A downhole system includes a tubular having an outer surface and an inner surface defining a conduit. A terminal member is connected to the tubular. A first screen system including a first screen housing is mounted to the tubular adjacent the terminal member, and a second screen system including a second screen housing is mounted to the tubular and spaced from the first screen system. The second screen system includes a beta blaster valve operable to selectively open flow into the conduit based on a pressure differential between the first screen system and the second screen system.
|
11. A method of gravel packing an open hole wellbore with a tubular including a conduit that is devoid of any additional tubulars comprising:
delivering a slurry between an annular wall of the wellbore and the tubular toward a toe of the open hole wellbore;
generating a beta wave of the slurry;
covering a first screen system with the beta wave; and
opening a beta blaster valve arranged in a second screen system in response to a pressure drop below the second screen system when the first screen system is covered and before the second screen is covered; and
accepting return fluid into the conduit through the beta blaster valve.
1. A downhole system comprising:
a tubular including an outer surface and an inner surface defining a conduit, the conduit being devoid of an additional tubular member and defining a fluid return path;
a terminal member connected to the tubular;
a first screen system including a first screen housing mounted to the tubular adjacent the terminal member; and
a second screen system including a second screen housing mounted to the tubular and spaced from the first screen system, the second screen system including a beta blaster valve operable to selectively open flow into the conduit based on a pressure differential between the first screen system and the second screen system resulting from the first screen system being covered with a slurry while the second screen system remains uncovered.
2. The downhole system of
3. The downhole system according to
4. The downhole system according to
5. The downhole system according to
6. The downhole system according to
7. The downhole system according to
8. The downhole system according to
9. The downhole system according to
10. The downhole system according to
12. The method of
13. The method of
14. The method of
15. The method of
16. The method of
17. The method of
18. The method of
19. The method of
|
In the resource exploration and recovery industry wellbores are formed for the purpose of evaluating and extracting formation fluids from a formation. Often times, the wellbores include horizontal sections. The horizontal sections may be part of a main section of the wellbore or may take the form of branches that extend off of the main section at an angle. Generally, horizontal wellbore sections do not include a casing and thus take on an open hole configuration. A tubular that may support screens is directed into the horizontal section.
Prior to extracting formation fluids, a gravel pack operation is conducted. The gravel pack operation introduces a slurry that may include sand, drilling mud and/or other substances into the wellbore. The slurry settles between the tubular and a wall defining the formation. The slurry provides support for the wall while, at the same time, acts as a pre-filter for formation fluids passing into the tubular. The slurry is pumped into a gravel pack sleeve, and down an annulus that exists about the screens. The slurry then enters into a bottom screen joint.
An alpha wave of sand settles and forms near a heel of the wellbore and grows downward toward a toe of the wellbore. The tubular includes a washpipe that forces the slurry to travel outside of the screens. After the alpha wave reaches the toe, a beta wave forms and fills the horizontal section back toward the heel. A wellbore may require 150 joints of washpipe to support a gravel pack operation. Forming and subsequently retrieving the washpipe can take significant time. The art would appreciate a system for gravel packing an open hole that could reduce the time, expense and manpower needed to deploy and then retrieve the washpipe.
Disclosed is a downhole system including a tubular having an outer surface and an inner surface defining a conduit. A terminal member is connected to the tubular. A first screen system including a first screen housing is mounted to the tubular adjacent the terminal member, and a second screen system including a second screen housing is mounted to the tubular and spaced from the first screen system. The second screen system includes a beta blaster valve operable to selectively open flow into the conduit based on a pressure differential between the first screen system and the second screen system.
Also disclosed is a method of gravel packing an open hole wellbore without a washpipe including delivering a slurry into a tubular toward a toe of the open hole wellbore, generating a beta wave of the slurry, covering a first screen system with the beta wave, and opening a beta blaster valve arranged in a second screen system in response to the first screen system being covered.
The following descriptions should not be considered limiting in any way. With reference to the accompanying drawings, like elements are numbered alike:
A detailed description of one or more embodiments of the disclosed apparatus and method are presented herein by way of exemplification and not limitation with reference to the Figures.
A resource exploration and recovery system, in accordance with an exemplary embodiment, is indicated generally at 10, in
First system 14 may include a control system 23 that may provide power to, monitor, communicate with, and/or activate one or more downhole operations as will be discussed herein. Surface system 16 may include additional systems such as pumps, fluid storage systems, cranes and the like (not shown). Second system 18 may include a tubular string 30 that extends into a wellbore 34 formed in formation 36. Wellbore 34 includes an annular wall 38 that extends along a generally vertical portion 40 to a generally horizontal portion 42 having a toe 44 and a heel 46. Tubular string 30 supports a downhole system (not separately labeled) shown as an open hole gravel pack system 50.
Referring to
First screen housing 78 supports a check valve 84 and second screen housing 80 supports a beta blaster valve 86. It is to be understood that the phrase “beta blaster valve” is meant to describe a valve that is responsive to a beta wave of slurry forming in wellbore 34. As will become apparent herein, in accordance with an exemplary embodiment, open hole gravel pack system 50 is devoid of a washpipe. It should be understood that check valve 84 may take on various forms.
Reference will now follow to
Over time, the slurry begins to accumulate at toe 44 and a beta wave forms such as shown in
That is, pressure below second screen system 74 drops as slurry 90 builds and pressure above second screen system 74 builds with the beta wave. This pressure differential causes beta blaster valve to open allowing fluid from slurry 90 to pass back into conduit 60. By selectively diverting fluid into conduit 60 pressure in the annulus can be maintained below selected levels. Further, as will be detailed herein, the pressure differential necessary to open beta blaster valve 86 may be controlled in order to achieve one or more selected gravel pack parameters.
Reference will now follow to
In an embodiment, beta blaster valve 86 separates second screen housing 80 into a first volume 110 and a second volume 112. Valve portion 100 also includes a latch member 114 that may selectively retain beta blaster valve 86 in a closed configuration or an open configuration. Also, beta blaster valve 86 may include first and second seals 116 and 117 that substantially fluidically isolate first volume 110 and second volume 112.
In an embodiment, a duct 120 extends from valve portion 100 toward first screen system 72. Duct 120 includes a first end 122 that extends into opening 104 and is fluidically connected to second volume 112 and a second end 123 that may be arranged at first screen system 72. Duct 120 may be secured to tubular 54 through a variety of methods. Duct 120 provides fluidic communication from the annulus to second volume 112.
Once second end 123 is covered with slurry 90, a selected pressure differential may develop between first volume 110 and second volume 112 that causes beta blaster valve 86 to transition to an open configuration. The particular position of second end 123 may dictate at what level of slurry 90 the selected pressure differential may be achieved. At this point, it should be understood that while shown as a flexible member, duct 120 may be formed by positioning a shroud (not shown) between second screen system 74 and first screen system 72. The shroud may establish one or more axially flow passages that might establish the selected pressure differential.
Reference will now follow to
In
Set forth below are some embodiments of the foregoing disclosure:
A downhole system comprising: a tubular including an outer surface and an inner surface defining a conduit; terminal member connected to the tubular; a first screen system including a first screen housing mounted to the tubular adjacent the terminal member; and a second screen system including a second screen housing mounted to the tubular and spaced from the first screen system, the second screen system including a beta blaster valve operable to selectively open flow into the conduit based on a pressure differential between the first screen system and the second screen system.
The downhole system according to any previous embodiment, further comprising: a check valve arranged in the first screen housing between the first screen system and the terminal member.
The downhole system according to according to any previous embodiment, wherein the tubular includes a vale opening in the second screen housing, the beta blaster valve being arranged in the second screen housing at the valve opening.
The downhole system according to according to any previous embodiment, wherein the beta blaster valve includes an actuator feature responsive to flow in the conduit.
The downhole system according to according to any previous embodiment, wherein the beta blaster valve separates the second screen housing into a first volume and a second volume, the second volume being fluidically connected to the first screen system.
The downhole system according to according to any previous embodiment, further comprising: a duct extending from the second screen housing towards the first screen system.
The downhole system according to according to any previous embodiment, wherein the duct is directly fluidically connected to the first screen housing.
The downhole system according to according to any previous embodiment, further comprising: a biasing member arranged in the second volume, the biasing member urging the beta blaster valve to cover the valve opening.
The downhole system according to according to any previous embodiment, further comprising: a latch member selectively retaining the beta blaster valve in a closed configuration.
The downhole system according to according to any previous embodiment, further comprising: an inflow control device (ICD) arranged in the second screen housing.
The downhole system according to according to any previous embodiment, wherein the tubular is devoid of a wash pipe.
A method of gravel packing an open hole wellbore without a washpipe comprising: delivering a slurry into a tubular toward a toe of the open hole wellbore; generating a beta wave of the slurry; covering a first screen system with the beta wave; and opening a beta blaster valve arranged in a second screen system in response to the first screen system being covered.
The method according to any previous embodiment, further comprising: closing the beta blaster valve in response to the second screen system being covered.
The method according to any previous embodiment, further comprising: locking the beta blaster valve closed after the second screen system is covered.
The method according to any previous embodiment, further comprising: opening an inflow control device after the second screen system is covered and the beta blaster valve is closed.
The method according to any previous embodiment, wherein closing the beta blaster valve includes biasing the beta blaster valve towards a closed configuration with a biasing member.
The method according to any previous embodiment, wherein opening the beta blaster valve includes sensing a pressure differential between the first screen system and the second screen system.
The method according to any previous embodiment, wherein sensing the pressure differential includes covering an end of a duct extending from the second screen system.
The method according to any previous embodiment, wherein covering the end of the duct includes covering the covering the first screen system with slurry.
The method according to any previous embodiment, wherein opening the beta blaster valve includes locking the beta blaster valve in an open configuration.
The terms “about” and “substantially” are intended to include the degree of error associated with measurement of the particular quantity based upon the equipment available at the time of filing the application. For example, “about” and/or “substantially” can include a range of ±8% or 5%, or 2% of a given value.
The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Further, it should be noted that the terms “first,” “second,” and the like herein do not denote any order, quantity, or importance, but rather are used to distinguish one element from another. The modifier “about” used in connection with a quantity is inclusive of the stated value and has the meaning dictated by the context (e.g., it includes the degree of error associated with measurement of the particular quantity).
The teachings of the present disclosure may be used in a variety of well operations. These operations may involve using one or more treatment agents to treat a formation, the fluids resident in a formation, a wellbore, and/or equipment in the wellbore, such as production tubing. The treatment agents may be in the form of liquids, gases, solids, semi-solids, and mixtures thereof. Illustrative treatment agents include, but are not limited to, fracturing fluids, acids, steam, water, brine, anti-corrosion agents, cement, permeability modifiers, drilling muds, emulsifiers, demulsifiers, tracers, flow improvers etc. Illustrative well operations include, but are not limited to, hydraulic fracturing, stimulation, tracer injection, cleaning, acidizing, steam injection, water flooding, cementing, etc.
While the invention has been described with reference to an exemplary embodiment or embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the claims. Also, in the drawings and the description, there have been disclosed exemplary embodiments of the invention and, although specific terms may have been employed, they are unless otherwise stated used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention therefore not being so limited.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
4428428, | Dec 22 1981 | Dresser Industries, Inc. | Tool and method for gravel packing a well |
6311772, | Oct 26 1999 | Baker Hughes Incorporated | Hydrocarbon preparation system for open hole zonal isolation and control |
6371210, | Oct 10 2000 | Wells Fargo Bank, National Association | Flow control apparatus for use in a wellbore |
6588507, | Jun 28 2001 | Halliburton Energy Services, Inc | Apparatus and method for progressively gravel packing an interval of a wellbore |
6675891, | Dec 19 2001 | Halliburton Energy Services, Inc | Apparatus and method for gravel packing a horizontal open hole production interval |
9664007, | Feb 08 2013 | Halliburton Energy Services, Inc | Electric control multi-position ICD |
9988884, | Jun 29 2015 | BAKER HUGHES, A GE COMPANY, LLC | Annular screen communication system |
20030070809, | |||
20140034308, | |||
20150060084, | |||
20160215595, | |||
20180283145, | |||
20200149378, | |||
RE45641, | Oct 03 2003 | Baker Hughes Incorporated | Mud flow back valve |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 10 2019 | PROVOST, WILFRED | BAKER HUGHES OILFIELD OPERATIONS LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 047977 | /0483 | |
Jan 11 2019 | BAKER HUGHES OILFIELD OPERATIONS LLC | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jan 11 2019 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Sep 19 2024 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Apr 20 2024 | 4 years fee payment window open |
Oct 20 2024 | 6 months grace period start (w surcharge) |
Apr 20 2025 | patent expiry (for year 4) |
Apr 20 2027 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 20 2028 | 8 years fee payment window open |
Oct 20 2028 | 6 months grace period start (w surcharge) |
Apr 20 2029 | patent expiry (for year 8) |
Apr 20 2031 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 20 2032 | 12 years fee payment window open |
Oct 20 2032 | 6 months grace period start (w surcharge) |
Apr 20 2033 | patent expiry (for year 12) |
Apr 20 2035 | 2 years to revive unintentionally abandoned end. (for year 12) |