A probe for engaging a conductive pad is provided. The probe includes a probe contact end for receiving a test current, a probe retention portion below the contact end, a block for holding the probe retention portion, a probe arm below the retention portion, a probe contact tip below the arm, and a generally planar self-cleaning skate disposed perpendicular below the contact tip. The self-cleaning skate has a square front, a round back and a flat middle section. The conductive pad is of generally convex shape having a granular non-conductive surface of debris and moves to engage the skate, whereby an overdrive motion is applied to the pad causing the skate to move across and scrub non-conductive debris from the pad displacing the debris along the skate and around the skate round back end to a position on the skate that is away from the pad.

Patent
   RE43503
Priority
Jun 29 2006
Filed
Oct 13 2010
Issued
Jul 10 2012
Expiry
Jun 29 2026
Assg.orig
Entity
Small
12
247
EXPIRED<2yrs
0. 26. A probe for engaging a conductive pad, said probe comprising:
a contact end disposed on one end of said probe for receiving a test current; and
a self-cleaning skate disposed on another end of said probe, said skate comprising a generally square front end, a generally round back end and a generally flat middle section therebetween, wherein said skate engages the conductive pad.
0. 79. A probe for engaging a conductive pad, said probe comprising:
a contact end disposed on one end of said probe for receiving a test current;
a self-cleaning skate disposed on another end of said probe, said skate comprising at least one rounded edge and at least one flat edge blade, wherein said skate engages the conductive pad;
said skate comprises a U-shaped cross-section; and
the conductive pad being generally convex shaped.
0. 81. A probe for engaging a conductive pad, said probe comprising:
a contact end disposed on one end of said probe for receiving a test current;
a self-cleaning skate disposed on another end of said probe, said skate comprising at least one rounded edge and at least one flat edge blade, wherein said skate engages the conductive pad;
said skate comprises a V-shaped cross-section; and
the conductive pad being generally convex shaped.
0. 82. A probe for engaging a conductive pad, said probe comprising:
a contact end disposed on one end of said probe for receiving a test current;
a self-cleaning skate disposed on another end of said probe, said skate comprising at least one rounded edge and at least one flat edge blade, wherein said skate engages the conductive pad;
said skate comprises a box-shaped cross-section; and
the conductive pad being generally convex shaped.
0. 80. A probe for engaging a conductive pad, said probe comprising:
a contact end disposed on one end of said probe for receiving a test current;
a self-cleaning skate disposed on another end of said probe, said skate comprising at least one rounded edge and at least one flat edge blade, wherein said skate engages the conductive pad;
said skate comprises a semi-circular cross-section; and
the conductive pad being generally convex shaped.
0. 85. A probe for engaging a conductive pad, said probe comprising:
a contact end disposed on one end of said probe for receiving a test current;
a self-cleaning skate disposed on another end of said probe, said skate comprising at least one rounded edge and at least one flat edge blade, wherein said skate engages the conductive pad;
said rounded edge comprises a variable radius back end; and
the conductive pad being generally convex shaped.
0. 83. A probe for engaging a conductive pad, said probe comprising:
a contact end disposed on one end of said probe for receiving a test current;
a self-cleaning skate disposed on another end of said probe, said skate comprising at least one rounded edge and at least one flat edge blade, wherein said skate engages the conductive pad;
said skate comprises a parallelogram-shaped cross-section; and
the conductive pad being generally convex shaped.
0. 78. A probe for engaging a conductive pad, said probe comprising:
a contact end disposed on one end of said probe for receiving a test current;
a self-cleaning skate disposed on another end of said probe, said skate comprising at least one rounded edge and at least one flat edge blade, wherein said skate engages the conductive pad;
said skate comprises a skate width of up to about ⅙ of a length of said skate; and
the conductive pad being generally convex shaped.
0. 53. A probe for engaging a conductive pad, said probe comprising:
a contact end disposed on one end of said probe for receiving a test current;
a self-cleaning skate disposed on another end of said probe, said skate comprising at least one rounded edge and at least one flat edge blade, wherein said skate engages the conductive pad;
said skate comprises a skate height of up to about ½ of a length of said skate; and
the conductive pad being generally convex shaped.
0. 84. A probe for engaging a conductive pad, said probe comprising:
a contact end disposed on one end of said probe for receiving a test current;
a self-cleaning skate disposed on another end of said probe, said skate comprising at least one rounded edge and at least one flat edge blade, wherein said skate engages the conductive pad;
said rounded edge comprises a radius with a size up to a length of said skate height; and
the conductive pad being generally convex shaped.
1. A probe for engaging a conductive pad, said probe comprising:
a. a probe contact end for receiving a test current;
b. a probe retention portion below said contact end;
c. a block holding said retention portion;
d. a probe arm below said retention portion;
e. a probe contact tip below said arm; and
f. a generally planar self-cleaning skate disposed perpendicular below said contact tip having a generally square front end, a generally round back end and a generally flat middle section therebetween, wherein said conductive pad of generally convex shape and having a granular non-conductive surface layer of debris moves to engage said skate, whereby an overdrive motion is applied to said conductive pad thereby causing said skate to move across said conductive pad to scrub non-conductive debris from said conductive pad and displace said debris along said skate and move said debris near said skate round back end to a position on said skate that is away from said conductive pad.
18. A conductive probe for engaging a conductive pad comprising:
a. a contact end for receiving a test current;
b. a retention portion below said contact end;
c. a block holding said retention portion;
d. a base arm portion below said retention portion;
e. a knee below said base arm portion;
f. a reverse arm portion below said knee;
g. a contact tip below said reverse arm portion; and
h. a generally planar self-cleaning skate disposed perpendicular below said contact tip having a generally square front end, a generally round back end and a generally flat middle section therebetween, wherein said conductive pad is of generally convex shape and having a granular non-conductive surface layer of debris moves to engage said skate, whereby an overdrive motion is applied to said conductive pad thereby causing said skate to move across said conductive pad to scrub said debris from said conductive pad and displace said debris along said skate and move said debris near said skate round back end to a position on said skate that is away from said conductive pad.
19. A method of using a self-cleaning skate comprising:
a. providing a conductive pad having a generally convex shape and a granular non-conductive surface layer of debris;
b. providing a conductive probe for engaging said conductive pad, the conductive probe comprising:
i. a contact end for receiving a test current;
ii. a retention portion below said contact end
iii. a block holding said retention portion;
iv. a probe arm below said retention portion;
v. a probe contact tip below said arm; and
vi. a generally planar self-cleaning skate disposed perpendicular below said contact tip having a generally square front end, a generally round back end and a generally flat middle section therebetween;
c. positioning said skate above said conductive pad;
d. translating said conductive pad causing said skate to engage said conductive pad;
e. providing an overdrive motion to said conductive pad causing said skate to scrub said debris to expose conductive material of said conductive pad and clean said debris from said skate wherein said cleaning comprises:
i. forming an angle of said skate middle section with respect to a horizontal plane while engaging said round back end with said conductive pad;
ii. inducing a translation motion of said skate back end in a direction towards said skate front end across said conductive pad while said skate middle section is further angled with respect to said horizontal plane;
iii. displacing said debris along said skate and moving said debris around said round back end to a position on said skate that is away from said conductive pad;
iv. reversing said overdrive motion to said pad causing said skate middle section to move from said angle to approximately said horizontal position, wherein said skate flat middle section is in contact with said conductive pad whereby said debris on said skate back end moves to a position away from said conductive pad; and
v. translating said skate along said horizontal position and further moving said debris around said round back end to a position on said skate that is away from said conductive pad; and
vi. translating said pad to cause said probe to disengage from said conductive pad,
wherein said method improves overdrive control by making said scrubbing and said cleaning less sensitive to said overdrive, whereby said non-conductive layer of debris is removed without breaching said conductive pad and debris is displaced from said conductive pad to said skate.
2. The probe according to claim 1, wherein said non-conductive surface layer of debris is a non-conductive oxide.
3. The probe according to claim 1, wherein said skate comprises a skate height up to ½ of a skate length and a skate width up to ⅙ of said skate length.
4. The probe according to claim 3, wherein said self-cleaning skate width is narrower than a width of said contacting tip.
5. The probe according to claim 1, wherein said skate has a cross-section selected from a group consisting of U-shape, semi-circular shape, V-shape, box-shape, and parallelogram-shape.
6. The probe according to claim 5, wherein said parallelogram cross-section has a first parallel side connected to said contact tip and a second parallel side for contacting said conductive pad, whereby said first parallel side is larger than said second parallel side.
7. The probe according to claim 5, wherein said box-shape cross-section comprises a first horizontal side connected to said contact tip and a second horizontal side for contacting said conductive pad, whereby said second horizontal side further comprises radii at each edge of said second horizontal side.
8. The probe according to claim 1, wherein said probe arm comprises a base arm below said retention portion, a knee below said base arm, and a reverse arm below said knee, whereby said contact tip is below said reverse arm and said self-cleaning skate is below said contact tip.
9. The probe according to claim 1, wherein said skate round back end has a radius with a size up to a length of said skate height.
10. The probe according to claim 1, wherein said round back end is a variable radius back end.
11. The probe according to claim 1, wherein said overdrive motion causes said skate to pivot, whereby said middle section forms an angle up to 35 degrees with respect to a horizontal plane while said round back end is engaged with said conductive pad.
12. The probe according to claim 1, wherein reversing said overdrive motion causes said skate to move in a reverse direction, whereby
a. said skate moves from an angle to approximately a horizontal position while maintaining said engagement with said conductive pad;
b. said skate translates along said horizontal position in a direction towards said skate back end, whereby said debris is further displaced along said round back end and away from said conductive pad; and
c. said conductive pad moves away from said skate to disengage said probe from said conductive pad.
13. The probe according to claim 1, wherein in an extended overdrive motion beyond said overdrive motion is applied to said conductive pad causing said probe to move in a manner to further displace said displaced debris away from said conductive pad.
14. The probe according to claim 13, wherein said extended overdrive motion is applied after at least two touch down cycles.
15. The probe according to claim 1, wherein said conductive pad moves between 1-5 mil.
16. The probe according to claim 1, wherein said conductive pad is a cleaning sheet having debris adhesion properties for removing said debris from said skate.
17. The probe according to claim 1, wherein said self-cleaning skate length is aligned along a scrub direction.
20. The method of claim 19, wherein using said self-cleaning method is accomplished after at least two said engagement cycles.
21. The method of claim 19, wherein said non-conductive layer of debris is a non-conductive oxide layer.
22. The method of claim 19, wherein a current (i) is applied after said self-cleaning skate contacts said conductive pad.
23. The method of claim 19, wherein said probe arm comprises a base arm below said retention portion, a knee below said base arm, and a reverse arm below said knee, whereby said contact tip is below said reverse arm and said self-cleaning skate is below said contact tip.
24. The method of claim 19, wherein positioning said self-cleaning skate above said pad comprises disposing said skate at an approximate center location of said flat middle end above an edge of said conductive pad.
25. The method of claim 24, wherein engaging said conductive pad comprises engaging said approximate center of said skate with said conductive pad edge.
0. 27. The probe of claim 26 further comprising a retention portion disposed on said contact end.
0. 28. The probe of claim 27 further comprising a block for holding said retention portion.
0. 29. The probe of claim 27 further comprising a probe arm disposed on said retention portion.
0. 30. The probe of claim 29 wherein said probe arm comprises a base arm below said retention portion, a knee below said base arm, and a reverse arm below said knee, whereby said contact tip is below said reverse arm and said self-cleaning skate is below said contact tip.
0. 31. The probe of claim 26 wherein said skate is disposed on a contact tip.
0. 32. The probe of claim 26 wherein said self-cleaning skate is generally planar.
0. 33. The probe of claim 26 wherein the conductive pad is generally convex shaped.
0. 34. The probe of claim 26 wherein the conductive pad moves to engage said skate.
0. 35. The probe of claim 26 wherein the conductive pad comprises a non-conductive surface layer of debris.
0. 36. The probe of claim 35 wherein said non-conductive surface layer of debris comprises a non-conductive oxide.
0. 37. The probe of claim 26 wherein said skate comprises a skate height of up to about ½ of a length of said skate.
0. 38. The probe of claim 26 wherein said skate comprises a skate width up to about ⅙ of a length of said skate.
0. 39. The probe of claim 26 wherein a width of said skate is narrower than a width of said contact tip.
0. 40. The probe of claim 26 wherein said skate comprises a U-shaped cross-section.
0. 41. The probe of claim 26 wherein said skate comprises a semi-circular cross-section.
0. 42. The probe of claim 26 wherein said skate comprises a V-shaped cross-section.
0. 43. The probe of claim 26 wherein said skate comprises a box-shaped cross-section.
0. 44. The probe of claim 43 wherein said box-shape comprises rounded edges.
0. 45. The probe of claim 26 wherein said skate comprises a parallelogram-shaped cross-section.
0. 46. The probe of claim 45 wherein said parallelogram-shape comprises a first parallel side connected to a bottom of a contact tip and a second parallel side for contacting the conductive pad.
0. 47. The probe of claim 46 wherein said first parallel side is larger than said second parallel side.
0. 48. The probe of claim 26 wherein said skate round back end comprises a radius with a size up to a length of said skate height.
0. 49. The probe of claim 26 wherein said round back end comprises a variable radius back end.
0. 50. The probe of claim 26 wherein said skate is disposed perpendicular below a contact tip.
0. 51. The probe of claim 26 wherein said probe is one of an array of probes.
0. 52. The probe of claim 26 wherein the conductive pad comprises a cleaning sheet.
0. 54. The probe of claim 53 further comprising a retention portion disposed on said contact end.
0. 55. The probe of claim 54 further comprising a block for holding said retention portion.
0. 56. The probe of claim 54 further comprising a probe arm disposed on said retention portion.
0. 57. The probe of claim 56 wherein said probe arm comprises a base arm below said retention portion, a knee below said base arm, and a reverse arm below said knee, whereby said contact tip is below said reverse arm and said self-cleaning skate is below said contact tip.
0. 58. The probe of claim 53 wherein said skate is disposed on a contact tip.
0. 59. The probe of claim 53 wherein said self-cleaning skate is generally planar.
0. 60. The probe of claim 53 wherein the conductive pad moves to engage said skate.
0. 61. The probe of claim 53 wherein the conductive pad comprises a non-conductive surface layer of debris.
0. 62. The probe of claim 61 wherein said non-conductive surface layer of debris comprises a non-conductive oxide.
0. 63. The probe of claim 53 wherein said skate comprises a skate width up to about ⅙ of a length of said skate.
0. 64. The probe of claim 53 wherein a width of said skate is narrower than a width of said contact tip.
0. 65. The probe of claim 53 wherein said skate comprises a U-shaped cross-section.
0. 66. The probe of claim 53 wherein said skate comprises a semi-circular cross-section.
0. 67. The probe of claim 53 wherein said skate comprises a V-shaped cross-section.
0. 68. The probe of claim 53 wherein said skate comprises a box-shaped cross-section.
0. 69. The probe of claim 68 wherein said box-shape comprises rounded edges.
0. 70. The probe of claim 53 wherein said skate comprises a parallelogram-shaped cross-section.
0. 71. The probe of claim 70 wherein said parallelogram-shape comprises a first parallel side connected to a bottom of a contact tip and a second parallel side for contacting the conductive pad.
0. 72. The probe of claim 71 wherein said first parallel side is larger than said second parallel side.
0. 73. The probe of claim 53 wherein said rounded edge comprises a radius with a size up to a length of said skate height.
0. 74. The probe of claim 53 wherein said rounded edge comprises a variable radius back end.
0. 75. The probe of claim 53 wherein said skate is disposed perpendicular below a contact tip.
0. 76. The probe of claim 53 wherein said probe is one of an array of probes.
0. 77. The probe of claim 53 wherein the conductive pad comprises a cleaning sheet.

This application is a continuation-in-part application of the inventor's prior U.S. application Ser. No. 11/480,302 filed Jun. 29, 2006, for PROBES WITH SELF-CLEANING SKATES FOR CONTACTING CONDUCTIVE PADS, which claims the benefit of U.S. application Ser. No. 10/850,921 filed on May 21, 2004, now U.S. Pat. No. 7,148,709, U.S. application Ser. No. 10/888,347 filed on Jul. 9, 2004 and U.S. application Ser. No. 11/450,977 filed on Jun. 9, 2006.

The invention relates generally to an apparatus and method of using contacting tips of probes in scrubbing and electrical testing of a device under test. More particularly, the invention relates to an apparatus and method of using contacting tips having probe skates with geometries that provide self-cleaning and a reduction in sensitivity to overdrive motion.

Semiconductor wafer testing before dicing is a necessary and critical process step. Such testing provides early verification of circuit design and fabrication integrity. Typically, test probes are placed in contact with conductive pads of a device under test (DUT) to provide a test signal for such verification of the circuit, where the conductive pads are positioned on the surface of a wafer or DUT. These pads are known to have bump-like or convex shape, with the base of the pad incorporated into the wafer surface. A problem exists with a non-conductive layer of debris on the pad such as a non-conductive oxide layer impeding the conductive pad from receiving the test signal, where the debris is an artifact of the fabrication process. Currently, a scrubbing method is used to remove some of the non-conductive layer from the pads before applying the test signal. Many methods exist for removing the debris layer such as using the probe tip itself to scrub the pad while applying the test signal. For information about corresponding probe designs and scrub motion mechanics the reader is referred to U.S. Pat. No. 5,436,571 to Karasawa; U.S. Pat. Nos. 5,773,987 and 6,433,571 both to Montoya; U.S. Pat. No. 5,932,323 to Throssel and U.S. Appl. 2006/0082380 to Tanioka et al. Additional information about the probe-oxide semiconductor interface is found in U.S. Pat. No. 5,767,691 to Verkuil.

The scrub motion includes engaging a probe tip with a conductive pad, and applying an overdrive motion to the pad to cause the probe to scrub the layer of debris from the pad. Numerous problems arise from this method such as controlling the probe scrubbing action, managing undesirable debris accumulation on the probe tip, and the added need for a complicated and invasive probe cleaning processes to remove the debris from the probe tips. Consistent scrub control is of paramount importance. A probe is often too sensitive to the overdrive motion from the pad, causing a scrub depth that is too deep that not only removes a portion of the non-conductive layer, but also damages or breaches the conductive pad, thus rendering the wafer unusable. Debris accumulation on the probe tip degrades the electrical continuity between the probe and conductive pad, often times restricting the test signal and providing erroneous test results, where implementation of an undesirable test redundancy may then become necessary. Complicated probe tip cleaning methods, such as use of abrasion cleaning, have been used to remove debris from the probe tip by scouring. Such a technique not only disrupts the fabrication throughput, but also degrades the probe tip, resulting in shortened utility of the probes and requiring premature replacement.

Current attempts to address these issues have been met with shortcomings, where in one case a contact bump at the end of a probe has a nub made from rhodium nickel alloy fused to the contact bump. While such an alloy lends itself for creating a tip that is more robust for scrubbing, the need to disrupt fabrication throughput for a probe tip cleaning process still exists. Further, the geometry of the contact bump made from the alloy nub lends itself for undesirable accumulation of debris, thus necessitating relatively frequent cleaning. Another attempt has been implemented that includes a knife-like probe end in an effort to reduce debris accumulation for limiting the need for abrasive cleaning. Unfortunately, such geometry has been shown to lack scrubbing control and damage the pad due to the probe having a hyper-sensitivity to overdrive motion. For additional information about probe tip geometries the reader is referred to U.S. Pat. No. 6,633,176 and U.S. Appl. 2005/0189955 both to Takemoto et al., and U.S. Pat. No. 6,842,023 to Yoshida et al. employs contact probe whose tip tapers to a sloping blade or chisel.

It would be considered an advance in the art to provide a probe design having a probe tip with a self-cleaning skate that alleviates the need for using abrasion techniques to remove debris from the probe tip. A method of using a self-cleaning probe tip is needed that provides effective scrubbing for enabling testing. Further needed is a probe having a self-cleaning skate that is less sensitive to overdrive motion to enable consistent and predictable scrubbing for more reliable wafer testing and to alleviate the need for test redundancies.

The present invention provides a probe having a self-cleaning tip, or skate, for engaging a conductive pad. The probe includes a contact end for receiving a test current, a probe retention portion below the contact end and a block for holding the retention portion. Further, a probe arm below the retention portion has a probe contact tip there below and a generally planar self-cleaning skate disposed perpendicular below the contact tip. The self-cleaning skate has a generally square front end, a generally round back end and a generally flat middle section therebetween.

In one embodiment of the invention, the skate has a skate height up to ½ of the skate length and a skate width up to ⅙ of the skate length. In one aspect of the current invention, the self-cleaning skate width is narrower than a width of the contacting tip. In another aspect of the invention, the skate may have different cross-sections such as a U-shape, a semi-circular shape, a V-shape, box-shape, or a parallelogram-shape, where the parallelogram cross-section has a first parallel side connected to the bottom of the contact tip and a second parallel side for contacting the conductive pad, whereby the first parallel side is larger than the second parallel side. Further, the box-shape cross-section has a first horizontal side connected to the bottom of the contact tip and a second horizontal side for contacting the conductive pad, where the second horizontal side further includes radii at each edge of the second horizontal side. According to the embodiments of the current invention, the self-cleaning skate length is aligned along a scrub direction.

The conductive pad is generally convex and has a granular non-conductive surface layer of debris such as a non-conductive oxidation surface. The pad is moved to engage the skate. Once engaged, an overdrive motion is applied to the conductive pad causing the probe to flex and move the skate across the conductive pad to scrub debris from the pad. The scrubbed debris is displace along the skate and moved around the skate round back end to a position on the skate that is away from the conductive pad. In one aspect of the invention, the probe arm has a base arm below the retention portion, a knee below the base arm, and a reverse arm below the knee. Further, a contact tip is below the reverse arm and the self-cleaning skate is below the contact tip.

In one embodiment of the invention, the skate round back end has a radius with a size as large as the length of the skate height. In another embodiment of the invention, the round back end of the skate is a variable radius back end.

In one aspect of the invention, the overdrive motion causes the skate to pivot such that the middle section forms an angle up to 35 degrees with respect to a horizontal plane, while the round back end remains engaged with the conductive pad. Reversing the overdrive motion causes the skate to reverse its movement, where the skate moves from an up angle to approximately a horizontal position while maintaining engagement with the conductive pad. Here, the skate translates along the horizontal position in a direction towards the skate back end, where the debris is further displaced along the round back end and away from the conductive pad. Finally, the conductive pad moves away from the skate to disengage the probe from the conductive pad.

In one aspect of the invention, the pad is in an extended overdrive motion beyond the previous overdrive motion, causing the probe move in a manner to further displace the debris away from the conductive pad. Here, the extended overdrive motion is applied after at least two touch down cycles. Such overdrive motion of the conductive pad is between 1-5 mil.

As an advancement in removing the debris from the skate, in one aspect of the invention, the conductive pads for engaging the probe tip are replaced by a cleaning sheet having debris adhesion properties for removing the debris from the skate.

One aspect of the present invention is a method of using the self-cleaning skate by providing a conductive pad having a generally convex shape and a non-conductive layer of debris, such as a granular non-conductive oxidation surface, and providing a conductive probe for engaging the conductive pad. The probe includes a contact end for receiving a test current, a retention portion below the contact end, a block for holding the retention portion, a probe arm below the retention portion, a probe contact tip below the arm, and a generally planar self-cleaning skate disposed perpendicular below the contact tip, where the skate has a generally square front end, a generally round back end and a generally flat middle section therebetween. The skate is positioned above the conductive pad, where the conductive pad is translated, causing the skate to engage the conductive pad. Overdrive motion is then provided to the conductive pad causing the skate to scrub the debris from the conductive pad and clean the debris from the region of the skate that contacts the conductive pad. The cleaning occurs from the overdrive motion moving the skate to form an angle between the skate middle section and a horizontal plane, while engaging the round back end with the conductive pad. The overdrive motion induces a translation motion of the skate back end along the pad in a direction towards the skate front end while the skate middle section is further angled with respect to the horizontal plane. As the skate back end translates across the conductive pad, debris and non-conductive oxides are displaced along the skate, where the debris moves around the round back end to a position on the skate that is away from the conductive pad. Reversing the overdrive motion to the pad causes the skate middle section to move from the angle to approximately the horizontal position, where the skate flat middle section is in contact with the conductive pad. Here, the debris on the skate back end moves to a position away from the conductive pad. Continuing to reverse the overdrive motion translates the skate along the horizontal position and further moving the debris around the round back end to a position on the skate that is away from the conductive pad. Finally, the pad is translated to cause the probe to disengage from the conductive pad. The method according to the current invention improves overdrive control by making the scrubbing and cleaning less sensitive to the overdrive motion, where the debris layer is removed without breaching or damaging the conductive pad and debris is displaced from the conductive pad to the skate. Further, a current (i) is applied to the probe after the self-cleaning skate contacts the conductive pad. Using the self-cleaning skate according to the invention is accomplished after at least two engagement cycles.

In one aspect of the method according to the current invention, the probe arm includes a base arm below the retention portion, a knee below the base arm, and a reverse arm below the knee, where the contact tip is below the reverse arm and the self-cleaning skate is below the contact tip.

In another aspect of the invention, the self-cleaning skate is positioned above the pad by disposing an approximate center location of the flat middle end above an edge of the conductive pad, where the skate engages the conductive pad with the center of the skate positioned on the conductive pad edge.

Some key advantages of the invention are the features of the self-cleaning skate extend the mean time between failure of the probe caused by debris buildup on the skate. Additionally, due to the unique skate design, a scrub channel may be made on irregularly shaped conductive pads at any location on the pad. The current invention provides better control of the skate during overdrive motion, where improved tolerance to overdrive motion enables reliable pad testing on silicon wafers before dicing.

The objectives and advantages of the present invention will be understood by reading the following detailed description in conjunction with the drawings, in which:

FIG. 1 shows a planar view of a block holding a probe having a self-cleaning skate engaging a conductive pad according to the present invention.

FIG. 2 shows a planar view of a probe tip having a self-cleaning skate that is positioned over a conductive pad according to the present invention.

FIG. 3 shows a perspective view of a block holding multiple probes with self-cleaning skates positioned over multiple conductive pads according to the present invention.

FIGS. 4a-4c show planar views of some embodiments of the self-cleaning skate according to the present invention.

FIGS. 5a-5f show planar cross-section views of some embodiments of the self-cleaning skate according to the present invention.

FIGS. 6a-6b show planar views of the overdrive of the conductive pad operating on the probe according to the present invention.

FIGS. 7a-7i show a sequence of planar partial cutaway views of the self-cleaning skate scrubbing across a conductive pad according to the present invention.

FIGS. 8a-8i show a sequence of planar partial cutaway views of the self-cleaning skate scrubbing across a conductive pad with initial the skate position on a pad edge according to the present invention.

FIG. 9a-9d show planar views of a conductive pad before and after scrubbing.

FIG. 10 is a flow-chart that shows the steps for using the self-cleaning skate according to the present invention.

Although the following detailed description contains many specifics for the purposes of illustration, anyone of ordinary skill in the art will readily appreciate that many variations and alterations to the following exemplary details are within the scope of the invention. Accordingly, the following preferred embodiment of the invention is set forth without any loss of generality to, and without imposing limitations upon, the claimed invention.

Semiconductor wafer processing methods and technology have been dynamic fields and continue to be the focus of much research and development. Among the numerous areas of these fields, early verification of process integrity and circuit design is an important step for effective cost control and manufacturing efficiency. As new methods of fabrication and new semiconductor wafer features evolve, testing methods must adapt to these changes. For example, the conductive pad of a semiconductor wafer can be fabricated as a dome-shape, or even a pedestal having a dome-shape located at the pedestal top, where the dome feature may be non-uniform and asymmetric. New methods of testing and new conductive test probes are required to address these evolving fabrication technologies. Typically, the conductive pad has a non-conductive layer of debris that includes a non-conductive oxide layer on the dome surface that impedes electrical contact between the probe tip and the conductive pad. In the testing phase, this layer requires a scrubbing step to remove some of the non-conductive layer of debris to enable electrical contact between the conductive pad and the probe tip. It is desirable to remove this layer and apply a test current to the pad to verify circuit design and fabrication integrity, while simultaneously controlling the probe tip position on the pad and cleaning the probe end. In the current invention, the scrubbing process requires the conductive pad to be positioned below the probe tip and then moved to make contact with the probe tip. Once engaged, an overdrive motion is applied to the conductive pad whereby the probe flexes to allow the probe tip to traverse the conductive pad and scrub the non-conductive layer of debris from the pad surface while applying a test current (i) through the probe. Problems arise when scrubbing and testing the dome-shaped conductive pads. These problems include controlling the probe tip to ensure it remains on the conductive pad during scrubbing and testing, ensuring the translation of the probe tip across the pad is not too sensitive to the overdrive motion, and managing the debris that is removed to ensure electrical continuity and prevent or limit accumulation of debris on the probe tip.

To address these issues, the present invention provides a probe having a self-cleaning tip, or skate, for engaging a conductive pad of the semiconductor wafer, where the conductive pad may have a dome-shape or be a pedestal having a dome-shape. The probe includes a contact end for receiving a test current, a probe retention portion below the contact end and a block for holding the retention portion. Further, a probe arm below the retention portion has a probe contact tip there below and a generally planar self-cleaning skate disposed perpendicular below the contact tip. The self-cleaning skate has a generally square front end, a generally round back end and a generally flat middle section therebetween. This configuration may be made into an array of probes suited for scrubbing and testing semiconductor wafers having many conductive pads arranged according to a circuit, or multiple circuits, integrated to the wafer.

The skate of the probe contacting tip may have a height up to ½ of the skate length and a skate width up to ⅙ of the skate length. Additionally, the self-cleaning skate may have a width that is generally narrower than a width of the contacting tip. These skates may have a cross-section such as a U-shape, semi-circular shape, V-shape, box-shape, and parallelogram-shape, where the parallelogram cross-section has a first parallel side connected to the bottom of the contact tip and a second parallel side for contacting the conductive pad, whereby the first parallel side is larger than the second parallel side. Further, the box-shape cross-section may have a first horizontal side connected to the contact tip and a second horizontal side for contacting the conductive pad, where the second horizontal side further includes radii at each edge of the second horizontal side. In these aspects, the self-cleaning skate length is aligned along a scrub direction.

One conductive pad addressed in the current invention is generally convex having a non-conductive layer, such as a granular non-conductive oxidation layer, that is an artifact of the wafer fabrication process. The conductive pad is moved to engage the skate. Once engaged, an overdrive motion is applied to the conductive pad causing the probe arm to flex. This flexing allows the skate to remain in contact with the conductive pad while moving across the pad to scrub the non-conductive layer of debris and remove the debris from the conductive pad. An intended consequence of the skate design according to the current invention, is the scrubbed debris is displaced along the skate and moved around the skate round back end to a position on the skate that is away from said conductive pad.

In one aspect of the invention, to enable further control of the skate as the pad is subject to the overdrive motion, the probe arm has a base arm below the retention portion, a knee below the base arm, and a reverse arm below the knee. Further, the contact tip is below the reverse arm and the self-cleaning skate is below the contact tip.

According to the design of the self-cleaning skate, the skate round back end has a radius with a size up to the length of the skate height. Alternatively, the round back end of the skate may be a variable radius, or multiple radii, back end.

According to the aspects of the invention, the overdrive motion causes the skate to pivot such that the middle section forms an angle up to 35 degrees with respect to a horizontal plane, while the round back end is engaged with the conductive pad. Further, by reversing the overdrive motion, the skate moves in a reverse direction across the conductive pad, where the skate moves from an up angle to approximately a horizontal position while engaging the conductive pad. Here, the skate translates along the horizontal position in a direction towards the skate back end, where the debris is further displaced along the round back end and away from the conductive pad. Finally, the conductive pad moves away from the skate to disengage the probe from the conductive pad, whereby a scrub channel is evident on the surface of the pad.

In one aspect of the invention, the pad is extended in an overdrive motion that is beyond the previous overdrive motion, the probe is caused to move in a manner that further displaces the already displaced debris away from the conductive pad. Here, the extended overdrive motion is applied after at least two touch down cycles. Such overdrive motion of the conductive pad may be between 1-5 mil.

Prior to the current invention, a separate process was required for removing accumulated debris from probes, such as scouring or buffing the probe ends. This added step is known to be invasive to the fabrication process, where in addition to a need for a separate mechanical configuration in the fabrication process, the probes are subject to additional ware from abrasion that shortens their utility. As an advancement in removing the debris from the skate, in one aspect of the invention, the conductive pads are replaced by a cleaning sheet having debris adhesion properties for removing the debris from the skate.

A method of using the self-cleaning skate according to the current invention includes providing the conductive pad having with the generally convex shape and a non-conductive layer, such as a granular oxidation surface, and providing a conductive probe for engaging the conductive pad that includes a contact end for receiving a test current, a retention portion below the contact end, a block for holding the retention portion, a probe arm below the retention portion, a probe contact tip below the arm, and a generally planar self-cleaning skate disposed perpendicularly below the contact tip, where the skate has a generally square front end, a generally round back end and a generally flat middle section therebetween. The skate is positioned above the conductive pad, where the conductive pad is translated causing the skate to engage the conductive pad. Overdrive motion is provided to the conductive pad causing the skate to scrub the non-conductive layer of debris and remove it from the conductive pad and then clean the debris from the skate. The cleaning occurs by the overdrive motion flexing the probe and causing the skate to move across the pad to form an angle of the skate middle section with respect to a horizontal plane while still engaging the round back end with the conductive pad. The overdrive motion induces translation motion of the skate back end in a direction towards the skate front end across the conductive pad while the skate middle section is further angled with respect to the horizontal plane. As the skate back end translates across the conductive pad, debris, such as a non-conductive oxide, is displaced along the skate, where the debris moves around the round back end to a position on the skate that is away from the conductive pad. Reversing the overdrive motion to the pad causes the skate middle section to move from the angle to approximately the horizontal position, where the skate flat middle section is in contact with the conductive pad. Here, the debris on the skate back end moves to a position away from the conductive pad. Continuing to reverse the overdrive motion of the conductive pad translates the skate along the horizontal position and further moves the debris around the round back end to a position on the skate that is away from the conductive pad. Finally, the pad is translated to cause the probe to disengage from the conductive pad. The method according to the current invention improves overdrive control by making the scrubbing and cleaning less sensitive to the overdrive motion, where the oxidation layer is removed without breaching the conductive pad and debris is displaced from the conductive pad to the skate. Accordingly, a current (i) is applied after said self-cleaning skate contacts the conductive pad.

Using the self-cleaning skate according to the invention is accomplished after at least two said engagement cycles.

In one aspect of the current invention, the probe arm includes a base arm below the retention portion, a knee below the base arm, and a reverse arm below the knee, where the contact tip is below the reverse arm and the self-cleaning skate is below the contact tip.

In another aspect of the invention, the self-cleaning skate is positioned above the pad by disposing an approximate center location of the flat middle end above an edge of the conductive pad, where the skate to engages the conductive pad with the center of the skate positioned on the conductive pad edge.

Referring now to the figures, FIG. 1 is a planar view of a scrubbing system 100 that includes a block 102 holding a probe 104 having a self-cleaning skate 106 for engaging a conductive pad 108 to scrub debris (see FIG. 2) from the conductive pad 108 while applying the test current (i), according to the present invention. The probe includes a contact end 110 for receiving the test current (i) (not shown), a probe retention portion 112, below the contact end, that is held by the block 102. A probe arm 114 below the retention portion 112 has a probe contact tip 116 at the end, with a generally planar self-cleaning skate 106 disposed perpendicular below the contact tip 116. According to one embodiment of the invention and depicted in FIG. 1, the probe arm 114 has a base arm 118 below the retention portion, a knee 120 below the base arm 118, and a reverse arm 122 below the knee 120, where the contact tip 116 is below the reverse arm 122 and the self-cleaning skate 106 is below the contact tip 116.

Illustrated in FIG. 2 is a planar view of the probe tip 116 having the self-cleaning skate 106 positioned over a conductive pad 108 according to one embodiment of the present invention. Here, the self-cleaning skate 106 depicted is generally planar and disposed perpendicular below the contact tip 116, where the skate 106 has a generally square front end 200, a generally round back end 202 and a generally flat middle section 204 therebetween. Further depicted, the conductive pad 108 has a layer of non-conductive granular debris 208 formed in a generally convex shape on a generally cylindrical base 210, where the non-conductive granular debris 208 can be a non-conductive oxide layer resulting from a breakdown of the surface of the metallic conductive pad in the fabrication processes.

FIG. 3 depicts a perspective view of the block 102 holding multiple probes 104 with self-cleaning skates 106 positioned over multiple conductive pads 108 according to one embodiment of the present invention. The conductive pads 108 are embedded into a semiconductor wafer 300, where the wafer 300 and pads 108 are driven upwards to cause the conductive pads 108 to engage the self-cleaning skates 106 for scrubbing and testing as will be described below.

FIGS. 4a-4c show planar views the self-cleaning skate according to the present invention. In FIG. 4a, a self-cleaning skate 106 is depicted that has a generally square front end 200, a generally round back end 202 and a generally flat middle section 204 therebetween. FIG. 4b depicts another embodiment of the invention with the generally round back end 202 of the self-cleaning skate 106 having a variable radius, or multiple radii, depicted here having a first radius R1 and a second radius R2 in this embodiment. Depicted in FIG. 4c is an end planar view of the self-cleaning skate 106 connected perpendicularly to bottom of the contact tip 116 where shown are the skate width 400, skate height 402 and the skate length 404 (see FIG. 4a). According to one embodiment of the invention, the self-cleaning skate 106 has a height 402 up to ½ of the skate length 404 and a skate width 400 up to ⅙ of the skate length 404, and the skate width 400 is narrower than the contacting tip width 406. The self-cleaning skate 106 may have many different cross-section geometries. FIGS. 5a-5e show planar views of some cross-section embodiments of the self-cleaning skate according to the present invention. FIG. 5a depicts box-shape cross-section 500, FIG. 5b depicts a U-shape cross-section 502, FIG. 5c depicts a parallelogram-shape cross-section 504, FIG. 5d depicts a V-shape cross-section 506, FIG. 5e depicts a semi-circular shape cross-section 508, and FIG. 5f depicts a box-shape having rounded edges 510. The parallelogram cross-section 504 has a first parallel side 512 connected to the bottom of the contact tip 116 and a second parallel side 514 for contacting the conductive pad (not shown), where the first parallel side 512 is larger than the second parallel side 514. The cross-sections depicted here are a small sample of the many possible cross-section geometries that may be used with the current invention to obtain the desired results of scrubbing and testing the conductive pads 108.

FIGS. 6a and 6b show planar views of the overdrive of the conductive pad operating on the probe according to the present invention. Depicted here, is the self-cleaning skate 108, according to one embodiment of the current invention, that utilizes the round back end 202 to smoothly scrub across the conductive pad 108 when subject to overdrive motion 600 to scrub debris 208 while not breaching the conductive pad 108. Overdrive motion 600 can range from 1-5 mil. In FIG. 6a, the skate 106 is positioned with the center of the flat middle section 204 located near an edge of the conductive pad 108, where the skate 106 is shown to contact the pad 108.

Depicted in FIG. 6b is an overdrive motion 600 applied to the conductive pad 108, where dashed lines 602 are provided to show a relative overdrive displacement of the conductive pad 108. One benefit of the round back end 202 is that it averts the skate 106 from binding in the debris 208 when the overdrive motion 600 is applied, preventing the probe 106 from unpredictably releasing from the debris 208 and springing off of the pad 108, which is undesirable. Further, the added linear distance along the bottom surface of the skate 106 attained by having the round back end 202 provides improved tolerance to overdrive 600.

The current invention improves the skate 106 response to overdrive motion 600 of the conductive pad 108, where movement of the skate 106 having the generally round back end 202 allows the skate 106 to smoothly scrub across the conductive pad 108. A probe end not having the features according to the current invention is known to become caught in the debris 208 while the overdrive motion 600 continues, thus causing the probe arm to build up potential energy. The consequence of this undesirable state is the potential energy eventually surpasses the debris strength and the skate releases across the conductive pad 108, rapidly and without control, swinging beyond the conductive pad 108 thus potentially damaging the skate 106 and/or the pad 108.

FIGS. 7a-7i show a sequence of planar partial cutaway views of the self-cleaning skate 106 that scrubs a channel 704 (see FIG. 7i) in the conductive pad according to the present invention. Depicted in FIG. 7a is the probe 104 having a contact tip 116 with the self-cleaning skate 106 attached at the bottom and positioned above the conductive pad 108. The conductive pad 108 is depicted in a cutaway view for illustrative purposes, where a layer of granular debris 208, such as a non-conductive oxide layer, is depicted as a convex shape on top of the conductive pad 108 (see FIG. 9 for drawing of the pad and granular debris). The conductive pad 108 is raised, or translated, to cause the self-cleaning skate 106 to engage the layer of debris 208 of the conductive pad 108, as depicted in FIG. 7b. Once engaged, a test current (i) is applied to the probe and the conductive pad 108 is provided an overdrive motion 600 causing the skate 106 to scrub the debris 208 from the conductive pad 108 and clean the debris 208 from the bottom of the skate 106 as illustrated in this sequence. FIG. 7c-7e depict the response of the probe 104 when subject to overdrive motion 600 from the conductive pad 108, where the probe 114 flexes and causes the contact tip 116 to rotate 700 and form an angle between the skate middle section 204 and a horizontal plane on the pad 108 while engaging the round back end 202 with the conductive pad 108. Overdrive motion 600 is continued in FIGS. 7d and 7e to induce a horizontal translational motion 702 of the skate 106 in a direction from the back end 202 towards the front end 200 across the conductive pad 108 while the skate middle section 204 is further rotated 700 with respect to the horizontal plane. In this exemplary sequence, debris 208 is displaced along the skate 106 and moved around the round back end 202 to a position on the skate 106 that is away from the conductive pad 108. By reversing the overdrive motion 600 to the conductive pad 108, the skate 106 moves in a manner such that the skate middle section 204 rotates 700 from the angle to approximately the horizontal position, as depicted in FIG. 7f, where the skate flat middle section 204 is in contact with the conductive pad 108. Shown in FIG. 7g, the debris 208 on the skate back end 202 moves to a position away from the conductive pad 108 as the flat middle section 204 is further rotated 700 down to a horizontal position. Continuing the reverse overdrive motion 600 causes the skate 106 to translate 702 in an opposite direction along the horizontal position on the conductive pad 108, depicted in FIG. 7h, and further moves the debris 208 around the round back end 202 to a position on the skate 106 that is away from the conductive pad 108. Finally, the reverse overdrive motion 600 of the conductive pad 108 continues to cause the probe 104 to disengage from the conductive pad, as depicted in FIG. 7i, where this scrubbing method improves overdrive 600 control by making the skate 106 movement less sensitive to the overdrive 600. Accordingly, the oxidation layer 208 is removed without breaching the conductive pad 108 and the debris 208 is displaced from the conductive pad 108 along the skate 106 to a position away from the pad 108. Further depicted in FIG. 7i is a scrub channel 704 near the pad center having a furrow-buildup of the debris 208 to illustrate how it responds to scrubbing from the self-cleaning skate according to the current invention, where the scrub channel 704 that exposes the conductive metal 706 of the conductive pad 108.

FIGS. 8a-8i show planar views of the overdrive motion 600 of the conductive pad 108 operating on the probe 114 having a self-cleaning skate 106 according to the present invention. Depicted in FIG. 8a is the probe 114 having a contact tip 116 with the self-cleaning skate 106 attached at the bottom. In this example, the skate 106 is positioned with the skate middle section 204 above the edge of the conductive pad 108. The conductive pad 108 is depicted in a cutaway view for illustrative purposes, where a layer of granular debris 208 is depicted on top of the conductive pad 108 (see FIG. 9 for drawing of the pad and granular debris). The conductive pad 106 is moved to cause the self-cleaning skate 106 to engage the debris layer 208 of the conductive pad 108, as depicted in FIG. 8b. Once engaged, the conductive pad 108 is provided an overdrive motion 600 causing the skate 106 to scrub the debris 208 from the conductive pad 108 and clean the debris 208 from the skate 106. FIGS. 8c-8e depict the response of the probe 114 when subject to overdrive motion 600 from the conductive pad 208 moving in an upward direction, where the probe 114 flexes and causes the contact tip 116 to rotate 700 and form an angle between the skate middle section 204 and a horizontal plane while engaging the round back end 202 with the conductive pad 108. Here, the square front end 200 is on the convex shape of the conductive pad 108 while the round back end 202 is off the pad 108. This way, as the probe 114 undergoes deflection, it rocks on the edge of the pad 108 to provide a highly concentrated force that helps the skate 106 penetrate the debris 208 (see FIG. 8d). Overdrive motion 600 is continued in FIG. 8e to induce a translation 702 of the skate 106 in a direction from the back end 202 towards the front end 200 across the conductive pad 108 while the skate middle section 204 further rotates 700 with respect to the horizontal plane. In this sequence, debris 208 is displaced along the skate 106 and moved around the round back end 202 to a position on the skate 106 that is away from the conductive pad 108. By reversing the overdrive motion 600 of the conductive pad 108, the skate 106 rotates 700 in a manner such that the skate middle section 204 forms a smaller angle with respect to the horizontal plane, while simultaneously translating 702 in a direction from the front end 200 towards the back end 202 across the conductive pad 108 as depicted in FIGS. 8f and 8g, where the skate flat middle section 204 is in contact with the conductive pad. The debris 208 on the skate back end 202 moves to a position away from the conductive pad 108 as the flat middle section 204 is further rotated down to a horizontal position. Depicted in FIG. 8h is the skate 106 translating 702 with the middle section 204 in a horizontal orientation, and the reverse overdrive motion 600 of the conductive pad 108 continues to cause the probe 114 to disengage from the conductive pad, as depicted in FIG. 8i. The sequence described here illustrates how the self-cleaning skate 106 improves overdrive control by making the skate 106 movement less sensitive to the overdrive. Accordingly, the debris layer 208 is removed without breaching the conductive pad 108, where the debris 208 is displaced from the conductive pad 108 to a position on the skate 106 that is away from the pad 108. Further depicted in FIG. 8i is a scrub channel 600 that exposes the conductive metal 706 of the conductive pad 108.

By selecting the initial position of the skate 106 relative to the pad 108, the scrub channel 600 can be made in all locations on the surface of the conductive pad 108, where the invention provides better control of the motion of the skate 106 across the pad 108, while preserving the integrity of the conductive pad 108 and the skate 106. FIGS. 9a-9d depict planar views of a conductive pad 108 before and after scrubbing. FIG. 9a shows a side planar view of a typical conductive pad 108 having a splayed-cylindrical conductive metal base 706 and a layer of debris 208, such as a non-conductive oxide layer, on a convex pad 108. FIG. 9b shows a top planar view of a typical conductive pad 108 having a generally granular surface of debris 208 to be scrubbed for enabling conduction of the test signal (i) from the skate 106 to the pad 108. FIG. 9c illustrates a scrub channel 704 made across the center of the pad 108 as per the description related to FIG. 7 above, and FIG. 9d illustrates a scrub channel 704 made near the edge of the pad 108 as per the description related to FIG. 8 above. Though the drawings of the conductive pad 108 are depicted to have a general convex shape, in practice the surface pad 108 can be an irregular shape. The self-cleaning skate 106 according to the embodiments described are able to provide useful scrub channels 704 in these irregular shapes and in numerous pad locations to provide conduction for the test signal (i) with tolerance to overdrive motion 600 and without breaching the pad 108, where the thickness of the pad may be only slightly more thick than the debris layer.

FIG. 10 is a flow diagram depicting the steps for using the self-cleaning skate according to the present invention. The steps include providing a conductive pad 1000, providing a conductive probe having a conductive self-cleaning skate with a square front end, a round back end and a flat middle section 1002, positioning the skate above the conductive pad 1004, translating the conductive pad to engage the skate 1006, and providing overdrive motion to the pad 1008 and moving the skate to scrub debris from the pad and clean debris from the skate 1008, wherein the method improves overdrive control by making the scrubbing and the cleaning less sensitive to the overdrive, where the debris layer is removed without breaching the conductive pad and debris is displaced from the conductive pad to a position on the skate that is away from the pad.

The present invention has now been described in accordance with several exemplary embodiments, which are intended to be illustrative in all aspects, rather than restrictive. Thus, the present invention is capable of many variations in detailed implementation, which may be derived from the description contained herein by a person of ordinary skill in the art. All such variations are considered to be within the scope and spirit of the present invention as defined by the following claims and their legal equivalents.

Kister, January

Patent Priority Assignee Title
8723546, Oct 19 2007 MICROPROBE, INC Vertical guided layered probe
8907689, Oct 11 2006 MICROPROBE, INC Probe retention arrangement
8988091, May 21 2004 MICROPROBE, INC Multiple contact probes
9030222, Nov 10 1998 FormFactor, Inc. Sharpened, oriented contact tip structures
9097740, May 21 2004 MICROPROBE, INC Layered probes with core
9121868, Jul 09 2004 MICROPROBE, INC Probes with offset arm and suspension structure
9250266, May 29 2008 MICROPROBE, INC Probe bonding method having improved control of bonding material
9274143, Apr 10 2007 FormFactor, Inc. Vertical probe array arranged to provide space transformation
9310428, Oct 11 2006 FORMFACTOR , INC Probe retention arrangement
9316670, May 21 2004 FormFactor, Inc. Multiple contact probes
9476911, May 21 2004 MICROPROBE, INC Probes with high current carrying capability and laser machining methods
RE46221, Jun 29 2006 MICROPROBE, INC Probe skates for electrical testing of convex pad topologies
Patent Priority Assignee Title
3518612,
3599093,
3710251,
3812311,
4027935, Jun 21 1976 International Business Machines Corporation Contact for an electrical contactor assembly
4115736, Mar 09 1977 The United States of America as represented by the Secretary of the Air Probe station
4116523, Jan 23 1976 PROBE-RITE, INC A CA CORP High frequency probe
4423376, Mar 20 1981 International Business Machines Corporation Contact probe assembly having rotatable contacting probe elements
4525697, Dec 13 1982 Eaton Corporation Thermally responsive controller and switch assembly therefor
4532423, May 31 1982 Tokyo Shibaura Denki Kabushiki Kaisha IC Tester using an electron beam capable of easily setting a probe card unit for wafers & packaged IC's to be tested
4567433, May 27 1980 Nihon Denshi Zairo Kabushiki Kaisha Complex probe card for testing a semiconductor wafer
4593961, Dec 20 1984 AMP Incorporated Electrical compression connector
4618767, Mar 22 1985 INTERNATIONAL BUSINESS MACHINES CORPORATION A CORP OF NY Low-energy scanning transmission electron microscope
4618821, Sep 19 1983 Test probe assembly for microelectronic circuits
4706019, Nov 15 1985 Credence Systems Corporation Electron beam test probe system for analyzing integrated circuits
4730158, Jun 06 1986 Santa Barbara Research Center Electron-beam probing of photodiodes
4747698, Apr 30 1986 International Business Machines Corp.; International Business Machines Corporation Scanning thermal profiler
4757255, Mar 03 1986 National Semiconductor Corporation Environmental box for automated wafer probing
4772846, Dec 29 1986 Hughes Electronics Corporation Wafer alignment and positioning apparatus for chip testing by voltage contrast electron microscopy
4773877, Aug 19 1986 FEINMETALL GMBH Contactor for an electronic tester
4807159, Aug 19 1985 Kabushiki Kaisha Toshiba Apparatus and method for controlling irradiation of an electron beam at a fixed position in an electron beam tester system
4901013, Aug 19 1988 American Telephone and Telegraph Company, AT&T Bell Laboratories Apparatus having a buckling beam probe assembly
4967148, Mar 31 1987 Siemens Aktiengesellschaft Apparatus for electrical function testing of wiring matrices, particularly of printed circuit boards
5015947, Mar 19 1990 NATIONAL SEMICONDUCTOR CORPORATION, A CORP OF DE Low capacitance probe tip
5026291, Aug 10 1990 Berg Technology, Inc Board mounted connector system
5030318, Sep 28 1989 POLYCON, 2686 JOHNSON DRIVE, VENTURA, CA 93003 A CORP OF CA Method of making electrical probe diaphragms
5061192, Dec 17 1990 International Business Machines Corporation High density connector
5067007, Jun 13 1988 Hitachi, Ltd.; Hitachi VLSI Engineering Corp. Semiconductor device having leads for mounting to a surface of a printed circuit board
5145384, Sep 10 1990 Molex Incorporated Electrical connector and terminal therefor
5205739, Nov 13 1989 Thomas & Betts International, Inc High density parallel interconnect
5207585, Oct 31 1990 International Business Machines Corporation Thin interface pellicle for dense arrays of electrical interconnects
5225771, May 16 1988 ELM TECHNOLOGY CORPORATION A CALIFORNIA CORP Making and testing an integrated circuit using high density probe points
5230632, Dec 19 1991 International Business Machines Corporation Dual element electrical contact and connector assembly utilizing same
5237743, Jun 19 1992 International Business Machines Corporation Method of forming a conductive end portion on a flexible circuit member
5354205, Aug 26 1991 HE HOLDINGS, INC , A DELAWARE CORP ; Raytheon Company Electrical connections with shaped contacts
5399982, Nov 13 1989 MANIA TECHNOLOGIE BELGIUM N V Printed circuit board testing device with foil adapter
5422574, Jan 14 1993 SV Probe Pte Ltd Large scale protrusion membrane for semiconductor devices under test with very high pin counts
5430614, Feb 14 1990 NANOPIERCE TECHNOLOGIES, INC Electrical interconnect using particle enhanced joining of metal surfaces
5436571, Aug 20 1990 Tokyo Electron Limited Probing test method of contacting a plurality of probes of a probe card with pads on a chip on a semiconductor wafer
5476211, Nov 16 1993 FORM FACTOR, INC Method of manufacturing electrical contacts, using a sacrificial member
5531022, Oct 19 1992 International Business Machines Corporation Method of forming a three dimensional high performance interconnection package
5576631, Mar 10 1992 Virginia Panel Corporation Coaxial double-headed spring contact probe assembly
5632631, Jun 07 1994 Tessera, Inc Microelectronic contacts with asperities and methods of making same
5635846, Apr 30 1993 Tokyo Electron Limited Test probe having elongated conductor embedded in an elostomeric material which is mounted on a space transformer
5644249, Jun 07 1996 SV Probe Pte Ltd Method and circuit testing apparatus for equalizing a contact force between probes and pads
5676599, May 03 1993 Lohr & Bromkamp GmbH Outer joint part for a tripod joint
5701085, Jul 05 1995 Oracle America, Inc Apparatus for testing flip chip or wire bond integrated circuits
5720098, May 12 1995 SV Probe Pte Ltd Method for making a probe preserving a uniform stress distribution under deflection
5742174, Nov 03 1995 SV Probe Pte Ltd Membrane for holding a probe tip in proper location
5751157, Jul 22 1996 SV Probe Pte Ltd Method and apparatus for aligning probes
5764070, Feb 28 1995 Mitel Semiconductor Limited Structure for testing bare integrated circuit devices
5764072, Dec 20 1996 SV Probe Pte Ltd Dual contact probe assembly for testing integrated circuits
5764409, Apr 26 1996 Silicon Valley Bank Elimination of vibration by vibration coupling in microscopy applications
5767691, Dec 22 1993 GLOBALFOUNDRIES Inc Probe-oxide-semiconductor method and apparatus for measuring oxide charge on a semiconductor wafer
5772451, Nov 15 1994 FormFactor, Inc Sockets for electronic components and methods of connecting to electronic components
5773987, Feb 26 1996 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Method for probing a semiconductor wafer using a motor controlled scrub process
5802699, Jun 07 1994 Tessera, Inc. Methods of assembling microelectronic assembly with socket for engaging bump leads
5806181, Nov 16 1993 FORM FACTOR, INC Contact carriers (tiles) for populating larger substrates with spring contacts
5821763, Apr 30 1993 Tokyo Electron Limited Test probe for high density integrated circuits, methods of fabrication thereof and methods of use thereof
5829128, Nov 16 1993 FormFactor, Inc Method of mounting resilient contact structures to semiconductor devices
5832601, Nov 15 1994 Form Factor, Inc. Method of making temporary connections between electronic components
5834946, Oct 19 1995 CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC Integrated circuit test head
5847936, Jun 20 1997 Oracle America, Inc Optimized routing scheme for an integrated circuit/printed circuit board
5852871, Nov 16 1993 Form Factor, Inc. Method of making raised contacts on electronic components
5864946, Nov 15 1994 Form Factor, Inc. Method of making contact tip structures
5884395, Apr 04 1997 SV Probe Pte Ltd Assembly structure for making integrated circuit chip probe cards
5892539, Nov 08 1995 Silicon Valley Bank Portable emission microscope workstation for failure analysis
5914613, Aug 08 1996 Cascade Microtech, Inc. Membrane probing system with local contact scrub
5917707, Nov 16 1993 FormFactor, Inc. Flexible contact structure with an electrically conductive shell
5923178, Apr 17 1997 SV Probe Pte Ltd Probe assembly and method for switchable multi-DUT testing of integrated circuit wafers
5926951, Nov 15 1994 FormFactor, Inc. Method of stacking electronic components
5932323, Sep 13 1994 Texas Instruments Incorporated Method and apparatus for mounting, inspecting and adjusting probe card needles
5934914, Jun 07 1994 Tessera, Inc. Microelectronic contacts with asperities and methods of making same
5936421, Oct 11 1994 Virginia Panel Corporation Coaxial double-headed spring contact probe assembly and coaxial surface contact for engagement therewith
5945836, Oct 29 1996 Agilent Technologies Inc Loaded-board, guided-probe test fixture
5952843, Mar 24 1998 SV PROBE PTE LTD Variable contact pressure probe
5969533, May 15 1997 Mitsubishi Denki Kabushiki Kaisha Probe card and LSI test method using probe card
5970167, Nov 08 1995 Silicon Valley Bank Integrated circuit failure analysis using color voltage contrast
5974662, Nov 16 1993 FormFactor, Inc Method of planarizing tips of probe elements of a probe card assembly
5994152, Nov 16 1993 FormFactor, Inc Fabricating interconnects and tips using sacrificial substrates
6027630, Apr 04 1997 FIRST BANK OF BRUNEWICK Method for electrochemical fabrication
6029344, Nov 16 1993 FormFactor, Inc. Composite interconnection element for microelectronic components, and method of making same
6031282, Aug 27 1998 Advantest Corporation High performance integrated circuit chip package
6064215, Apr 08 1998 SV Probe Pte Ltd High temperature probe card for testing integrated circuits
6066957, Sep 11 1997 Delaware Capital Formation, Inc. Floating spring probe wireless test fixture
6071630, Mar 04 1996 Shin-Etsu Chemical Co., Ltd. Electrostatic chuck
6086386, May 24 1996 TESSERA, INC , A CORP OF DE Flexible connectors for microelectronic elements
6133072, Dec 13 1996 Tessera, Inc Microelectronic connector with planar elastomer sockets
6184576, Sep 21 1998 Advantest Corporation Packaging and interconnection of contact structure
6204674, Oct 31 1997 SV Probe Pte Ltd Assembly structure for making integrated circuit chip probe cards
6205660, Jun 07 1994 Tessera, Inc. Method of making an electronic contact
6215320, Oct 23 1998 Teradyne, Inc. High density printed circuit board
6218203, Jun 28 1999 Advantest Corporation Method of producing a contact structure
6246245, Feb 23 1998 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Probe card, test method and test system for semiconductor wafers
6246247, Nov 15 1994 FormFactor, Inc. Probe card assembly and kit, and methods of using same
6247228, Aug 12 1996 Tessera, Inc Electrical connection with inwardly deformable contacts
6255126, Dec 02 1998 FormFactor, Inc Lithographic contact elements
6259261, Apr 16 1999 Sony Corporation; Sony Electronics, Inc. Method and apparatus for electrically testing semiconductor devices fabricated on a wafer
6278284, Feb 16 1998 NEC Electronics Corporation Testing IC socket
6292003, Jul 01 1998 XILINX, Inc.; Xilinx, Inc Apparatus and method for testing chip scale package integrated circuits
6334247, Nov 22 1996 Tokyo Electron Limited High density integrated circuit apparatus, test probe and methods of use thereof
6336269, Nov 16 1993 FORM FACTOR, INC Method of fabricating an interconnection element
6344753, Jun 18 1999 Renesas Electronics Corporation Test socket having improved contact terminals, and method of forming contact terminals of the test socket
6411112, Feb 19 1998 International Business Machines Corporation Off-axis contact tip and dense packing design for a fine pitch probe
6419500, Mar 08 1999 SV Probe Pte Ltd Probe assembly having floatable buckling beam probes and apparatus for abrading the same
6420887, Jun 13 2000 SV Probe Pte Ltd Modulated space transformer for high density buckling beam probe and method for making the same
6424164, Jun 13 2000 SV Probe Pte Ltd Probe apparatus having removable beam probes
6433571, Jul 06 1998 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Process for testing a semiconductor device
6437584, Aug 08 1996 Cascade Microtech, Inc. Membrane probing system with local contact scrub
6441315, Nov 10 1998 FormFactor, Inc.; FormFactor, Inc Contact structures with blades having a wiping motion
6443784, Sep 24 1999 Contact and contact assembly using the same
6482013, Nov 16 1993 FORM FACTOR, INC Microelectronic spring contact element and electronic component having a plurality of spring contact elements
6483328, Nov 09 1995 FormFactor, Inc Probe card for probing wafers with raised contact elements
6486689, May 26 1999 Nidec-Read Corporation Printed circuit board testing apparatus and probe device for use in the same
6525552, May 11 2001 SV Probe Pte Ltd Modular probe apparatus
6529021, Apr 25 2000 International Business Machines Corporation Self-scrub buckling beam probe
6530148, Mar 08 1999 SV Probe Pte Ltd Method for making a probe apparatus for testing integrated circuits
6566898, Mar 06 2000 WINWAY TECHNOLOGY CO , LTD Temperature compensated vertical pin probing device
6570396, Nov 24 2000 SV Probe Pte Ltd Interface structure for contacting probe beams
6573738, Mar 25 1999 Tokyo Cathode Laboratory Co., Ltd. Multi-layered probe for a probecard
6575767, May 17 2000 Enplas Corporation Contact pin assembly, contact pin assembly manufacturing method, contact pin assembling structure, contact pin assembling structure manufacturing method, and socket for electrical parts
6576485, Nov 30 1998 Advantest Corp. Contact structure and production method thereof and probe contact assembly using same
6586955, Mar 13 2000 Tessera, Inc Methods and structures for electronic probing arrays
6615485, Nov 16 1993 FormFactor, Inc. Probe card assembly and kit, and methods of making same
6624648, Nov 16 1993 FormFactor, Inc. Probe card assembly
6633176, Mar 19 2001 Mitsubishi Denki Kabushiki Kaisha Semiconductor device test probe having improved tip portion and manufacturing method thereof
6641430, Feb 14 2000 Advantest Corp. Contact structure and production method thereof and probe contact assembly using same
6646455, Jul 24 1997 Mitsubishi Denki Kabushiki Kaisha Test probe for semiconductor devices, method of manufacturing of the same, and member for removing foreign matter
6676438, Feb 14 2000 Advantest Corporation Contact structure and production method thereof and probe contact assembly using same
6677245, Nov 30 1998 Advantest Corp. Contact structure production method
6690185, Jan 15 1997 FormFactor, Inc. Large contactor with multiple, aligned contactor units
6707311, Jul 09 2002 Advantest Corporation Contact structure with flexible cable and probe contact assembly using same
6727719, Jan 11 2002 Taiwan Semiconductor Manufacturing Co., Ltd. Piercer combined prober for CU interconnect water-level preliminary electrical test
6731123, Sep 03 2001 Gunsei, Kimoto Probe device
6765228, Oct 11 2002 Taiwan Semiconductor Maunfacturing Co., Ltd. Bonding pad with separate bonding and probing areas
6825422, Nov 10 1998 FormFactor, Inc. Interconnection element with contact blade
6842023, Apr 13 2000 Innotech Corporation Probe card apparatus and electrical contact probe having curved or sloping blade profile
6847221, Mar 29 2001 KIMOTO, GUNSEI Probe pin assembly
6853208, Aug 09 2000 Nihon Denshizairyo Kabushiki Kaisha Vertical probe card
6881974, Aug 29 2002 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Probe card for testing microelectronic components
6890185, Nov 03 2003 IDI SEMI, LLC; INTERCONNECT DEVICES, INC Multipath interconnect with meandering contact cantilevers
6897666, Dec 31 2002 Infineon Technologies Austria AG Embedded voltage regulator and active transient control device in probe head for improved power delivery and method
6917102, Oct 10 2002 Advantest Corporation Contact structure and production method thereof and probe contact assembly using same
6917525, Nov 27 2001 ADVANTEST SINGAPORE PTE LTD Construction structures and manufacturing processes for probe card assemblies and packages having wafer level springs
6945827, Dec 23 2002 FormFactor, Inc Microelectronic contact structure
6956389, Aug 16 2004 JEM America Corporation Highly resilient cantilever spring probe for testing ICs
6965244, May 08 2002 FormFactor, Inc High performance probe system
6965245, May 01 2003 SV Probe Pte Ltd Prefabricated and attached interconnect structure
6970005, Aug 24 2000 Texas Instruments Incorporated Multiple-chip probe and universal tester contact assemblage
7015707, Mar 20 2002 Micro probe
7046021, Jun 30 2004 MicroProbe Double acting spring probe
7059865, Jan 16 2004 IDI SEMI, LLC; INTERCONNECT DEVICES, INC See-saw interconnect assembly with dielectric carrier grid providing spring suspension
7064564, Feb 01 2001 IDI SEMI, LLC; INTERCONNECT DEVICES, INC Bundled probe apparatus for multiple terminal contacting
7071715, Jan 16 2004 FormFactor, Inc Probe card configuration for low mechanical flexural strength electrical routing substrates
7073254, Nov 16 1994 FormFactor, Inc. Method for mounting a plurality of spring contact elements
7078921, Dec 25 2001 SUMITOMO ELECTRIC INDUSTRIES, LTD Contact probe
7088118, Dec 15 2004 Chipmos Technologies (Bermuda) Ltd.; Chipmos Technologies Inc. Modularized probe card for high frequency probing
7091729, Jul 09 2004 MicroProbe Cantilever probe with dual plane fixture and probe apparatus therewith
7108546, Jun 20 2001 FormFactor, Inc High density planar electrical interface
7109731, Aug 08 1996 Cascade Microtech, Inc. Membrane probing system with local contact scrub
7126361, Aug 03 2005 Qualitau, Inc. Vertical probe card and air cooled probe head system
7148709, May 21 2004 MICROPROBE, INC Freely deflecting knee probe with controlled scrub motion
7150658, Jun 19 2006 Excel Cell Electronic Co., Ltd. Terminal for an electrical connector
7173441, May 01 2003 SV Probe Pte Ltd Prefabricated and attached interconnect structure
7189078, Jan 16 2004 IDI SEMI, LLC; INTERCONNECT DEVICES, INC See-saw interconnect assembly with dielectric carrier grid providing spring suspension
7202682, Dec 20 2002 FormFactor, Inc Composite motion probing
7217138, Nov 03 2003 SMITHS INTERCONNECT AMERICAS, INC Multipath interconnect with meandering contact cantilevers
7218127, Feb 18 2004 FormFactor, Inc Method and apparatus for probing an electronic device in which movement of probes and/or the electronic device includes a lateral component
7218131, Mar 19 2004 Renesas Electronics Corporation Inspection probe, method for preparing the same, and method for inspecting elements
7225538, Nov 16 1993 FormFactor, Inc. Resilient contact structures formed and then attached to a substrate
7227371, May 08 2002 FormFactor, Inc. High performance probe system
7265565, Feb 04 2003 MICROFABRICA INC Cantilever microprobes for contacting electronic components and methods for making such probes
7274195, Mar 19 2001 Mitsubishi Denki Kabushiki Kaisha Semiconductor device test probe
7285966, Mar 17 2003 Phicom Corporation; LEE, OUG-KI Probe and method of making same
7312617, Mar 20 2006 MICROPROBE, INC. Space transformers employing wire bonds for interconnections with fine pitch contacts
7345492, Dec 14 2005 MICROPROBE, INC. Probe cards employing probes having retaining portions for potting in a retention arrangement
7417447, Dec 14 2005 MICROPROBE, INC. Probe cards employing probes having retaining portions for potting in a retention arrangement
7436192, Jun 29 2006 MICROPROBE, INC Probe skates for electrical testing of convex pad topologies
7511523, Feb 04 2003 Microfabrica Inc. Cantilever microprobes for contacting electronic components and methods for making such probes
7514948, Apr 10 2007 MICROPROBE, INC. Vertical probe array arranged to provide space transformation
7649367, Dec 07 2005 MICROPROBE, INC Low profile probe having improved mechanical scrub and reduced contact inductance
7659739, Sep 14 2006 Micro Porbe, Inc. Knee probe having reduced thickness section for control of scrub motion
7671610, Oct 19 2007 MICROPROBE, INC Vertical guided probe array providing sideways scrub motion
7759949, May 21 2004 MICROPROBE, INC Probes with self-cleaning blunt skates for contacting conductive pads
7786740, Oct 11 2006 MICROPROBE, INC Probe cards employing probes having retaining portions for potting in a potting region
20010012739,
20010040460,
20020070743,
20020125584,
20020153913,
20020190738,
20020194730,
20030027423,
20030116346,
20040036493,
20040046579,
20040104737,
20040119485,
20040239352,
20050012513,
20050179458,
20050184743,
20050189955,
20060033516,
20060040417,
20060073712,
20060082380,
20060170440,
20060171425,
20070145989,
20070167022,
20070229103,
20080074132,
20080088331,
20080258746,
20090201041,
20100109691,
20100176832,
20100182030,
20100182031,
20100289512,
20110006796,
20110062978,
20110273198,
20110273199,
D507198, Jun 11 2003 SV Probe Pte Ltd Straight protruding probe beam contour surfaces
D510043, Jun 11 2003 SV Probe Pte Ltd Continuously profiled probe beam
D525207, Dec 02 2003 IDI SEMI, LLC; INTERCONNECT DEVICES, INC Sheet metal interconnect array
DE4237591,
EP144682,
EP764352,
JP10221374,
JP10311864,
JP10506238,
JP11044727,
JP1128535,
JP63307678,
JP7021968,
JP7333232,
TW201109669,
WO54066,
WO109623,
WO9210010,
WO8704568,
WO9615458,
WO9637332,
WO9743653,
//////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Oct 13 2010MICROPROBE, INC.(assignment on the face of the patent)
Oct 25 2011KISTER, JANUARYMICROPROBE, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0271340290 pdf
Jun 24 2016FormFactor, IncHSBC Bank USA, National AssociationSECURITY INTEREST IN UNITED STATES PATENTS AND TRADEMARKS0391840280 pdf
Jun 24 2016ASTRIA SEMICONDUCTOR HOLDINGS, INC HSBC Bank USA, National AssociationSECURITY INTEREST IN UNITED STATES PATENTS AND TRADEMARKS0391840280 pdf
Jun 24 2016Cascade Microtech, INCHSBC Bank USA, National AssociationSECURITY INTEREST IN UNITED STATES PATENTS AND TRADEMARKS0391840280 pdf
Jun 24 2016MICRO-PROBE INCORPORATEDHSBC Bank USA, National AssociationSECURITY INTEREST IN UNITED STATES PATENTS AND TRADEMARKS0391840280 pdf
Date Maintenance Fee Events
Apr 14 2016M2552: Payment of Maintenance Fee, 8th Yr, Small Entity.
Jun 01 2020REM: Maintenance Fee Reminder Mailed.
Nov 16 2020EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Jul 10 20154 years fee payment window open
Jan 10 20166 months grace period start (w surcharge)
Jul 10 2016patent expiry (for year 4)
Jul 10 20182 years to revive unintentionally abandoned end. (for year 4)
Jul 10 20198 years fee payment window open
Jan 10 20206 months grace period start (w surcharge)
Jul 10 2020patent expiry (for year 8)
Jul 10 20222 years to revive unintentionally abandoned end. (for year 8)
Jul 10 202312 years fee payment window open
Jan 10 20246 months grace period start (w surcharge)
Jul 10 2024patent expiry (for year 12)
Jul 10 20262 years to revive unintentionally abandoned end. (for year 12)