Back end of line metallization structures and processes of fabricating the metallization structures generally patterning a dielectric layer formed of SiC, SiN or SiC (N, H) and filled the openings in the patterned dielectric layer with a metal conductor. Optionally, the surfaces defining the openings of the dielectric layer are subjected to a nitridation process to form a nitride layer at the surface. Still further, the metallization structures can include a pure metal liner on the surfaces defining the openings of the dielectric layer.
|
1. A back end of the line process for forming a metallization structure layer, the process comprising:
depositing a dielectric layer onto a surface of an interconnect structure comprising a metal conductor, wherein the dielectric layer comprises SiC, SiN or SiC (N,H);
lithographically patterning and etching the dielectric layer to form one or more openings exposing a surface of the metal conductor;
forming a nitrogen enriched layer by exposing the dielectric layer to a nitridation process, wherein the nitridation process comprises generating nitrogen ions from a nitrogen containing gas;
removing a portion of the nitrogen enriched layer to expose a surface of the metal conductor;
conformally depositing a pure metal liner layer free of nitrides into the one or more openings;
depositing a metal into the one or more openings directly on a surface of the pure metal liner layer; and
planarizing a surface to remove an excess of the metal such that uppermost surfaces of the metal and the dielectric layer are coplanar to each other.
2. The process of
3. The process of
6. The process of
|
The present invention generally relates to semiconductor integrated circuits, and more particularly, to the structure and formation of back end of line metallization structures.
Integrated circuit processing can be generally divided into front end of the line (FEOL), middle of the line (MOL) and back end of the line (BEOL) processes. The FEOL and MOL processing will generally form many layers of logical and functional devices. By way of example, the typical FEOL processes include wafer preparation, isolation, well formation, gate patterning, spacer, extension and source/drain implantation, silicide formation, and dual stress liner formation. The MOL is mainly gate contact (CA) formation. Layers of interconnections are formed above these logical and functional layers during the BEOL processing to complete the integrated circuit structure. As such, BEOL processing generally involves the formation of insulators and conductive wiring.
Embodiments of the present invention are generally directed to semiconductor structures including a back end of line metallization structure and methods of fabrication. A non-limiting example of a back end of line metallization structure according to aspects of the invention includes a patterned dielectric layer including one or more openings. The patterned dielectric layer includes SiC, SiN or SiC (N,H). A bulk metal is disposed in the one or more openings, wherein the bulk metal has an upper surface coplanar to an upper surface of the dielectric layer, wherein the bulk metal is free of a metal nitride liner layer.
A non-limiting example of the semiconductor structure according to aspects of the invention includes a back end of line metallization structure consisting of a patterned dielectric layer including one or more openings. The patterned dielectric layer includes SiC, SiN or SiC (N,H). A bulk metal is disposed in the one or more openings to form the back end of line metallization structure. The bulk metal has an upper surface coplanar to an upper surface of the dielectric layer, wherein the back end of the line metallization structure is free of any liner layer.
A non-limiting example of a back end of the line process for forming a metallization structure layer according to aspects of the invention includes depositing a dielectric layer onto a surface, wherein the dielectric layer includes SiC, SiN or SiC (N,H). The dielectric layer is lithographically patterned and etched to form one or more openings. A metal is deposited into the one or more openings. The surface is planarized to remove an excess of the metal such that the uppermost surfaces of the metal and the dielectric layer are coplanar to each other.
Additional features and advantages are realized through the techniques of the present invention. Other embodiments and aspects of the invention are described in detail herein and are considered a part of the claimed invention. For a better understanding of the invention with advantages and features, refer to the description and to the drawings.
The subject matter that is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other objects, features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
The present invention generally relates to back end of line (BEOL) metallization structures and processes for forming the metallization structures. The structures and processes generally include replacing the conventional silicon oxide dielectric layer with a dielectric layer formed of silicon nitride, silicon carbide or nitrogen doped silicon carbide or combinations thereof. Subsequent to patterning the dielectric layer, the dielectric surface is subjected to a nitridation process to form a nitride dielectric surface. Advantageously, the metallization structure and processes for forming the metallization structure are free of a liner layer (e.g., tantalum nitride) when depositing the metal conductor such as copper. Instead, a pure metal conductive liner/seed layer can be conformally deposited in the patterned dielectric layer prior to deposition of the metal conductor in the structure.
Detailed embodiments of the integrated circuit including at least one metallization layer and methods for fabricating an integrated circuit including the at least one metallization layer according to aspects of the present invention will now be described herein. However, it is to be understood that the embodiments of the invention described herein are merely illustrative of the structures that can be embodied in various forms. In addition, each of the examples given in connection with the various embodiments of the invention is intended to be illustrative, and not restrictive. Further, the figures are not necessarily to scale, some features can be exaggerated to show details of particular components. Therefore, specific structural and functional details described herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the methods and structures of the present description. For the purposes of the description hereinafter, the terms “upper”, “lower”, “top”, “bottom”, “left,” and “right,” and derivatives thereof shall relate to the described structures, as they are oriented in the drawing figures. The same numbers in the various figures can refer to the same structural component or part thereof.
As used herein, the articles “a” and “an” preceding an element or component are intended to be nonrestrictive regarding the number of instances (i.e. occurrences) of the element or component. Therefore, “a” or “an” should be read to include one or at least one, and the singular word form of the element or component also includes the plural unless the number is obviously meant to be singular.
As used herein, the terms “invention” or “present invention” are non-limiting terms and not intended to refer to any single aspect of the particular invention but encompass all possible aspects as described in the specification and the claims.
Conventional techniques related to semiconductor device and integrated circuit (IC) fabrication may or may not be described in detail herein. Moreover, the various tasks and process steps described herein can be incorporated into a more comprehensive procedure or process having additional steps or functionality not described in detail herein. In particular, various steps in the manufacture of semiconductor devices and semiconductor-based ICs are well known and so, in the interest of brevity, many conventional steps will only be mentioned briefly herein or will be omitted entirely without providing the well-known process details.
Spatially relative terms, e.g., “beneath,” “below,” “lower,” “above,” “upper,” and the like, can be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the term “below” can encompass both an orientation of above and below. The device can be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
It is to be understood that the various layers and/or regions shown in the accompanying drawings are not drawn to scale, and that one or more layers and/or regions of a type commonly used in complementary metal-oxide semiconductor (CMOS) fabrication techniques, fin field-effect transistor (FinFET) devices, metal-oxide-semiconductor field-effect transistor (MOSFET) devices, and/or other semiconductor fabrication techniques and devices, may or may not be explicitly shown in a given drawing. This does not imply that the layers and/or regions not explicitly shown are omitted from the actual devices. In addition, certain elements could be left out of particular views for the sake of clarity and/or simplicity when explanations are not necessarily focused on the omitted elements. Moreover, the same or similar reference numbers used throughout the drawings are used to denote the same or similar features, elements, or structures, and thus, a detailed explanation of the same or similar features, elements, or structures will not be repeated for each of the drawings.
The semiconductor devices and methods for forming same in accordance with embodiments of the present invention can be employed in applications, hardware, and/or electronic systems. Suitable hardware and systems for implementing embodiments of the invention can include, but are not limited to, personal computers, communication networks, electronic commerce systems, portable communications devices (e.g., cell and smart phones), solid-state media storage devices, functional circuitry, etc. Systems and hardware incorporating the semiconductor devices are contemplated embodiments of the invention. Given the teachings of embodiments of the invention provided herein, one of ordinary skill in the art will be able to contemplate other implementations and applications of embodiments of the invention.
The embodiments of the present invention can be used in connection with semiconductor devices that could require, for example, CMOSs, MOSFETs, and/or FinFETs. By way of non-limiting example, the semiconductor devices can include, but are not limited to CMOS, MOSFET, and FinFET devices, and/or semiconductor devices that use CMOS, MOSFET, and/or FinFET technology.
The following definitions and abbreviations are to be used for the interpretation of the claims and the specification. As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having,” “contains” or “containing,” or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a composition, a mixture, process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but can include other elements not expressly listed or inherent to such composition, mixture, process, method, article, or apparatus.
As used herein, the terms “about,” “substantially,” and equivalents thereof, modifying the quantity of an ingredient, component, or reactant of the invention employed refers to variation in the numerical quantity that can occur, for example, through typical measuring and liquid handling procedures used for making concentrates or solutions. Furthermore, variation can occur from inadvertent error in measuring procedures, differences in the manufacture, source, or purity of the ingredients employed to make the compositions or carry out the methods, and the like. In one aspect, the term “about” means within 10% of the reported numerical value. In another aspect, the term “about” means within 5% of the reported numerical value. Yet, in another aspect, the term “about” means within 10, 9, 8, 7, 6, 5, 4, 3, 2, or 1% of the reported numerical value.
It will also be understood that when an element, such as a layer, region, or substrate is referred to as being “on” or “over” another element, it can be directly on the other element or intervening elements can also be present. In contrast, when an element is referred to as being “directly on” or “directly over” another element, there are no intervening elements present, and the element is in contact with another element.
As used herein, the term “substrate” can include a semiconductor wafer, such as a type IV semiconductor wafer, e.g., silicon wafer, or a type III-V semiconductor wafer, such as a compound semiconductor, e.g., gallium arsenide semiconductor wafer. In one or more embodiments, a number of dielectric layers and semiconductor material layers can be arranged with the substrate to provide microelectronic devices, or smaller devices, which can include semiconductor devices, such as field effect transistors (FETs), fin type field effect transistors (FinFETs), bipolar junction transistors (BJT) and combinations thereof. The at least one device layer can also include memory devices, such as dynamic random access memory (DRAM), embedded dynamic random access memory (EDRAM), flash memory and combinations thereof. The at least one device layer can also include passive devices, such as resistors and capacitors, as well as electrical connections to the devices containing within the at least one device layer.
It should also be noted that not all masking, patterning, and lithography processes are shown, because a person of ordinary skill in the art would recognize where masking and patterning are utilized to form the identified layers and openings, and to perform the identified selective etching processes, as described herein.
Turning now to
In
The first metallization structure 102 is a conventional metallization structure, wherein the interlayer dielectric 106 is lithographically patterned and etched to form one or more openings that will define the metal interconnect. The interlayer dielectric 106 of the first metallization structure 102 can be any dielectric material including inorganic dielectrics or organic dielectrics. The dielectric material can be porous or non-porous. Some examples of suitable dielectrics that can be used as the dielectric material include, but are not limited to: SiO2, silsesquioxanes, carbon doped oxides (i.e., organosilicates) that include atoms of Si, C, O and H, thermosetting polyarylene ethers, or multilayers thereof. The term “polyarylene” is used to denote aryl moieties or inertly substituted aryl moieties which are linked together by bonds, fused rings, or inert linking groups such as, for example, oxygen, sulfur, sulfone, sulfoxide, carbonyl and the like. The interlayer dielectric 102 can be deposited by PECVD procedures as is generally known in the art. Typically, the dielectric layer is silicon dioxide.
A liner layer 108 (i.e., diffusion barrier layer) is then conformally deposited onto the patterned interlayer dielectric 106. A typical liner layer can include tantalum, tantalum nitride, cobalt, ruthenium, titanium, titanium nitride, tungsten nitride, or combinations of more than one material (for example tantalum nitride/tantalum or tantalum nitride/cobalt). The presence of the liner layer such as titanium nitride, for example, insures that a metal such copper, which can participate in interdiffusion during subsequent annealing processes, to fabricate the integrated circuit 100 will not further diffuse into interlayer dielectric. The liner layer 106 can be deposited by PVD, CVD, or ALD processes.
Next, an optional conformal seed layer (not shown) is deposited. The function of the seed layer is to provide a base upon which a metal conductor can be deposited. The seed layer can be formed by one or more methods known to those skilled in the art. For example, the seed layer can be formed by chemical vapor deposition (CVD), physical vapor deposition (PVD), or some variation of these two deposition processes. The seed layer can also be formed electrochemically or by an electroless process. In the case of PVD, the seed layer can be deposited by reactive or non-reactive sputtering from a single alloy target, or from multiple targets, by ionized sputtering.
The composition of the one or metals in the deposited seed layer is typically from 1 atomic percent to about 10 atomic percent. In some embodiments, the deposited seed layer will contain from about 1 atomic percent to about 7 atomic percent. Examples of seed layers are copper, copper manganese, and the like.
Following deposition of the seed layer, a layer of metal is then deposited, which will be used to define the metal conductor 104. The metal can be copper, but can be any suitable conductor including, but not limited to Cu, Co, Al, AlCu, Ti, TiN, Ta, TaN, W, WN, MoN, Pt, Pd, Os, Ru, IrO2, ReO2, ReO3, alloys thereof, and mixtures thereof. In some structures, the copper metal layer can be used and can include an alloying element such as C, N, O, Cl or S, which have been shown to improve the reliability of the copper conductor. The amount of alloying element in the copper alloy is typically in the range of about 0.001 weight percent (wt. %) to about 10 wt %).
The metal layer can be formed by CVD, sputtering, electrochemical deposition or like processes. For example, the deposition of copper can proceed by electrochemical deposition such as electroplating or electroless plating.
Following formation of the metal layer, the substrate is subjected to a planarization process to remove any metal overburden (includes seed layer and liner layer removal) such that a top surface of the metal conductor 104 is substantially coplanar to the dielectric layer 106 as shown. For example, the surface can be planarized using an electropolishing process. In an electropolishing process, small amounts of metal are etched by electroetch or electrochemical etching to provide a metal interconnect having a top metal surface generally coplanar to the top surface of the dielectric. In another embodiment, the planar surface is formed by chemical mechanical polishing (CMP). The CMP process planarizes the surface of the interconnect structure by a combination of chemical and mechanical forces using a non-selective slurry composition generally known in the art. The slurry composition contains a silica abrasive material, which removes the different metal layers at substantially the same rate. Alternatively, a planar surface can be formed by a non-selective plasma etching process. The plasma etching process can include additional planarizing layers deposited onto metal layer. For example, a layer of photoresist can be deposited onto metal layer prior to performing the non-selective etch process.
Following formation of the first metallization structure 102, the dielectric layer 110 is deposited onto the planar surface of the first interconnect structure 102. As noted above, the dielectric layer 110 is formed of a silicon nitride (SiN), silicon carbide (SiC), or a nitrogen doped silicon carbide (SiC (N, H)). The dielectric layer 106 is lithographically patterned and etched to form an opening. An exemplary process is a dual damascene process, which is characterized by patterning the vias and trenches, in such a way that subsequent metal deposition fills both at the same time.
In
As defined herein, the nitrogen-containing gas is selected from the group consisting of nitrogen (N2) and ammonia (NH3). Upon exposure to a suitable energy source, the nitrogen or ammonia dissociates to form nitrogen ions, which are then utilized to enrich a contact surface such as the exposed surfaces of the dielectric layer with nitrogen ions. Suitable energy sources include, but are not limited to, plasma energy sources and thermal energy sources.
Plasma nitridation generally includes exposing the nitrogen-containing gas to a plasma energy source effective to generate the nitrogen ions from the nitrogen containing gas. The substrate including the exposed dielectric layer surfaces of the trench and via are then exposed to the nitrogen ions to form a nitrogen enriched surface that also penetrates the respective surface to form a nitrogen enriched gradient in the dielectric layer. The process temperature is between 80 to 400° C., and the bias is typically between 100 to 900 W.
Thermal nitridation provides a similar effect as plasma nitridation but generally includes exposing the substrate to a temperature effective to generate nitrogen ions from the nitrogen containing gas. Again, the nitrogen ions contact and penetrate the exposed surface of the dielectric layer so as to form a nitrogen enriched gradient in the dielectric layer. The process temperature is generally between 200 to 400° C.
In
In
In
The metal layer can be formed by CVD, sputtering, electrochemical deposition or like processes. For example, the deposition of copper can proceed by electrochemical deposition such as electroplating or electroless plating.
Following formation of the metal layer, the substrate is subjected to a planarization process as previously described to remove any metal overburden (including seed layer and liner layer removal) such that a top surface of the metal conductor 122 is substantially coplanar to the dielectric layer 110 as shown. The resulting interconnect structure overlying and electrically coupled to the first metallization structure 102 includes a nitrogen enriched dielectric layer 116 and a dielectric layer formed of SiC, SiN, and SiC (N, H), which functions as a barrier layer. Moreover, no metal oxide or metal nitride is present at an interface with the metal conductor 104 of the first metallization structure 102.
The descriptions of the various embodiments of the present invention have been presented for purposes of illustration, but are not intended to be exhaustive or limited to the embodiments of the invention described. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described embodiments of the invention. The terminology used herein was chosen to best explain the principles of the embodiments of the invention, the practical application or technical improvement over technologies found in the marketplace, or to enable others of ordinary skill in the art to understand the embodiments of the invention described herein.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
6174812, | Jun 08 1999 | United Microelectronics Corp. | Copper damascene technology for ultra large scale integration circuits |
6191023, | Nov 18 1999 | Taiwan Semiconductor Manufacturing Company | Method of improving copper pad adhesion |
6204204, | Apr 01 1999 | CVC Products, Inc. | Method and apparatus for depositing tantalum-based thin films with organmetallic precursor |
6251806, | Aug 12 1999 | Industrial Technology Research Institute | Method to improve the roughness of metal deposition on low-k material |
6303459, | Nov 15 1999 | Taiwan Semiconductor Manufacturing Company | Integration process for Al pad |
6342448, | May 31 2000 | Taiwan Semiconductor Manufacturing Company | Method of fabricating barrier adhesion to low-k dielectric layers in a copper damascene process |
6350667, | Nov 01 1999 | Taiwan Semiconductor Manufacturing Company | Method of improving pad metal adhesion |
6383943, | Oct 16 2000 | Taiwan Semiconductor Manufacturing Company | Process for improving copper fill integrity |
6437440, | Jan 18 1997 | GLOBALFOUNDRIES Inc | Thin film metal barrier for electrical interconnections |
6475902, | Mar 10 2000 | Applied Materials, Inc.; Applied Materials, Inc | Chemical vapor deposition of niobium barriers for copper metallization |
6491978, | Jul 10 2000 | Applied Materials, Inc.; Applied Materials, Inc | Deposition of CVD layers for copper metallization using novel metal organic chemical vapor deposition (MOCVD) precursors |
6528180, | May 23 2000 | Applied Materials, Inc | Liner materials |
6680538, | Oct 10 2000 | Samsung Electronics Co., Ltd. | Semiconductor device for suppressing detachment of conductive layer |
6736701, | Nov 20 2001 | Taiwan Semiconductor Manufacturing Company | Eliminate broken line damage of copper after CMP |
6783868, | Apr 02 2001 | Air Products and Chemicals, Inc. | Halogen addition for improved adhesion of CVD copper to barrier |
6900539, | Oct 19 2001 | Acacia Research Group LLC | Semiconductor device and method for manufacturing the same |
6909188, | Oct 24 2002 | Kabushiki Kaisha Toshiba | Semiconductor device and manufacturing method thereof |
6910947, | Jun 19 2001 | Applied Materials, Inc. | Control of chemical mechanical polishing pad conditioner directional velocity to improve pad life |
6984198, | Aug 14 2001 | Applied Materials, Inc | Experiment management system, method and medium |
6999836, | Aug 01 2002 | Applied Materials Israel Ltd | Method, system, and medium for handling misrepresentative metrology data within an advanced process control system |
7026721, | Nov 18 1999 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of improving copper pad adhesion |
7040956, | Jun 19 2001 | Applied Materials, Inc. | Control of chemical mechanical polishing pad conditioner directional velocity to improve pad life |
7069101, | Jul 29 1999 | Applied Materials, Inc | Computer integrated manufacturing techniques |
7078810, | Dec 01 2004 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device and fabrication method thereof |
7082345, | Jun 19 2001 | Applied Materials, Inc. | Method, system and medium for process control for the matching of tools, chambers and/or other semiconductor-related entities |
7096085, | May 28 2004 | Applied Materials | Process control by distinguishing a white noise component of a process variance |
7101799, | Jun 19 2001 | Applied Materials, Inc. | Feedforward and feedback control for conditioning of chemical mechanical polishing pad |
7151315, | Jun 11 2003 | Taiwan Semiconductor Manufacturing Company, Ltd | Method of a non-metal barrier copper damascene integration |
7160739, | Jun 19 2001 | Applied Materials, Inc | Feedback control of a chemical mechanical polishing device providing manipulation of removal rate profiles |
7174230, | Jul 29 1999 | Applied Materials, Inc. | Computer integrated manufacturing techniques |
7188142, | Nov 30 2000 | Applied Materials, Inc | Dynamic subject information generation in message services of distributed object systems in a semiconductor assembly line facility |
7201936, | Jun 19 2001 | Applied Materials, Inc. | Method of feedback control of sub-atmospheric chemical vapor deposition processes |
7205228, | Jun 03 2003 | Applied Materials, Inc. | Selective metal encapsulation schemes |
7221990, | May 28 2004 | Applied Materials, Inc. | Process control by distinguishing a white noise component of a process variance |
7225047, | Mar 19 2002 | Applied Materials, Inc | Method, system and medium for controlling semiconductor wafer processes using critical dimension measurements |
7272459, | Nov 15 2002 | APPLIED MATERIALS ISRAEL, INC, | Method, system and medium for controlling manufacture process having multivariate input parameters |
7333871, | Jan 21 2003 | Applied Materials, Inc. | Automated design and execution of experiments with integrated model creation for semiconductor manufacturing tools |
7337019, | Jul 16 2001 | Applied Materials, Inc. | Integration of fault detection with run-to-run control |
7349753, | May 28 2004 | Applied Materials, Inc. | Adjusting manufacturing process control parameter using updated process threshold derived from uncontrollable error |
7354332, | Aug 04 2003 | Applied Materials, Inc. | Technique for process-qualifying a semiconductor manufacturing tool using metrology data |
7356377, | Jan 29 2004 | Applied Materials, Inc. | System, method, and medium for monitoring performance of an advanced process control system |
7358589, | Dec 27 2002 | MICROSEMI SOC CORP | Amorphous carbon metal-to-metal antifuse with adhesion promoting layers |
7390726, | Oct 02 2001 | MICROSEMI SOC CORP | Switching ratio and on-state resistance of an antifuse programmed below 5 mA and having a Ta or TaN barrier metal layer |
7393722, | Oct 02 2001 | MICROSEMI SOC CORP | Reprogrammable metal-to-metal antifuse employing carbon-containing antifuse material |
7405151, | Dec 01 2004 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method for forming a semiconductor device |
7459763, | Oct 02 2001 | MICROSEMI SOC CORP | Reprogrammable metal-to-metal antifuse employing carbon-containing antifuse material |
7535066, | Jan 23 2002 | Texas Instruments Incorporated | Gate structure and method |
7611912, | Jun 30 2004 | Taiwan Semiconductor Manufacturing Company, Ltd | Underlayer for high performance magnetic tunneling junction MRAM |
7698012, | Jun 19 2001 | Applied Materials, Inc. | Dynamic metrology schemes and sampling schemes for advanced process control in semiconductor processing |
7700474, | Apr 07 2006 | Tokyo Electron Limited | Barrier deposition using ionized physical vapor deposition (iPVD) |
8420531, | Jun 21 2011 | ALSEPHINA INNOVATIONS INC | Enhanced diffusion barrier for interconnect structures |
9716063, | Aug 17 2016 | International Business Machines Corporation | Cobalt top layer advanced metallization for interconnects |
9721895, | Oct 06 2016 | International Business Machines Corporation | Self-formed liner for interconnect structures |
20130333923, | |||
20160049328, | |||
20170117179, | |||
20170271512, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 11 2018 | International Business Machines Corporation | (assignment on the face of the patent) | / | |||
Sep 11 2018 | YANG, CHIH-CHAO | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 046843 | /0503 |
Date | Maintenance Fee Events |
Sep 11 2018 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Jul 15 2024 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Feb 09 2024 | 4 years fee payment window open |
Aug 09 2024 | 6 months grace period start (w surcharge) |
Feb 09 2025 | patent expiry (for year 4) |
Feb 09 2027 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 09 2028 | 8 years fee payment window open |
Aug 09 2028 | 6 months grace period start (w surcharge) |
Feb 09 2029 | patent expiry (for year 8) |
Feb 09 2031 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 09 2032 | 12 years fee payment window open |
Aug 09 2032 | 6 months grace period start (w surcharge) |
Feb 09 2033 | patent expiry (for year 12) |
Feb 09 2035 | 2 years to revive unintentionally abandoned end. (for year 12) |