoreceptors to output their signals,
said control portion also including, integrated in said substrate, a timing circuit integrated within the same substrate that houses the array of photoreceptors, controlling a timing of operation of said array of photoreceptors; and
a circuit, integrated on said substrate, which reduces a fixed pattern noise including at least one charge storage device, sampling a level indicative of reset.
7. A single chip camera device, comprising:
a substrate, having integrated thereon an image acquisition portion and a control portion, both of which are formed using a logic family that is compatible with CMOS;
said image acquisition portion integrated in said substrate including an array of photoreceptors;
said control portion integrated in said substrate including a signal controlling device, controlling said photoreceptors to output their signals,
said control portion also including, integrated in said substrate, a timing circuit integrated within the same substrate that houses the array of photoreceptors, controlling a timing of operation of said array of photoreceptors; and
a circuit, integrated on said substrate, which reduces a fixed pattern noise,
wherein said timing circuit controls readout from said chip in a correlated double sampling mode.
33. A single chip camera device, comprising: a substrate, having integrated thereon an image acquisition portion and a control portion, both of which are formed using a logic family that is compatible with CMOS; said image acquisition portion integrated in said substrate including an array of photoreceptors and a noise reduction circuit;
said control portion integrated in said substrate including a signal controlling device, controlling said photoreceptors to output their signals;
said control portion also including, integrated in said substrate, a timing circuit integrated within the same substrate that houses the array of photoreceptors, controlling a timing of operation of said array of photoreceptors to output a plurality of outputs at a time and controlling an operation of said noise reduction circuit to occur during a time when signals are not being read from said array of photodetectors.
1. A single chip camera device, comprising:
a substrate, having integrated thereon an image acquisition portion and a control portion, both of which are formed using a logic family that is compatible with CMOS;
said image acquisition portion integrated in said substrate including an array of photoreceptors;
said control portion integrated in said substrate including a signal controlling device, controlling said photoreceptors to output their signals,
said control portion also including, integrated in said substrate, a timing circuit integrated within the same substrate that houses the array of photoreceptors, controlling a timing of operation of said array of photoreceptors; and
a circuit, integrated on said substrate, which reduces a fixed pattern noise, wherein said signal controlling device includes a column-parallel read out device, which reads out a row of said photoreceptors at substantially the same time.
14. A single chip camera device, comprising:
a substrate, having integrated thereon an image acquisition portion and a control portion, both of which are formed using a logic family that is compatible with CMOS;
said image acquisition portion integrated in said substrate including an array of photoreceptors arranged in rows and columns;
a charge storage element, associated with each said column;
said control portion integrated in said substrate including a signal controlling device, controlling said photoreceptors to output their signals,
said control portion also including, integrated in said substrate, a timing circuit integrated within the same substrate that houses the array of photoreceptors, controlling a timing of operation of said array of photoreceptors;
said control portion including logic elements to control a double delta sampling, integrated on the chip, which shorts sampled signals during the readout cycle, thereby reducing column fixed pattern noise.
10. A single chip camera device, comprising:
a substrate, having integrated thereon an image acquisition portion and a control portion, both of which are formed using a logic family that is compatible with CMOS;
said image acquisition portion integrated in said substrate including an array of photoreceptors;
said control portion integrated in said substrate including a signal controlling device, controlling said photoreceptors to output their signals,
said control portion also including, integrated in said substrate, a timing circuit integrated within the same substrate that houses the array of photoreceptors, controlling a timing of operation of said array of photoreceptors; and
a circuit, integrated on said substrate, which reduces a fixed pattern noise, including at least two charge storage devices, one controlled by said timing circuit to first sample a level indicative of reset, and another controlled by said timing circuit to second sample a level indicative of a charged device.
6. A single chip camera device, comprising:
a substrate, having integrated thereon an image acquisition portion and a control portion, both of which are formed using a logic family that is compatible with CMOS;
said image acquisition portion integrated in said substrate including an array of photoreceptors;
said control portion integrated in said substrate including a signal controlling device, controlling said photoreceptors to output their signals,
said control portion also including, integrated in said substrate, a timing circuit integrated within the same substrate that houses the array of photoreceptors, controlling a timing of operation of said array of photoreceptors;
a circuit, integrated on said substrate, which reduces a fixed pattern noise; and
a mode selector device, selecting a mode of operation of said chip, wherein said photoreceptors are either photogates or photodiodes, and said mode selector device selects a first mode of operation for operation with photogates, and a second mode of operation, different than said first mode of operation, for operation with photodiodes.
24. A single chip camera device, comprising:
a substrate, having integrated thereon an image acquisition portion and control portion, both of which are formed using a logic family that is compatible with CMOS;
said image acquisition portion integrated in said substrate including an array of photoreceptors in rows and columns;
first and second charge storage elements, associated with each said column;
said control portion integrated in said substrate including a signal controlling device,
said control portion also including, integrated in said substrate, a timing circuit integrated within the same substrate that houses the array of photoreceptors, controlling a timing of operation of said array of photoreceptors, controlling said photoreceptors to output their signals such that said first charge storage element receives the signal indicative of reset and said second charge storage element receives a signal indicative of a charged state;
said control portion including a shorting element, formed on said substrate which shorts between said first and second charge storage elements to reduce noise produced thereby.
2. A camera device as in claim 1, wherein said array of photoreceptors includes an active pixel sensor, where each element of the array includes both a photoreceptor and a readout amplifier integrated within the same substrate as the photoreceptor.
3. A camera device as in claim 2, wherein said readout amplifier is preferably within and/or associated with one element of the array.
4. A camera device as in claim 2, wherein said photoreceptors are photodiodes.
5. A camera device as in claim 2 wherein said photoreceptors are photogates.
8. A camera device as in claim 6, further comprising a differencing mode which alters readout timing in such a way that the value of each pixel output represents a difference between a current frame and a previous frame.
11. A camera device as in claim 10, further comprising a shorting element that shorts together said two charge storage devices prior to sampling said reset level.
12. A camera device as in claim 10, wherein said timing circuit allows changing an integration time for said array of photoreceptors by changing a time between said first sample and said second sample.
13. A camera device as in claim 10, wherein said timing circuit times an operation of said fixed pattern noise reduction circuit to occur during a time of the video signal which is not being displayed.
15. A camera device as in claim 14, wherein said signal controlling device includes a column-parallel read out device, which reads out a row of said photoreceptors at substantially the same time.
16. A camera device as in claim 14, wherein said signal controlling device includes a column selector allowing selection of a desired column for read out, and a row selector which allows selection of a desired row for readout.
17. A camera device as in claim 14, wherein said array of photoreceptors includes an active pixel sensor, where each element of the array includes both a photoreceptor and a readout amplifier integrated within the same substrate as the photoreceptor.
18. A camera device as in claim 17, wherein said readout amplifier is preferably within and/or associated with one element of the array.
19. A camera device as in claim 17, wherein said photoreceptors are photodiodes.
20. A camera device as in claim 17, wherein said photoreceptors are photogates.
21. A camera device as in claim 14, further comprising a mode selector device, selecting a mode of operation of said chip.
22. A camera device as in claim 21, wherein said photoreceptors are either photogates or photodiodes, and said mode selector device selects a first mode of operation for operation with photogates, and a second mode of operation, different than said first mode of operation, for operation with photodiodes.
23. A camera device as in claim 14, wherein said timing circuit allows changing an integration time for said array of photoreceptors.
25. A device as in claim 24, wherein said photoreceptors are controlled to read out an entire column of information at one time, wherein there are one of said first and second charge storage elements on said substrate for each element of said column, and wherein there is one of said shorting elements on said substrate for each of said columns.
26. A camera device as in claim 24, wherein said array of photoreceptors includes an active pixel sensor, where each element of the array includes both a photoreceptor and a readout amplifier integrated within the same substrate as the photoreceptor.
27. A camera device as in claim 26, wherein said readout amplifier is preferably within and/or associated with one element of the array.
28. A camera device as in claim 26, wherein said photoreceptors are photodiodes.
29. A camera device as in claim 26, wherein said photoreceptors are photogates.
30. A camera device as in claim 24, wherein said timing circuit allows changing an integration time for said array of photoreceptors with changing timings of said first and second charge storage elements.
32. A method as in claim 31, further comprising:
sampling a reset value as a first sample;
allowing said photoreceptors to accumulate charge, after resetting said output nodes;
sampling said output nodes after accumulating said charge, producing output signals indicative of a difference between said reset value and said sampled value after accumulating said charge.
34. A device as in claim 33, wherein said control portion controls the timing to output a column of said array at any one time.
35. A device as in claim 33, wherein said noise reduction circuit includes a correlated double sampling circuit.

This a divisional of U.S. application Ser. No. 09/120,856, filed Jul. 21 1998 FIG. 5 shows
where n is number of columns, I is the load transistor bias, V is the supply voltage, and d is the duty cycle. Using n=512, I=μA, V=5V and d=10%, a value for Ps of 2.5 mW is obtained.

A load current of 1 mA or more is needed to drive the horizontal bus lines at the video scan rate. The power dissipated is typically 5 mW.

Quantum efficiency measured in this CMOS APS array is similar to that for interline CCDs. A typical response curve is shown in FIG. 2. The inventors noticed from this that the quantum efficiency reflects significant responsivity in the “dead” part of the pixel; the part containing the readout circuitry rather than the photogate collector. The responsiveness was measured by intra-pixel laser spot scanning.

The inventors postulate the following reason. The transistor gate and channel absorb photons with short absorption lengths (i.e. blue/green). However, longer wavelength photons penetrate through these regions. The subsequently-generated carriers diffuse laterally and are subsequently collected by the photogate.

Thus, despite a fill factor of 25%-30%, the CMOS APS achieves quantum efficiencies that peak between 30%-35% in the red and near infrared. Microlenses are preferably added to refract photoelectrons from the dead part to a live part and hence improve quantum efficiency.

An important feature of the system described herein is the integration of on-chip timing and control circuits within the same substrate that houses the pixel array and the signal chain electronics. A block diagram of the chip architecture is shown in FIG. 3.

The analog outputs VS_out (signal) and VR_out (reset) are as described above. The digital outputs include FRAME and READ. Most of the inputs to the chip are asynchronous digital signals, as described herein.

The chip includes a pixel array 300, which is driven by on-chip electronics. Timing and control circuit 302 drives row electronics 310, and column electronics 320.

The control circuits can command read-out of any area of interest within the array. Row decoder 312 controls row drivers 314 which can select a certain row for readout. A specific row is selected by entry of a row value 316 which is output from timing and control 302. Row value 316 is stored in latch 318 which drives counter 319. Counter 319 can allow selection of subsequent rows that follow the current row. Similarly, columns can be selected and accessed by latches 322, counter 324, decoder 326 and column signal conditioning 328.

Each of the decoder counters can be preset to start and stop at any value that has been loaded into the chip via the 8-bit data bus 330. Therefore, as described above, selection of a row commands pixels in that row to be transferred to the appropriate row decoding elements, e.g., capacitors. Preferably there is one capacitor associated with each column. This provides for the sequential readout of rows using the column. The capacitors are preferably included within the column signal conditioner 328. Column decoders 326 also allow selection of only a certain column to be read. There are two parts of each column selection: where to start reading, and where to stop reading. Preferably the operation is carried out using counters and registers. A binary up-counter within the decoder 326 is preset to the start value. A preset number of rows is used by loading the 2's compliment. The up counter then counts up until an overflow.

An alternate loading command is provided using the DEFAULT LOAD input line 332. Activation of this line forces all counters to a readout window of 128×128.

A programmable integration time is set by adjusting the delay between the end of one frame and the beginning of the next. This parameter is set by loading a 32-bit latch via the input data bus 330. A 32-bit counter operates from one-fourth the clock input frequency and is preset at each frame from the latch. The counter can hence provide vary large integration delays. The input clock can be any frequency up to about 10 MHZ. The pixel readout rate is tied to one-fourth the clock rate. Thus, frame rate is determined by the clock frequency, the window settings, and the delay integration time. The integration time is therefore equal to the delay time and the readout time for a 2.5 MHZ clock. The maximum delay time is 232/2.5 MHz, or around 28 minutes. These values therefore easily allow obtaining a 30 Hz frame.

The timing and control circuit controls the phase generation to generate the sequences for accessing the rows. The sequences must occur in a specified order. However, different sequences are used for different modes of operation. The system is selectable between the photodiode mode of operation and the photogate mode of operation. The timing diagrams for the two gates are respectively shown in FIGS. 4a and 4b. FIG. 4a shows an operation to operate in the photogate mode and FIG. 4b shows operating in the photodiode mode. These different timing diagrams show that different column operations are possible. Conceptually this is done as follows. Column fixed pattern noise is based on differences in source follower thresholds between the different transistors. For example, if the base bias on a transistor is V1, the output is V1 plus the threshold.

The column signal conditioning circuitry contains a double-delta sampling fixed pattern noise (“FPN”) suppression stage that reduces FPN to below 0.2% sat with a random distribution. Since the APS is formed of a logic family that is compatible with CMOS, e.g., NMOS, the circuitry can be formed of CMOS. This allows power dissipation in the timing and control digital circuitry to be minimized and to scale with clock rate.

An active pixel sensor includes both a photodetector and the readout amplifier integrated within the same substrate as the light collecting device, e.g., the photodiode. The readout amplifier is preferably within and/or associated with a pixel.

A first embodiment of the present invention is a 128×128 CMOS photodiode type active pixel sensor that includes on chip timing, control and signal train electronics. A more detailed drawing of the chip is shown in
Where α is the gain of the pixel source follower 508, β is the gain of the column source follower 526, and Vpdr is the voltage on the photodiode after reset, Vtpix is the threshold voltage of the pixel source follower and channel transistor, and Vtcolr is the threshold voltage of the column source follower p-channel transistor.

Using similar reasoning, the output voltage of the signal branch of the column circuit is
Vcol_S≅β{α[Vpds−Vtpix]−Vtcols}
where Vpds is the voltage on the photodiode with the signal charge present and Vtcols is the threshold voltage of the column source-follower p-channel transistor.

The inventors have found experimentally that the peak-to-peak variation Vtcolr−Vtcols is typically between 10 and 20 millivolts. This, however, is a source of column to column fixed pattern noise. The inventors herein suggest a double delta sampling technique to eliminate this column to column noise. The present approach represents an improved version of the previously-described double delta sampling circuitry. The operation proceeds as follows. A column is first selected. After a settling time equivalent to half of the column selection period, a special double delta sampling technique is performed to remove the column fixed pattern noise. Therefore, the varying thresholds on the different transistors cause varying outputs. According to this aspect, the threshold outputs of these transistors are equalized using a capacitor to equalize the charge. The capacitor is applied with the charge before and after the voltage change. Therefore, the output of the capacitor represents the difference between before and after, and the fixed pattern noise component drops out of the equation.

This system uses a DDS switch 520 and first and second column select switches 522, 524 to short across the respective capacitors. All three switches are turned on to short across the two sample and hold capacitors 510. This clamp operation is shown in line 8 of FIG. 6.

Prior to the DDS operation, the reset and signal column components, Vcol_R and Vcol_S include their signal values plus a source follower voltage threshold component from the appropriate source follower. The object of the special following circuit of the present invention is to remove that source follower threshold component. The operation proceeds as follows. Prior to the beginning of some operation, the capacitors are precharged through clamp transistors to a clamp voltage Vcl. This is maintained by turning on clamp transistors 550 and 552 to connect the appropriate capacitors to the voltage Vcl. The clamp operation is shown on line 8 of FIG. 6. Immediately after the clamp is released, the DDS transistors 520, 522 and 524 are turned on. This has the effect of shorting across the capacitors 510 and 512. When the transistors are shorted, the voltage that is applied to the output drivers 554, 556 includes only the voltage threshold component. The differential amplification of the voltage render the output voltage free of the voltage threshold component. Mathematically, prior to clamp being deactivated, the output signals are:
VR_OUT≅γ(Vcl−Vtr)
and
VS_OUT≅γ(Vcl−Vts)
where γ is the gain of the third stage source-follower, Vcl is the clamp voltage, and Vtr and Vts are the threshold voltages of the third stage source-follower n-channel transistors, reset and signal branch respectively. Deactivation of the clamp circuit and simultaneous activation of the DDS switch causes several changes. The voltages in the two column branch sampling circuits equalize becoming:
Vc3=Vcr=α[Vpdr−Vtpix+Vpds−Vtpix]/2
This in turn causes a change in Vcol_S and Vcol_R to:
Vcol_R′≅β{α[Vpdr−Vtpix+Vpds−Vtpix]/2−Vtcolr}
and
Vcol_S′≅β{α[Vpdr−Vtpix+Vpds−Vtpix]/2−Vtcols}
Consequently, the voltage outputs change to:
VR_OUT≅γ(Vcl−Vcol_R′−Vcol_R−Vtr)
and
VS_OUT≅γ(Vcl−Vcol_S′−Vcol_S−Vts)
We note
Vcol_S′−Vcol_S=β{α[Vpds−Vpdr]/2}
and
Vcol_R′−Vcol_R=β{α[Vpdr−Vpds]/2}
When the outputs are differentially amplified off-chip, the common clamp voltage Vcl is removed, leaving only the difference between signal and reset. The net differential output voltage is given by:
VR_OUT−VS_OUT=αβγ(Vpdr−Vpds=Vconst)

FIG. 7 shows the layout-of the pixel for 128×128 array size device. This system formed a 19.2 micron pixel size using 1.2 μm n-well CMOS. The maximum clock rate is 10 MHZ, the maximum pixel rate is 2.5 MHZ and maximum integration delay is 1.6×109 clock periods.

A second embodiment uses similar design techniques to produce a 256×256 array size. This embodiment also uses a pixel with a photogate imaging element along with four transistors to perform the functions of readout, selection, and reset. Readout is preferably achieved using a column parallel architecture which is multiplexed one row at a time and then one column at a time through an on-chip amplifier/buffer. An important part of this embodiment, like the first embodiment, is the use of a chip common logic elements to control row and address decoders and delay counters.

This embodiment allows use in three modes of operation: Photogate mode, photodiode mode and differencing mode. The photogate mode is the standard mode for this chip. The photodiode mode alters the readout timing to be similar to that for photodiode operation. The differencing mode alters the readout timing in such a way that the value of each pixel output is the difference between the current frame and the previous frame. The chip inputs that are required are a single +5 V power supply, start command, and parallel data load commands for defining integration time and windowing parameters. The output has two differential analog channels.

The second embodiment uses the block diagram of the chip architecture shown in FIG. 8. The analog outputs of VS_OUT (signal) and VR_OUT (reset), and digital outputs of FRAME and READ. The inputs to the chip are asynchronous digital signals. The chip includes addressing circuitry allowing readout of any area of interest within the 256×256 array. The decoder includes counters that are preset to start and stop at any value that has been loaded into the chip via the 8-bit data bus. An alternate loading command is provided using the DEFAULT input line. Activation of this line forces all counters to a readout window of 256×256.

A programmable integration time is set by adjusting the delay between the end of one frame and the beginning of the next. This parameter is set by loading a 32-bit latch via the input data bus. A 32-bit counter operates from one-fourth the clock input frequency and is preset at each frame from the latch. This counter allows forming very large integration delays. The input clock can be any frequency up to about 10 MHZ. The pixel readout rate is tied to one fourth the clock rate. Thus, frame rate is determined by the clock frequency, the window settings, and the delay integration time. A 30 HZ frame rate can be achieved without difficulty.

The chip is idle when the RUN command is deactivated. This is the recommended time for setting the operating parameters. However, these parameters can be set at any time because of the asynchronous nature of operation. When RUN is activated, the chip begins continuous readout of frames based on the parameters loaded in the control registers. When RUN is deactivated, the frame in progress runs to completion and then stops.

The 256×256 CMOS APS uses a system having a similar block diagram to those described previously. The pixel unit cell has a photogate (PG), a source-follower input transistor, a row selection transistor and a reset transistor. A load transistor VLN and two output branches to store the reset and signal levels are located at the bottom of each column of pixels. Each branch has a sample and hold capacitor (CS or CR) with a sampling switch (SHS or SHR) and a source-follower with a column-selection switch (COL). The reset and signal levels are read out differentially, allowing correlated double sampling to suppress 1/f noise and fixed pattern noise (not kTC noise) from the pixel.

A double delta sampling (DDS) circuit shorts the sampled signals during the readout cycle reducing column fixed pattern noise. These readout circuits are common to an entire column of pixels. The load transistors of the second set of source followers (VLP) and the subsequent clamp circuits and output source followers are common to the entire array. After a row has been selected, each pixel is reset (RESET) and the reset value is sampled (SHR) onto the holding capacitor CR. Next, the charge under each photogate in the row is transferred to the floating diffusion (FD). This is followed by sampling this level (SHS) onto holding capacitor CS. These signals are then placed on the output data bus by the column select circuitry. In the Photodiode mode this process, is reversed; first the charge under the photogate is read out and then the reset level is sampled. This non-correlated double sampling mode would be primarily used with a photodiode, i.e., non active pixel sensor, pixel.

In the differencing mode, the capacitors CS and CR are used to store the signal from the previous frame and the current frame. This is achieved by altering the timing in the following way: Rather than starting with a reset operation, the signal on the floating diffusion is read out to one of the sample and hold capacitors. This represents the previous pixel value. The reset is then performed followed by a normal read operation. This value is then stored on the other sample and hold capacitor. The difference between these two signals is now the frame to frame difference.

A simplified expression for the output of the reset branch of the column circuit is given by:
Vcol_R≅β{α[Vr−Vtpix]−Vtcolr}
where α is the gain of the pixel source-follower; β is the gain of the column source-follower, Vr is the voltage on the floating diffusion after reset, Vtpix is the threshold voltage of the pixel source-follower n-channel transistor, and Vtcolr is the threshold voltage of the column source-follower p-channel transistor. Similarly, the output voltage of the signal branch of the column circuit is given by:
Vcol_S≅β{α[Vs−Vtpix]−Vtcols}
where VS is the voltage on the floating diffusion wish the signal charge present and Vtcols is the threshold voltage of the column source-follower p-channel transistor. Experimentally, the peak to peak variation in Vtcolr−Vtcols is typically 10-20 mV. It is desirable to remove this source of column-to-column fixed pattern noise FPN. JPL has previously developed a double delta sampling (DDS) technique to eliminate the column-to-column FPN. This approach represented an improved version of the DDS circuitry.

Sequential readout of each column is as follows. First a column is selected. After a settling time equivalent to one-half the column selection period, the DDS is performed to remove column fixed pattern noise. In this operation, a DDS switch and two column selection switches on either side are used to short the two sample and hold capacitors CS and CR. Prior to the DDS operation the reset and signal outputs (Vcol_R and VCOL_S) contain their respective signal values plus a source follower voltage threshold component. The DDS switch is activated immediately after CLAMP is turned off. The result is a difference voltage coupled to the output drivers (VR_OUT and VS_OUT) that is free of the voltage threshold component.

This chip uses a similar pixel cell to that shown in FIG. 5 FIG. 5A. FIG. 9 shows the layout of the pixel cell. PG and RESET are routed horizontally in polysilicon while the pixel output is routed vertically in metal1. Metal2 was routed within the pixel for row selection. Metal2 was also used as a light shield and covers most of the active area outside of the pixel array. The designed fill factor of the pixel is approximately 21%.

According to another feature, a logo can be formed on the acquired image by using a light blocking metal light shield. The light shield is formed to cover certain pixels in the shape of the logo to be applied. This blocks out those underlying pixels in the array, thereby forming a logo in the shape of the blocked pixels.

The output saturation level of the sensor is 800 mv when operated from a 5 V supply. Saturation is determined by the difference between the reset level on the floating diffusion node (e.g. 3 V) and the minimum voltage allowed on the pixel source follower gate (e.g. threshold voltage of approx. 0.8 volts). This corresponds to a full well of approximately 75,000 electrons. This can be increased by operating at a larger supply voltage, gaining about 47,000 per supply volt.

Dark current was measured at less than 500 pA/cm2.

Conversion gain (μV/e−) was obtained per pixel by plotting the variance in pixel output as a function of mean signal for flat field exposure. The fixed pattern noise arising from dispersion in conversion gain was under 1%—similar to the value found in CCDs and consistent with the well-controlled gain of a source-follower buffer.

The quantum efficiency of the detector was measured using a CVI ¼ m monochromator and a tungsten/halogen light source, calibrated using a photodiode traceable to NIST standards.

Fossum, Eric R., Nixon, Robert

Patent Priority Assignee Title
8981313, Oct 24 2011 Siemens Healthcare GmbH Method and device for detecting x-ray quanta
RE45282, Oct 25 2000 Round Rock Research, LLC Method and apparatus for operating a CMOS imager having a pipelined analog to digital converter
RE45493, Oct 25 2000 Round Rock Research, LLC Analog to digital conversion for a CMOS imager
Patent Priority Assignee Title
3225194,
3822362,
3849635,
4155094, Oct 06 1976 Hitachi, Ltd. Solid-state imaging device
4363963, Mar 08 1979 Nippon Hoso Kyokai Solid state photo-electric converting device and solid state imaging apparatus employing it
4382187, Nov 09 1979 Thomson-CSF Electromagnetic radiation detection matrix
4525628, Jun 18 1982 General Electric Company Rare earth ceramic scintillator
4525742, Feb 14 1983 Semiconductor Research Foundation Two-dimensional solid-state image sensor device
4631400, Jan 20 1984 California Institute of Technology Correlating optical motion detector
4660090, Aug 27 1985 Texas Instruments Incorporated; TEXAS INSTRUMENTS INCORPORATED, A CORP OF DE CCD imager with on-chip processing
4716466, May 31 1984 Fujitsu Limited Image sensor
4768084, Sep 28 1985 Hitachi, Ltd. Solid-state imaging device with two-row mixing gates
4809075, Oct 17 1986 HITACHI, LTD , A CORP OF JAPAN Solid-state imaging device having an amplifying means in the matrix arrangement of picture elements
4835617, Sep 22 1986 Hitachi, Ltd. Image pickup device for television cameras having a shutter function for a photodiode matrix operated using MOS switches
4839729, May 28 1987 Nippon Hoso Kyokai; Olympus Optical Co., Ltd. Solid state image sensor
4839735, Dec 22 1986 HAMAMATSU PHOTONICS K K , A CORP OF JAPAN Solid state image sensor having variable charge accumulation time period
4841348, Jul 09 1986 FUJIFILM Corporation Solid state image pickup device
4859624, Jul 31 1987 Kabushiki Kaisha Toshiba Manufacturing method of semiconductor device having CCD and peripheral circuit
4942473, Jul 16 1987 ISIGHT, INC Intelligent scan image sensor
4942474, Dec 11 1987 Hitachi, Ltd. Solid-state imaging device having photo-electric conversion elements and other circuit elements arranged to provide improved photo-sensitivity
4959727, Jun 03 1988 Hitachi, Ltd. Image pick-up apparatus
5043582, Dec 11 1985 General Imagining Corporation X-ray imaging system and solid state detector therefor
5051797, Sep 05 1989 Eastman Kodak Company Charge-coupled device (CCD) imager and method of operation
5097339, Jan 06 1987 Minolta Camera Kabushiki Kaisha Single chip solid state image sensing devices
5122881, Aug 10 1988 Hitachi, Ltd. Solid-state imaging device with an amplifying FET in each pixel and an output capacitor in each row
5132251, Dec 31 1990 Samsung Electronics Co., Ltd. Method for manufacturing a color filter
5134488, Dec 28 1990 RPX Corporation X-Y addressable imager with variable integration
5144447, Mar 31 1988 Hitachi, Ltd. Solid-state image array with simultaneously activated line drivers
5153421, Nov 04 1991 Xerox Corporation Architecture for analog and digital image sensor arrays
5172249, May 31 1989 Canon Kabushiki Kaisha Photoelectric converting apparatus with improved switching to reduce sensor noises
5182623, Nov 13 1989 Texas Instruments Incorporated Charge coupled device/charge super sweep image system and method for making
5184203, Jan 19 1990 Kabushiki Kaisha Toshiba Semiconductor device having a charge transfer device, MOSFETs, and bipolar transistors--all formed in a single semiconductor substrate
5198880, Jun 22 1989 Kabushiki Kaisha Toshiba Semiconductor integrated circuit and method of making the same
5225696, Jan 29 1992 Northrop Grumman Systems Corporation Focal plane array with charge transfer gate
5262871, Nov 13 1989 Innolux Corporation Multiple resolution image sensor
5296696, Jan 29 1992 Olympus Optical Co., Ltd. Solid state image pickup apparatus and driving method
5298294, Jan 13 1988 Thomson-CSF Input screen scintillator for an X-ray image intensifier tube and manufacturing process of this scintillator
5317174, Feb 19 1993 Texas Instruments Incorporated Bulk charge modulated device photocell
5322994, Jan 29 1992 Olympus Optical Co., Ltd. Solid state image pickup device having a reliable photoelectric detection cell
5323052, Nov 15 1991 Sharp Kabushiki Kaisha Image pickup device with wide angular response
5335015, Oct 30 1992 Texas Instruments Incorporated Method for improved dynamic range of BCMD image sensors
5341008, Sep 21 1993 Texas Instruments Incorporated Bulk charge modulated device photocell with lateral charge drain
5345266, Oct 23 1989 VLSI Vision Limited Matrix array image sensor chip
5369039, Nov 13 1989 Texas Instruments Incorporated Method of making charge coupled device/charge super sweep image system
5420634, Apr 01 1991 Olympus Optical Co., Ltd. Solid state imaging device
5424223, Sep 21 1993 Texas Instruments Incorporated Bulk charge modulated device photocell with lateral charge drain
5436476, Apr 14 1993 Texas Instruments Incorporated CCD image sensor with active transistor pixel
5440130, Dec 11 1985 General Imaging Corporation X-ray imaging system and solid state detector therefor
5452004, Jun 17 1993 L-3 Communications Corporation Focal plane array imaging device with random access architecture
5452109, Aug 31 1994 OmniVision Technologies, Inc Digital image signal processing apparatus and method for accumulating blocks of signal data from an imager
5461425, Feb 15 1994 Stanford University CMOS image sensor with pixel level A/D conversion
5464984, Dec 11 1985 GENERAL IMAGING CORP X-ray imaging system and solid state detector therefor
5471245, Oct 30 1992 Texas Instruments Incorporated Bulk charged modulated device (BCMD) image sensors with increased dynamic range
5471515, Jan 28 1994 California Institute of Technology Active pixel sensor with intra-pixel charge transfer
5479049, Feb 01 1993 Sharp Kabushiki Kaisha Solid state image sensor provided with a transparent resin layer having water repellency and oil repellency and flattening a surface thereof
5491566, Nov 27 1992 GOLDSTAR CO , LTD Integrated input-output device having a reading and a printing section on a single substrate
5500383, Apr 14 1993 Texas Instruments Incorporated Method for fabricating a CCD image sensor with active transistor pixel
5528643, Nov 13 1989 Texas Instruments Incorporated Charge coupled device/charge super sweep image system and method for making
5541402, Oct 17 1994 Bell Semiconductor, LLC Imaging active pixel device having a non-destructive read-out gate
5572074, Jun 06 1995 RE SECURED NETWORKS LLC Compact photosensor circuit having automatic intensity range control
5576762, Nov 07 1990 Canon Kabushiki Kaisha Solid-state image pickup device
5576763, Nov 22 1994 Bell Semiconductor, LLC Single-polysilicon CMOS active pixel
5585620, Dec 06 1993 Nikon Corporation Image signal resolution changing system
5587596, Sep 20 1995 FOVEON, INC Single MOS transistor active pixel sensor cell with automatic anti-blooming and wide dynamic range
5600127, Feb 23 1995 Mitsubishi Denki Kabushiki Kaisha Solid state image sensor transferring charges with high efficiency and decreased power consumption, and method of driving the same
5608204, Mar 24 1992 Institut fur Mikroelektronik Stuttgart Image cell for an image-recorder chip, for protection of high input signal dynamics onto reduced output signal dynamics
5608243, Oct 19 1995 FOVEON, INC Single split-gate MOS transistor active pixel sensor cell with automatic anti-blooming and wide dynamic range
5614744, Aug 04 1995 FOVEON, INC CMOS-based, low leakage active pixel array with anti-blooming isolation
5625210, Apr 13 1995 OmniVision Technologies, Inc Active pixel sensor integrated with a pinned photodiode
5631704, Oct 14 1994 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Active pixel sensor and imaging system having differential mode
5633679, May 19 1995 Xerox Corporation Photosensitive chip having transfer circuits which compensate for shielded test photosensors
5652622, Nov 13 1989 Charge coupled device/charge super sweep image system and method for making
5670817, Mar 03 1995 Santa Barbara Research Center Monolithic-hybrid radiation detector/readout
5693932, Sep 16 1994 Canon Kabushiki Kaisha Photoelectric converting apparatus with reduced electric power comsumption
5708263, Feb 13 1996 GLOBALFOUNDRIES Inc Photodetector array
5739562, Aug 01 1995 Bell Semiconductor, LLC Combined photogate and photodiode active pixel image sensor
5784102, May 15 1995 HAND HELD PRODUCTS, INC Optical reader having improved interactive image sensing and control circuitry
5793423, Mar 18 1991 Sony Corporation Solid state image sensing device
5883830, Dec 29 1995 Intel Corporation CMOS imaging device with integrated flash memory image correction circuitry
5933188, Oct 19 1994 Canon Kabushiki Kaisha Photoelectric conversion apparatus and method with reset
JP1091453,
JP1243462,
JP2007680,
JP2107075,
JP3064176,
JP3106184,
JP3276675,
JP4024964,
JP461573,
JP5291549,
JP5855909,
JP5990466,
JP6053073,
JP6164158,
JP62151068,
JP7161952,
WO9319489,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Apr 09 2009California Institute of Technology(assignment on the face of the patent)
Date Maintenance Fee Events
Jan 02 2015REM: Maintenance Fee Reminder Mailed.
May 27 2015EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Nov 29 20144 years fee payment window open
May 29 20156 months grace period start (w surcharge)
Nov 29 2015patent expiry (for year 4)
Nov 29 20172 years to revive unintentionally abandoned end. (for year 4)
Nov 29 20188 years fee payment window open
May 29 20196 months grace period start (w surcharge)
Nov 29 2019patent expiry (for year 8)
Nov 29 20212 years to revive unintentionally abandoned end. (for year 8)
Nov 29 202212 years fee payment window open
May 29 20236 months grace period start (w surcharge)
Nov 29 2023patent expiry (for year 12)
Nov 29 20252 years to revive unintentionally abandoned end. (for year 12)