A probe for engaging a conductive pad is provided. The probe includes a probe contact end for receiving a test current, a probe retention portion below the contact end, a block for holding the probe retention portion, a probe arm below the retention portion, a probe contact tip below the arm, and a generally planar self-cleaning skate disposed perpendicular below the contact tip. The self-cleaning skate has a square front, a round back and a flat middle section. The conductive pad is of generally convex shape having a granular non-conductive surface of debris and moves to engage the skate, whereby an overdrive motion is applied to the pad causing the skate to move across and scrub non-conductive debris from the pad displacing the debris along the skate and around the skate round back end to a position on the skate that is away from the pad.
|
0. 26. A probe for engaging a conductive pad, said probe comprising:
a contact end disposed on one end of said probe for receiving a test current; and
a self-cleaning skate disposed on another end of said probe, said skate comprising a generally square front end, a generally round back end and a generally flat middle section therebetween, wherein said skate engages the conductive pad.
0. 79. A probe for engaging a conductive pad, said probe comprising:
a contact end disposed on one end of said probe for receiving a test current;
a self-cleaning skate disposed on another end of said probe, said skate comprising at least one rounded edge and at least one flat edge blade, wherein said skate engages the conductive pad;
said skate comprises a U-shaped cross-section; and
the conductive pad being generally convex shaped.
0. 81. A probe for engaging a conductive pad, said probe comprising:
a contact end disposed on one end of said probe for receiving a test current;
a self-cleaning skate disposed on another end of said probe, said skate comprising at least one rounded edge and at least one flat edge blade, wherein said skate engages the conductive pad;
said skate comprises a V-shaped cross-section; and
the conductive pad being generally convex shaped.
0. 82. A probe for engaging a conductive pad, said probe comprising:
a contact end disposed on one end of said probe for receiving a test current;
a self-cleaning skate disposed on another end of said probe, said skate comprising at least one rounded edge and at least one flat edge blade, wherein said skate engages the conductive pad;
said skate comprises a box-shaped cross-section; and
the conductive pad being generally convex shaped.
0. 80. A probe for engaging a conductive pad, said probe comprising:
a contact end disposed on one end of said probe for receiving a test current;
a self-cleaning skate disposed on another end of said probe, said skate comprising at least one rounded edge and at least one flat edge blade, wherein said skate engages the conductive pad;
said skate comprises a semi-circular cross-section; and
the conductive pad being generally convex shaped.
0. 85. A probe for engaging a conductive pad, said probe comprising:
a contact end disposed on one end of said probe for receiving a test current;
a self-cleaning skate disposed on another end of said probe, said skate comprising at least one rounded edge and at least one flat edge blade, wherein said skate engages the conductive pad;
said rounded edge comprises a variable radius back end; and
the conductive pad being generally convex shaped.
0. 83. A probe for engaging a conductive pad, said probe comprising:
a contact end disposed on one end of said probe for receiving a test current;
a self-cleaning skate disposed on another end of said probe, said skate comprising at least one rounded edge and at least one flat edge blade, wherein said skate engages the conductive pad;
said skate comprises a parallelogram-shaped cross-section; and
the conductive pad being generally convex shaped.
0. 78. A probe for engaging a conductive pad, said probe comprising:
a contact end disposed on one end of said probe for receiving a test current;
a self-cleaning skate disposed on another end of said probe, said skate comprising at least one rounded edge and at least one flat edge blade, wherein said skate engages the conductive pad;
said skate comprises a skate width of up to about ⅙ of a length of said skate; and
the conductive pad being generally convex shaped.
0. 53. A probe for engaging a conductive pad, said probe comprising:
a contact end disposed on one end of said probe for receiving a test current;
a self-cleaning skate disposed on another end of said probe, said skate comprising at least one rounded edge and at least one flat edge blade, wherein said skate engages the conductive pad;
said skate comprises a skate height of up to about ½ of a length of said skate; and
the conductive pad being generally convex shaped.
0. 84. A probe for engaging a conductive pad, said probe comprising:
a contact end disposed on one end of said probe for receiving a test current;
a self-cleaning skate disposed on another end of said probe, said skate comprising at least one rounded edge and at least one flat edge blade, wherein said skate engages the conductive pad;
said rounded edge comprises a radius with a size up to a length of said skate height; and
the conductive pad being generally convex shaped.
1. A probe for engaging a conductive pad, said probe comprising:
a. a probe contact end for receiving a test current;
b. a probe retention portion below said contact end;
c. a block holding said retention portion;
d. a probe arm below said retention portion;
e. a probe contact tip below said arm; and
f. a generally planar self-cleaning skate disposed perpendicular below said contact tip having a generally square front end, a generally round back end and a generally flat middle section therebetween, wherein said conductive pad of generally convex shape and having a granular non-conductive surface layer of debris moves to engage said skate, whereby an overdrive motion is applied to said conductive pad thereby causing said skate to move across said conductive pad to scrub non-conductive debris from said conductive pad and displace said debris along said skate and move said debris near said skate round back end to a position on said skate that is away from said conductive pad.
18. A conductive probe for engaging a conductive pad comprising:
a. a contact end for receiving a test current;
b. a retention portion below said contact end;
c. a block holding said retention portion;
d. a base arm portion below said retention portion;
e. a knee below said base arm portion;
f. a reverse arm portion below said knee;
g. a contact tip below said reverse arm portion; and
h. a generally planar self-cleaning skate disposed perpendicular below said contact tip having a generally square front end, a generally round back end and a generally flat middle section therebetween, wherein said conductive pad is of generally convex shape and having a granular non-conductive surface layer of debris moves to engage said skate, whereby an overdrive motion is applied to said conductive pad thereby causing said skate to move across said conductive pad to scrub said debris from said conductive pad and displace said debris along said skate and move said debris near said skate round back end to a position on said skate that is away from said conductive pad.
19. A method of using a self-cleaning skate comprising:
a. providing a conductive pad having a generally convex shape and a granular non-conductive surface layer of debris;
b. providing a conductive probe for engaging said conductive pad, the conductive probe comprising:
i. a contact end for receiving a test current;
ii. a retention portion below said contact end
iii. a block holding said retention portion;
iv. a probe arm below said retention portion;
v. a probe contact tip below said arm; and
vi. a generally planar self-cleaning skate disposed perpendicular below said contact tip having a generally square front end, a generally round back end and a generally flat middle section therebetween;
c. positioning said skate above said conductive pad;
d. translating said conductive pad causing said skate to engage said conductive pad;
e. providing an overdrive motion to said conductive pad causing said skate to scrub said debris to expose conductive material of said conductive pad and clean said debris from said skate wherein said cleaning comprises:
i. forming an angle of said skate middle section with respect to a horizontal plane while engaging said round back end with said conductive pad;
ii. inducing a translation motion of said skate back end in a direction towards said skate front end across said conductive pad while said skate middle section is further angled with respect to said horizontal plane;
iii. displacing said debris along said skate and moving said debris around said round back end to a position on said skate that is away from said conductive pad;
iv. reversing said overdrive motion to said pad causing said skate middle section to move from said angle to approximately said horizontal position, wherein said skate flat middle section is in contact with said conductive pad whereby said debris on said skate back end moves to a position away from said conductive pad; and
v. translating said skate along said horizontal position and further moving said debris around said round back end to a position on said skate that is away from said conductive pad; and
vi. translating said pad to cause said probe to disengage from said conductive pad,
wherein said method improves overdrive control by making said scrubbing and said cleaning less sensitive to said overdrive, whereby said non-conductive layer of debris is removed without breaching said conductive pad and debris is displaced from said conductive pad to said skate.
2. The probe according to
3. The probe according to
4. The probe according to
5. The probe according to
6. The probe according to
7. The probe according to
8. The probe according to
9. The probe according to
11. The probe according to
12. The probe according to
a. said skate moves from an angle to approximately a horizontal position while maintaining said engagement with said conductive pad;
b. said skate translates along said horizontal position in a direction towards said skate back end, whereby said debris is further displaced along said round back end and away from said conductive pad; and
c. said conductive pad moves away from said skate to disengage said probe from said conductive pad.
13. The probe according to
14. The probe according to
16. The probe according to
17. The probe according to
20. The method of
21. The method of
22. The method of
23. The method of
24. The method of
25. The method of
0. 27. The probe of claim 26 further comprising a retention portion disposed on said contact end.
0. 28. The probe of claim 27 further comprising a block for holding said retention portion.
0. 29. The probe of claim 27 further comprising a probe arm disposed on said retention portion.
0. 30. The probe of claim 29 wherein said probe arm comprises a base arm below said retention portion, a knee below said base arm, and a reverse arm below said knee, whereby said contact tip is below said reverse arm and said self-cleaning skate is below said contact tip.
0. 31. The probe of claim 26 wherein said skate is disposed on a contact tip.
0. 32. The probe of claim 26 wherein said self-cleaning skate is generally planar.
0. 33. The probe of claim 26 wherein the conductive pad is generally convex shaped.
0. 34. The probe of claim 26 wherein the conductive pad moves to engage said skate.
0. 35. The probe of claim 26 wherein the conductive pad comprises a non-conductive surface layer of debris.
0. 36. The probe of claim 35 wherein said non-conductive surface layer of debris comprises a non-conductive oxide.
0. 37. The probe of claim 26 wherein said skate comprises a skate height of up to about ½ of a length of said skate.
0. 38. The probe of claim 26 wherein said skate comprises a skate width up to about ⅙ of a length of said skate.
0. 39. The probe of claim 26 wherein a width of said skate is narrower than a width of said contact tip.
0. 40. The probe of claim 26 wherein said skate comprises a U-shaped cross-section.
0. 41. The probe of claim 26 wherein said skate comprises a semi-circular cross-section.
0. 42. The probe of claim 26 wherein said skate comprises a V-shaped cross-section.
0. 43. The probe of claim 26 wherein said skate comprises a box-shaped cross-section.
0. 44. The probe of claim 43 wherein said box-shape comprises rounded edges.
0. 45. The probe of claim 26 wherein said skate comprises a parallelogram-shaped cross-section.
0. 46. The probe of claim 45 wherein said parallelogram-shape comprises a first parallel side connected to a bottom of a contact tip and a second parallel side for contacting the conductive pad.
0. 47. The probe of claim 46 wherein said first parallel side is larger than said second parallel side.
0. 48. The probe of claim 26 wherein said skate round back end comprises a radius with a size up to a length of said skate height.
0. 49. The probe of claim 26 wherein said round back end comprises a variable radius back end.
0. 50. The probe of claim 26 wherein said skate is disposed perpendicular below a contact tip.
0. 51. The probe of claim 26 wherein said probe is one of an array of probes.
0. 52. The probe of claim 26 wherein the conductive pad comprises a cleaning sheet.
0. 54. The probe of claim 53 further comprising a retention portion disposed on said contact end.
0. 55. The probe of claim 54 further comprising a block for holding said retention portion.
0. 56. The probe of claim 54 further comprising a probe arm disposed on said retention portion.
0. 57. The probe of claim 56 wherein said probe arm comprises a base arm below said retention portion, a knee below said base arm, and a reverse arm below said knee, whereby said contact tip is below said reverse arm and said self-cleaning skate is below said contact tip.
0. 58. The probe of claim 53 wherein said skate is disposed on a contact tip.
0. 59. The probe of claim 53 wherein said self-cleaning skate is generally planar.
0. 60. The probe of claim 53 wherein the conductive pad moves to engage said skate.
0. 61. The probe of claim 53 wherein the conductive pad comprises a non-conductive surface layer of debris.
0. 62. The probe of claim 61 wherein said non-conductive surface layer of debris comprises a non-conductive oxide.
0. 63. The probe of claim 53 wherein said skate comprises a skate width up to about ⅙ of a length of said skate.
0. 64. The probe of claim 53 wherein a width of said skate is narrower than a width of said contact tip.
0. 65. The probe of claim 53 wherein said skate comprises a U-shaped cross-section.
0. 66. The probe of claim 53 wherein said skate comprises a semi-circular cross-section.
0. 67. The probe of claim 53 wherein said skate comprises a V-shaped cross-section.
0. 68. The probe of claim 53 wherein said skate comprises a box-shaped cross-section.
0. 69. The probe of claim 68 wherein said box-shape comprises rounded edges.
0. 70. The probe of claim 53 wherein said skate comprises a parallelogram-shaped cross-section.
0. 71. The probe of claim 70 wherein said parallelogram-shape comprises a first parallel side connected to a bottom of a contact tip and a second parallel side for contacting the conductive pad.
0. 72. The probe of claim 71 wherein said first parallel side is larger than said second parallel side.
0. 73. The probe of claim 53 wherein said rounded edge comprises a radius with a size up to a length of said skate height.
0. 74. The probe of claim 53 wherein said rounded edge comprises a variable radius back end.
0. 75. The probe of claim 53 wherein said skate is disposed perpendicular below a contact tip.
0. 76. The probe of claim 53 wherein said probe is one of an array of probes.
0. 77. The probe of claim 53 wherein the conductive pad comprises a cleaning sheet.
|
This application is a continuation-in-part application of the inventor's prior U.S. application Ser. No. 11/480,302 filed Jun. 29, 2006, for PROBES WITH SELF-CLEANING SKATES FOR CONTACTING CONDUCTIVE PADS, which claims the benefit of U.S. application Ser. No. 10/850,921 filed on May 21, 2004, now U.S. Pat. No. 7,148,709, U.S. application Ser. No. 10/888,347 filed on Jul. 9, 2004 and U.S. application Ser. No. 11/450,977 filed on Jun. 9, 2006.
The invention relates generally to an apparatus and method of using contacting tips of probes in scrubbing and electrical testing of a device under test. More particularly, the invention relates to an apparatus and method of using contacting tips having probe skates with geometries that provide self-cleaning and a reduction in sensitivity to overdrive motion.
Semiconductor wafer testing before dicing is a necessary and critical process step. Such testing provides early verification of circuit design and fabrication integrity. Typically, test probes are placed in contact with conductive pads of a device under test (DUT) to provide a test signal for such verification of the circuit, where the conductive pads are positioned on the surface of a wafer or DUT. These pads are known to have bump-like or convex shape, with the base of the pad incorporated into the wafer surface. A problem exists with a non-conductive layer of debris on the pad such as a non-conductive oxide layer impeding the conductive pad from receiving the test signal, where the debris is an artifact of the fabrication process. Currently, a scrubbing method is used to remove some of the non-conductive layer from the pads before applying the test signal. Many methods exist for removing the debris layer such as using the probe tip itself to scrub the pad while applying the test signal. For information about corresponding probe designs and scrub motion mechanics the reader is referred to U.S. Pat. No. 5,436,571 to Karasawa; U.S. Pat. Nos. 5,773,987 and 6,433,571 both to Montoya; U.S. Pat. No. 5,932,323 to Throssel and U.S. Appl. 2006/0082380 to Tanioka et al. Additional information about the probe-oxide semiconductor interface is found in U.S. Pat. No. 5,767,691 to Verkuil.
The scrub motion includes engaging a probe tip with a conductive pad, and applying an overdrive motion to the pad to cause the probe to scrub the layer of debris from the pad. Numerous problems arise from this method such as controlling the probe scrubbing action, managing undesirable debris accumulation on the probe tip, and the added need for a complicated and invasive probe cleaning processes to remove the debris from the probe tips. Consistent scrub control is of paramount importance. A probe is often too sensitive to the overdrive motion from the pad, causing a scrub depth that is too deep that not only removes a portion of the non-conductive layer, but also damages or breaches the conductive pad, thus rendering the wafer unusable. Debris accumulation on the probe tip degrades the electrical continuity between the probe and conductive pad, often times restricting the test signal and providing erroneous test results, where implementation of an undesirable test redundancy may then become necessary. Complicated probe tip cleaning methods, such as use of abrasion cleaning, have been used to remove debris from the probe tip by scouring. Such a technique not only disrupts the fabrication throughput, but also degrades the probe tip, resulting in shortened utility of the probes and requiring premature replacement.
Current attempts to address these issues have been met with shortcomings, where in one case a contact bump at the end of a probe has a nub made from rhodium nickel alloy fused to the contact bump. While such an alloy lends itself for creating a tip that is more robust for scrubbing, the need to disrupt fabrication throughput for a probe tip cleaning process still exists. Further, the geometry of the contact bump made from the alloy nub lends itself for undesirable accumulation of debris, thus necessitating relatively frequent cleaning. Another attempt has been implemented that includes a knife-like probe end in an effort to reduce debris accumulation for limiting the need for abrasive cleaning. Unfortunately, such geometry has been shown to lack scrubbing control and damage the pad due to the probe having a hyper-sensitivity to overdrive motion. For additional information about probe tip geometries the reader is referred to U.S. Pat. No. 6,633,176 and U.S. Appl. 2005/0189955 both to Takemoto et al., and U.S. Pat. No. 6,842,023 to Yoshida et al. employs contact probe whose tip tapers to a sloping blade or chisel.
It would be considered an advance in the art to provide a probe design having a probe tip with a self-cleaning skate that alleviates the need for using abrasion techniques to remove debris from the probe tip. A method of using a self-cleaning probe tip is needed that provides effective scrubbing for enabling testing. Further needed is a probe having a self-cleaning skate that is less sensitive to overdrive motion to enable consistent and predictable scrubbing for more reliable wafer testing and to alleviate the need for test redundancies.
The present invention provides a probe having a self-cleaning tip, or skate, for engaging a conductive pad. The probe includes a contact end for receiving a test current, a probe retention portion below the contact end and a block for holding the retention portion. Further, a probe arm below the retention portion has a probe contact tip there below and a generally planar self-cleaning skate disposed perpendicular below the contact tip. The self-cleaning skate has a generally square front end, a generally round back end and a generally flat middle section therebetween.
In one embodiment of the invention, the skate has a skate height up to ½ of the skate length and a skate width up to ⅙ of the skate length. In one aspect of the current invention, the self-cleaning skate width is narrower than a width of the contacting tip. In another aspect of the invention, the skate may have different cross-sections such as a U-shape, a semi-circular shape, a V-shape, box-shape, or a parallelogram-shape, where the parallelogram cross-section has a first parallel side connected to the bottom of the contact tip and a second parallel side for contacting the conductive pad, whereby the first parallel side is larger than the second parallel side. Further, the box-shape cross-section has a first horizontal side connected to the bottom of the contact tip and a second horizontal side for contacting the conductive pad, where the second horizontal side further includes radii at each edge of the second horizontal side. According to the embodiments of the current invention, the self-cleaning skate length is aligned along a scrub direction.
The conductive pad is generally convex and has a granular non-conductive surface layer of debris such as a non-conductive oxidation surface. The pad is moved to engage the skate. Once engaged, an overdrive motion is applied to the conductive pad causing the probe to flex and move the skate across the conductive pad to scrub debris from the pad. The scrubbed debris is displace along the skate and moved around the skate round back end to a position on the skate that is away from the conductive pad. In one aspect of the invention, the probe arm has a base arm below the retention portion, a knee below the base arm, and a reverse arm below the knee. Further, a contact tip is below the reverse arm and the self-cleaning skate is below the contact tip.
In one embodiment of the invention, the skate round back end has a radius with a size as large as the length of the skate height. In another embodiment of the invention, the round back end of the skate is a variable radius back end.
In one aspect of the invention, the overdrive motion causes the skate to pivot such that the middle section forms an angle up to 35 degrees with respect to a horizontal plane, while the round back end remains engaged with the conductive pad. Reversing the overdrive motion causes the skate to reverse its movement, where the skate moves from an up angle to approximately a horizontal position while maintaining engagement with the conductive pad. Here, the skate translates along the horizontal position in a direction towards the skate back end, where the debris is further displaced along the round back end and away from the conductive pad. Finally, the conductive pad moves away from the skate to disengage the probe from the conductive pad.
In one aspect of the invention, the pad is in an extended overdrive motion beyond the previous overdrive motion, causing the probe move in a manner to further displace the debris away from the conductive pad. Here, the extended overdrive motion is applied after at least two touch down cycles. Such overdrive motion of the conductive pad is between 1-5 mil.
As an advancement in removing the debris from the skate, in one aspect of the invention, the conductive pads for engaging the probe tip are replaced by a cleaning sheet having debris adhesion properties for removing the debris from the skate.
One aspect of the present invention is a method of using the self-cleaning skate by providing a conductive pad having a generally convex shape and a non-conductive layer of debris, such as a granular non-conductive oxidation surface, and providing a conductive probe for engaging the conductive pad. The probe includes a contact end for receiving a test current, a retention portion below the contact end, a block for holding the retention portion, a probe arm below the retention portion, a probe contact tip below the arm, and a generally planar self-cleaning skate disposed perpendicular below the contact tip, where the skate has a generally square front end, a generally round back end and a generally flat middle section therebetween. The skate is positioned above the conductive pad, where the conductive pad is translated, causing the skate to engage the conductive pad. Overdrive motion is then provided to the conductive pad causing the skate to scrub the debris from the conductive pad and clean the debris from the region of the skate that contacts the conductive pad. The cleaning occurs from the overdrive motion moving the skate to form an angle between the skate middle section and a horizontal plane, while engaging the round back end with the conductive pad. The overdrive motion induces a translation motion of the skate back end along the pad in a direction towards the skate front end while the skate middle section is further angled with respect to the horizontal plane. As the skate back end translates across the conductive pad, debris and non-conductive oxides are displaced along the skate, where the debris moves around the round back end to a position on the skate that is away from the conductive pad. Reversing the overdrive motion to the pad causes the skate middle section to move from the angle to approximately the horizontal position, where the skate flat middle section is in contact with the conductive pad. Here, the debris on the skate back end moves to a position away from the conductive pad. Continuing to reverse the overdrive motion translates the skate along the horizontal position and further moving the debris around the round back end to a position on the skate that is away from the conductive pad. Finally, the pad is translated to cause the probe to disengage from the conductive pad. The method according to the current invention improves overdrive control by making the scrubbing and cleaning less sensitive to the overdrive motion, where the debris layer is removed without breaching or damaging the conductive pad and debris is displaced from the conductive pad to the skate. Further, a current (i) is applied to the probe after the self-cleaning skate contacts the conductive pad. Using the self-cleaning skate according to the invention is accomplished after at least two engagement cycles.
In one aspect of the method according to the current invention, the probe arm includes a base arm below the retention portion, a knee below the base arm, and a reverse arm below the knee, where the contact tip is below the reverse arm and the self-cleaning skate is below the contact tip.
In another aspect of the invention, the self-cleaning skate is positioned above the pad by disposing an approximate center location of the flat middle end above an edge of the conductive pad, where the skate engages the conductive pad with the center of the skate positioned on the conductive pad edge.
Some key advantages of the invention are the features of the self-cleaning skate extend the mean time between failure of the probe caused by debris buildup on the skate. Additionally, due to the unique skate design, a scrub channel may be made on irregularly shaped conductive pads at any location on the pad. The current invention provides better control of the skate during overdrive motion, where improved tolerance to overdrive motion enables reliable pad testing on silicon wafers before dicing.
The objectives and advantages of the present invention will be understood by reading the following detailed description in conjunction with the drawings, in which:
Although the following detailed description contains many specifics for the purposes of illustration, anyone of ordinary skill in the art will readily appreciate that many variations and alterations to the following exemplary details are within the scope of the invention. Accordingly, the following preferred embodiment of the invention is set forth without any loss of generality to, and without imposing limitations upon, the claimed invention.
Semiconductor wafer processing methods and technology have been dynamic fields and continue to be the focus of much research and development. Among the numerous areas of these fields, early verification of process integrity and circuit design is an important step for effective cost control and manufacturing efficiency. As new methods of fabrication and new semiconductor wafer features evolve, testing methods must adapt to these changes. For example, the conductive pad of a semiconductor wafer can be fabricated as a dome-shape, or even a pedestal having a dome-shape located at the pedestal top, where the dome feature may be non-uniform and asymmetric. New methods of testing and new conductive test probes are required to address these evolving fabrication technologies. Typically, the conductive pad has a non-conductive layer of debris that includes a non-conductive oxide layer on the dome surface that impedes electrical contact between the probe tip and the conductive pad. In the testing phase, this layer requires a scrubbing step to remove some of the non-conductive layer of debris to enable electrical contact between the conductive pad and the probe tip. It is desirable to remove this layer and apply a test current to the pad to verify circuit design and fabrication integrity, while simultaneously controlling the probe tip position on the pad and cleaning the probe end. In the current invention, the scrubbing process requires the conductive pad to be positioned below the probe tip and then moved to make contact with the probe tip. Once engaged, an overdrive motion is applied to the conductive pad whereby the probe flexes to allow the probe tip to traverse the conductive pad and scrub the non-conductive layer of debris from the pad surface while applying a test current (i) through the probe. Problems arise when scrubbing and testing the dome-shaped conductive pads. These problems include controlling the probe tip to ensure it remains on the conductive pad during scrubbing and testing, ensuring the translation of the probe tip across the pad is not too sensitive to the overdrive motion, and managing the debris that is removed to ensure electrical continuity and prevent or limit accumulation of debris on the probe tip.
To address these issues, the present invention provides a probe having a self-cleaning tip, or skate, for engaging a conductive pad of the semiconductor wafer, where the conductive pad may have a dome-shape or be a pedestal having a dome-shape. The probe includes a contact end for receiving a test current, a probe retention portion below the contact end and a block for holding the retention portion. Further, a probe arm below the retention portion has a probe contact tip there below and a generally planar self-cleaning skate disposed perpendicular below the contact tip. The self-cleaning skate has a generally square front end, a generally round back end and a generally flat middle section therebetween. This configuration may be made into an array of probes suited for scrubbing and testing semiconductor wafers having many conductive pads arranged according to a circuit, or multiple circuits, integrated to the wafer.
The skate of the probe contacting tip may have a height up to ½ of the skate length and a skate width up to ⅙ of the skate length. Additionally, the self-cleaning skate may have a width that is generally narrower than a width of the contacting tip. These skates may have a cross-section such as a U-shape, semi-circular shape, V-shape, box-shape, and parallelogram-shape, where the parallelogram cross-section has a first parallel side connected to the bottom of the contact tip and a second parallel side for contacting the conductive pad, whereby the first parallel side is larger than the second parallel side. Further, the box-shape cross-section may have a first horizontal side connected to the contact tip and a second horizontal side for contacting the conductive pad, where the second horizontal side further includes radii at each edge of the second horizontal side. In these aspects, the self-cleaning skate length is aligned along a scrub direction.
One conductive pad addressed in the current invention is generally convex having a non-conductive layer, such as a granular non-conductive oxidation layer, that is an artifact of the wafer fabrication process. The conductive pad is moved to engage the skate. Once engaged, an overdrive motion is applied to the conductive pad causing the probe arm to flex. This flexing allows the skate to remain in contact with the conductive pad while moving across the pad to scrub the non-conductive layer of debris and remove the debris from the conductive pad. An intended consequence of the skate design according to the current invention, is the scrubbed debris is displaced along the skate and moved around the skate round back end to a position on the skate that is away from said conductive pad.
In one aspect of the invention, to enable further control of the skate as the pad is subject to the overdrive motion, the probe arm has a base arm below the retention portion, a knee below the base arm, and a reverse arm below the knee. Further, the contact tip is below the reverse arm and the self-cleaning skate is below the contact tip.
According to the design of the self-cleaning skate, the skate round back end has a radius with a size up to the length of the skate height. Alternatively, the round back end of the skate may be a variable radius, or multiple radii, back end.
According to the aspects of the invention, the overdrive motion causes the skate to pivot such that the middle section forms an angle up to 35 degrees with respect to a horizontal plane, while the round back end is engaged with the conductive pad. Further, by reversing the overdrive motion, the skate moves in a reverse direction across the conductive pad, where the skate moves from an up angle to approximately a horizontal position while engaging the conductive pad. Here, the skate translates along the horizontal position in a direction towards the skate back end, where the debris is further displaced along the round back end and away from the conductive pad. Finally, the conductive pad moves away from the skate to disengage the probe from the conductive pad, whereby a scrub channel is evident on the surface of the pad.
In one aspect of the invention, the pad is extended in an overdrive motion that is beyond the previous overdrive motion, the probe is caused to move in a manner that further displaces the already displaced debris away from the conductive pad. Here, the extended overdrive motion is applied after at least two touch down cycles. Such overdrive motion of the conductive pad may be between 1-5 mil.
Prior to the current invention, a separate process was required for removing accumulated debris from probes, such as scouring or buffing the probe ends. This added step is known to be invasive to the fabrication process, where in addition to a need for a separate mechanical configuration in the fabrication process, the probes are subject to additional ware from abrasion that shortens their utility. As an advancement in removing the debris from the skate, in one aspect of the invention, the conductive pads are replaced by a cleaning sheet having debris adhesion properties for removing the debris from the skate.
A method of using the self-cleaning skate according to the current invention includes providing the conductive pad having with the generally convex shape and a non-conductive layer, such as a granular oxidation surface, and providing a conductive probe for engaging the conductive pad that includes a contact end for receiving a test current, a retention portion below the contact end, a block for holding the retention portion, a probe arm below the retention portion, a probe contact tip below the arm, and a generally planar self-cleaning skate disposed perpendicularly below the contact tip, where the skate has a generally square front end, a generally round back end and a generally flat middle section therebetween. The skate is positioned above the conductive pad, where the conductive pad is translated causing the skate to engage the conductive pad. Overdrive motion is provided to the conductive pad causing the skate to scrub the non-conductive layer of debris and remove it from the conductive pad and then clean the debris from the skate. The cleaning occurs by the overdrive motion flexing the probe and causing the skate to move across the pad to form an angle of the skate middle section with respect to a horizontal plane while still engaging the round back end with the conductive pad. The overdrive motion induces translation motion of the skate back end in a direction towards the skate front end across the conductive pad while the skate middle section is further angled with respect to the horizontal plane. As the skate back end translates across the conductive pad, debris, such as a non-conductive oxide, is displaced along the skate, where the debris moves around the round back end to a position on the skate that is away from the conductive pad. Reversing the overdrive motion to the pad causes the skate middle section to move from the angle to approximately the horizontal position, where the skate flat middle section is in contact with the conductive pad. Here, the debris on the skate back end moves to a position away from the conductive pad. Continuing to reverse the overdrive motion of the conductive pad translates the skate along the horizontal position and further moves the debris around the round back end to a position on the skate that is away from the conductive pad. Finally, the pad is translated to cause the probe to disengage from the conductive pad. The method according to the current invention improves overdrive control by making the scrubbing and cleaning less sensitive to the overdrive motion, where the oxidation layer is removed without breaching the conductive pad and debris is displaced from the conductive pad to the skate. Accordingly, a current (i) is applied after said self-cleaning skate contacts the conductive pad.
Using the self-cleaning skate according to the invention is accomplished after at least two said engagement cycles.
In one aspect of the current invention, the probe arm includes a base arm below the retention portion, a knee below the base arm, and a reverse arm below the knee, where the contact tip is below the reverse arm and the self-cleaning skate is below the contact tip.
In another aspect of the invention, the self-cleaning skate is positioned above the pad by disposing an approximate center location of the flat middle end above an edge of the conductive pad, where the skate to engages the conductive pad with the center of the skate positioned on the conductive pad edge.
Referring now to the figures,
Illustrated in
Depicted in
The current invention improves the skate 106 response to overdrive motion 600 of the conductive pad 108, where movement of the skate 106 having the generally round back end 202 allows the skate 106 to smoothly scrub across the conductive pad 108. A probe end not having the features according to the current invention is known to become caught in the debris 208 while the overdrive motion 600 continues, thus causing the probe arm to build up potential energy. The consequence of this undesirable state is the potential energy eventually surpasses the debris strength and the skate releases across the conductive pad 108, rapidly and without control, swinging beyond the conductive pad 108 thus potentially damaging the skate 106 and/or the pad 108.
By selecting the initial position of the skate 106 relative to the pad 108, the scrub channel 600 can be made in all locations on the surface of the conductive pad 108, where the invention provides better control of the motion of the skate 106 across the pad 108, while preserving the integrity of the conductive pad 108 and the skate 106.
The present invention has now been described in accordance with several exemplary embodiments, which are intended to be illustrative in all aspects, rather than restrictive. Thus, the present invention is capable of many variations in detailed implementation, which may be derived from the description contained herein by a person of ordinary skill in the art. All such variations are considered to be within the scope and spirit of the present invention as defined by the following claims and their legal equivalents.
Patent | Priority | Assignee | Title |
8723546, | Oct 19 2007 | MICROPROBE, INC | Vertical guided layered probe |
8907689, | Oct 11 2006 | MICROPROBE, INC | Probe retention arrangement |
8988091, | May 21 2004 | MICROPROBE, INC | Multiple contact probes |
9030222, | Nov 10 1998 | FormFactor, Inc. | Sharpened, oriented contact tip structures |
9097740, | May 21 2004 | MICROPROBE, INC | Layered probes with core |
9121868, | Jul 09 2004 | MICROPROBE, INC | Probes with offset arm and suspension structure |
9250266, | May 29 2008 | MICROPROBE, INC | Probe bonding method having improved control of bonding material |
9274143, | Apr 10 2007 | FormFactor, Inc. | Vertical probe array arranged to provide space transformation |
9310428, | Oct 11 2006 | FORMFACTOR , INC | Probe retention arrangement |
9316670, | May 21 2004 | FormFactor, Inc. | Multiple contact probes |
9476911, | May 21 2004 | MICROPROBE, INC | Probes with high current carrying capability and laser machining methods |
RE46221, | Jun 29 2006 | MICROPROBE, INC | Probe skates for electrical testing of convex pad topologies |
Patent | Priority | Assignee | Title |
3518612, | |||
3599093, | |||
3710251, | |||
3812311, | |||
4027935, | Jun 21 1976 | International Business Machines Corporation | Contact for an electrical contactor assembly |
4115736, | Mar 09 1977 | The United States of America as represented by the Secretary of the Air | Probe station |
4116523, | Jan 23 1976 | PROBE-RITE, INC A CA CORP | High frequency probe |
4423376, | Mar 20 1981 | International Business Machines Corporation | Contact probe assembly having rotatable contacting probe elements |
4525697, | Dec 13 1982 | Eaton Corporation | Thermally responsive controller and switch assembly therefor |
4532423, | May 31 1982 | Tokyo Shibaura Denki Kabushiki Kaisha | IC Tester using an electron beam capable of easily setting a probe card unit for wafers & packaged IC's to be tested |
4567433, | May 27 1980 | Nihon Denshi Zairo Kabushiki Kaisha | Complex probe card for testing a semiconductor wafer |
4593961, | Dec 20 1984 | AMP Incorporated | Electrical compression connector |
4618767, | Mar 22 1985 | INTERNATIONAL BUSINESS MACHINES CORPORATION A CORP OF NY | Low-energy scanning transmission electron microscope |
4618821, | Sep 19 1983 | Test probe assembly for microelectronic circuits | |
4706019, | Nov 15 1985 | Credence Systems Corporation | Electron beam test probe system for analyzing integrated circuits |
4730158, | Jun 06 1986 | Santa Barbara Research Center | Electron-beam probing of photodiodes |
4747698, | Apr 30 1986 | International Business Machines Corp.; International Business Machines Corporation | Scanning thermal profiler |
4757255, | Mar 03 1986 | National Semiconductor Corporation | Environmental box for automated wafer probing |
4772846, | Dec 29 1986 | Hughes Electronics Corporation | Wafer alignment and positioning apparatus for chip testing by voltage contrast electron microscopy |
4773877, | Aug 19 1986 | FEINMETALL GMBH | Contactor for an electronic tester |
4807159, | Aug 19 1985 | Kabushiki Kaisha Toshiba | Apparatus and method for controlling irradiation of an electron beam at a fixed position in an electron beam tester system |
4901013, | Aug 19 1988 | American Telephone and Telegraph Company, AT&T Bell Laboratories | Apparatus having a buckling beam probe assembly |
4967148, | Mar 31 1987 | Siemens Aktiengesellschaft | Apparatus for electrical function testing of wiring matrices, particularly of printed circuit boards |
5015947, | Mar 19 1990 | NATIONAL SEMICONDUCTOR CORPORATION, A CORP OF DE | Low capacitance probe tip |
5026291, | Aug 10 1990 | Berg Technology, Inc | Board mounted connector system |
5030318, | Sep 28 1989 | POLYCON, 2686 JOHNSON DRIVE, VENTURA, CA 93003 A CORP OF CA | Method of making electrical probe diaphragms |
5061192, | Dec 17 1990 | International Business Machines Corporation | High density connector |
5067007, | Jun 13 1988 | Hitachi, Ltd.; Hitachi VLSI Engineering Corp. | Semiconductor device having leads for mounting to a surface of a printed circuit board |
5145384, | Sep 10 1990 | Molex Incorporated | Electrical connector and terminal therefor |
5205739, | Nov 13 1989 | Thomas & Betts International, Inc | High density parallel interconnect |
5207585, | Oct 31 1990 | International Business Machines Corporation | Thin interface pellicle for dense arrays of electrical interconnects |
5225771, | May 16 1988 | ELM TECHNOLOGY CORPORATION A CALIFORNIA CORP | Making and testing an integrated circuit using high density probe points |
5230632, | Dec 19 1991 | International Business Machines Corporation | Dual element electrical contact and connector assembly utilizing same |
5237743, | Jun 19 1992 | International Business Machines Corporation | Method of forming a conductive end portion on a flexible circuit member |
5354205, | Aug 26 1991 | HE HOLDINGS, INC , A DELAWARE CORP ; Raytheon Company | Electrical connections with shaped contacts |
5399982, | Nov 13 1989 | MANIA TECHNOLOGIE BELGIUM N V | Printed circuit board testing device with foil adapter |
5422574, | Jan 14 1993 | SV Probe Pte Ltd | Large scale protrusion membrane for semiconductor devices under test with very high pin counts |
5430614, | Feb 14 1990 | NANOPIERCE TECHNOLOGIES, INC | Electrical interconnect using particle enhanced joining of metal surfaces |
5436571, | Aug 20 1990 | Tokyo Electron Limited | Probing test method of contacting a plurality of probes of a probe card with pads on a chip on a semiconductor wafer |
5476211, | Nov 16 1993 | FORM FACTOR, INC | Method of manufacturing electrical contacts, using a sacrificial member |
5531022, | Oct 19 1992 | International Business Machines Corporation | Method of forming a three dimensional high performance interconnection package |
5576631, | Mar 10 1992 | Virginia Panel Corporation | Coaxial double-headed spring contact probe assembly |
5632631, | Jun 07 1994 | Tessera, Inc | Microelectronic contacts with asperities and methods of making same |
5635846, | Apr 30 1993 | Tokyo Electron Limited | Test probe having elongated conductor embedded in an elostomeric material which is mounted on a space transformer |
5644249, | Jun 07 1996 | SV Probe Pte Ltd | Method and circuit testing apparatus for equalizing a contact force between probes and pads |
5676599, | May 03 1993 | Lohr & Bromkamp GmbH | Outer joint part for a tripod joint |
5701085, | Jul 05 1995 | Oracle America, Inc | Apparatus for testing flip chip or wire bond integrated circuits |
5720098, | May 12 1995 | SV Probe Pte Ltd | Method for making a probe preserving a uniform stress distribution under deflection |
5742174, | Nov 03 1995 | SV Probe Pte Ltd | Membrane for holding a probe tip in proper location |
5751157, | Jul 22 1996 | SV Probe Pte Ltd | Method and apparatus for aligning probes |
5764070, | Feb 28 1995 | Mitel Semiconductor Limited | Structure for testing bare integrated circuit devices |
5764072, | Dec 20 1996 | SV Probe Pte Ltd | Dual contact probe assembly for testing integrated circuits |
5764409, | Apr 26 1996 | Silicon Valley Bank | Elimination of vibration by vibration coupling in microscopy applications |
5767691, | Dec 22 1993 | GLOBALFOUNDRIES Inc | Probe-oxide-semiconductor method and apparatus for measuring oxide charge on a semiconductor wafer |
5772451, | Nov 15 1994 | FormFactor, Inc | Sockets for electronic components and methods of connecting to electronic components |
5773987, | Feb 26 1996 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Method for probing a semiconductor wafer using a motor controlled scrub process |
5802699, | Jun 07 1994 | Tessera, Inc. | Methods of assembling microelectronic assembly with socket for engaging bump leads |
5806181, | Nov 16 1993 | FORM FACTOR, INC | Contact carriers (tiles) for populating larger substrates with spring contacts |
5821763, | Apr 30 1993 | Tokyo Electron Limited | Test probe for high density integrated circuits, methods of fabrication thereof and methods of use thereof |
5829128, | Nov 16 1993 | FormFactor, Inc | Method of mounting resilient contact structures to semiconductor devices |
5832601, | Nov 15 1994 | Form Factor, Inc. | Method of making temporary connections between electronic components |
5834946, | Oct 19 1995 | CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC | Integrated circuit test head |
5847936, | Jun 20 1997 | Oracle America, Inc | Optimized routing scheme for an integrated circuit/printed circuit board |
5852871, | Nov 16 1993 | Form Factor, Inc. | Method of making raised contacts on electronic components |
5864946, | Nov 15 1994 | Form Factor, Inc. | Method of making contact tip structures |
5884395, | Apr 04 1997 | SV Probe Pte Ltd | Assembly structure for making integrated circuit chip probe cards |
5892539, | Nov 08 1995 | Silicon Valley Bank | Portable emission microscope workstation for failure analysis |
5914613, | Aug 08 1996 | Cascade Microtech, Inc. | Membrane probing system with local contact scrub |
5917707, | Nov 16 1993 | FormFactor, Inc. | Flexible contact structure with an electrically conductive shell |
5923178, | Apr 17 1997 | SV Probe Pte Ltd | Probe assembly and method for switchable multi-DUT testing of integrated circuit wafers |
5926951, | Nov 15 1994 | FormFactor, Inc. | Method of stacking electronic components |
5932323, | Sep 13 1994 | Texas Instruments Incorporated | Method and apparatus for mounting, inspecting and adjusting probe card needles |
5934914, | Jun 07 1994 | Tessera, Inc. | Microelectronic contacts with asperities and methods of making same |
5936421, | Oct 11 1994 | Virginia Panel Corporation | Coaxial double-headed spring contact probe assembly and coaxial surface contact for engagement therewith |
5945836, | Oct 29 1996 | Agilent Technologies Inc | Loaded-board, guided-probe test fixture |
5952843, | Mar 24 1998 | SV PROBE PTE LTD | Variable contact pressure probe |
5969533, | May 15 1997 | Mitsubishi Denki Kabushiki Kaisha | Probe card and LSI test method using probe card |
5970167, | Nov 08 1995 | Silicon Valley Bank | Integrated circuit failure analysis using color voltage contrast |
5974662, | Nov 16 1993 | FormFactor, Inc | Method of planarizing tips of probe elements of a probe card assembly |
5994152, | Nov 16 1993 | FormFactor, Inc | Fabricating interconnects and tips using sacrificial substrates |
6027630, | Apr 04 1997 | FIRST BANK OF BRUNEWICK | Method for electrochemical fabrication |
6029344, | Nov 16 1993 | FormFactor, Inc. | Composite interconnection element for microelectronic components, and method of making same |
6031282, | Aug 27 1998 | Advantest Corporation | High performance integrated circuit chip package |
6064215, | Apr 08 1998 | SV Probe Pte Ltd | High temperature probe card for testing integrated circuits |
6066957, | Sep 11 1997 | Delaware Capital Formation, Inc. | Floating spring probe wireless test fixture |
6071630, | Mar 04 1996 | Shin-Etsu Chemical Co., Ltd. | Electrostatic chuck |
6086386, | May 24 1996 | TESSERA, INC , A CORP OF DE | Flexible connectors for microelectronic elements |
6133072, | Dec 13 1996 | Tessera, Inc | Microelectronic connector with planar elastomer sockets |
6184576, | Sep 21 1998 | Advantest Corporation | Packaging and interconnection of contact structure |
6204674, | Oct 31 1997 | SV Probe Pte Ltd | Assembly structure for making integrated circuit chip probe cards |
6205660, | Jun 07 1994 | Tessera, Inc. | Method of making an electronic contact |
6215320, | Oct 23 1998 | Teradyne, Inc. | High density printed circuit board |
6218203, | Jun 28 1999 | Advantest Corporation | Method of producing a contact structure |
6246245, | Feb 23 1998 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Probe card, test method and test system for semiconductor wafers |
6246247, | Nov 15 1994 | FormFactor, Inc. | Probe card assembly and kit, and methods of using same |
6247228, | Aug 12 1996 | Tessera, Inc | Electrical connection with inwardly deformable contacts |
6255126, | Dec 02 1998 | FormFactor, Inc | Lithographic contact elements |
6259261, | Apr 16 1999 | Sony Corporation; Sony Electronics, Inc. | Method and apparatus for electrically testing semiconductor devices fabricated on a wafer |
6278284, | Feb 16 1998 | NEC Electronics Corporation | Testing IC socket |
6292003, | Jul 01 1998 | XILINX, Inc.; Xilinx, Inc | Apparatus and method for testing chip scale package integrated circuits |
6334247, | Nov 22 1996 | Tokyo Electron Limited | High density integrated circuit apparatus, test probe and methods of use thereof |
6336269, | Nov 16 1993 | FORM FACTOR, INC | Method of fabricating an interconnection element |
6344753, | Jun 18 1999 | Renesas Electronics Corporation | Test socket having improved contact terminals, and method of forming contact terminals of the test socket |
6411112, | Feb 19 1998 | International Business Machines Corporation | Off-axis contact tip and dense packing design for a fine pitch probe |
6419500, | Mar 08 1999 | SV Probe Pte Ltd | Probe assembly having floatable buckling beam probes and apparatus for abrading the same |
6420887, | Jun 13 2000 | SV Probe Pte Ltd | Modulated space transformer for high density buckling beam probe and method for making the same |
6424164, | Jun 13 2000 | SV Probe Pte Ltd | Probe apparatus having removable beam probes |
6433571, | Jul 06 1998 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Process for testing a semiconductor device |
6437584, | Aug 08 1996 | Cascade Microtech, Inc. | Membrane probing system with local contact scrub |
6441315, | Nov 10 1998 | FormFactor, Inc.; FormFactor, Inc | Contact structures with blades having a wiping motion |
6443784, | Sep 24 1999 | Contact and contact assembly using the same | |
6482013, | Nov 16 1993 | FORM FACTOR, INC | Microelectronic spring contact element and electronic component having a plurality of spring contact elements |
6483328, | Nov 09 1995 | FormFactor, Inc | Probe card for probing wafers with raised contact elements |
6486689, | May 26 1999 | Nidec-Read Corporation | Printed circuit board testing apparatus and probe device for use in the same |
6525552, | May 11 2001 | SV Probe Pte Ltd | Modular probe apparatus |
6529021, | Apr 25 2000 | International Business Machines Corporation | Self-scrub buckling beam probe |
6530148, | Mar 08 1999 | SV Probe Pte Ltd | Method for making a probe apparatus for testing integrated circuits |
6566898, | Mar 06 2000 | WINWAY TECHNOLOGY CO , LTD | Temperature compensated vertical pin probing device |
6570396, | Nov 24 2000 | SV Probe Pte Ltd | Interface structure for contacting probe beams |
6573738, | Mar 25 1999 | Tokyo Cathode Laboratory Co., Ltd. | Multi-layered probe for a probecard |
6575767, | May 17 2000 | Enplas Corporation | Contact pin assembly, contact pin assembly manufacturing method, contact pin assembling structure, contact pin assembling structure manufacturing method, and socket for electrical parts |
6576485, | Nov 30 1998 | Advantest Corp. | Contact structure and production method thereof and probe contact assembly using same |
6586955, | Mar 13 2000 | Tessera, Inc | Methods and structures for electronic probing arrays |
6615485, | Nov 16 1993 | FormFactor, Inc. | Probe card assembly and kit, and methods of making same |
6624648, | Nov 16 1993 | FormFactor, Inc. | Probe card assembly |
6633176, | Mar 19 2001 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device test probe having improved tip portion and manufacturing method thereof |
6641430, | Feb 14 2000 | Advantest Corp. | Contact structure and production method thereof and probe contact assembly using same |
6646455, | Jul 24 1997 | Mitsubishi Denki Kabushiki Kaisha | Test probe for semiconductor devices, method of manufacturing of the same, and member for removing foreign matter |
6676438, | Feb 14 2000 | Advantest Corporation | Contact structure and production method thereof and probe contact assembly using same |
6677245, | Nov 30 1998 | Advantest Corporation | Contact structure production method |
6690185, | Jan 15 1997 | FormFactor, Inc. | Large contactor with multiple, aligned contactor units |
6707311, | Jul 09 2002 | Advantest Corporation | Contact structure with flexible cable and probe contact assembly using same |
6727719, | Jan 11 2002 | Taiwan Semiconductor Manufacturing Co., Ltd. | Piercer combined prober for CU interconnect water-level preliminary electrical test |
6731123, | Sep 03 2001 | Gunsei, Kimoto | Probe device |
6765228, | Oct 11 2002 | Taiwan Semiconductor Maunfacturing Co., Ltd. | Bonding pad with separate bonding and probing areas |
6825422, | Nov 10 1998 | FormFactor, Inc. | Interconnection element with contact blade |
6842023, | Apr 13 2000 | Innotech Corporation | Probe card apparatus and electrical contact probe having curved or sloping blade profile |
6847221, | Mar 29 2001 | KIMOTO, GUNSEI | Probe pin assembly |
6853208, | Aug 09 2000 | Nihon Denshizairyo Kabushiki Kaisha | Vertical probe card |
6881974, | Aug 29 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Probe card for testing microelectronic components |
6890185, | Nov 03 2003 | IDI SEMI, LLC; INTERCONNECT DEVICES, INC | Multipath interconnect with meandering contact cantilevers |
6897666, | Dec 31 2002 | Infineon Technologies Austria AG | Embedded voltage regulator and active transient control device in probe head for improved power delivery and method |
6917102, | Oct 10 2002 | Advantest Corporation | Contact structure and production method thereof and probe contact assembly using same |
6917525, | Nov 27 2001 | ADVANTEST SINGAPORE PTE LTD | Construction structures and manufacturing processes for probe card assemblies and packages having wafer level springs |
6945827, | Dec 23 2002 | FormFactor, Inc | Microelectronic contact structure |
6956389, | Aug 16 2004 | JEM America Corporation | Highly resilient cantilever spring probe for testing ICs |
6965244, | May 08 2002 | FormFactor, Inc | High performance probe system |
6965245, | May 01 2003 | SV Probe Pte Ltd | Prefabricated and attached interconnect structure |
6970005, | Aug 24 2000 | Texas Instruments Incorporated | Multiple-chip probe and universal tester contact assemblage |
7015707, | Mar 20 2002 | Micro probe | |
7046021, | Jun 30 2004 | MicroProbe | Double acting spring probe |
7059865, | Jan 16 2004 | IDI SEMI, LLC; INTERCONNECT DEVICES, INC | See-saw interconnect assembly with dielectric carrier grid providing spring suspension |
7064564, | Feb 01 2001 | IDI SEMI, LLC; INTERCONNECT DEVICES, INC | Bundled probe apparatus for multiple terminal contacting |
7071715, | Jan 16 2004 | FormFactor, Inc | Probe card configuration for low mechanical flexural strength electrical routing substrates |
7073254, | Nov 16 1994 | FormFactor, Inc. | Method for mounting a plurality of spring contact elements |
7078921, | Dec 25 2001 | SUMITOMO ELECTRIC INDUSTRIES, LTD | Contact probe |
7088118, | Dec 15 2004 | Chipmos Technologies (Bermuda) Ltd.; Chipmos Technologies Inc. | Modularized probe card for high frequency probing |
7091729, | Jul 09 2004 | MicroProbe | Cantilever probe with dual plane fixture and probe apparatus therewith |
7108546, | Jun 20 2001 | FormFactor, Inc | High density planar electrical interface |
7109731, | Aug 08 1996 | Cascade Microtech, Inc. | Membrane probing system with local contact scrub |
7126361, | Aug 03 2005 | Qualitau, Inc. | Vertical probe card and air cooled probe head system |
7148709, | May 21 2004 | MICROPROBE, INC | Freely deflecting knee probe with controlled scrub motion |
7150658, | Jun 19 2006 | Excel Cell Electronic Co., Ltd. | Terminal for an electrical connector |
7173441, | May 01 2003 | SV Probe Pte Ltd | Prefabricated and attached interconnect structure |
7189078, | Jan 16 2004 | IDI SEMI, LLC; INTERCONNECT DEVICES, INC | See-saw interconnect assembly with dielectric carrier grid providing spring suspension |
7202682, | Dec 20 2002 | FormFactor, Inc | Composite motion probing |
7217138, | Nov 03 2003 | SMITHS INTERCONNECT AMERICAS, INC | Multipath interconnect with meandering contact cantilevers |
7218127, | Feb 18 2004 | FormFactor, Inc | Method and apparatus for probing an electronic device in which movement of probes and/or the electronic device includes a lateral component |
7218131, | Mar 19 2004 | Renesas Electronics Corporation | Inspection probe, method for preparing the same, and method for inspecting elements |
7225538, | Nov 16 1993 | FormFactor, Inc. | Resilient contact structures formed and then attached to a substrate |
7227371, | May 08 2002 | FormFactor, Inc. | High performance probe system |
7265565, | Feb 04 2003 | MICROFABRICA INC | Cantilever microprobes for contacting electronic components and methods for making such probes |
7274195, | Mar 19 2001 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device test probe |
7285966, | Mar 17 2003 | Phicom Corporation; LEE, OUG-KI | Probe and method of making same |
7312617, | Mar 20 2006 | MICROPROBE, INC. | Space transformers employing wire bonds for interconnections with fine pitch contacts |
7345492, | Dec 14 2005 | MICROPROBE, INC. | Probe cards employing probes having retaining portions for potting in a retention arrangement |
7417447, | Dec 14 2005 | MICROPROBE, INC. | Probe cards employing probes having retaining portions for potting in a retention arrangement |
7436192, | Jun 29 2006 | MICROPROBE, INC | Probe skates for electrical testing of convex pad topologies |
7511523, | Feb 04 2003 | Microfabrica Inc. | Cantilever microprobes for contacting electronic components and methods for making such probes |
7514948, | Apr 10 2007 | MICROPROBE, INC. | Vertical probe array arranged to provide space transformation |
7649367, | Dec 07 2005 | MICROPROBE, INC | Low profile probe having improved mechanical scrub and reduced contact inductance |
7659739, | Sep 14 2006 | Micro Porbe, Inc. | Knee probe having reduced thickness section for control of scrub motion |
7671610, | Oct 19 2007 | MICROPROBE, INC | Vertical guided probe array providing sideways scrub motion |
7759949, | May 21 2004 | MICROPROBE, INC | Probes with self-cleaning blunt skates for contacting conductive pads |
7786740, | Oct 11 2006 | MICROPROBE, INC | Probe cards employing probes having retaining portions for potting in a potting region |
20010012739, | |||
20010040460, | |||
20020070743, | |||
20020125584, | |||
20020153913, | |||
20020190738, | |||
20020194730, | |||
20030027423, | |||
20030116346, | |||
20040036493, | |||
20040046579, | |||
20040104737, | |||
20040119485, | |||
20040239352, | |||
20050012513, | |||
20050179458, | |||
20050184743, | |||
20050189955, | |||
20060033516, | |||
20060040417, | |||
20060073712, | |||
20060082380, | |||
20060170440, | |||
20060171425, | |||
20070145989, | |||
20070167022, | |||
20070229103, | |||
20080074132, | |||
20080088331, | |||
20080258746, | |||
20090201041, | |||
20100109691, | |||
20100176832, | |||
20100182030, | |||
20100182031, | |||
20100289512, | |||
20110006796, | |||
20110062978, | |||
20110273198, | |||
20110273199, | |||
D507198, | Jun 11 2003 | SV Probe Pte Ltd | Straight protruding probe beam contour surfaces |
D510043, | Jun 11 2003 | SV Probe Pte Ltd | Continuously profiled probe beam |
D525207, | Dec 02 2003 | IDI SEMI, LLC; INTERCONNECT DEVICES, INC | Sheet metal interconnect array |
DE4237591, | |||
EP144682, | |||
EP764352, | |||
JP10221374, | |||
JP10311864, | |||
JP10506238, | |||
JP11044727, | |||
JP1128535, | |||
JP63307678, | |||
JP7021968, | |||
JP7333232, | |||
TW201109669, | |||
WO54066, | |||
WO109623, | |||
WO9210010, | |||
WO8704568, | |||
WO9615458, | |||
WO9637332, | |||
WO9743653, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 13 2010 | MICROPROBE, INC. | (assignment on the face of the patent) | / | |||
Oct 25 2011 | KISTER, JANUARY | MICROPROBE, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027134 | /0290 | |
Jun 24 2016 | FormFactor, Inc | HSBC Bank USA, National Association | SECURITY INTEREST IN UNITED STATES PATENTS AND TRADEMARKS | 039184 | /0280 | |
Jun 24 2016 | ASTRIA SEMICONDUCTOR HOLDINGS, INC | HSBC Bank USA, National Association | SECURITY INTEREST IN UNITED STATES PATENTS AND TRADEMARKS | 039184 | /0280 | |
Jun 24 2016 | Cascade Microtech, INC | HSBC Bank USA, National Association | SECURITY INTEREST IN UNITED STATES PATENTS AND TRADEMARKS | 039184 | /0280 | |
Jun 24 2016 | MICRO-PROBE INCORPORATED | HSBC Bank USA, National Association | SECURITY INTEREST IN UNITED STATES PATENTS AND TRADEMARKS | 039184 | /0280 |
Date | Maintenance Fee Events |
Apr 14 2016 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Jun 01 2020 | REM: Maintenance Fee Reminder Mailed. |
Nov 16 2020 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jul 10 2015 | 4 years fee payment window open |
Jan 10 2016 | 6 months grace period start (w surcharge) |
Jul 10 2016 | patent expiry (for year 4) |
Jul 10 2018 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 10 2019 | 8 years fee payment window open |
Jan 10 2020 | 6 months grace period start (w surcharge) |
Jul 10 2020 | patent expiry (for year 8) |
Jul 10 2022 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 10 2023 | 12 years fee payment window open |
Jan 10 2024 | 6 months grace period start (w surcharge) |
Jul 10 2024 | patent expiry (for year 12) |
Jul 10 2026 | 2 years to revive unintentionally abandoned end. (for year 12) |