An expandable intervertebral implant includes a first endplate and a endplate, a first wedge member and a second wedge member spaced from the first wedge member that couple the first and second plates together. The first and second wedge members configured to move between a first collapsed position and a second expansion position. The implant includes an actuation member coupled to the first wedge member and the second wedge member. The first and second wedge members can be coupled to the upper and lower endplates at guide members that are asymmetric. An instrument can be coupled to the implant so as to provide a force to the actuation member that causes the wedge members to move between the collapsed position and the expansion position. The instrument can include a drive shaft and a toggle member that is configured to move the drive shaft between a first position whereby the drive shaft is configured to drive an attachment pin into the implant, and a second position whereby the drive shaft is aligned to drive the actuation member to rotate.

Patent
   11446156
Priority
Oct 25 2018
Filed
Oct 24 2019
Issued
Sep 20 2022
Expiry
Oct 24 2039
Assg.orig
Entity
Large
0
3140
currently ok
1. An expandable implant configured to be inserted in an intervertebral space defined between a first vertebral body and a second vertebral body, the implant comprising:
a first endplate defining an upper bone contacting surface, the first endplate having a first guide member;
a second endplate defining a second bone contacting surface opposite the first bone contacting surface along a transverse direction, the second endplate having a second guide member;
an insertion end and a trailing end opposite the insertion end along a longitudinal direction that is perpendicular to the transverse direction;
at least one expansion member that defines a ramped engagement surface configured to bear against an engagement surface of one of the first and second endplates as the at least one expansion member moves in an expansion direction with respect to the first and second endplates, thereby moving the expandable implant from a collapsed configuration to an expanded configuration,
wherein the expandable implant defines a first height from the first bone contacting surface to the second bone contacting surface in the collapsed configuration, the expandable implant defines a second height from the first bone contacting surface to the second bone contacting surface in the collapsed configuration, and the second height is greater than the first height,
wherein the expansion member defines a first guide member and a second guide member configured to engage the first guide member of the first endplate and the second guide member of the second endplate, respectively, so as to guide movement of the first and second endplates away from each other as the expansion member moves in the expansion direction, and
wherein the first guide member of the expansion member defines first and second outer projections, and the second guide member of the expansion member defines first and second inner projections, and the inner projections are inwardly recessed with respect to the outer projections along a lateral direction that is oriented perpendicular to each of the expansion direction and the transverse direction.
2. The expandable implant as recited in claim 1, wherein the first guide member of the first endplate comprises channels sized to slidably receive the first and second outer projections, respectively of the expansion member, and the second guide member of the second endplate comprises respective channels sized to slidably receive the first and second inner projections, respectively, of the expansion member.
3. The expandable implant as recited in claim 2, wherein the first endplate is an upper endplate, the second endplate is a endplate, the first and second outer projections engage the first guide member of the upper endplate, and the first and second inner projections engage the second guide member of the endplate.
4. The expandable implant as recited in claim 3, wherein the channels of the upper endplate are outer channels, and the channels of the lower endplate are inner channels that are inwardly recessed with respect to the outer channels along the lateral direction.
5. The expandable implant as recited in claim 3, wherein the expansion member is movable in a collapse direction that causes the implant to move from the expanded configuration to the collapsed configuration, and the guide members of the expansion member apply a force to the guide members of the upper and lower endplates that draw the and lower endplates toward each other as the expansion member moves in the collapse direction.
6. The expandable implant as recited in claim 5, further comprising actuator that drives the expansion member to move selectively in the collapse direction and the expansion direction.
7. The expandable implant as recited in claim 6, wherein the actuator comprises a threaded actuator shaft, and the expansion member is threadedly mated to the actuator shaft, such that rotation of the actuator shaft in a first direction of rotation causes the expansion member to move in the expansion direction, and rotation of the actuator shaft in a second direction of rotation opposite the first direction of rotation causes the expansion member to move in the collapse direction.
8. The expandable implant as recited in claim 7, wherein the expansion member comprises first and second expansion members that move toward each other in the expansion direction, and away from each other in the collapse direction.
9. The expandable implant as recited in claim 7, further comprising an expansion limiter that prevents rotation of the actuator shaft in the first direction of rotation when the implant has moved to the expanded configuration.
10. An implant assembly comprising:
the expandable implant as recited in claim 7; and
an instrument configured to attach to the implant and drive the actuator shaft to rotate selectively in the first and second directions of rotation.
11. The implant assembly as recited in claim 10, wherein the instrument comprises at least one pin configured to be received in an aperture of the actuator, and a drive shaft configured to drive the actuator shaft to rotate.
12. The implant assembly as recited in claim 11, wherein the instrument comprises a pilot pin and a second pin that are each configured to be attached to the expansion member.
13. The implant assembly as recited in claim 12, wherein the pilot pin is unthreaded and configured to be inserted into one of a first attachment aperture of the expansion member and a second attachment aperture of the expansion member, and the second pin is configured to be inserted into the other of the first and second attachment apertures.
14. The implant assembly as recited in claim 13, wherein the drive shaft is configured to be driven into a bore of the expansion member so as to rotatably couple to the actuator shaft.
15. The implant assembly as recited in claim 14, wherein the instrument further comprises a toggle shaft that supports the drive shaft and is movable from a first position whereby the drive shaft is aligned with the second pin, and a second position whereby the drive shaft is aligned with the actuator shaft.
16. The implant assembly as recited in claim 15, wherein the toggle shaft is rotatable between the first position and the second position.
17. The implant assembly as recited in claim 16, further comprising at least one locating finger that is movable into a detent under a spring force when the toggle shaft is in either of the first and second positions, and is movable out of the detent when the toggle shaft has rotated to a position between the first and second positions.
18. The implant assembly as recited in claim 17, wherein the instrument defines respective channels that selectively receive the drive shaft when the drive shaft is rotatably coupled to the second pin and the actuator shaft, and interference between the drive shaft and the instrument in the channels prevents the toggle shaft from rotating.

This claims priority to U.S. Patent Application Ser. No. 62/751,501 filed Oct. 26, 2018, and to U.S. Patent Application Ser. No. 62/750,472 filed Oct. 25, 2018, the disclosure of each of which is hereby incorporated by reference as if set forth in its entirety herein.

The present invention relates to an expandable intervertebral implant, system, kit and method.

The human spine is comprised of a series of vertebral bodies separated by intervertebral discs. The natural intervertebral disc contains a jelly-like nucleus pulposus surrounded by a fibrous annulus fibrosus. Under an axial load, the nucleus pulposus compresses and radially transfers that load to the annulus fibrosus. The laminated nature of the annulus fibrosus provides it with a high tensile strength and so allows it to expand radially in response to this transferred load.

In a healthy intervertebral disc, cells within the nucleus pulposus produce an extracellular matrix (ECM) containing a high percentage of proteoglycans. These proteoglycans contain sulfated functional groups that retain water, thereby providing the nucleus pulposus within its cushioning qualities. These nucleus pulposus cells may also secrete small amounts of cytokines such as interleukin-1.beta. and TNF-.alpha. as well as matrix metalloproteinases (“MMPs”). These cytokines and MMPs help regulate the metabolism of the nucleus pulposus cells.

In some instances of degenerative disc disease (DDD), gradual degeneration of the intervertebral disc is caused by mechanical instabilities in other portions of the spine. In these instances, increased loads and pressures on the nucleus pulposus cause the cells within the disc (or invading macrophages) to emit larger than normal amounts of the above-mentioned cytokines. In other instances of DDD, genetic factors or apoptosis can also cause the cells within the nucleus pulposus to emit toxic amounts of these cytokines and MMPs. In some instances, the pumping action of the disc may malfunction (due to, for example, a decrease in the proteoglycan concentration within the nucleus pulposus), thereby retarding the flow of nutrients into the disc as well as the flow of waste products out of the disc. This reduced capacity to eliminate waste may result in the accumulation of high levels of proinflammatory cytokines and/or MMPs that may cause nerve irritation and pain.

As DDD progresses, toxic levels of the cytokines and MMPs present in the nucleus pulposus begin to degrade the extracellular matrix. In particular, the MMPs (as mediated by the cytokines) begin cleaving the water-retaining portions of the proteoglycans, thereby reducing their water-retaining capabilities. This degradation leads to a less flexible nucleus pulposus, and so changes the loading pattern within the disc, thereby possibly causing delamination of the annulus fibrosus. These changes cause more mechanical instability, thereby causing the cells to emit even more cytokines, typically thereby upregulating MMPs. As this destructive cascade continues and DDD further progresses, the disc begins to bulge (“a herniated disc”), and then ultimately ruptures, causing the nucleus pulposus to contact the spinal cord and produce pain.

One proposed method of managing these problems is to remove the problematic disc and replace it with a porous device that restores disc height and allows for bone growth therethrough for the fusion of the adjacent vertebrae. These devices are commonly called “fusion devices”.

One proposed method of managing these problems is to remove the problematic disc and replace it with a device that restores disc height and allows for bone growth between the adjacent vertebrae. These devices are commonly called fusion devices, or “interbody fusion devices”. Current spinal fusion procedures include transforaminal lumbar interbody fusion (TLIF), posterior lumbar interbody fusion (PLIF), and extreme lateral interbody fusion (XLIF) procedures. However, implants having textured, toothed upper and lower vertebral engagement teeth can suffer from mechanical interference between the teeth and the bony endplates during implantation. Expandable fusion devices are configured to be implanted into the intervertebral space in a collapsed configuration, and subsequently expanded in the intervertebral space to achieve height restoration.

In one example, an expandable implant can be configured to be inserted in an intervertebral space defined between a first vertebral body and a second vertebral body. The implant can include an upper endplate defining an upper bone contacting surface, the upper endplate having an upper guide member. The implant can further include a lower endplate defining a lower bone contacting surface opposite the upper bone contacting surface along a transverse direction, the lower endplate having a lower guide member. The implant can further define an insertion end and a trailing end opposite the insertion end along a longitudinal direction that is perpendicular to the transverse direction. The implant can further include at least one expansion member that defines a ramped engagement surface configured to bear against an engagement surface of one of the upper and lower endplates so as to move the expandable implant from a collapsed configuration to an expanded configuration as the expansion member moves in an expansion direction with respect to the upper and lower endplate. The expandable implant can define a first height from the upper bone contacting surface to the lower bone contacting surface along in the collapsed configuration. The expandable implant defines a second height from the upper bone contacting surface to the lower bone contacting surface in the collapsed configuration, and the second height is greater than the first height. The expansion member can define an upper guide member and a lower guide member configured to the upper guide member of the upper endplate and the lower guide member of the lower endplate, respectively, so as to guide movement of the upper and lower endplates away from each other as the expansion member moves in the expansion direction. The upper guide members of both the expansion member and the upper endplate can be asymmetrical with respect to the lower guide members of both the expansion member and the lower endplate about a midplane that is oriented perpendicular to the transverse direction.

The foregoing summary, as well as the following detailed description of illustrative embodiments of the intervertebral implant of the present application, will be better understood when read in conjunction with the appended drawings. For the purposes of illustrating the expandable intervertebral implant of the present application, there is shown in the drawings illustrative embodiments. It should be understood, however, that the application is not limited to the precise arrangements and instrumentalities shown. In the drawings:

FIG. 1 is a perspective view of an expandable intervertebral implant disposed in an intervertebral space;

FIG. 2A is a perspective view of the expandable intervertebral implant illustrated in FIG. 1, shown in a collapsed configuration;

FIG. 2B is a perspective view of the expandable intervertebral implant illustrated in FIG. 2A, shown in an expanded configuration;

FIG. 2C is a top plan view of the expandable intervertebral implant illustrated in FIG. 2A;

FIG. 2D is a bottom plan view of the expandable intervertebral implant illustrated in FIG. 2A;

FIG. 3A is an exploded perspective view of the expandable intervertebral implant illustrated in FIG. 2A;

FIG. 3B is a sectional side elevation view of the expandable intervertebral implant illustrated in FIG. 2A;

FIG. 3C is a sectional side elevation view of the expandable intervertebral implant illustrated in FIG. 2B;

FIG. 3D is another sectional side elevation view of the expandable intervertebral implant illustrated in FIG. 2B;

FIG. 4A is a perspective view of a first wedge member of the expandable intervertebral implant illustrated in FIG. 3A;

FIG. 4B is a perspective view of a second wedge member of the expandable intervertebral implant illustrated in FIG. 3A;

FIG. 5A is a sectional side elevation view of an upper endplate of the expandable intervertebral implant illustrated in FIG. 3A;

FIG. 5B is a sectional side elevation view of a lower endplate of the expandable intervertebral implant illustrated in FIG. 3A;

FIG. 6A is a sectional end elevation view of the expandable intervertebral implant illustrated in FIG. 2A;

FIG. 6B is a sectional end elevation view of the expandable intervertebral implant illustrated in FIG. 2B;

FIG. 7 is an end elevation view of the expandable intervertebral implant illustrated in FIG. 2A;

FIG. 8A is a side elevation view of the expandable intervertebral implant illustrated in FIG. 2A, showing a first lordotic profile;

FIG. 8B is a side elevation view of the expandable intervertebral implant illustrated in FIG. 2A, showing a second lordotic profile;

FIG. 8C is a side elevation view of the expandable intervertebral implant illustrated in FIG. 2A, showing a third lordotic profile;

FIG. 9 is a perspective view of an implant assembly, including the expandable intervertebral implant illustrated in FIG. 2A and an instrument;

FIG. 10 is an exploded perspective view of the instrument illustrated in FIG. 9;

FIG. 11A is a sectional top plan view of the implant assembly illustrated in FIG. 9, showing a first attachment pin of the instrument inserted into an expansion member of the implant, and further showing a drive shaft of the instrument aligned with a second attachment pin of the instrument;

FIG. 11B is a sectional top plan view similar to FIG. 11A, but after the drive shaft has inserted the second attachment pin into an expansion member of the implant;

FIG. 11C is a sectional top plan view similar to FIG. 11B, but showing the drive shaft coupled to an actuator shaft of the implant;

FIG. 11D is a sectional top plan view similar to FIG. 11C, but after the drive shaft has rotated the actuator shaft of the implant so as to expand the implant;

FIG. 11E is a sectional top plan view similar to FIG. 11A, but showing the instrument coupled to the implant in an opposite orientation with respect to the orientation illustrated in FIG. 11A;

FIG. 12A is a perspective view of a front end of the instrument as illustrated in FIG. 11A;

FIG. 12B is a perspective view of a front end of the instrument as illustrated in FIG. 11B;

FIG. 12C is a perspective view of a front end of the instrument as illustrated in FIG. 11C;

FIG. 13 is a sectional to plan view of the instrument illustrated in FIG. 10, showing a locating finger extending into a detent so as to provide a retention force;

FIG. 14A is a side elevation view of the instrument illustrated in FIG. 10, but constructed in accordance with an alternative embodiment;

FIG. 14B is a sectional side elevation view of the instrument illustrated in FIG. 14A, showing the drive shaft coupled to the second attachment pin;

FIG. 14C is a sectional side elevation view of the instrument illustrated in FIG. 14A, showing the drive shaft coupled to the actuation screw of the implant;

FIG. 15A is a schematic top plan view of the instrument illustrated in FIG. 10, but having an angulation mechanism in an alternative embodiment, shown in a straight orientation;

FIG. 15B is a schematic top plan view of the instrument illustrated in FIG. 15A, but having an angulation mechanism in an alternative embodiment, shown in a straight orientation;

FIG. 16A is a schematic top plan view of the instrument illustrated in FIG. 10, but having an angulation joint in an alternative embodiment, shown in a straight configuration;

FIG. 16B is a schematic top plan view of the instrument illustrated in FIG. 16A, but having an angulation joint in an alternative embodiment, shown in a straight configuration;

FIG. 17A is a schematic elevation view showing a portion of the instrument illustrated in FIG. 10 but constructed in accordance with an alternative embodiment;

FIG. 17B is a cross-sectional view of the portion of the instrument illustrated in FIG. 17A;

FIG. 18 is an exploded perspective view of an expandable intervertebral implant of another example;

FIG. 19A is a perspective view of the expandable intervertebral implant illustrated in FIG. 18, shown in a collapsed configuration;

FIG. 19B is a perspective view of the expandable intervertebral implant illustrated in FIG. 19A, shown in an expanded configuration;

FIG. 20 is a perspective view of an actuator shaft of the expandable intervertebral implant illustrated in FIG. 18;

FIG. 21A is a perspective view of a stop member of the expandable intervertebral implant illustrated in FIG. 18;

FIG. 21B is a side elevation view of the stop member illustrated in FIG. 21A;

FIG. 22A is an exploded perspective view of a portion of the expandable intervertebral implant illustrated in FIG. 18, showing attachment of the stop member to the actuator shaft;

FIG. 22B is an exploded perspective view of a portion of the expandable intervertebral implant illustrated in FIG. 22A, showing the stop member attached to the actuator shaft; and

FIG. 23 is a sectional side elevation view of a portion of the expandable intervertebral implant illustrated in FIG. 18, shown in the expanded configuration.

Referring initially to FIG. 1, an expandable intervertebral implant 20 is configured to be inserted into an intervertebral space 22. The intervertebral space 22 can be defined by a superior vertebral body 24 and an adjacent inferior vertebral body 26 of a human spine 27. The superior vertebral body 24 defines superior vertebral surface 28. The inferior vertebral body 26 defines an inferior vertebral surface 30. The vertebral bodies 24 and 26 can be anatomically adjacent. It should be understood, however, that the intervertebral implant can alternatively be configured to fit in an intervertebral space 22 that is defined by superior and inferior vertebral bodies that remain after a corpectomy has been performed so as to remove one or more vertebral bodies between the superior and inferior vertebral bodies. The intervertebral space 22 is shown in FIG. 1 after a discectomy, whereby the intervertebral disc material has been removed or at least partially removed to prepare the intervertebral space 22 to receive the intervertebral implant 20. The intervertebral space 22 can be defined in the lumbar region of the spine 27, or alternatively in the cervical region or the thoracic region.

As will be appreciated from the description below, the intervertebral implant 20 is configured to be inserted into the intervertebral space 22 along a lateral anatomical approach. In one example, the intervertebral implant 20 is configured to be inserted into the intervertebral space 22 in a collapsed configuration (see FIG. 2A), and subsequently expanded in the intervertebral space 22 to an expanded configuration (FIG. 2B) so as to achieve appropriate height restoration. The intervertebral space 22 can be disposed anywhere along the spine as desired. For instance, the intervertebral space 22 can be disposed at the lumbar region of the spine. Alternatively, the intervertebral space 22 can be disposed at the thoracic region of the spine. Alternatively still, the intervertebral space 22 can be disposed at the cervical region of the spine.

The intervertebral implant 20 is described herein as extending horizontally along a longitudinal direction “L” and a lateral direction “A”, and transversely along a transverse direction “T”. Unless otherwise specified herein, the terms “longitudinal,” “lateral,” and “transverse” are used to describe the orthogonal directional components of various implant components and implant component axes. The longitudinal direction L can be perpendicular to the transverse direction T. The lateral direction A can be perpendicular to the longitudinal direction L and the transverse direction T. It should be appreciated that while the longitudinal and lateral directions are illustrated as extending along horizontal directions, and that the transverse direction T is illustrated as extending along a vertical direction, the directions may differ during use depending on the orientation of the implant. For instance, when the implant 20 is inserted into an intervertebral space, such as the intervertebral space 22, the transverse direction T extends generally along the superior-inferior (or caudal-cranial) direction, while the horizontal plane defined by the longitudinal direction L and lateral direction A lies generally in the anatomical plane defined by the anterior-posterior direction, and the medial-lateral direction. In particular, the lateral direction A can extend generally along the anterior-posterior direction. The longitudinal direction L can extend generally along the medial-lateral direction.

Referring now also to FIGS. 2A-2B, the expandable intervertebral implant 20 defines a leading end 34 and a trailing end 36 opposite the leading end 34 along a longitudinal direction L. The longitudinal direction L can generally extend along an insertion direction into the intervertebral space 22. Thus, the longitudinal direction L can be said to extend along the anatomical medial-lateral direction after the intervertebral implant 20 has been inserted into the intervertebral space 22 along the insertion direction. In particular, the leading end 34 can be said to be spaced from the trailing end 36 in the insertion direction. The leading end 34 can be tapered so as to facilitate insertion into the intervertebral space 22. The trailing end 36 is spaced from the leading end 34 in a direction that is opposite the insertion direction. The leading end 34 can also be said to define a distal end, and the trailing end 36 can be said to define a proximal end that is opposite the distal end. Thus, the expandable implant 20 can be said to define a distal direction from the trailing end 36 to the leading end 34 along the longitudinal direction L. The expandable implant 20 can also be said to define a proximal direction from the leading end 34 to the trailing end 36 along the longitudinal direction L. Thus, the distal direction can be coincident with the insertion direction. The proximal direction can be coincident with the direction opposite the insertion direction.

The intervertebral implant 20 can further define opposed side surfaces 42 that are opposite each other along a lateral direction A. The lateral direction A can be oriented perpendicular to the longitudinal direction L. The lateral direction A can be said to define a width of the implant. The width can be measured along the anatomical anterior-posterior direction after the intervertebral implant 20 has been inserted into the intervertebral space 22.

Referring also to FIGS. 2C-2D, the intervertebral implant 20 can define an upper surface 38 that is configured to engage and contact the superior vertebral surface 28, and a lower surface 40 that is configured to engage and contact the inferior vertebral surface 30. Thus, the upper surface 38 can be referred to as an upper or superior vertebral bone contacting surface, and the lower surface 40 can be referred to as a lower or inferior vertebral bone contacting surface. The upper and lower surfaces 38 and 40 are spaced from each other along a transverse direction T that is oriented perpendicular to the longitudinal direction L. The transverse direction T can define a height of the intervertebral implant 20. The height can be measured along the anatomical caudal-cranial direction after the intervertebral implant 20 has been inserted into the intervertebral space 22. The height of the intervertebral implant 20 can be measured along the transverse direction T from the upper surface 38 to the lower surface 40. As used herein, the term “superior” and derivatives thereof refer to a direction from the lower surface 40 toward the upper surface 38. As used herein, the term “inferior” and derivatives thereof refer to a direction from the upper surface 38 toward the lower surface 40.

Further, the leading end 34 can be tapered along the transverse direction T. Thus, the upper and lower surfaces 38 and 40 can be tapered toward each other along the transverse direction T at the leading end 34 as they extend along the insertion direction. The side surfaces 42 can be tapered toward each other along the lateral direction A at the leading end 34 as they extend along the insertion direction.

The upper and lower bone contacting surfaces 38 and 40 can define a texture 41 configured to grip the respective vertebral body. The texture 41 can be configured as desired, and can include teeth, spikes, ridges, cones, barbs, indentations, knurls, or the like. The texture 41 can extend along a portion or an entirety of each of the upper and lower bone contacting surfaces 38 and 40. For instance, the upper and lower bone contacting surfaces 38 and 40 can include specific patterns of textured and non-textured portions. Further, as illustrated in FIGS. 3B-3C, at least a portion of each of the upper and lower bone contacting surfaces 38 and 40 can be convex. For instance, in one example, at least a portion of each of the upper and lower bone contacting surfaces 38 and 40 can be convex in a plane that is defined by the longitudinal direction L and the transverse direction T. Alternatively, the upper and lower bone contacting surfaces 38 and 40 can be substantially planar.

Referring now to FIGS. 3A-3C, the intervertebral implant 20 includes a first or upper endplate 44 a second or lower endplate 46 that is opposite the upper endplate 44 along the transverse direction T. An upward direction and derivatives thereof can be defined along a direction from the lower endplate 46 to the upper endplate 44. A lower or downward direction and derivatives thereof can be defined along a direction from the upper endplate 44 to the lower endplate 46. The upper endplate 44 can define the upper surface 38. The lower endplate 46 can define the lower surface 40. Further, at least one of the endplates 44 and 46 can define the side surfaces 42. For instance, as will be described in more detail below, the endplates 44 and 46 can combine to define the side surfaces 42 when the expandable implant 20 is in the expanded configuration. The endplates 44 and 46 can define the side surfaces 42 when the implant 20 is in the expanded configuration. Further still, the endplates 44 and 46 can combine so as to define the leading end 34. The endplates 44 and 46 can further combine so as to define the trailing end 36 when the implant 20 is in the expanded configuration. When the expandable implant 20 is in the collapsed configuration, the endplates 44 and 46 can nest with each other. When the implant 20 is fully collapsed, one of the endplates 44 and 46 can define the side surfaces 42.

The intervertebral implant 20 can further include at least one expansion member that is movable between a collapsed position (FIG. 3B) and an expansion position (FIG. 3C). For instance, the at least one expansion member is movable in an expansion direction from the collapsed position to the expansion position. The at least one expansion member is further movable in a collapse direction from the expansion position to the collapsed position. The expansion direction and the collapse direction can be oriented along the longitudinal direction L. When the at least one expansion member moves in the expansion direction, the at least one expansion member moves the intervertebral implant to the expanded configuration. When the at least one expansion member moves in the collapse direction, the at least one expansion member moves the intervertebral implant 20 to the collapsed configuration. Thus, the at least one expansion member is configured to move the implant 20 between the collapsed configuration and the expanded configuration. The implant 20 has a first height in the collapsed configuration and a second height in the expanded configuration. The second height H2 is greater than the first height. The implant 20 is configured to be maintained in the expanded configuration when it is implanted in the intervertebral space and thus when it experiences anatomical loads along the transverse direction T.

As will be appreciated from the description below, when the intervertebral implant 20 is in the collapsed configuration, movement of the at least one expansion member in the expansion direction causes the at least one expansion member to urge at least one of the upper endplate 44 and the lower endplate 46 away from the other of the upper endplate 44 and the lower endplate 46 along the transverse direction T, thereby moving the intervertebral implant 20 to the expanded configuration. For instance, the at least one expansion member can be configured to urge each of the upper endplate 44 and the lower endplate 46 to move away from the other of the upper endplate 44 and the lower endplate 46 along the transverse direction T. The intervertebral implant 20 can be constructed such that when the implant is in a fully expanded configuration, the at least one expansion member is unable to cause the intervertebral implant 20 to further expand along the transverse direction T. In one example, the at least one expansion member is unable to move further in the expansion direction when the intervertebral implant is in the fully expanded configuration.

When the intervertebral implant 20 is in the expanded configuration, movement of the at least one expansion member in the collapse direction causes the at least one expansion member to urge at least one of the upper endplate 44 and the lower endplate 46 toward from the other of the upper endplate 44 and the lower endplate 46 along the transverse direction T, thereby moving the intervertebral implant 20 to the collapsed configuration. For instance, the at least one expansion member can be configured to urge each of the upper endplate 44 and the lower endplate 46 to move toward the other of the upper endplate 44 and the lower endplate 46 along the transverse direction T. The intervertebral implant 20 can be constructed such that when the implant is in a fully collapsed configuration, the at least one expansion member is unable to move further to the collapsed position so as to cause the intervertebral implant 20 to further collapse along the transverse direction T. In one example, the at least one expansion member is unable to move further in the collapse direction when the intervertebral implant 20 is in the fully collapsed configuration.

With continuing reference to FIGS. 3A-3C, the at least one expansion member can include a pair of expansion members. Further, the at least one expansion member can be configured as at least one wedge member. The at least one wedge member can include a pair of wedge members. For instance, the at least one wedge member can include a first wedge member 48 and a second wedge member 50. Thus the at least one expansion member can include a first expansion member that can be configured as the first wedge member 48, and a second expansion member that can be configured as a second wedge member 50. It should be appreciated, of course, that the first and second expansion members can be configured in any suitable manner as desired other than wedge members.

The and second wedge members 48 and 50 can be positioned between the upper and lower endplates 44 and 46 along the transverse direction T. The first wedge member 48 can be disposed proximal with respect to the second wedge member 50. Conversely, the second wedge member 50 can be said to be disposed distal with respect to the first wedge member 48. Further, the distal end of the second wedge member 50 can define the tapered leading end of the implant 20 when the implant is in the collapsed configuration. Thus, the first wedge member 48 can be referred to as a proximal wedge member, and the second wedge member 50 can be referred to as a distal wedge member. The first and second wedge members 48 and 50 can move toward each other in the expansion direction. Conversely, the first and second wedge members 48 and 50 can move away from each other in the collapse direction.

The intervertebral implant 20 can include an actuator 52 that is coupled to the at least one wedge member. The actuator 52 can be configured to selectively drive the at least one wedge member in the expansion direction and the collapse direction. In particular, the actuator can be coupled to each of the first and second wedge members 48 and 50. The actuator 52 can be configured to drive the first and second wedge members 48 and 50 toward each other along the longitudinal direction L. Further, the actuator 52 can be configured to drive the first and second wedge members 48 and 50 away from each other along the longitudinal direction L.

In one example, the actuator 52 can be configured as a rotatable actuator shaft 54. The actuator shaft 54 can be rotatably supported by at least one of the upper endplate 44 and the lower endplate 46 at a coupling 47. Further, the actuator shaft 54 can be fixed with respect to translation of the actuator shaft 54 along the longitudinal direction L relative to the endplates 44 and 46. In particular, the coupling 47 is configured to translatably fix the actuator shaft 54 relative to the endplates 44 and 46. The first and second wedge members 48 and 50 can be disposed on opposite sides of the coupling 47 with respect to the longitudinal direction L. In one example, the length of the actuator shaft 54 along the longitudinal direction L can be no greater than, such as less than, the respectively lengths of the upper and lower endplates 44 and 46 along the longitudinal direction.

The endplates, wedge members, and actuator shaft can be made of any suitable material as desired. For instance, the endplates and wedge members can be formed of a polyaryletherketone (PAEK) including polyether ether ketone (PEEK), polyetherketoneketone (PEKK), or any other suitable biocompatible polymeric material. The actuator shaft 54 can be formed from a biocompatible polymeric material or metallic alloy, such as titanium or steel. It should appreciated that the any suitable material can be used to form the implant components as described herein. For instance, an entirety of the implant can be made from a titanium alloy. For instance, an entirety of the implant can be made from a titanium-aluminium-niobium (TAN) alloy.

In one example, the actuator shaft 54 can include at least one flange 56 that is configured to engage at least one of the upper endplate 44 and the lower endplate 46. The at least one flange 56 can include first and second flanges 56a and 56b, respectively, that are spaced from each other along the longitudinal direction L so as to define a recess 58 therebetween. At least one of the upper endplate 44 and the lower endplate 46 can define a projection 60 sized to fit in the recess 58 so as to define the coupling 47. The projection 60 can be configured as a cradle 62 that is received in the recess 58. The cradle 62 can define a mechanical interference with the flanges 56a-b both with respect to proximal and distal translation of the actuator shaft 54 relative to the endplates 44 and 46. The cradle 62 can have a sufficient height along the transverse direction T so as to extend in the recess 58 and define the interference both when the implant 20 is in the collapsed configuration and when the implant 20 is in the expanded configuration. In one example, the cradle 62 can be defined by the lower endplate 46. The upper endplate 44 can be fixed to the lower endplate 46 with respect to relative movement along the longitudinal direction L. The first and second flanges 56a-b are rotatable along a central axis of the actuator shaft 54 with respect to the cradle 62, and thus with respect to the endplates 44 and 46. The central axis can be oriented along the longitudinal direction L. It should be appreciated, of course, that the actuator shaft 54 can be translatably fixed to the endplates 44 and 46, and rotatable with respect to the endplates 44 and 46 in any suitable alternative embodiment as desired. For instance, the actuator shaft 54 can include a flange that is received in a recess of one or both of the upper endplate 44 and the lower endplate 46.

The first and second wedge members 48 and 50 can each threadedly mate with the actuator shaft 54. Rotation of the actuator shaft 54 in a first direction of rotation drives the first and second wedge members 48 and 50 to move in the expansion direction. Rotation of the actuator shaft 54 in a second direction opposite the first direction drives the first and second wedge members 48 and 50 to move in the collapse direction. The actuator shaft 54 defines a proximal end 55 that defines a coupling member 57 configured to couple to a drive shaft. The drive shaft can include a complementary drive member that is configured to engage the coupling member 57 of the actuator shaft 54 so as to drive the actuator shaft 54 to selectively rotate in the first direction of rotation and the second direction of rotation. In one example, the coupling member 57 of the actuator shaft 54 can be configured as a socket. The drive member of the drive shaft can be configured as a projection that is received in the socket. The projection and the socket can each define a hex head, a Phillips head, a flat head, a start head, or the like. Alternatively, the drive member of the drive shaft can be configured as a socket, and the coupling member of the 57 of the actuator shaft 54 can be configured as a projection that is configured to be received by the socket of the drive member.

The actuator shaft 54 can define a first threaded portion 64 that includes a first external thread 65, and a second threaded portion 66 that includes a second external thread 67. The at least one flange 56 can be disposed between the first threaded portion 64 and the second threaded portion 66 with respect to the longitudinal direction L. The first threaded portion 64 can be referred to as a proximal threaded portion disposed proximal of the at least one flange 56. The second threaded portion 66 can be referred to as a distal threaded portion that is disposed distal of the at least one flange 56. The first and second threaded portions 64 and 66 can define respective first and second external thread patterns that are oriented in opposite directions.

The actuator shaft 54 can further define a first unthreaded portion 73 that extends between the first threaded portion 64 and the first flange 56a. For instance, the first unthreaded portion 73 can extend from the first threaded portion 64 to the first flange 56a. The first unthreaded portion 73 can define an outer diameter that is equal to the minor diameter of the first threaded portion 64. Alternatively, the first threaded portion 64 can extend to the first flange 56a. Similarly, the actuator shaft 54 can further define a second unthreaded portion 75 that extends between the second threaded portion 66 and the second flange 56b. For instance, the second unthreaded portion 75 can extend from the second threaded portion 66 to the second flange 56b. The second unthreaded portion 75 can define an outer diameter that is equal to the minor diameter of the second threaded portion 66. In one example, the outer diameter of the second unthreaded portion 75 can be substantially equal to the outer diameter of the first unthreaded portion 73. Alternatively, the second threaded portion 66 can extend to the second flange 56b.

The first and second wedge members 48 and 50 are configured to threadedly mate with the first and second threaded portions 64 and 66, respectively, of the actuator shaft 54. In one example, the first wedge member 48 can include a first wall 69 that defines a first bore 68 sized to receive the first threaded portion 64. The first bore 68 can extend through the first wedge member 48 along the longitudinal direction L. The first wedge member 48 can define a first internal thread 70 in the first bore 68 that mates with the first external thread 65 when the first threaded portion 64 has been received in the first bore 68. The second wedge member 50 can include a second wall 71 that defines a second bore 72 sized to receive the second threaded portion 64. The second bore 72 can extend through the second wedge member 50 along the longitudinal direction L. The second wedge member 50 can define a second internal thread 74 in the second bore 72 that mates with the second external thread 67 when the second threaded portion 66 has been received in the second bore 72. Thus, the first internal thread 70 and the second internal thread 74 can define respective first and second internal thread patterns that are oriented in opposite directions.

The first internal thread pattern can be oriented in the same direction as the first external thread pattern. The second internal thread pattern can be oriented in the same direction as the second external thread pattern. Thus, when the actuator shaft 54 rotates about the central axis, the first and second wedge members 48 and 50 translate along the actuator shaft 54. As described above, when the actuator shaft 54 rotates in the first direction of rotation, the first and second wedge members 48 and 50 translate along the actuator shaft 54 toward each other. When the actuator shaft 54 rotates in the second direction of rotation, the first and second wedge members 48 and 50 translate along the actuator shaft 54 away from each other. The first and second internal thread patterns and the first and second external thread patterns can have the same thread pitch, such that the first and second wedge members 48 and 50 can translate along the actuator shaft 54 at the same rate. It should be appreciated, of course, that the thread pitches can be different such that the first and second wedge members 48 and 50 translate along the actuator shaft 54 at respective different rates as desired.

Referring now to FIGS. 3B-4B, each of the first and second wedge member 48 and 50 can define a respective at least one engagement surface that bears against a respective at least one of the upper endplate 44 and the lower endplate 46 when the wedge members move in the expansion direction. As will be appreciated from the description below, the at least one engagement surface can push the at least one of the upper endplate 44 and the lower endplate 46 away from the other of the upper endplate 44 and the lower endplate 46 along the transverse direction T as the wedge members 48 and 50 travel in the expansion direction.

In one example, the first wedge member 48 defines a first upper engagement surface 76 and a first lower engagement surface 78 opposite the first upper engagement surface 76 along the transverse direction T. The first upper engagement surface 76 can be configured as a ramped engagement surface. Similarly, the first lower engagement surface 78 can be configured as a ramped engagement surface. The first upper engagement surface 76 can flare downward as it extends in the expansion direction of the first wedge member 48. The expansion direction of the first wedge member 48 can be toward the coupling 47, and thus toward the second wedge member 50. The first lower engagement surface 78 can flare upward as it extends in the expansion direction of the first wedge member 48. For instance, the first upper engagement surface 76 and the first lower engagement surface 78 can have a linear taper. Alternatively, the first upper engagement surface 76 and the first lower engagement surface 78 can have a curved taper. The first upper engagement surface 76 and the first lower engagement surface 78 can be sloped substantially equal and opposite each other. The first wall 69, and thus the first bore 68, can extend out with respect to the first upper engagement surface 76 and the first lower engagement surface 78 in the expansion direction.

In one example, the second wedge member 50 defines a second upper engagement surface 80 and a second lower engagement surface 82 opposite the second upper engagement surface 80 along the transverse direction T. The second upper engagement surface 80 can be configured as a ramped engagement surface. Similarly, the second lower engagement surface 82 can be configured as a ramped engagement surface. For instance, the second upper engagement surface 80 can flare downward as it extends in the expansion direction of the second wedge member 50. The expansion direction of the second wedge member 50 can be toward the coupling 47, and thus toward the first wedge member 48. The second lower engagement surface 80 can flare upward as it extends in the expansion direction of the second wedge member 50. For instance, the second upper engagement surface 80 and the second lower engagement surface 82 can have a linear taper. Alternatively, the second upper engagement surface 80 and the second lower engagement surface 82 can have a curved taper. The second upper engagement surface 80 and the second lower engagement surface 82 can be sloped substantially equal and opposite each other. Further, the first and second upper engagement surfaces 76 and 80 can be sloped substantially equal and opposite each other. Further, the first and second lower engagement surfaces 78 and 82 can be sloped equal and opposite each other. The second wall 71, and thus the second bore 72, can extend out with respect to the second upper engagement surface 80 and the second lower engagement surface 82 in the expansion direction.

With continuing reference to FIGS. 3B-3C, the upper endplate 44 can define a first upper engagement surface 84 that is configured to engage the first upper engagement surface 76 of the first wedge member 48. For instance, the first upper engagement surface 84 of the upper endplate 44 is configured to ride along the first upper engagement surface 76 of the first wedge member 48, and vice versa, as the first wedge member 48 moves in both the expansion direction and the collapse direction. In one example, the first upper engagement surface 84 of the upper endplate 44 can be in surface contact with the first upper engagement surface 76 of the first wedge member 48. The first upper engagement surface 84 of the upper endplate 44 can flare down toward the lower endplate 46 as it extends in the expansion direction of the first wedge member 48. For instance, the first upper engagement surface 84 of the upper endplate 44 can have a linear taper. Alternatively, the first upper engagement surface 84 of the upper endplate 44 can have a curved taper. The first upper engagement surface 84 of the upper endplate 44 can be sloped equal to the first upper engagement surface 76 of the first wedge member 48.

The upper endplate 44 can further define a second upper engagement surface 86 that is configured to engage the second upper engagement surface 80 of the second wedge member 50. For instance, the second upper engagement surface 86 of the upper endplate 44 is configured to ride along the second upper engagement surface 80 of the second wedge member 48, and vice versa, as the second wedge member 50 moves in both the expansion direction and the collapse direction. In one example, the second upper engagement surface 86 of the upper endplate 44 can be in surface contact with the second upper engagement surface 80 of the second wedge member 50. The second upper engagement surface 86 of the upper endplate 44 can flare down toward the lower endplate 46 as it extends in the expansion direction of the second wedge member 50. For instance, the second upper engagement surface 86 of the upper endplate 44 can have a linear taper. Alternatively, the second upper engagement surface 86 of the upper endplate 44 can have a curved taper. The second upper engagement surface 86 of the upper endplate 44 can be sloped equal to the second upper engagement surface 80 of the second wedge member 50. Further, the first and second upper engagement surfaces 84 and 86 of the upper endplate can be sloped substantially equal and opposite each other. The term “substantially” and “approximately” as used herein can include the stated shape, direction, dimension, or other parameter along with variations due to factors such as manufacturing tolerance, and in one example can account for variations up to +/−10% of the stated shape, direction, dimension, or other parameter.

The lower endplate 46 can define a first lower engagement surface 88 that is configured to engage the first lower engagement surface 78 of the first wedge member 48. For instance, the first lower engagement surface 88 of the lower endplate 46 is configured to ride along the first lower engagement surface 78 of the first wedge member 48, and vice versa, as the first wedge member 48 moves in both the expansion direction and the collapse direction. In one example, the first lower engagement surface 88 of the lower endplate 46 can be in surface contact with the first lower engagement surface 78 of the first wedge member 48. The first lower engagement surface 88 of the lower endplate 46 can flare up toward the upper endplate 44 as it extends in the expansion direction of the first wedge member 48. For instance, the first lower engagement surface 88 of the lower endplate 46 can have a linear taper. Alternatively, the first lower engagement surface 88 of the lower endplate 46 can have a curved taper. The first lower engagement surface 88 of the lower endplate 46 can be sloped equal to the first lower engagement surface 78 of the first wedge member 48.

The lower endplate 46 can further define a second lower engagement surface 90 that is configured to engage the second lower engagement surface 82 of the second wedge member 50. For instance, the second lower engagement surface 90 of the lower endplate 46 is configured to ride along the second lower engagement surface 82 of the second wedge member 50, and vice versa, as the second wedge member 50 moves in both the expansion direction and the collapse direction. In one example, the second lower engagement surface 90 of the lower endplate 46 can be in surface contact with the second lower engagement surface 82 of the second wedge member 50. The second lower engagement surface 90 of the lower endplate 46 can flare up toward the upper endplate 44 as it extends in the expansion direction of the second wedge member 50. For instance, the second lower engagement surface 90 of the lower endplate 46 can have a linear taper. Alternatively, the second lower engagement surface 90 of the lower endplate 46 can have a curved taper. The second lower engagement surface 90 of the lower endplate 46 can be sloped equal to the second lower engagement surface 82 of the second wedge member 50. Further, the first and second lower engagement surfaces 88 and 90 of the second endplate 46 can be sloped substantially equal and opposite each other.

Thus, it can be said that the intervertebral implant 20 includes at least one wedge member that is configured to ride along a complementary engagement surface of at least one or both of the upper endplate 44 and the lower endplate 46 as the at least one wedge member moves in the expansion direction and the collapse direction. The at least one wedge member can include the first and second wedge members 48 and 50. The first and second wedge members 48 and 50 can push the upper and lower endplates 44 and 46 away from each other along the transverse direction as they travel in the expansion direction. The engagement surfaces 76 and 78 of the first wedge member 48, the engagement surfaces 80 and 82 of the second wedge member 50, the engagement surfaces 84 and 86 the upper endplate 44, and the engagement surfaces 88 and 90 of the lower endplate 46 can all be referred to as ramp surfaces.

As illustrated in FIG. 2C-2D, the upper and lower endplates 44 and 46 can include bone graft apertures 92 that extend therethrough along the transverse direction T. The endplates 44 and 46 can be configured to receive bone graft material that can fuse to the respective vertebral body through the respective bone graft apertures 92.

Referring now to FIGS. 4A-6B, the first wedge member 48 and the upper and lower endplates 44 and 46 can include respective complementary guide members that guide the movement of the upper and lower endplates 44 and 46 away from and toward each other, respectively, as the first wedge member 48 moves in the expansion direction and the collapse direction. The guide members of the first and second wedge members 48 and 50 can further apply a force to the guide members of the upper and lower endplates that draw the upper and lower endplates toward each other as the wedge members 48 and 50 move in the collapse direction. As will be appreciated from the description below, the guide members can be ramped and sloped equal to respective pairs of the engagement surfaces.

In particular, the first wedge member 48 defines a first upper guide member 100 and a first lower guide member 102. At least a portion of the first upper guide member 100 and at least a portion of the first lower guide member 102 can be aligned with each other along a plane that is oriented along the lateral direction A and the transverse direction T. The first upper guide member 100 can be disposed upward with respect to the first lower guide member 102. The upper endplate 44 defines a first upper guide member 104 that is configured to engage the first upper guide member 100 of the first wedge member 48. The lower endplate 46 defines a first lower guide member 106 that is configured to engage the first lower guide member 100 of the first wedge member 48. The first upper guide member 104 of the upper endplate 44 can be disposed upward with respect to the first lower guide member 106 of the lower endplate 46.

As will be appreciated from the description below, the first upper guide member 100 and the first lower guide member 102 of the first wedge member 48 can be asymmetrical with respect to each other about a first centrally disposed midplane that is oriented along the longitudinal direction L and the lateral direction A. The midplane can thus be oriented perpendicular to the transverse direction T. Further, the midplane can be positioned equidistantly between the upper guide members and the lower guide members. In one example, the midplane can include the central axis of the actuator shaft 54.

Further, the first upper guide member 104 of the upper endplate 44 and the first lower guide member 106 of the lower endplate 46 can be asymmetrical with respect to each other about a second centrally disposed midplane that is oriented along the longitudinal direction L and the lateral direction A. The first and second centrally disposed midplanes can be coincident with each other. Thus, the second midplane can be oriented perpendicular to the transverse direction T. Further, the second midplane can be positioned equidistantly between the upper guide members and the lower guide members. In one example, the second midplane can include the central axis of the actuator shaft 54.

In one example, one of the upper end lower guide members of the first wedge member 48 can define at least one outer projection, and the other of the upper and lower guide members of the first wedge member 48 can define at least one inner projection. The at least one inner projection can be inwardly offset with respect to the at least one outer projection along the lateral direction A. Similarly, one of the first guide members of the upper and lower endplates 44 and 46 can define an outer channel that is configured to slidably received the outer projection of the first wedge member 48. The other of the first guide members of the upper and lower endplates 44 and 46 can define an inner channel that is configured to slidably receive the inner projection of the first wedge member 48. Thus, the complementary guide members of the first wedge member 48 and the upper and lower endplates 44 and 46 can define tongue-in-groove, or T-shaped, guidance engagements.

In one example, the first upper guide member 100 of the first wedge member 48 can be configured as at least one first outer projection 108 that extends out along the lateral direction A. For instance, the first upper guide member 100 of the first wedge member 48 can be configured as first and second outer projections 108 that extend out along the lateral direction A away from each other. The first and second outer projections 108 can be aligned with each other along the lateral direction A. The outer projections 108 of the first wedge member 48 can define respective upper surfaces that are coplanar with the first upper engagement surface 76 (see FIGS. 3B-3C) of the first wedge member 48. In one example, the first lower guide member 102 of the first wedge member 48 can be configured as at least one first inner projection 110 that is inwardly offset with respect to the at least one outer projection 108 along the lateral direction A. For instance, the first lower guide member 102 can be configured as first and second inner projections 110 that are inwardly recessed with respect to the outer projections 108 along the lateral direction A. The inner projections 110 can extend away from each other, and can be aligned with each other along the lateral direction A. The inner projections of the 110 of the first wedge member 48 can define respective lower surfaces that are coplanar with the first lower engagement surface 78 (see FIGS. 3B-3C) of the first wedge member 48. It should be appreciated, of course, that the first upper guide member 100 of the first wedge member 48 can alternatively be configured as the at least one inner projection, and the first lower guide member 102 of the first wedge member 48 can alternatively be configured as the at least one outer projection. Further, the first outer projections 108 can also be referred to as first upper projections 108, and the first inner projections 110 can also be referred to as first lower projections 110.

The first upper guide member 104 of the upper endplate 44 can be configured as at least one channel 112 that is sized to slidably receive the at least one projection 108. The at least one channel 112 can be configured as first and second channels 112 that are recessed along the lateral direction A toward the respective side surfaces of the implant. The channels 112 can be recessed in respective directions away each other. The first and second channels 112 are configured to slidably receive the first and second projections 108. The first and second projections 108 can be elongate along the direction of extension of the respective channels 112. The channels 112 can extend through the proximal facing surface of the upper endplate 44. The projections 108 and the channels 112 can flare downward as they extend in the expansion direction of the first wedge member 48. The channels 112 can be referred to as outer channels.

The first lower guide member 106 of the lower endplate 46 can be configured as at least one channel 114 that is sized to slidably receive the at least one inner projection 110 of the first wedge member 48. The at least one channel 114 can be referred to as an inner channel that is inwardly offset with respect to the at least one outer channel 112 of the upper endplate 44. The at least one inner channel 114 can be configured as first and second inner channels 114 that are recessed along respective directions away from each other. The first and second inner channels 114 can slidably receive respective ones of the first and second inner projections 110. The projections 110 and the channels 114 can flare upward as they extend in the expansion direction of the first wedge member 48. The channels 114 can extend through the proximal facing surface of the lower endplate 46.

With continuing reference to FIGS. 4A-6B, the second wedge member 50 and the upper and lower endplates 44 and 46 can include respective complementary guide members that guide the movement of the upper and lower endplates 44 and 46 away from and toward each other, respectively, as the second wedge member 50 moves in the expansion direction and the collapse direction. In particular, the second wedge member 50 defines a second upper guide member 116 and a second lower guide member 118. At least a portion of the second upper guide member 116 and at least a portion of the second lower guide member 118 can be aligned with each other in a plane that is oriented along the lateral direction A and the transverse direction T. The second upper guide member 116 can be disposed upward with respect to the second lower guide member 118. The upper endplate 44 defines a second upper guide member 120 that is configured to engage the second upper guide member 116 of the second wedge member 50. The lower endplate 46 defines a second lower guide member 122 that is configured to engage the second lower guide member 118 of the second wedge member 50. The second upper guide member 120 of the upper endplate 44 can be disposed upward with respect to the second lower guide member 122 of the lower endplate 46.

As will be appreciated from the description below, the second upper guide member 116 and the second lower guide member 118 of the second wedge member 50 can be asymmetrical with respect to each other about a third centrally disposed midplane that is oriented along the longitudinal direction L and the lateral direction A. The third centrally disposed midplane can be coincident with the first centrally disposed plane. Further, the second upper guide member 120 of the upper endplate 44 and the second lower guide member 122 of the lower endplate 46 can be asymmetrical with respect to each other about a fourth centrally disposed midplane that is oriented along the longitudinal direction L and the lateral direction A. The third and fourth centrally disposed planes can be coincident with each other. In one example, one of the upper end lower guide members of the second wedge member 50 can define at least one outer projection, and the other of the upper and lower guide members of the second wedge member 50 can define at least one inner projection. The at least one inner projection can be inwardly offset from the at least one outer projection along the lateral direction A. Similarly, one of the second guide members of the upper and lower endplates 44 and 46 can define at least one inner channel that is configured to slidably receive the at least one inner projection of the second wedge member 50. The other of the second guide members of the upper and lower endplates 44 and 46 can define at least one inner channel that is configured to slidably receive the at least one inner projection of the second wedge member 50. Thus, the complementary guide members of the second wedge member 50 and the upper and lower endplates 44 and 46 can define tongue-in-groove, or T-shaped, guidance engagements.

In one example, the second upper guide member 116 of the second wedge member 50 can be configured as at least one second outer projection 124 that extends out along the lateral direction A. For instance, the second upper guide member 116 of the second wedge member 50 can be configured as first and second outer projections 124 that extend out along the lateral direction A away from each other. The first and second outer projections 124 can be aligned with each other along the lateral direction A. The first and second outer projections 124 of the second wedge member 50 can define respective upper surfaces that are coplanar with the second upper engagement surface 80 (see FIGS. 3B-3C) of the second wedge member 50. In one example, the second lower guide member 118 of the second wedge member 50 can be configured as at least one second inner projection 126 that extend outward along the lateral direction A. For instance, the second lower guide member 118 can be configured as first and second inner projections 126 that extend outward other along the lateral direction A away from each other. The inner projections 126 can be inwardly offset with respect to the outer projections 124 along the lateral direction A. Further, the inner projections can be aligned with each other along the lateral direction A. The first and second inner projections 126 of the second wedge member 50 can define respective lower surfaces that are coplanar with the second lower engagement surface 82 (see FIGS. 3B-3C) of the second wedge member 50. It should be appreciated, of course, that the second upper guide member 116 of the second wedge member 50 can alternatively be configured as the at least one inner projection, and the second lower guide member 118 of the second wedge member 50 can alternatively be configured as the at least one outer projection.

The second upper guide member 120 of the upper endplate 44 can be configured as at least one channel 128 that is sized to slidably receive the at least one projection 124. The at least one channel 128 can thus be referred to as an outer channel. Further, the at least one channel 128 can be configured as first and second outer channels 128 that are recessed outward along the lateral direction A toward the respective side surfaces of the implant 20. Accordingly, the first and second outer channels 128 can be recessed along a direction away from each other. The first and second outer channels 128 are configured to slidably receive the first and second outer projections 124. The outer channels 128 can extend through the distal facing surface of the upper endplate 44. The projections 124 and the channels 128 can flare downward as they extend in the expansion direction of the second wedge member 50.

The second lower guide member 122 of the lower endplate 46 can be configured as at least one inner channel 130 that is sized to slidably receive the at least one inner projection 126 of the second wedge member 50. The at least one inner channel 130 can be inwardly recessed along the lateral direction A with respect to the at least one outer channel 128. The at least one inner channel 130 can be configured as first and second inner 130 that are recessed laterally outward away from each other. The first and second inner channels 130 can slidably receive respective ones of the first and second inner projections 126. The first and second inner projections 126 can be elongate along the direction of the first and second inner channels 130, respectively. The inner channels 130 and the inner projections 126 can flare upward as they extend in the expansion direction of the second wedge member 50. The inner channels 130 can extend out from the distal facing surface of the lower endplate 46. The second outer projections 124 can also be referred to second upper projections 124, and the second inner projections 126 can also be referred to as second lower projections 126.

It should thus be appreciated that the guide members of the first and second wedge members 48 and 50 can engage the guide members of the upper and lower endplates 44 and 46 so as to prevent the wedge members 48 and 50 from becoming decoupled from the upper and lower endplates 44 and 46 along the transverse direction T. In this regard, it should be appreciated that the upper end lower endplates 44 and 46 can abut each other along the transverse direction T when the implant 20 is in the fully collapsed configuration. The guide members of the first and second wedge members 48 and 50 can be engaged with the guide members of the upper and lower endplates 44 and 46 when the implant 20 is in the fully collapsed configuration. Thus, the wedge members 48 and 50 are prevented from fully backing out of the engagement members of the upper and lower endplates 44 and 46. Further, the intervertebral implant 20 can be constructed such that the first and second wedge members 48 and 50 do not extend past the upper and lower endplates 44 and 46 along the longitudinal direction L. Thus, no part of the first wedge member 48 extends proximally past the proximal end of the upper and lower endplates 44 and 46. Further, no part of the second wedge member 50 extends distally past the distal end of the upper and lower endplates 44 and 46. For instance, the entirety of the first wedge member 50 can be recessed distally with respect to the proximal ends of the endplates 44 and 46 both when the implant 20 is in the collapsed configuration and when the implant 20 is in the expanded configuration. Similarly, the entirety of the second wedge member 50 can be recessed proximally with respect to the distal ends of the endplates 44 and 46 both when the implant 20 is in the collapsed configuration and when the implant 20 is in the expanded configuration. The implant 20 can further include a stop member that prevents the wedge members 48 and 50 from continuing to move in the expansion direction once the implant has reached the fully expanded configuration.

As described above, the upper end lower endplates 44 and 46 can abut each other along the transverse direction T when the implant 20 is in the fully collapsed configuration. In particular, one of the upper and lower endplates 44 and 46 can nest within the other of the upper and lower endplates 44 and 46 when the intervertebral implant 20 is in the collapsed configuration. In one example, the lower endplate 46 can nest within the upper endplate 44. That is, the side walls and end walls of the lower endplate 46 can fit inside the side walls and end walls of the upper endplate 44 until a horizontal plate member 61 that defines the lower surface 40 abuts the lower end of the side walls of the upper endplate 44. In particular, an inner surface of the horizontal plate member 61 that is opposite the lower surface 40 abuts the lower end of the side walls of the upper endplate 44. The inner surface of the horizontal plate member 61 of the lower endplate 46 can also abut the lower end of the end walls of the upper endplate 44.

Accordingly, the intervertebral implant 20 can achieve a low profile in the collapsed configuration. For instance, the implant 20 can have a height in a range from approximately 5 mm to approximately 10 mm at its geometric center, such as approximately 7 mm, when the implant 20 is in the fully collapsed configuration. It should be appreciated that the height of the implant 20 in the fully collapsed configuration can be any suitable height as desired, such as from approximately 10 mm to approximately 15 mm. Thus, the implant be inserted into the intervertebral space with minimal or no mechanical interference between at least one or both of the surfaces 38 and 40 and the bony vertebral endplates of the vertebrae. The height of the implant 20 in the fully expanded configuration can be greater than the height of the implant 20 in the fully collapsed configuration by any suitable difference distance as desired. For instance, the difference distance can be in a range from approximately 2 mm to approximately 15 mm, including from approximately 4 mm to approximately 8 mm, including approximately 5 mm. At the tapered leading end, the height of the implant 20 can be less than the height of the implant at the geometric center by any suitable reduction distance as desired. In one example, the reduction distance can be in a range greater than 0 mm up to approximately 5 mm, which can include up to approximately 4 mm, up to approximately 3 mm, up to approximately 2 mm, and up to approximately 1 mm.

It should thus be appreciated that the endplate whose at least one guide member is configured as an inner channel can nest within the endplate whose at least one guide member is configured as an outer channel. In this regard, an inner surface of a horizontal plate member of the upper endplate 44 that is opposite the lower surface 38 can alternatively abuts the upper end of the side walls of the lower endplate 46. The inner surface of the horizontal plate member of the upper endplate 44 can also abut the upper end of the end walls of the lower endplate 46. It should be appreciated that one or both of the guide members of each of the wedge members 48 and 50 can be alternatively configured as channels, and one or both of the guide members of each of the endplates 44 and 46 can alternatively be configured as projections that are slidably received in the channels in the manner described herein.

Referring again to FIGS. 2A-2B, one of the upper and lower endplates 44 and 46 can define at least one upstanding alignment rib 137, and the other of the upper and lower endplates 44 and 46 can define at least one alignment channel 139 that is positioned and sized to receive the alignment rib so as to guide movement of the endplates 44 and 46 toward and away from each other, respectively, along the transverse direction T. The alignment rib 137 and the alignment channel 139 can be oriented along the transverse direction T. In one example, the upper endplate 44 can define the at least one alignment rib 137, and the lower endplate 46 can define the at least one alignment channel 139. For instance, the upper endplate 44 can include first and second alignment ribs 137 that are spaced from each other along the lateral direction A. The alignment ribs 137 can further be aligned with each other along the lateral direction A. Similarly, the lower endplate 46 can define first and second alignment channels 139 that are spaced from each other along the lateral direction A. The alignment channels 139 can further be aligned with each other along the lateral direction A. It should be appreciated, of course, that the implant 20 can be alternatively constructed such that the lower endplate 46 includes the at least one alignment rib 137, and the upper endplate 44 includes the at least one alignment channel 139.

In one example, the projections 137 can extend inward along the lateral direction A from the laterally inner surface of each of the side walls of the upper endplate 44. The lower endplate 46 can include at least one recess 139, such as first and second recesses at each side wall of the lower endplate 46. In particular, the recesses 139 can extend inward into the outer surface of the side walls of the lower endplate 46 along the lateral direction A. The recesses 139 can extend vertically through the lower endplate 46. It should be appreciated, of course, that the projections 137 and recesses 139 can be alternatively positioned as desired. The recesses 139 can be sized and positioned to slidably receive respective ones of the projections 137 as the implant 20 moves between the collapsed configuration and the expanded configuration.

Referring also to FIG. 3D, the implant 20 can include an expansion limiter 129 that prevents the endplates 44 and 46 from further moving away from each other along the transverse direction T once the implant 20 has been fully expanded to the fully expanded configuration. The expansion limiter 129 can include at least one first stop surface 131 of one of the upper and lower endplates 44 and 46, and at least one second stop surface 135 of the upper and lower endplates 44 and 46. The first and second stop surfaces 131 and 135 can be configured to contact each other when the implant 20 is in the fully expanded configuration, thereby preventing the endplates 44 and 46 from further moving apart from each other.

For instance, in one example, one of the upper and lower endplates 44 and 46 can define at least one limiter tab 132, and the other of the upper and lower endplates 44 and 46 can define at least one limiter channel 134. The limiter channel 134 is sized to receive at least a portion of the limiter tab 132 as the implant 20 moves between the expanded configuration and the collapsed configuration. The limiter tabs 132 of one of the upper and lower endplates 44 and 46 can include the first stop surface 131 that is configured to engage the complementary second stop surface 135 of the other of the upper and lower endplates 44 and 46 when the implant 20 is in the fully expanded configuration. The first stop surface 131 can ride in the limiter channel 134 as the implant 20 moves between the collapsed configuration and the expanded configuration. In one example, the lower endplate 46 can include the at least one limiter tab 132, and the upper endplate 44 can define the at least one limiter channel 134. Alternatively, the upper endplate 44 can include the at least one limiter tab 132, and the lower endplate 46 can include the at least one limiter channel 134.

The lower endplate 46 can define at least one pair of limiter tabs 132. For instance, the lower endplate 46 can include first and second pairs of limiter tabs 132 that are spaced apart from each other along the lateral direction. The limiter tabs 132 of each pair can be spaced from each other along the longitudinal direction L. Respective ones of each of the first and second pairs of limiter tabs 132 can also be aligned with each other along the lateral direction A. Similarly, the upper the endplate 44 can define first and second pairs of limiter channels 134 that are spaced from each other along the lateral direction A. The limiter channels 134 of each pair can be spaced from each other along the longitudinal direction L. Respective ones of each of the first and second pairs of limiter channels 134 can also be aligned with each other along the lateral direction A.

The limiter channels 134 can be open to the bone graft apertures along the lateral direction A. As described above, each of the limiter tabs 132 can include the first stop surface 131. The first stop surface 131 can be defined by a barb 133 that extends toward the upper endplate 44. The lower endplate 46 can include at least one complementary stop surface 135 that is configured to abut a respective one of the at least one stop surface 131 of the upper endplate 44 when the implant 20 is in the fully expanded configuration. The stop surfaces 135 of the lower endplate 46 can be disposed at respective ends of the limiter channels 134. In one example, each of the second stop surfaces 135 can define a respective end of the limiter channels 134. For instance, the second stop surfaces 135 can define the lower ends of the respective limiter channels 134. Respective ones of the stop surfaces 131 and 135 can be aligned with each other along the transverse direction T. Thus, when the implant 20 expands to its fully expanded configuration, the stop surfaces 131 can abut the stop surfaces 135 so as to prevent further movement of the endplates 44 and 46 away from each other. The abutment of the stop surfaces 131 and 135 can thus also prevent the wedge members 48 and 50 from further traveling toward each other along the actuator shaft 54. In this regard, it should be appreciated that the expansion limiter 129 can include the limiter tab 132 and the limiter channel 134.

In one example, the limiter tabs 132 do not extend beyond the upper surface 38 when the implant 20 is in the fully contracted position. For instance, the limiter tabs 132 can be recessed with respect to the upper surface 38 when the implant is in the fully contracted position. While the limiter tabs 132 are illustrated as extending from the lower endplate 46 into the limiter channels 134 of the upper endplate 44, it should be appreciated that one or more limiter tabs can alternatively extend from the upper endplate 44 into respective one or more limiter channels of the lower endplate 46.

Referring now to FIG. 7, the upper surface 38 and the lower surface 40 can be substantially parallel to each other both when the intervertebral implant 20 is in the collapsed configuration and when the intervertebral implant 20 is in the expanded configuration. Alternatively, it should be appreciated that the intervertebral implant 20 can be configured to define a lordotic or kyphotic profile as desired. Thus, the side of the intervertebral implant 20 that defines the anterior side when the implant 20 is disposed in the intervertebral space can be taller along the transverse direction T than the side of the intervertebral implant 20 that defines the posterior side when the implant 20 is disposed in the intervertebral space. For instance, one or both of the upper and lower surfaces 38 and 40 can be sloped with respect to each other. In particular, the upper and lower surfaces 38 and 40 can be sloped along the lateral direction T. Thus, the slope can be defined along the upper and lower surfaces 38 and 40 in a plane that is oriented along the transverse direction T and the lateral direction A.

As illustrated in FIG. 8A, the lower surface 40 can be sloped, and the upper surface 38 can be oriented substantially along a plane that is defined by the longitudinal direction L and the lateral direction A. Alternatively, as illustrated in FIG. 8B, the upper surface 38 can be sloped, and the lower surface 40 can be oriented substantially along a plane that is defined by the longitudinal direction L and the lateral direction A. Alternatively still, as illustrated in FIG. 8C, each of the upper and lower surfaces 38 and 40 can be sloped. The upper and lower surfaces 38 and 40 can define any suitable angle as desired in the plane that is defined by the lateral direction A and the transverse direction T. The angle can be substantially 8 degrees as illustrated in FIGS. 8A and 8B. The angle can be substantially 16 degrees as illustrated in FIG. 8C. It should be appreciated that these angles are presented by way of example only, and other angles are contemplated.

Referring now to FIG. 7, the first wedge member 48 can include at least one coupling member 94 that is configured to couple to an insertion instrument 152 (see FIG. 9) that is configured to actuate the implant 20 between the collapsed configuration to the expanded configuration. The at least one coupling member 94 can be configured as at least one attachment aperture. For instance, the at least one attachment aperture can include a first attachment aperture 96 and a second attachment aperture 98. The first attachment aperture 96 can extend at least into the first wedge member 48. For instance, the first attachment aperture 96 can extend at least into the first wedge member 48 along the longitudinal direction L. In one example, the first attachment aperture 96 can extend through the first wedge member 48. At least a portion of the first attachment aperture 96 can be threaded. Further, the first attachment aperture 96 can be open to a proximal end of the first wedge member 48. For instance, the first attachment aperture 96 can be open to a proximal facing surface 97 of the first wedge member 48.

The second attachment aperture 98 can extend at least into the first wedge member 48. For instance, the second attachment aperture 98 can extend at least into the first wedge member 48 along the longitudinal direction L. Thus, the first and second attachment apertures 96 and 98 can be oriented parallel to each other. Further, the first and second attachment apertures 96 and 98 can be aligned with each other in a plane that is defined by the longitudinal direction L and the lateral direction A. In one example, the second attachment aperture 98 can extend through the first wedge member 48. At least a portion of the second attachment aperture 98 can be threaded. Further, the second attachment aperture 98 can be open to the proximal end of the first wedge member 48. For instance, the second attachment aperture 98 can be open to the proximal facing surface 97 of the first wedge member 48.

The first and second attachment aperture 96 and 98 can be disposed on opposite sides of the first bore 68 of the first wedge member 48. Thus, the first bore 68 can be disposed between the first and second attachment apertures 96 and 98. In particular, the first bore 68 can be disposed between the first and second attachment apertures 96 and 98 with respect to the lateral direction A. Further, each of the first and second attachment apertures 96 and 98 and the first bore 68 can define respective openings at the proximal facing surface 97 of the first wedge member 48. The openings can be aligned with each other along the lateral direction. As will be described in more detail below, the instrument can couple to one or both of the attachment apertures 96 and 98, and can further extend into the first bore 68 so as to drive the actuator shaft 54 to selectively rotate in the first and second directions of rotation.

Referring now to FIG. 9, an implant assembly 150 can include the intervertebral implant 20 and an instrument 152. The instrument 152 can be configured to attach to the implant 20, and apply an actuation force to the actuator shaft 54 that selectively rotates the actuator shaft 54 in the first direction of rotation and the second direction of rotation. Thus, the instrument 152 can attach to the intervertebral implant 20, insert the implant 20 into the intervertebral space in the collapsed configuration in the manner described above, and subsequently rotate the expansion shaft 54 in the first direction of rotation so as to expand the implant 20 to the expanded configuration.

Referring now to FIGS. 9-10, the instrument 152 can include an attachment member 154 at its distal end that is configured to attach to and support the intervertebral implant 20. The attachment member 154 can include an attachment housing 155 and at least one attachment pin that is configured to be received in a respective at least one of the attachment apertures 96 and 98 (see FIG. 7). The attachment housing 155 can include an attachment head 161 and an attachment neck 163 that extends proximally from the attachment head 161. The at least one attachment pin can include first and second attachment pins 157 and 159 that are configured to attach to the implant 20. For instance, the first and second attachment pins 157 and 159 can be configured to attach to the first wedge member 48. In one example, the first attachment pin 157 and the second attachment pin 159 that are configured to be received in respective ones of the first and second attachment apertures 96 and 98 of the first wedge member 48. For instance, the instrument 152 can be oriented such that first attachment pin 157 can be inserted into either one of the first and second attachment apertures 96 and 98. The second attachment pin 159 can be inserted into the other one of the first and second attachment apertures 96 and 98. The first attachment pin 157 can be unthreaded and configured to be translatably inserted into the respective one of the first and second attachment apertures 96 and 98. The second attachment pin 158 can be threaded and configured to threadedly mate with the other of the first and second attachment apertures 96 and 98. Alternatively, the first attachment pin 157 can be similarly threaded and configured to threadedly mate with the intervertebral implant in the respective one of the first and apertures 96 and 98.

The instrument 152 can further include an outer support shaft 156 that is configured to support the attachment member 154. The support shaft 156 can be elongate along the longitudinal direction l. For instance, the support shaft 156 can extend proximally from the attachment member 154. The support shaft 156 can include a distal support shaft portion 156a and a proximal support shaft portion 156b that is joined to the distal support shaft portion 156a. For instance, the instrument 152 can include a coupler 158 that couples the proximal support shaft portion 156b to the distal support shaft portion 156a. The instrument 152 can include an instrument handle 160 that is supported at the proximal end of the support shaft 156. For instance, the instrument handle 160 can be supported at the proximal end of the proximal support shaft portion 156b.

The instrument 152 can further include a drive member that is configured as a drive shaft 162. The drive shaft 162, and thus the drive member, can be configured to engage at least one of the first and second attachment pins 157 and 159, and can further be configured to rotatably engage the actuator shaft 54 of the intervertebral implant 20. The drive shaft 162 can be oriented along the longitudinal direction L. The instrument 152 can further include a toggle member 164 that is configured to move the drive shaft 162 between a first position and a second position. In the first position, the drive shaft 162 is aligned with the at least one of the first and second attachment pins 157 and 159. In the second position, the drive shaft 162 is aligned with the actuator shaft 54 of the intervertebral implant 20. In one example, the toggle member 164 is configured as a toggle shaft 166 disposed in the support shaft 156. The toggle shaft 166 can define a channel 168 that is elongate along the longitudinal direction L and is configured to receive the drive shaft 162. The toggle shaft 166 is rotatable between a first rotational position to a second rotational position so as to move the drive shaft between the first and second positions. The toggle shaft 166 can be rotated about a central axis that is oriented along the longitudinal direction L between the first rotational position and the second rotational position. The toggle shaft 166 supports the drive shaft 162 in the first position when the toggle shaft is in the first rotational position. The toggle shaft 166 supports the drive shaft 162 in the second position when the toggle shaft 166 is in the second rotational position. The instrument 152 can further include at least one locating finger 170 and at least one spring 172 that delivers a spring force to the at least one locating finger 170 so as to urge the at least one locating finger 170 into a corresponding at least one detent 174 both when the toggle shaft 166 is in the first rotational position and when the toggle shaft 166 is in the second rotational position.

The instrument 152 can include a drive handle 176 that is configured to rotatably support the drive shaft 162 at the proximal end of the drive shaft 162. The drive shaft 162 can be eccentrically supported in the drive handle 176, such that rotation of the handle 176 along its central axis causes the drive shaft 162 to revolve about the central axis of the handle 176. The central axis of the handle 176 can be coincident with the central axis of the toggle shaft 166. That is, the drive shaft 162 can be positioned offset with respect to the central axis of the drive handle 165. The drive shaft 162 can define an drive member 167 at its proximal end that can engage a power tool that drives the rotation of the drive shaft 162. The drive member 167 can extend proximally from the drive handle 176. The proximal end of the toggle shaft 166 can be press fit into the distal end of the drive handle 165. Thus, rotation of the drive handle 165 can rotate the toggle shaft 166 between the first rotational position and the second rotational position.

Operation of aspects of the instrument 152 will now be described with respect to FIGS. 11A-11D. With initial reference to FIGS. 11A and 12A, the first attachment pin 157 can be inserted into one of the first and second attachment apertures 96 and 98. The first attachment pin 157 can be unthreaded and sized to be inserted into either of the attachment apertures 96 and 98 of the first wedge member 48. In particular, the first attachment pin 157 can be press fit into the respective one of the first and second apertures 96 and 98. When the first attachment pin 157 has been inserted into the respective one of the first and second apertures 96 and 98, the instrument is coupled to the first wedge member 48 at a first attachment location. As illustrated, the first attachment pin 157 has been inserted into the first attachment aperture 96. The first attachment pin 157 can be fixedly supported by the attachment housing 155, such that the distal end of the first attachment pin 157 extends distally of the attachment housing 155. In one example, the first attachment pin 157 can be press-fit into the attachment housing 155, and in particular in the attachment head 161.

Next, referring now to FIGS. 11B and 12B, and as described above, the toggle shaft 166 can be disposed in the first rotational position, whereby the drive shaft 162 is aligned with the second attachment pin 159 along the longitudinal direction L. If the toggle shaft 166 is not in the first rotational position, the toggle shaft 166 can be rotated to the first rotational position. The drive shaft 162 can be advanced in the distal direction until the drive member 175 of the drive shaft 162 engages a coupling member 178 of the second attachment pin 159, such that rotation of the drive shaft 162 causes the second attachment pin 159 to similarly rotate. The second attachment pin 159 can be at least partially disposed in a first or outer channel 182 of the attachment member 154. For instance, the channel 182 can extend through the attachment head 161. At least a portion of the channel 182 can be threaded, such that the second attachment pin 159 threadedly mates to the attachment head 161 as it is rotated by drive shaft 162. The thread pitch in the channel 182 can be the same as the thread pitch in the attachment apertures 96 and 98. Thus, the second attachment pin 159 can translate proximally and distally, respectively, in the channel 182 at the same rate as in the second attachment aperture as it is rotated.

The drive member and the coupling member 178 can define a hex head, a Phillips head, a flat head, a start head, or the like. The drive member 175 can be configured as a projection, and the coupling member 178 can be configured as a socket, or vice versa. As the second attachment pin 159 rotates in a respective first direction of rotation, the second attachment pin 159 can threadedly purchase with the intervertebral implant in the other of the first and second apertures 96 and 98. Thus, the second attachment pin 159 can be attached to both the attachment member 154 of the instrument 152 as well as the intervertebral implant 20. As illustrated in FIG. 11B, the second attachment pin 159 has been inserted into the second attachment aperture 98. Alternatively, as illustrated in FIG. 11E, the second attachment pin can alternatively be inserted into the first attachment aperture 96. When the first attachment pin 157 has been inserted into the respective other of the first and second apertures 96 and 98, the instrument 20 is coupled to the first wedge member 48 at a second attachment location. The drive shaft 162 can define a recessed break away region 180 that is designed to fracture if the torsional forces of the drive shaft 162 exceed a predetermined threshold. Thus, the actuator shaft 54 of the implant 20 is prevented from receiving torsional forces greater than the predetermined threshold.

It should be appreciated that the first attachment pin 157 can be referred to as a pilot pin that is designed to make the first attachment with the implant, and the second attachment pin 159 can be referred to as an attachment screw that is threaded and configured to threadedly purchase with the implant 20 in the second attachment aperture. As illustrated in FIG. 11E, it should be appreciated that the instrument 152 can be oriented such that the first attachment pin 157 extends into the second attachment aperture 98, and the second attachment pin 159 extends into the first attachment aperture 96. Regardless of the orientation of the instrument 152, the drive shaft 162 can be configured to drive the actuator shaft 54 of the implant 20 in the manner described herein.

Referring now to FIGS. 11C and 12C, once the second attachment pin 159 has been driven into the respective other of the first and second attachment apertures 96 and 98, the toggle shaft 166 can be rotated to the second rotational position, thereby aligning the drive shaft 162 with the actuator shaft 54 of the intervertebral implant 20. When the toggle shaft 166 is in the second rotational position, the drive shaft 162 can be aligned with a second or inner channel 184. Thus, the drive shaft 162 can be advanced distally and rotated to cause the actuator shaft 54 of the intervertebral implant to correspondingly rotate. It should be appreciated that the instrument 20 is attached to the implant 20 at the first and second attachment locations that are spaced apart from each other. Thus, the instrument 152 is sufficiently braced against the implant 20 when the drive shaft 162 causes the actuator shaft 54 of the implant 20 to rotate. In one example, the first and second attachment locations can be spaced apart from each other and aligned with each other along the lateral direction A. The instrument 152 can be oriented along the longitudinal direction L when the instrument 152 is attached to the implant 20 at the first and second attachment locations.

The instrument 152 can be configured such that after the drive shaft 162 has driven the second attachment pin 159 into the implant 20, retraction of the drive shaft 126 in the proximal direction allows the toggle shaft 166 to be rotated between the first and second rotational positions. In one example, the attachment housing 155 can define a first or outer channel 182 that can retain the second attachment pin 159. The drive shaft 162 can extend into the channel 182 when the drive shaft 162 drives the channel 182 into the other of the first and second attachment apertures 96 and 98. Thus, the drive shaft 162 can interfere with the attachment housing 155 in the channel 182 so as to prevent the toggle shaft 166 from rotating from the first rotational position to the second rotational position. Thus, the interference between the drive shaft 162 and the attachment housing 155 can prevent the drive shaft 162 from moving from the first position aligned with the second attachment pin 159 to the second position aligned with the actuator shaft 54. When the drive shaft 162 has retracted along the proximal direction out of the channel 182, the interference is removed and the toggle shaft 166 can be rotated from the first rotational position to the second rotational position.

When the toggle shaft 166 is in the second rotational position, the drive shaft 162 is in the respective second position, and thus aligned with the actuator shaft 54. Thus, the drive shaft 162 can be translated distally until the drive member 175 engages the coupling member 57 of the actuator shaft 54. Subsequent rotation of the drive shaft 162 in the first direction of rotation thus causes the actuator shaft 54 to rotate in the first direction of rotation, thereby expanding the implant 20 from the collapsed configuration to the expanded configuration. Rotation of the draft shaft 162 in the second direction causes the actuator shaft 54 to rotate in the second direction of rotation, thereby collapsing the implant 20 from the expanded configuration to the collapsed configuration.

As the drive shaft 162 rotates the actuator shaft 54 in the first direction of rotation, the first wedge member 48 travels in the expansion direction as described above. Because the first and second attachment pins 157 and 159 are attached to the first wedge member 48, the attachment housing 155 moves along with the first wedge member 48 in the direction of expansion. Thus, the attachment housing 155 translates distally along with the first wedge member 48 as the implant 20 moves to the expanded configuration. Because the actuator shaft 54 remains translatably fixed, the attachment housing 155 translates distally along with respect to the drive shaft 162. In one example, the attachment housing 155, the outer support shaft 156, and the handles 160 and 176 can translate with the first wedge member 48 both as the wedge member 48 selectively moves in the expansion direction and the collapse direction. The because drive shaft 162 is rotatably coupled to the actuator shaft 54, the drive shaft 162 can remain translatably fixed to the actuator shaft, and thus translatably stationary with respect to the attachment housing 155, the outer support shaft 156, and the handles 160 and 176 as the attachment housing 155, the outer support shaft 156, and the handles 160 and 176 translate with the first wedge member 48.

Further, as the drive shaft 162 rotates the actuator shaft 54 in the second direction of rotation, the first wedge member 48 travels in the collapse direction as described above. Because the first and second attachment pins 157 and 159 are attached to the first wedge member 48, the attachment housing 155 moves along with the first wedge member 48 in the direction of contraction. Thus, the attachment housing 155 translates proximally along with the wedge member as the implant 20 moves to the collapsed configuration.

The attachment housing 155 can define a second or inner channel 184 that is sized to receive the distal end of the drive shaft 162. The drive shaft 162 can extend into the inner channel 184 when the drive shaft 162 is translated distally such that the drive member 175 engages the coupling member 57 of the actuator shaft 54. Interference between the drive shaft 62 and the attachment housing 155 in the inner channel 184 prevents the toggle shaft 166 from rotating from the second rotational position to the first rotational position. Thus, the interference between the drive shaft 162 and the attachment housing 155 can prevent the drive shaft 162 from moving from the second position aligned with the actuator shaft 54 to the first position aligned with the second attachment pin 159. When the drive shaft 162 has retracted along the proximal direction out of the channel 182, the interference is removed and the toggle shaft 166 can be rotated from the second rotational position to the first rotational position.

Thus, referring again to FIGS. 11B and 12B, once the intervertebral implant 20 has reached its desired level of expansion or contraction, the instrument 152 can be detached from the intervertebral implant 20. In particular, the drive shaft 162 can be returned to the first position in alignment with the second attachment pin 159. The drive shaft 162 can then be advanced distally into the outer channel 182 so as to rotatably engage the second attachment pin 159. As the second attachment pin 159 rotates in a respective second direction of rotation opposite the respective first direction of rotation, the second attachment pin 159 can threadedly disengage from the intervertebral implant 20 in the other of the first and second apertures 96 and 98. In particular, the second attachment pin 159 can threadedly disengage from the first wedge member 48. Finally, the first attachment pin 157 can be removed from the first wedge member 48, and thus from the implant 20, thereby detaching the instrument 152 from the intervertebral implant 20.

During operation, the first and second attachment pins 157 and 159 can be attached to the intervertebral implant 20 in the manner described herein. The drive shaft 162 can be removed from the support shaft 156. The instrument 152 can receive impaction forces as desired to assist with insertion of the intervertebral implant 20 in the intervertebral space. Once the intervertebral implant 20 has been inserted in the intervertebral space, the drive shaft 162 can be inserted into the support shaft 156. The first and second attachment pins 157 and 159 can then be attached to the implant 20 in the manner described above, and the actuator shaft 54 can be rotated. The first and second pins 157 and 159 can then be detached from the implant 20.

Referring now to FIGS. 10 and 13, and as described above, the instrument can include a pair of locating fingers 170 and at least one spring 172 that can urge the fingers 170 into the detents 174 so as to provide tactile feedback when the toggle shaft 166 is in the first rotational position and the second rotational position. In particular, the instrument can include a seat 186 and a surface 188 that defines the detents 174 and faces the seat 186. The instrument 152 can include first and second springs 172 that are captured between the seat 186 and the first and second locating fingers 170, respectively. Thus, the springs 172 provide a respective force that urges the locating fingers 170 against the surface 188. When the toggle shaft 166 is in the first and second rotational positions, the fingers 170 can extend into the detents so as to define a retention force that resists rotation of the toggle shaft. When a torsional force is applied that rotates the toggle shaft 166 to a position between the first and second rotational positions, the torsion force overcomes the retention force before the locating fingers 170 ride out of the detents and ride along the surface 188. The retention force of the fingers 170 positioned in the detents 174 can initially resist movement of the toggle shaft 166 away from the first and second rotational positions. Thus, the engagement of the fingers 170 and detents 174 can provide tactile feedback when the toggle shaft 166 is moved selectively to the first and second rotational positions.

With continuing reference to FIGS. 10 and 13, the seat 186 can be defined by the drive handle 176. The surface 188 can be defined by a ring 190 that surrounds the support shaft 156. The ring 190 can be translatably fixed to the support shaft 156. For instance, the ring 190 can be threadedly mated to the support shaft 156. In one example, the ring 190 can be threadedly mated to the proximal support shaft portion 156b. The drive handle 176 can define the seat 186. For instance, the drive handle 176 can define respective pockets 192 that retain a respective one of the springs 172 and fingers 170. During operation, the drive handle 176 can be rotated so as to rotate the toggle shaft 166. Because the ring 190 is fixed to the support shaft 156, the drive handle 176 and the toggle shaft 166 both rotate with respect to the ring 190 and the support shaft 156. The instrument 152 can further include a collar 194 that attaches to each of the ring 190 and the locking handle 176 to prevent the locking handle 176 and the ring 190 from separating along the longitudinal direction L. In one example, the collar 194 can threadedly attach to the ring 190, and can define a flange that abuts a shoulder 196 of the locking handle 176.

Alternatively, referring to FIGS. 17A-17B, the instrument 152 can include an adjustment lever 195 that is coupled to the toggle shaft 166, and is coupled directly or indirectly to the toggle shaft 166. The adjustment lever 195 can extends radially outward to a position radially outward of the support shaft 156, along a direction angularly offset with respect to the longitudinal direction L. For instance, the adjustment lever 195 can extend from the toggle shaft 166 along a direction perpendicular to the longitudinal direction L. Thus, the adjustment lever 195 can be actuated so as to rotate the toggle shaft 166 between the first and second rotational positions. In this regard, it should be appreciated that the drive handle 176 can be eliminated in certain examples, thereby reducing the length of the instrument 152 with respect to the longitudinal direction L.

As illustrated in FIG. 9, the attachment pins 157 and 159 and the drive shaft 162 can be coplanar with each other. The plane can be oriented along the lateral direction A and the longitudinal direction L. Thus, it can also be said that a straight line extends through the central axes of each of the attachment pins 157 and 159 and the drive shaft 162. Further, the respective central axes of the attachment pins 157 and 159 can be substantially parallel to the central axis of the drive shaft 162. It can further be said that the central axis of the attachment member can be colinear with the central axis of the outer support shaft 156.

Alternatively, referring to FIG. 14A, the attachment housing 155 can be angled with respect any one up to all of the central axis of the drive shaft 162, the toggle housing 166, and the support shaft 156. In particular, the attachment housing 155 can extend obliquely along the transverse direction T at an angle θ. Thus, the attachment housing 155 can extend along the transverse direction T as it extends distally. Accordingly, any one or more up to all of the attachment pins 157 and 159 can extend along a direction that is angularly offset with respect to one or more up to all of the central axis of the drive shaft 162, the toggle housing 166, and the support shaft 156 at the angle θ. The angle θ can be in a range of greater than zero degrees up to approximately forty degrees. In one example the range can be from approximately five degrees and thirty degrees in one example, though it should be appreciated that the angle θ can be any suitable angle as desired. Thus, it should also be appreciated that the central axis of the implant 20, which can be defined by the actuation screw 54 in certain examples, can similarly be oriented at the angle θ with respect to one or more up to all of central axis of the drive shaft 162, the toggle housing 166, and the support shaft 156.

As illustrated in FIG. 14B, the drive member 175 can define a universal joint that is configured to grip the second attachment pin 159. Thus, the drive shaft 162 can rotate the attachment pin 159 that is oriented oblique to the drive shaft 162 in the manner described above. As illustrated in FIG. 14C, the instrument 152 can include a coupling shaft 180 that is configured to be interconnected between the drive shaft 162 and the actuator shaft 54 of the intervertebral implant 20. In particular, the drive member 175 of the drive shaft 162 can rotatably engage the proximal end of the coupling shaft 180, and the coupling shaft 180 can include a drive member that, in turn, is rotatably coupled to the actuator shaft 54. Thus, rotation of the drive shaft in the first direction of rotation along its central axis causes the coupling shaft to rotate about its central axis in the first direction of rotation. The central axis of the coupling shaft 180 can be oblique to the central axis of the drive shaft 162 at the angle θ. Rotation of the coupling shaft 180 in the first direction of rotation causes the actuator shaft 54 to rotate in the first direction of rotation about its central axis. Similarly, rotation of the drive shaft in the second direction of rotation along its central axis causes the coupling shaft to rotate about its central axis in the second direction of rotation. Rotation of the coupling shaft 180 in the second direction of rotation causes the actuator shaft 54 to rotate in the second direction of rotation about its central axis. The coupling shaft can be disposed in the attachment housing 155, such that the drive member of the coupling shaft extends distally from the attachment housing and into the bore 68, where it can rotatably attach to the actuator shaft 54. Thus, when the drive shaft 62 is in the second position, it can be said to be operably aligned with the actuator shaft 54 via the coupling shaft 80.

The angled attachment housing 155 can be advantageous when it is desired to implant the intervertebral implant in an intervertebral space that is difficult to access along a pure lateral approach. For instance, the iliac crest, ribcage, or other anatomical structure can impede a pure lateral approach into certain intervertebral spaces. The angle attachment housing allows the outer support shaft 156 to be oriented along the lateral direction A and the transverse direction T while the attached intervertebral implant 20 is oriented along the lateral direction A as it is inserted into the intervertebral space.

Alternatively or additionally, referring generally to FIG. 15A-16B, the instrument 152 can be configured such that the attachment member 154 is angularly offset with respect to any one up to all of the central axis of the drive shaft 162, the toggle housing 166, and the support shaft 156 along the lateral direction A. In this regard, it should be appreciated that the instrument 152 can insert the intervertebral implant 20 into the intervertebral space along an anterior to psoas (ATP) approach. In one example, the attachment member 154 can be fixedly attached to the support shaft 156 such that the central axes of the attachment pins 157 are angularly offset with respect to the central axis of one or more up to all of the central axis of the drive shaft 162, the toggle housing 166, and the support shaft 156 along the lateral direction A.

Alternatively, as illustrated in FIGS. 15A-15B, the instrument 152 can define a hinge 171 that is connected between the support shaft 156 and the attachment member 154. The hinge 171 can allow for angulation of the attachment member 154 relative to the support shaft 156 along a plane defined by the lateral direction A and the longitudinal direction L. Thus, the attachment member 154 can be angulated from a straight or colinear configuration (FIG. 15A) to an angularly offset configuration (FIG. 15B) with respect to the support shaft 156. It should be appreciated in certain examples that the hinge 171 can define a universal joint that allows for angulation of the attachment member 154 relative to the support shaft 156 along any direction as desired, including the lateral direction A, the transverse direction T, and combinations thereof.

In another example, referring now to FIGS. 16A-16B, the instrument 152 can include an angulation joint 173 that is disposed between the support shaft 156 and the attachment member 154. The angulation joint can define first and second surfaces 175 and 177 that are spaced from each other along the longitudinal direction. The first surface 175 can face the support shaft 156, and can be in abutment, such as surface contact, with the support shaft. The second surface 177 can face the attachment member 154, and can be in abutment, such as surface contact, with the attachment member 154. One or more of the surfaces 175 and 177 can be angled such when the angulation joint 173 is in a first orientation (FIG. 16A), the attachment member 154 is straight or colinear with respect to the support shaft 156. When the angulation joint 173 is in a second orientation (FIG. 16B), the attachment member 154 can be angularly offset with respect to the support shaft 156 in either or both of the lateral direction A and the transverse direction T. In one example, the angulation joint 173 can be wedge shaped. The instrument 152 can further include the hinge 171 to guide angulation of the attachment member 154 when the angulation joint 173 is in the second orientation.

Referring now to FIGS. 18-19B, it should be appreciated that the intervertebral implant 20 can be constructed in accordance with any suitable alternative embodiment. For instance, the expansion limiter 129 of the intervertebral implant 20 can include at least one stop member that is configured to abut a corresponding at least one of the first and second wedge members 48 and 50, thereby preventing the at least one of the first and second wedge members 48 and 50 from moving in the expansion direction. Because the first and second wedge members 48 and 50 are threadedly mated to the actuator shaft 54, preventing the at least one of the first and second wedge members 48 and 50 from moving in the expansion direction likewise prevents the actuator shaft 54 from rotating in the first direction of rotation. In this regard, the intervertebral implant 20 can be devoid of the limiter tabs 132 and the limiter channels 134 described above with respect to FIG. 3D.

The at least one stop member can include a first stop member 198 and a second stop member 200 that are configured to be supported by the actuator shaft 54. The first stop member 198 is configured to be positioned adjacent the first wedge member 48 in the expansion direction. For instance, the first stop member 198 can be positioned on the actuator shaft 54 at a location adjacent the first wedge member 48 in the expansion direction. Thus, the first stop member 198 is configured to abut the first wedge member 48, thereby preventing the first wedge member 48 from moving in the expansion direction. Similarly, the second stop member 200 is configured to be positioned adjacent the second wedge member 50 in the expansion direction. For instance, the second stop member 200 can be positioned on the actuator shaft 54 at a location adjacent the second wedge member 50 in the expansion direction. Thus, the second stop member 198 is configured to abut the second wedge member 50, thereby preventing the second wedge member 50 from moving in the expansion direction.

In one example, the first and second stop members 198 and 200 can be removably secured to the actuator shaft 54. For instance, the actuator shaft 54 can define a first shoulder 202 that is spaced from the first wedge member 48 in the expansion direction. Thus, in one example, the first shoulder 202 can be disposed between the first wedge member 48 and the recess 58 of the actuator shaft 54. Accordingly, a first gap 204 is defined between the first shoulder 202 and the first wedge member 48 along the longitudinal direction. Further, at least a portion of the first shoulder 202 and at least a portion of the first wedge member 48 can be aligned with each other along the longitudinal direction L. The first gap 204 has a length that extends from the first wedge member 48 to the first shoulder 202 along the longitudinal direction. Thus, the length of the first gap 204 decreases as the first wedge member 48 moves in the direction of expansion. The first stop member 198 can attached to the actuator shaft 54 in the first gap 204 such that a first or abutment surface 230 of the first stop member 198 faces the first shoulder 202 and a second or stop surface 232 of the first stop member 198 opposite the abutment surface 230 of the first stop member 198 faces the first wedge member 48. The first stop member 198 has a length that extends from the abutment surface 230 of the first stop member 198 to the stop surface 232 of the first stop member 198. It should be appreciated that the length of the first stop member 198 can determine the expansion position of the first wedge member 48.

The actuator shaft 54 can define a second shoulder 206 that is spaced from the first wedge member 48 in the expansion direction. Thus, in one example, the second shoulder 206 can be disposed between the second wedge member 50 and the recess 58 of the actuator shaft 54. Further, the first and second shoulders 202 and 206 can be disposed between the first and second wedge members 48 and 50. A second gap 208 is defined between the second shoulder 206 and the second wedge member 50 along the longitudinal direction. Further, at least a portion of the second shoulder 206 and at least a portion of the second wedge member 50 can be aligned with each other along the longitudinal direction L. The second gap 208 has a length that extends from the second wedge member 50 to the second shoulder 206 along the longitudinal direction. L. Thus, the length of the second gap 208 decreases as the second wedge member 50 moves in the direction of expansion. The second stop member 200 can attached to the actuator shaft 54 in the second gap 208 such that a first or abutment surface 230 of the second stop member 200 faces the second shoulder 206 and a second or stop surface 232 of the second stop member 200 opposite the abutment surface 230 of the second stop member 200 faces the second wedge member 50. The second stop member 200 has a length that extends from the abutment surface 230 of the second stop member 200 to the stop surface 232 of the second stop member 200. It should be appreciated that the length of the second stop member 200 can determine the expansion position of the first wedge member 50.

In one example, when the implant is in the collapsed configuration or in an intermediate expanded configuration that is expanded from the collapsed configuration but collapsed with respect to the expanded configuration, the length of the first wedge member 48 is less than the length of the first gap 204. Accordingly, the first stop member 198 does not prevent the first wedge member 48 from moving in the direction of expansion. Further, when the implant is in the collapsed configuration or in an intermediate expanded configuration that is expanded from the collapsed configuration but collapsed with respect to the expanded configuration, the length of the second wedge member 50 is less than the length of the second gap 208. Accordingly, the second stop member 200 does not prevent the second wedge member 50 from moving in the direction of expansion. The length of the first wedge member 48 can be equal to the length of the second wedge member 50. Further, the length of the first wedge member 48 can be substantially equal to the length of the first unthreaded portion 73. Similarly, the length of the second wedge member 50 can be substantially equal to the length of the second unthreaded portion 75.

The first stop member 198 can be inserted onto the actuator shaft 54 at a first attachment region 212. The first attachment region 212 can be defined by the outer surface of the actuator shaft 54 at the first gap 204 that is defined between the first shoulder 202 and the first wedge member 48 along the longitudinal direction L when the first wedge member 48 is attached to the actuator shaft 54. Thus, the first attachment region 212 can be defined by the first unthreaded portion 73. Similarly, the second stop member 200 can be inserted onto the actuator shaft 54 at a second attachment region 214. The second attachment region 214 can be defined by the outer surface of the actuator shaft 54 at the second gap 208 that is defined between the second shoulder 206 and the second wedge member 50 along the longitudinal direction L when the second wedge member 50 is attached to the actuator shaft 54. Thus, the second attachment region 214 can be defined by the second unthreaded portion 75.

Referring now to FIG. 20, the actuator shaft 54 can include the first shoulder 202 that extends from the first unthreaded portion 73 to the first flange 56. The first shoulder 202 can define an outer diameter that is greater than the outer diameter of the first unthreaded portion 73. Further, the first flange 56a can have an outer diameter that is greater than the outer diameter of the first shoulder 202. Alternatively, the first flange 56a can have the same outer diameter as the outer diameter of the first shoulder 202. In this regard, it should be appreciated that the first shoulder 202 can alternatively define the first flange 56.

Referring now to FIG. 20, the actuator shaft 54 can include the first shoulder 202 that extends from the first unthreaded portion 73 to the first flange 56a. The first shoulder 202 can define an outer diameter that is greater than the outer diameter of the first unthreaded portion 73. Further, the first flange 56a can have an outer diameter that is greater than the outer diameter of the first shoulder 202. Alternatively, the first flange 56a can have the same outer diameter as the outer diameter of the first shoulder 202. In this regard, it should be appreciated that the first shoulder can alternatively define the first flange 56a. The first shoulder 202 can define an outer surface that is smooth or unthreaded. The outer surface of the first shoulder 202 can define the outer diameter of the first shoulder 202.

Similarly, the actuator shaft 54 can include the second shoulder 206 that extends from the second unthreaded portion 75 to the second flange 56b. The second shoulder 206 can define an outer diameter that is greater than the outer diameter of the second unthreaded portion 75. Further, the second flange 56b can have an outer diameter that is greater than the outer diameter of the second shoulder 206. Alternatively, the second flange 56b can have the same outer diameter as the outer diameter of the second shoulder 206. In this regard, it should be appreciated that the second shoulder 206 can alternatively define the second flange 56b. The second shoulder 206 can define an outer surface that is smooth or unthreaded. The outer surface of the second shoulder 206 can define the outer diameter of the second shoulder 206.

Referring now to FIGS. 21A-21B, the first and second stop members 198 and 200 will now be described with reference to the first stop member 198. In this regard, it should be appreciated that the first and second stop members 198 and 200 can be constructed identical to each other. Thus, the description of the first stop member 198 can apply with equal force and effect to the second stop member 200, unless otherwise indicated.

The first stop member 198 can be configured as a clip 210 that can be configured to be clipped onto the actuator shaft 54 in the manner described above. In particular, the first stop member 198 can define a body 216 having at least a portion that is radially expandable. Thus, at least a portion of the body 216 can be flexible and resilient. The body 216 can extend generally circumferentially from a first circumferential end 218 to a second circumferential end 220. The first circumferential end 218 can be spaced from the second circumferential end 220 so as to define a circumferential void 222 between the first circumferential end 218 and the second circumferential end 220. A straight linear distance from the first circumferential end 218 to the second circumferential end 220 can be less than the diameter of the actuator shaft 54 at the unthreaded portion 73 when the first stop member is in a neutral relaxed configuration. It is recognized that the term “circumferential” and derivatives thereof as used herein can connote a circular shape, but is not intended to be limited to a circular shape. Thus, the locking members 198 and 200 can be circular in cross-section, or can define any suitable alternative shape as desired while still defining circumferential ends 218 and 220.

The first stop member 198 can define an inner end 224 that is configured to face the actuator shaft 54, and an outer end 226 that is opposite the inner end 224. The inner end 224 can define at least one contact surface 228 such as a plurality of contact surfaces 228 that are configured to contact the actuator shaft 54 when the first stop member 198 is coupled to the actuator shaft 54. The contact surfaces 228 can define a radius of curvature in a plane that is oriented perpendicular to the expansion direction. The radius of curvature can be substantially equal to the radius of curvature of the outer surface of the actuation shaft at the unthreaded portion 73. Further, the contact surfaces 228 can be spaced from each other by respective recessed surfaces 231 that face the actuator shaft 54 and are spaced from the actuator shaft 54 when the first stop member 198 is coupled to the actuator shaft 54.

Referring now to FIGS. 4A-5B and 22A-B, assembly of the implant 20 will now be described. In particular, the first and second wedge members 48 and 50 are attached to the upper and lower endplates 44 and 46. In particular, to attach the first wedge member 48 to the upper endplate 44, the first and second upper projections 108 of the first wedge member 48 are inserted into the first and second channels 112, respectively, of the upper endplate 44. Further, to attach the first wedge member 48 to the lower endplate 46, the first and second lower projections 110 of the first wedge member 48 are inserted into the first and second channels 114, respectively, of the lower endplate 46. To attach the second wedge member 50 to the upper endplate 44, the first and second upper projections 124 of the second wedge member 50 are inserted into the first and second channels 128, respectively, of the upper endplate 44. Further, to attach the second wedge member 50 to the lower endplate 46, the first and second lower projections 126 of the second wedge member 50 are inserted into the first and second channels 130, respectively, of the lower endplate 46.

Further, the first and second wedge members 48 and 50 can be threadedly attached to the actuator shaft 54, as shown in FIG. 19A. The first and second wedge members 48 and 50 can threadedly attach to the actuator shaft 54 prior to attaching the first and second wedge members 48 and 50 to the upper and lower endplates 44 and 46. Alternatively, the first and second wedge members 48 and 50 can threadedly attach to the actuator shaft 54 after attaching the first and second wedge members 48 and 50 to the upper and lower endplates 44 and 46.

Next, with specific reference to FIGS. 22A-22B, the first and second stop members 198 and 200 can be attached to the actuator shaft 54 as described above. In particular, the first and second stop members 198 and 200 can be attached to the actuator shaft 54 when the intervertebral implant 20 is in the collapsed position. Alternatively, the first and second stop members 198 and 200 can be attached to the actuator shaft 54 when the intervertebral implant 20 is in a position collapsed with respect to the expanded configuration.

For instance, the first stop member 198 can be inserted through the window 92 of the upper endplate 44 or lower endplate 46 and attached to the actuator shaft 54 at the first attachment region 212. For instance, the first stop member 198 can be attached to the first unthreaded portion 73 of the actuator shaft 54. In particular, the circumferential void 222 can be aligned with the actuator shaft 54. Next, the first and second circumferential ends 218 and 220 of the first stop member 198 can be moved away from each other. For instance, the first and second circumferential ends 218 and 220 can be forced apart from each other as they ride over the actuator shaft 54. Because the first stop member 198 can be flexible and resilient, the first and second ends 198 and 200 can flex from the neutral or relaxed position to a second position sized to receive the actuator shaft 54 therebetween. Once the actuator shaft 54 has been received in the first stop member 198, the first and second circumferential ends 218 and 220 can be biased toward the neutral position, such that the contact surfaces 228 apply a force to the actuator shaft 54 that captures the actuator shaft 54 in the first stop member 198.

The at least one contact surface 228 can therefore apply a retention force against the actuator shaft 54 that resists sliding of the first stop member 198 along the actuator shaft 54. Alternatively, the first stop member 198 can be slidable along the actuator shaft 54, it being appreciated that the first stop member 198 will ultimately be captured between the first wedge member 48 and the first shoulder 202. As an alternative to the first locking member 198 being resilient and flexible, one or both of the first and second ends 198 and 200 can be mechanically movable between an unlocked position whereby the void 222 is sized to receive the actuator shaft 54, and a locked position whereby the actuator shaft 54 is captured in the first stop member 198. As a further alternative, the first locking member 198 can be expanded and moved along the central axis of the actuator shaft 54 to the first attachment location 212, and then can be mechanically or resiliently collapsed so as to attach to the actuator shaft 54 at the first attachment location 212. In this regard, the first locking member 198 can be configured as a fully enclosed annulus. As described above, the second stop member 200 can be attached to the actuator shaft 54 as described above with respect to the first stop member 198, but at the second attachment region 214.

Referring now to FIG. 23, the expansion limiter 129 can be constructed such that the first and second stop members 198 and 200 are urged radially inward against the actuator shaft 54 when the intervertebral implant is in its fully expanded configuration. In particular, the first abutment surfaces 230 can be sloped inwardly toward the actuator shaft 54 as it extends in the expansion direction toward the first shoulder 202. The first shoulder 202 can define a first abutment surface 236 that slopes inwardly toward the actuator shaft 54 as it extends in the expansion direction away from the first stop member 198. The first abutment surface 236 can at least partially or entirely surround the actuator shaft 54. The first abutment surface 236 can be sloped substantially equal to the slope of the abutment surface 230 of the first stop member 198. Thus, the first abutment surface 236 can be in surface contact with the abutment surface 230 of the first stop member 198 when the intervertebral implant 20 is in the fully expanded configuration. It is recognized therefore that as a force is applied to the first stop member 198 in the expansion direction, the sloped first abutment surface 236 will urge the abutment surface 230 of the first stop member 198 against the actuator shaft 54, thereby securing the first stop member 198 against the actuator shaft 54. In particular, the first stop member 198 is captured between the first abutment surface 236 and the actuator shaft 54.

The second shoulder 206 can define a second abutment surface 238 that slopes inwardly toward the actuator shaft 54 as it extends in the expansion direction away from the second stop member 202. The second abutment surface 238 can at least partially or entirely surround the actuator shaft 54. The second abutment surface 238 can be sloped substantially equal to the slope of the abutment surface 230 of the second stop member 200. Thus, the second abutment surface 238 can be in surface contact with the abutment surface 230 of the second stop member 200 when the intervertebral implant 20 is in the fully expanded configuration. It is recognized therefore that as a force is applied to the second stop member 200 in the expansion direction, the sloped second abutment surface 238 will urge the abutment surface 230 of the second stop member 200 against the actuator shaft 54, thereby securing the second stop member 200 against the actuator shaft 54. In particular, the second stop member 200 is captured between the first abutment surface 236 and the actuator shaft 54.

With continuing reference to FIG. 23, the stop surface 232 of the first stop member 198 can be sloped inwardly toward the actuator shaft 54 as it extends in a direction opposite the expansion direction, and thus toward the first wedge member 48. The first wedge member 48 can define a first wedge surface 240 that faces the first stop member 198. The first wedge surface 240 can slope inwardly toward the actuator shaft 54 as it extends in the direction opposite the expansion direction, and thus away from the first stop member 198. The first wedge surface 240 can at least partially or entirely surround the actuator shaft 54. Further, the first wedge surface 240 can define an opening to the first bore 68 of the first wedge member 48. The first wedge surface 240 can be sloped substantially equal to the slope of the stop surface 232 of the first stop member 198. Thus, the first wedge surface 240 can be in surface contact with the stop surface 232 of the first stop member 198 when the intervertebral implant is in the fully expanded configuration. It is recognized therefore that as the first wedge member 48 applies the force to the first stop member 198 in the expansion direction, the sloped first wedge surface 240 will urge the stop surface 232 of the first stop member 198 against the actuator shaft 54, thereby securing the first stop member 198 against the actuator shaft 54. In particular, the first stop member 198 is captured between the first wedge surface 240 and the actuator shaft 54.

The stop surface 232 of the second stop member 200 can be sloped inwardly toward the actuator shaft 54 as it extends in a direction opposite the expansion direction, and thus toward the second wedge member 50. The second wedge member 50 can define a second wedge surface 242 that faces the second stop member 200. The second wedge surface 242 can slope inwardly toward the actuator shaft 54 as it extends in the direction opposite the expansion direction, and thus away from the second stop member 200. The second wedge surface 242 can at least partially or entirely surround the actuator shaft 54. Further, the second wedge surface 242 can be defined by the second wall 71, and can define an opening to the second bore 72 of the second wedge member 50. The second wedge surface 242 can be sloped substantially equal to the slope of the stop surface 232 of the second stop member 200. Thus, the second wedge surface 242 can be in surface contact with the stop surface 232 of the second stop member 200 when the intervertebral implant is in the fully expanded configuration. It is recognized therefore that as the second wedge member 500 applies the force to the second stop member 200 in the expansion direction, the sloped second wedge surface 242 will urge the stop surface 232 of the second stop member 200 against the actuator shaft 54, thereby securing the second stop member 200 against the actuator shaft 54. In particular, the second stop member 200 is captured between the second wedge surface 242 and the actuator shaft 54.

Referring again to FIGS. 19A and 19B, as the first and second wedge members 48 and 50 move in the expansion direction, the first and second wedge members 48 and 50 can urge at least one or both of the first and second endplates 44 and 46 to move away from the other of the first and second endplates 44 and 46. The first and second wedge members 48 and 50 can move in the expansion direction until they abut the respective first and second stop members 198 and 200 while the first and second stop members 198 and 200 abut the first and second shoulders 202 and 206, respectively. Abutment between the first and second wedge members 48 and 50 and the first and second stop members 198 and 200, respectively, prevents subsequent movement of the first and second wedge members 48 and 50 in the direction of expansion. Thus, the actuator shaft 54 is prevented from rotating in the first direction in response to a torsional force applied to the actuator shaft 54 in the first direction. At this point, the intervertebral implant 20 can be said to be in the expanded configuration.

It should be appreciated that abutment between either one of the first and second stop members 198 and 200 and the associated one of the first and second wedge members 48 and 50 can prevent the one of the first and second stop members 198 and 200 from moving in the expansion direction. Further, because each of the first and second stop members 198 and 200 are threadedly coupled to the same actuator shaft, prevention of one of the first and second stop members 198 and 200 from moving in the expansion direction similarly prevents each of the first and second stop members 198 and 200 from moving in the expansion direction. Thus, the expansion limiter 129 can include at least one stop member, which can include one or both of the first and second stop members 198 and 200.

The first and second stop members 198 and 200 can abut the first and second shoulders 202 and 206, respectively, when the first and second wedge members 48 and 50 are in the collapsed position. For instance, the first and second stop members 198 and 200 can be attached to the actuator shaft 54 such that they abut the first and second shoulders 202 and 206, respectively. Thus, when the first and second wedge members 48 and 50 first abut the first and second stop members 198 and 200, respectively, when the first and second wedge members 48 and 50 are in the expansion position. Alternatively, the first and second stop members 198 and 200 can be spaced from the first and second shoulders 202 and 206, respectively, when the first and second wedge members 48 and 50 are in the collapsed position. For instance, the first and second stop members 198 and 200 can be attached to the actuator shaft 54 such that they are spaced from the first and second shoulders 202 and 206 along the collapse direction. Thus, as the first and second wedge members 48 and 50 move in the expansion direction, the first and second wedge members 48 and 50 can abut the first and second stop members 198 and 200, respectively, and urge the first and second stop members 198 and 200 to move in the expansion direction until they abut the first and second shoulders 202 and 206, respectively.

While the first stop member 198 can be attachable to the actuator shaft 54 in one example, the first stop member 198 can alternatively be monolithic with the actuator shaft 54 in another example. Similarly, while the second stop member 200 can be attachable to the actuator shaft 54 in one example, the second stop member 200 can alternatively be monolithic with the actuator shaft 54 in another example. If the first and second stop members 198 and 200 are monolithic with the actuator shaft, then abutment between the first and second wedge members 48 and 50 with the first and second stop members 198 and 200 can prevent further movement of the first and second wedge members 48 and 50 in the expansion direction regardless of whether the first and second stop members 198 and 200 abut the shoulders 202 and 206, respectively. Alternatively still, the first and second stop members 198 and 200 can be attached to the actuator shaft 54 such that the first and second stop members 198 and 200 fixed with respect to movement along the actuator shaft 54 in the expansion direction. Thus, abutment between the first and second wedge members 48 and 50 with the first and second stop members 198 and 200 can prevent further movement of the first and second wedge members 48 and 50 in the expansion direction regardless of whether the first and second stop members 198 and 200 abut the shoulders 202 and 206, respectively.

Although the disclosure has been described in detail, it should be understood that various changes, substitutions, and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present disclosure is not intended to be limited to the particular embodiments described in the specification. As one of ordinary skill in the art will readily appreciate from that processes, machines, manufacture, composition of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present disclosure.

Hunziker, Markus, Gonzalez, Didier

Patent Priority Assignee Title
Patent Priority Assignee Title
10004607, Mar 01 2013 Globus Medical, Inc Articulating expandable intervertebral implant
10058433, Jul 26 2012 DePuy Synthes Products, Inc. Expandable implant
10085843, Feb 14 2003 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
10092417, Feb 07 2014 Globus Medical, Inc. Variable lordosis spacer and related methods of use
10137009, Sep 02 2015 Globus Medical, Inc Expandable intervertebral fusion devices and methods of installation thereof
10143569, Feb 07 2014 Globus Medical, Inc. Variable lordosis spacer and related methods of use
10166117, Jun 28 2017 SPINAL ELEMENTS, INC Intervertebral implant device with lordotic expansion
10219915, May 22 2013 NuVasive, Inc. Expandable fusion implant and related methods
10238500, Jun 27 2002 DePuy Synthes Products, Inc. Intervertebral disc
10265191, Feb 03 2003 Warsaw Orthopedic, Inc. Expanding interbody implant and articulating inserter and method
10307254, Jul 05 2011 CORELINK, LLC Bone structural device
10363142, Dec 11 2014 K2M, INC Expandable spinal implants
10376372, Feb 14 2003 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
10398563, May 08 2017 MEDOS INTERNATIONAL SARL Expandable cage
10398566, Dec 07 2006 DePuy Synthes Products, Inc. Intervertebral implant
10405986, Feb 14 2003 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
10405989, Jun 24 2010 DePuy Synthes Products, Inc. Lateral spondylolisthesis reduction cage
10420651, Feb 14 2003 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
10426632, Mar 13 2013 Life Spine, Inc Expandable spinal interbody assembly
10433971, Feb 14 2003 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
10433974, Jun 30 2003 DePuy Synthes Products, Inc. Intervertebral implant with conformable endplate
10433977, Jan 17 2008 DePuy Synthes Products, Inc. Expandable intervertebral implant and associated method of manufacturing the same
10449056, Apr 05 2008 DePuy Synthes Products, Inc. Expandable intervertebral implant
10449058, Jan 17 2008 DePuy Synthes Products, Inc. Expandable intervertebral implant and associated method of manufacturing the same
10470894, Apr 06 2017 Warsaw Orthopedic, Inc. Expanding interbody implant and articulating inserter and methods of use
10492918, Feb 14 2003 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
10492924, Aug 09 2013 NuVasive, Inc. Lordotic expandable interbody implant
10500062, Dec 10 2009 DePuy Synthes Products, Inc. Bellows-like expandable interbody fusion cage
10512489, Mar 06 2004 DePuy Synthes Products, Inc. Dynamized interspinal implant
10537436, Nov 01 2016 DEPUY SYNTHES PRODUCTS, INC Curved expandable cage
10548741, Jun 29 2010 DePuy Synthes Products, Inc. Distractible intervertebral implant
10555817, Feb 14 2003 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
10575959, Feb 14 2003 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
10583013, Feb 14 2003 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
10583015, Dec 07 2006 DePuy Synthes Products, Inc. Intervertebral implant
10639164, Feb 14 2003 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
10639166, Feb 07 2014 Globus Medical In. Variable lordosis spacer and related methods of use
10682241, Sep 03 2010 Globus Medical, Inc. Expandable fusion device and method of installation thereof
10743914, Mar 10 2011 DePuy Snythes Products, Inc. Method and apparatus for minimally invasive insertion of intervertebral implants
10758371, Jun 29 2016 Globus Medical, Inc. Expandable fusion device and method of installation thereof
10842644, Sep 03 2010 Globus Medical, Inc. Expandable fusion device and method of installation thereof
10888433, Dec 14 2016 DEPUY SYNTHES PRODUCTS, INC Intervertebral implant inserter and related methods
10966840, Jun 24 2010 DePuy Synthes Products, Inc. Enhanced cage insertion assembly
10973652, Jun 26 2007 DePuy Synthes Products, Inc. Highly lordosed fusion cage
11051954, Sep 21 2004 Stout Medical Group, L.P. Expandable support device and method of use
11103362, Mar 13 2013 LIFE SPINE, INC. Expandable implant assembly
1802560,
1924695,
1965653,
2077804,
2115250,
2121193,
2170111,
2173655,
2229024,
2243717,
2381050,
2388056,
2485531,
2489870,
2570465,
2677369,
2706701,
2710277,
2826532,
2900305,
2977315,
3091237,
3112743,
3115804,
3228828,
3312139,
3486505,
3489143,
3648294,
3698391,
3717655,
3760802,
3800788,
3805775,
3811449,
3842825,
3848601,
3855638,
3867728,
3875595,
3889665,
3964480, Oct 03 1974 Apparatus for sterotaxic lateral extradural disc puncture
3986504, Oct 25 1974 Internal fixation device for securing two fractured bone joints together
4013071, Nov 11 1974 Fasteners particularly useful as orthopedic screws
4052988, Jan 12 1976 Ethicon, Inc. Synthetic absorbable surgical devices of poly-dioxanone
4091806, Jan 13 1976 Intramedullary compression nail for the treatment of bone fractures
4105034, Jun 10 1977 Ethicon, Inc. Poly(alkylene oxalate) absorbable coating for sutures
4130639, Sep 28 1977 Ethicon, Inc. Absorbable pharmaceutical compositions based on isomorphic copolyoxalates
4140678, Jun 13 1977 Ethicon, Inc. Synthetic absorbable surgical devices of poly(alkylene oxalates)
4141087, Jan 19 1977 Ethicon, Inc. Isomorphic copolyoxalates and sutures thereof
4175555, Feb 24 1977 Interfix Limited Bone screw
4205399, Jun 13 1977 Ethicon, Inc. Synthetic absorbable surgical devices of poly(alkylene oxalates)
4236512, Feb 12 1978 Connector for fractured bones
4249435, Jul 30 1979 Siemens Nixdorf Informationssysteme AG Workpiece turning hand tool with torque control
4262665, Jun 27 1979 Intramedullary compression device
4262676, Aug 24 1979 Baxter International Inc Biopsy needle having integral stylet locking device
4274163, Jul 16 1979 The Regents of the University of California Prosthetic fixation technique
4275717, Jul 27 1979 Zimmer USA, Inc. Intramedullary fixation device for fractured tubular bones
4312337, Sep 08 1980 Cannula and drill guide apparatus
4312353, May 09 1980 Mayfield Education and Research Fund Method of creating and enlarging an opening in the brain
4313434, Oct 17 1980 Fracture fixation
4341206, Dec 19 1978 Synthes USA, LLC Device for producing a hole in a bone
4349921, Jun 16 1980 Intervertebral disc prosthesis
4350151, Mar 12 1981 COOPERSURGICAL, INC Expanding dilator
4351069, Jun 29 1979 AMOCO CORPORATION, A CORP OF INDIANA Prosthetic devices having sintered thermoplastic coatings with a porosity gradient
4352883, Oct 23 1978 REPLIGEN CORPORATION A CORP OF DELAWARE Encapsulation of biological material
4369790, Mar 05 1981 Catheter
4399814, Apr 27 1981 Massachusetts Institute of Technology Method and apparatus for pressure-coated bones
4401112, Oct 02 1981 Spinal fixator
4401433, Jun 13 1980 LUTHER MEDICAL PRODUCTS, INC Apparatus for advancing oversized catheter through cannula, and the like
4409974, Jun 29 1981 Bone-fixating surgical implant device
4440921, Jun 21 1982 Research Corporation Coupling of polyorganophosphazenes to carboxylic acid
4449532, Jul 08 1980 Dilator to facilitate endoscope insertion into the body
4451256, May 06 1981 B BRAUN-SSC AG Catheter set
4456005, Sep 30 1982 External compression bone fixation device
4462394, May 03 1982 Stryker Technologies Corporation Intramedullary canal seal for cement pressurization
4463753, Jan 04 1980 Compression bone screw
4466435, Sep 04 1981 Stryker Technologies Corporation Bone cement nozzle and method
4467479, Feb 05 1982 Method of surgically repairing an injured human joint and a prosthetic device therefor
4488543, Jan 19 1982 TORNIER S A FRANCE; BUTEL, JEAN Device for osteosynthesis of fractures of the extremities of the femur
4488549, Aug 17 1982 Benoist Girard SAS Pressurization of cement in bones
4494535, Jun 24 1981 Hip nail
4495174, Jun 21 1982 Research Corporation Anesthetic polyorganophosphazenes
4532660, May 17 1982 British Technology Group Limited Endoprosthetic bone joint devices
4537185, Jun 10 1983 Denis P., Stednitz Cannulated fixation screw
4538612, Aug 29 1983 Conmed Corporation Skin preparation method and product
4542539, Mar 12 1982 ZIMMER TECHNOLOGY, INC Surgical implant having a graded porous coating
4545374, Sep 03 1982 Method and instruments for performing a percutaneous lumbar diskectomy
4562598, Apr 01 1982 KRANZ, CURT Joint prosthesis
4573448, Oct 05 1983 HOWMEDICA OSTEONICS CORP Method for decompressing herniated intervertebral discs
4595006, Aug 16 1982 Apparatus for cemented implantation of prostheses
4601710, Aug 24 1983 United States Surgical Corporation Trocar assembly
4625722, May 03 1985 Bone cement system and method
4625725, Aug 30 1983 SNOWDEN PENCER, INC Surgical rasp and method of manufacture
4627434, May 03 1985 Stryker Technologies Corporation Bone cement system and method
4628945, Jan 25 1985 DJO, LLC Inflatable ankle brace with porous compressible filler
4629450, May 09 1984 Terumo Corporation Catheter introducing instrument
4630616, Apr 17 1981 MANAN ACQUISITION CORP , A DE CORP Bone marrow needle
4632101, Jan 31 1985 Orthopedic fastener
4640271, Nov 07 1985 ZIMMER TECHNOLOGY, INC Bone screw
4641640, Jan 18 1982 Compression screw assembly
4645503, Aug 27 1985 LIFE CORE BIOMEDICAL, INC Moldable bone-implant material
4646741, Nov 09 1984 Ethicon, Inc. Surgical fastener made from polymeric blends
4651717, Apr 04 1985 JACK FISHER, M D Multiple envelope tissue expander device
4653489, Apr 02 1984 Fenestrated hip screw and method of augmented fixation
4665906, Oct 14 1983 Medtronic, Inc Medical devices incorporating sim alloy elements
4667663, Jul 13 1983 Intramedullary nail used to unite separated fragments of fractured long bone
4686973, Oct 12 1984 Dow Corning Corporation Method of making an intramedullary bone plug and bone plug made thereby
4686984, Mar 15 1984 Richard Wolf GmbH Catheter for widening a puncture channel
4688561, Sep 17 1985 REESE, H WILLIAM; H WILLIAM REESE, D P M Bone handling apparatus and method
4697584, Oct 12 1984 HAYNES, DARREL W Device and method for plugging an intramedullary bone canal
4706670, Nov 26 1985 MEADOX MEDICALS, INC A CORP OF NEW JERSEY Dilatation catheter
4714469, Feb 26 1987 PFIZER HOSPITAL PRODUCTS GROUP, INC Spinal implant
4714478, Jan 17 1986 Prosthesis, method, and tool for installing same
4721103, Jan 31 1985 Orthopedic device
4723544, Jul 09 1986 Hemispherical vectoring needle guide for discolysis
4743256, Oct 04 1985 DEPUY ACROMED, INC Surgical prosthetic implant facilitating vertebral interbody fusion and method
4743257, May 08 1985 Materials Consultants Oy Material for osteosynthesis devices
4759766, Sep 04 1984 WALDEMAR LINK GMBH & CO Intervertebral disc endoprosthesis
4760843, Jul 12 1985 Connector for fractured bones
4772287, Aug 20 1987 RAYMEDICA, LLC Prosthetic disc and method of implanting
4790304, Jan 20 1984 Self-locking pin device particularly useful for internally fixing bone fractures
4790817, Mar 28 1985 Luther Medical Products, Inc. Assembly of stylet and catheter, and needle and catheter
4796612, Aug 06 1986 REESE, H WILLIAM; H WILLIAM REESE, D P M Bone clamp and method
4802479, Oct 31 1986 C R BARD, INC Hand-held instrument for implanting, dispensing, and inflating an inflatable membrane
4815909, Nov 19 1986 Wood screw and method for making same
4827917, Dec 30 1986 Richards Medical Company Fermoral fracture device
4834069, Sep 03 1987 Kabushiki Kaisha Machida Seisakusho Endoscope with improved inserting portion
4834757, Oct 04 1985 DEPUY ACROMED, INC Prosthetic implant
4838282, Feb 26 1987 MANAN ACQUISITION CORP , A DE CORP Bone biopsy needle assembly
4858601, May 27 1988 DEPUY INC Adjustable compression bone screw
4862891, Mar 14 1988 FARRELL, EDWARD M Device for sequential percutaneous dilation
4863476, Aug 29 1986 ZIMMER TECHNOLOGY, INC Spinal implant
4870153, Oct 22 1987 Amoco Corporation Novel poly(aryl ether) polymers
4871366, May 27 1986 Clemson University Soft tissue implants for promoting tissue adhesion to same
4873976, Feb 28 1984 Surgical fasteners and method
4878915, Oct 04 1985 DEPUY ACROMED, INC Surgical prosthetic implant facilitating vertebral interbody fusion
4880622, May 20 1986 RESEARCH CORPORATION TECHNOLOGIES, INC ; PENNSYLVANIA RESEARCH CORPORATION, THE Water-soluble phosphazene polymers having pharmacological applications
4888022, Dec 30 1985 Endoprosthesis
4888024, Nov 08 1985 Prosthetic device and method of fixation within the medullary cavity of bones
4889119, Jul 17 1985 Ethicon, Inc Surgical fastener made from glycolide-rich polymer blends
4892550, Dec 30 1985 Endoprosthesis device and method
4896662, Nov 30 1987 Stryker Technologies Corporation Sealing device for introducing cement into a bone canal
4898186, Sep 11 1986 Gunze Limited Osteosynthetic pin
4898577, Sep 28 1988 BADGER, RODNEY S Guiding cathether with controllable distal tip
4903692, May 08 1989 REESE, H WILLIAM; H WILLIAM REESE, D P M Bone clamp installation tool
4904261, Aug 06 1987 Surgicraft Limited Spinal implants
4911718, Jun 10 1988 UNIVERSITY OF MEDICINE AND DENTISTRY OF NEW JERSEY, THE Functional and biocompatible intervertebral disc spacer
4917554, Apr 09 1988 Cryotherm Limited Screw unit to join semi-rigid mats together
4932969, Jan 08 1987 Zimmer GmbH Joint endoprosthesis
4940467, Feb 03 1988 Variable length fixation device
4941466, Apr 13 1987 ROMANO, DAVID Curved bore drilling method and apparatus
4946378, Nov 24 1987 ASAHI KOGAKU KOGYO KABUSHIKI KAISHA, A CORP OF JAPAN Artificial intervertebral disc
4959064, Oct 07 1988 DE PUY, INC Dynamic tension bone screw
4961740, Oct 17 1988 HOWMEDICA OSTEONICS CORP V-thread fusion cage and method of fusing a bone joint
4963144, Mar 17 1989 Bone screw fixation assembly, bone screw therefor and method of fixation
4966587, Apr 29 1988 Medical intromission kit
4968317, Jan 13 1987 Biocon Oy Surgical materials and devices
4969888, Feb 09 1989 Kyphon SARL Surgical protocol for fixation of osteoporotic bone using inflatable device
4978334, Sep 08 1988 LUTHER MEDICAL PRODUCTS, INC ; TOYE, FREDERIC J M D Apparatus and method for providing passage into body viscus
4978349, Aug 03 1989 Synthes USA, LLC Fixation plate
4981482, Aug 20 1987 Device for forming an inserting hole for an endoscope
4988351, Jan 06 1989 Concept, Inc. Washer for use with cancellous screw for attaching soft tissue to bone
4994027, Jun 08 1988 Percutaneous femoral bypass system
4995200, Feb 27 1990 Sanding tool
5002557, Apr 06 1989 Laparoscopic cannula
5006121, Apr 23 1990 BHC ENGINEERING LIMITED PARTNERSHIP Bone broaches and methods of manufacturing thereof
5011484, Oct 10 1989 Surgical implant for restricting the relative movement of vertebrae
5013315, Jan 12 1985 MINNESOTA MINING AND MANUFACTURING COMPANY A CORP OF DE Semiabsorbable bone plate spacer
5013316, Mar 26 1990 GCL, L C ; MITEK SURGICAL PRODUCTS, INC Soft tissue anchor system
5015247, Jun 13 1988 Warsaw Orthopedic, Inc Threaded spinal implant
5015255, May 10 1989 ZIMMER SPINE, INC Spinal stabilization method
5019082, Jan 08 1987 Sulzer Brothers Limited Rasp-like reaming instrument
5030233, Oct 07 1984 Porous flexible metal fiber material for surgical implantation
5051189, May 30 1986 FLORIDA RESEARCH FOUNDATION, INC , UNIVERSITY OF Method of removing an unwanted impurity from an aqueous material
5053035, May 24 1990 Flexible intramedullary fixation rod
5055104, Oct 17 1988 HOWMEDICA OSTEONICS CORP Surgically implanting threaded fusion cages between adjacent low-back vertebrae by an anterior approach
5059193, Nov 20 1989 ZIMMER SPINE, INC Expandable spinal implant and surgical method
5062849, Mar 21 1989 ZIMMER TECHNOLOGY, INC Joint for coupling two elongated prosthesis sections
5071435, Dec 20 1990 TOWNSLEY, NORTON R Extendible bone prosthesis
5071437, Feb 15 1989 DEPUY ACROMED, INC Artificial disc
5080662, Nov 27 1989 Spinal stereotaxic device and method
5084043, Jan 12 1990 LASERSCOPE, A CORP OF CA Method for performing a percutaneous diskectomy using a laser
5092891, Mar 08 1990 Cement plug for the medullary canal of a bone and coacting tool for installing same
5098241, Feb 05 1991 XYZYX INTERNATIONAL CORP , 11448 PAGEMILL RD , DALLAS, TEXAS 75243 A CORP OF TEXAS Variable length telescopic connector and method for use
5098433, Apr 12 1989 Winged compression bolt orthopedic fastener
5098435, Nov 21 1990 ALPHATEC MANUFACTURING, INC , A CORP OF CA Cannula
5102413, Nov 14 1990 Inflatable bone fixation device
5108404, Feb 09 1989 Kyphon SARL Surgical protocol for fixation of bone using inflatable device
5114407, Aug 30 1990 Ethicon, Inc. Safety mechanism for trocar
5116336, Mar 19 1990 Synthes USA, LLC Osteosynthetic anchor bolt
5120171, Nov 27 1990 YOUNGWOOD MEDICAL SPECIALTIES, INC Bone screw with improved threads
5122130, Mar 23 1988 Waldemar Link GmbH & Co. Forceps for inserting intervertebral device
5122133, Oct 26 1990 Smith & Nephew Richards Inc. Compression screw for a joint endoprosthesis
5122141, Aug 30 1990 ZIMMER TECHNOLOGY, INC Modular intramedullary nail
5123926, Feb 22 1991 Perumala Corporation Artificial spinal prosthesis
5133719, Jun 27 1991 Disk plow and methods therefor
5133755, Jan 28 1986 Kensey Nash Corporation Method and apparatus for diodegradable, osteogenic, bone graft substitute device
5134477, Dec 11 1990 American Telephone and Telegraph Company HDTV receiver
5139486, Jan 02 1991 MOSS TUBES, INC Dilator/introducer for percutaneous gastrostomy
5147366, Mar 01 1990 Stryker Technologies Corporation Pressurization of bone cement surrounding an endoprosthesis
5158543, Oct 30 1990 Laparoscopic surgical system and method
5163939, Jun 27 1991 Disk flow and methods therefor
5163989, Aug 27 1990 Advanced Cardiovascular Systems, Inc. Method for forming a balloon mold and the use of such mold
5167663, Dec 30 1986 Smith & Nephew Richards Inc. Femoral fracture device
5167664, Aug 26 1991 ZIMMER TECHNOLOGY, INC Ratcheting bone screw
5169400, Apr 02 1988 Aesculap AG Bone screw
5169402, Oct 08 1988 Chas. F. Thackray Ltd. Surgical instrument
5171278, Feb 22 1991 Perumala Corporation Middle expandable intervertebral disk implants
5171279, Mar 17 1992 SDGI Holdings, Inc Method for subcutaneous suprafascial pedicular internal fixation
5171280, Apr 20 1990 Zimmer GmbH Intervertebral prosthesis
5176651, Apr 01 1991 Tyco Healthcare Group LP Combination surgical trocar housing and selective reducer sleeve assembly
5176683, Apr 22 1991 Biomet Manufacturing Corp Prosthesis press and method of using the same
5176692, Dec 09 1991 Method and surgical instrument for repairing hernia
5176697, Apr 16 1989 Laparoscopic cannula
5178501, Oct 29 1991 Axially adjustable screw anchor
5183052, Nov 07 1990 ARLANDA MEDICINSKA INSTRUMENT COMPANY AB Automatic biopsy instrument with cutting cannula
5183464, May 17 1991 Tyco Healthcare Group LP Radially expandable dilator
5188118, Nov 07 1990 ARLANDA MEDICINSKA INSTRUMENT COMPANY AB Automatic biopsy instrument with independently actuated stylet and cannula
5192327, Mar 22 1991 DEPUY ACROMED, INC Surgical prosthetic implant for vertebrae
5195506, Oct 18 1991 JAKOUBEK-MEDIZINTECHNIK GMBH Surgical retractor for puncture operation
5201742, Apr 16 1991 Support jig for a surgical instrument
5217462, Mar 05 1991 HOWMEDICA OSTEONICS CORP Screw and driver
5217475, Oct 31 1991 Tongue scrapers
5217486, Feb 18 1992 MITEK SURGICAL PRODUCTS, INC Suture anchor and installation tool
5224952, Jul 06 1988 Ethicon, Inc. Safety trocar
5228441, Feb 15 1991 BIOCARDIA, INC Torquable catheter and method
5234431, Apr 03 1991 Waldemar Link GmbH & Co. Bone plate arrangement
5241972, May 03 1991 Laser Spine Institute, LLC Method for debulking tissue to remove pressure on a nerve
5242410, Apr 15 1991 University of Florida Wireless high flow intravascular sheath introducer and method
5242447, Feb 06 1992 HOWMEDICA OSTEONICS CORP Pin with tapered root diameter
5242448, Aug 01 1991 Flexmedics Corporation Bone probe
5242879, Dec 13 1990 Mitsubishi Gas Chemical Company, Inc. Active carbon materials, process for the preparation thereof and the use thereof
5246441, Sep 08 1989 Linvatec Corporation Bioabsorbable tack for joining bodily tissue
5250049, Jan 10 1992 Bone and tissue connectors
5250061, Sep 08 1988 Codman & Shurtleff, Inc Ring currette
5257632, Sep 09 1992 Symbiosis Corporation Coaxial bone marrow biopsy coring and aspirating needle assembly and method of use thereof
5263953, Dec 31 1991 ZIMMER SPINE, INC Apparatus and system for fusing bone joints
5269797, Sep 12 1991 AOB PROPERTIES LIMITED PARTNERSHIP; AOB PROPERTIES, LIMITED, PARTNERSHIP Cervical discectomy instruments
5280782, Feb 11 1992 WILK PATENT DEVELOPMENT CORPOERTION Variable length laparoscopic retractor and associated method of use
5285795, Sep 12 1991 Clarus Medical, LLC Percutaneous discectomy system having a bendable discectomy probe and a steerable cannula
5286001, Nov 15 1990 RAFELD KUNSTSOFFTECHNIK GMBH U CO KG Plumbing and heating pipe system for water supply purposes, made either completely or mainly of plastic material, especially of polypropylene
5290243, Jul 16 1992 TECHNALYTICS, INC Trocar system
5290312, Sep 03 1991 Alphatec Spine, Inc Artificial vertebral body
5300074, Dec 17 1990 Synthes USA, LLC Two-part angle plate
5303718, Jan 15 1992 Method and device for the osteosynthesis of bones
5304142, Aug 04 1992 Greatbatch Ltd Dilator - Introducer locking hub and sheath valve apparatus
5306307, Jul 22 1991 Zimmer Dental, Inc Spinal disk implant
5306308, Oct 23 1989 Intervertebral implant
5306309, May 04 1992 Zimmer Dental, Inc Spinal disk implant and implantation kit
5306310, Aug 27 1991 SDGI Holdings, Inc Vertebral prosthesis
5308327, Nov 25 1991 Conmed Corporation Self-deployed inflatable retractor
5308352, Nov 17 1989 Stereotactic device
5312410, Dec 07 1992 SDGI Holdings, Inc Surgical cable tensioner
5312417, Jul 29 1992 Laparoscopic cannula assembly and associated method
5314477, Mar 07 1990 SPINE SOLUTIONS, INC Prosthesis for intervertebral discs and instruments for implanting it
5320644, Aug 30 1991 Zimmer GmbH Intervertebral disk prosthesis
5322505, Feb 07 1990 Smith & Nephew, Inc Surgical instrument
5324261, Mar 19 1992 Medtronic, Inc. Drug delivery balloon catheter with line of weakness
5330429, Sep 05 1989 Toray Industries, Inc. Catheter with a balloon reinforced with composite yarn
5331975, Mar 02 1990 Medtronic Spine LLC Fluid operated retractors
5334184, Jun 30 1992 Apparatus for intramedullary fixation broken bones
5334204, Aug 03 1992 BIOMET C V Fixation screw
5342365, Jul 19 1993 Padgett Instruments, Inc. Surgical rasp
5342382, Jan 15 1991 Ethicon, Inc. Surgical trocar
5344252, Feb 12 1992 Key for coupling driving and driven members together
5361752, May 29 1991 TYCO HEALTHCARE GROUP AG; Covidien AG Retraction apparatus and methods for endoscopic surgery
5364398, Jun 23 1986 HOWMEDICA OSTEONICS CORP Modular femoral fixation system
5370646, Nov 16 1992 REESE, H WILLIAM; H WILLIAM REESE, D P M Bone clamp and installation tool
5370647, Jan 23 1991 SCHULTZ, LEONARD S Tissue and organ extractor
5370661, Nov 06 1990 Method and apparatus for re-approximating tissue
5370697, Apr 21 1992 Sulzer Medizinaltechnik AG Artificial intervertebral disk member
5372660, Aug 26 1993 HOWMEDICA OSTEONICS CORP Surface and near surface hardened medical implants
5374267, Feb 17 1992 ACROMED B V Device for fixing at least a part of the human cervical and/or thoracic vertebral column
5382248, Sep 10 1992 JACOBSON, ROBERT E ; MIRSON, BRIAN System and method for stabilizing bone segments
5383932, Apr 27 1993 DePuy Orthopaedics, Inc Absorbable medullary plug
5385151, Sep 09 1992 Symbiosis Corporation Coaxial bone marrow biopsy needle assembly
5387213, Feb 05 1991 SCIENCE ET MEDECINE Osseous surgical implant particularly for an intervertebral stabilizer
5387215, Feb 12 1992 SIERRA SURGICAL, INC , A CORP OF CA Surgical instrument for cutting hard tissue and method of use
5390683, Feb 22 1991 Perumala Corporation Spinal implantation methods utilizing a middle expandable implant
5395317, Oct 30 1991 HOWMEDICA OSTEONICS CORP Unilateral biportal percutaneous surgical procedure
5395371, Jul 15 1991 SDGI Holdings, Inc Spinal fixation system
5397364, Oct 12 1993 SDGI Holdings, Inc Anterior interbody fusion device
5401269, Mar 13 1992 Waldemar Link GmbH & Co Intervertebral disc endoprosthesis
5407430, Mar 21 1994 THINQ TANQ, INC Intravenous catheter
5410016, Oct 15 1990 BOARD OF REGENTS UNIVERSITY OF TEXAS SYSTEM, THE Photopolymerizable biodegradable hydrogels as tissue contacting materials and controlled-release carriers
5415661, Mar 24 1993 University of Miami Implantable spinal assist device
5423816, Jul 29 1993 Intervertebral locking device
5423817, Jul 29 1993 Intervertebral fusing device
5423850, Oct 01 1993 Medtronic Spine LLC Balloon compressor for internal fixation of bone fractures
5424773, Jan 29 1993 Kawai Musical Inst. Mfg. Co., Ltd. Apparatus and method for generating a pseudo camera position image from a plurality of video images from different camera positions using a neural network
5425773, Apr 05 1994 SDGI Holdings, Inc Intervertebral disk arthroplasty device
5431658, Feb 14 1994 Facilitator for vertebrae grafts and prostheses
5441538, Apr 12 1993 ADVANCED SKELETAL INNOVATIONS LLC; Bonutti Skeletal Innovations LLC Bone implant and method of securing
5443514, Oct 01 1993 DEPUY ACROMED, INC Method for using spinal implants
5449359, Sep 05 1991 MEDICREA INternational Elastic clip for osteosynthesis
5449361, Apr 21 1993 AMEI TECHNOLOGIES INC , A DELAWARE CORPORATION Orthopedic cable tensioner
5452748, Jan 07 1994 Simmons Development, LLC Synchronized dual thread connector
5454365, Nov 05 1990 BONUTTI 2003 TRUST-A, THE Mechanically expandable arthroscopic retractors
5454790, May 09 1994 Tyco Healthcare Group LP Method and apparatus for catheterization access
5454815, Apr 01 1992 IMT Integral Medizintechnik AG Bone rasp made of plastics
5454827, May 24 1994 ZIMMER SPINE, INC Surgical instrument
5456686, Jan 31 1989 Biomet Manufacturing, LLC Implantation and removal of orthopedic prostheses
5458641, Sep 08 1993 Vertebral body prosthesis
5458643, Mar 29 1991 BMG Incorporated Artificial intervertebral disc
5462563, Jan 17 1991 Minnesota Mining and Manufacturing Company Orthopaedic implant
5464427, Oct 04 1994 Synthes USA, LLC Expanding suture anchor
5464929, Mar 06 1995 Ethicon, Inc. Absorbable polyoxaesters
5468245, Feb 03 1994 Biomedical cement bonding enhancer
5470333, Mar 11 1993 SALUT, LTD System for stabilizing the cervical and the lumbar region of the spine
5472426, Sep 12 1991 AOB PROPERTIES LIMITED PARTNERSHIP Cervical discectomy instruments
5474539, Feb 07 1991 TYCO HEALTHCARE GROUP AG; Covidien AG Trocar with retracting tip
5480400, Oct 01 1993 Medtronic Spine LLC Method and device for internal fixation of bone fractures
5484437, Jun 13 1988 Warsaw Orthopedic, Inc Apparatus and method of inserting spinal implants
5486190, Apr 30 1991 United States Surgical Corporation Safety trocar
5496318, Jan 08 1993 ENCORE MEDICAL, L P ; ENCORE MEDICAL IHC, INC ; Encore Medical Asset Corporation Interspinous segmental spine fixation device
5498265, Mar 05 1991 HOWMEDICA OSTEONICS CORP Screw and driver
5501695, May 27 1992 ANSPACH EFFORT, INC , THE Fastener for attaching objects to bones
5505710, Aug 22 1994 DAVOL, INC Telescoping probe
5507816, Dec 04 1991 Synthes USA, LLC Spinal vertebrae implants
5509923, Aug 16 1989 Medtronic, Inc Device for dissecting, grasping, or cutting an object
5512037, May 12 1994 United States Surgical Corporation Percutaneous surgical retractor
5514143, Nov 27 1991 Bonutti Skeletal Innovations LLC Apparatus and method for use during surgery
5514153, Mar 02 1990 General Surgical Innovations, Inc Method of dissecting tissue layers
5514180, Jan 14 1994 Prosthetic intervertebral devices
5520690, Apr 13 1995 Warsaw Orthopedic, Inc Anterior spinal polyaxial locking screw plate assembly
5520896, Sep 13 1989 ARKEMA INC Process to remove metal species from exhaust vapors
5522398, Jan 07 1994 MEDSOL CORP Bone marrow biopsy needle
5522790, May 29 1991 TYCO HEALTHCARE GROUP AG; Covidien AG Retraction apparatus and methods for endoscopic surgery
5522846, May 14 1993 Bonutti Skeletal Innovations LLC Suture anchor
5522895, Jul 23 1993 Rice University Biodegradable bone templates
5522899, Jun 28 1988 Warsaw Orthopedic, Inc Artificial spinal fusion implants
5527312, Aug 19 1994 Salut, Ltd. Facet screw anchor
5527343, May 14 1993 Bonutti Skeletal Innovations LLC Suture anchor
5527624, Nov 22 1991 The Lubrizol Corporation Process for preparing sintered shapes and compositions used therein
5531856, May 29 1991 TYCO HEALTHCARE GROUP AG; Covidien AG Endoscopic inflatable retraction devices
5534023, Dec 29 1992 Fluid filled prosthesis excluding gas-filled beads
5534029, Dec 14 1992 Yumiko, Shima Articulated vertebral body spacer
5534030, Feb 09 1993 DEPUY ACROMED, INC Spine disc
5536127, Oct 13 1994 Headed screw construction for use in fixing the position of an intramedullary nail
5538009, Jul 21 1994 Allegiance Corporation Biopsy needle assembly
5540688, May 30 1991 Warsaw Orthopedic, Inc Intervertebral stabilization device incorporating dampers
5540693, Feb 12 1992 Sierra Surgical, Inc. Surgical instrument for cutting hard tissue and method of use
5540711, Jun 02 1992 General Surgical Innovations, Inc Apparatus and method for developing an anatomic space for laparoscopic procedures with laparoscopic visualization
5545164, Dec 28 1992 WENZEL SPINE, INC Occipital clamp assembly for cervical spine rod fixation
5545222, Aug 12 1991 Bonutti Skeletal Innovations LLC Method using human tissue
5549610, Oct 31 1994 SMITH & NEPHEW RICHARDS INC Femoral intramedullary nail
5549679, May 20 1994 SPINEOLOGY, INC Expandable fabric implant for stabilizing the spinal motion segment
5554191, Jan 26 1994 Biomat Intersomatic vertebral cage
5556431, Mar 13 1992 Waldemar Link GmbH & Co Intervertebral disc endoprosthesis
5558674, Dec 17 1993 DOHERTY, BRIAN; HEGGENESS, MICHAEL Devices and methods for posterior spinal fixation
5562736, Oct 17 1994 RAYMEDICA, LLC Method for surgical implantation of a prosthetic spinal disc nucleus
5562738, Apr 05 1994 SDGI Holdings, Inc Intervertebral disk arthroplasty device
5564926, Nov 26 1992 Medevelop AB Anchoring element for anchorage in bone tissue
5569248, Mar 17 1992 SDGI Holdings, Inc Apparatus for subcutaneous suprafascial pedicular internal fixation
5569251, Jul 16 1993 BHC ENGINEERING, L P Implant device and method of installing
5569290, Jan 30 1995 Ethicon Endo-Surgery, Inc Method of and apparatus for laparoscopic or endoscopic spinal surgery using an unsealed anteriorly inserted transparent trochar
5569548, Aug 05 1993 Murata Manufacturing Co., Ltd. Zinc oxide piezoelectric crystal film on sapphire plane
5571109, Aug 26 1993 SDGI Holdings, Inc System for the immobilization of vertebrae
5571189, May 20 1994 SPINEOLOGY, INC Expandable fabric implant for stabilizing the spinal motion segment
5571190, Aug 20 1993 Heinrich, Ulrich Implant for the replacement of vertebrae and/or stabilization and fixing of the spinal column
5575790, Mar 28 1995 Rensselaer Polytechnic Institute Shape memory alloy internal linear actuator for use in orthopedic correction
5591168, Oct 25 1993 Tornier S.A. Device for stabilizing fractures of the upper end of the femur
5593409, Jun 03 1988 Warsaw Orthopedic, Inc Interbody spinal fusion implants
5595751, Mar 06 1995 Ethicon, Inc.; Ethicon, Inc Absorbable polyoxaesters containing amines and/or amido groups
5597579, Mar 06 1995 Ethicon, Inc.; Ethicon, Inc Blends of absorbable polyoxaamides
5601556, Mar 18 1994 Apparatus for spondylolisthesis reduction
5601561, Jan 17 1995 W L GORE & ASSOCIATES, INC Guided bone rasp
5601572, Aug 16 1989 Medtronic, Inc Device or apparatus for manipulating matter having a elastic ring clip
5607687, Mar 06 1995 Ethicon, Inc.; Ethicon, Inc Polymer blends containing absorbable polyoxaesters
5609634, Jul 07 1992 Intervertebral prosthesis making possible rotatory stabilization and flexion/extension stabilization
5609635, Jun 28 1988 Warsaw Orthopedic, Inc Lordotic interbody spinal fusion implants
5613950, Jul 22 1988 Multifunctional manipulating instrument for various surgical procedures
5618142, Jun 16 1993 Lindab AB Self-drilling blind rivet and method for making a pressure tight riveted joint by means of the same
5618314, Dec 13 1993 Ethicon, Inc Suture anchor device
5618552, Mar 06 1995 Ethicon, Inc.; Ethicon, Inc Absorbable polyoxaesters
5620698, Mar 06 1995 Ethicon, Inc. Blends of absorbable polyoxaesters containing amines and/or amido groups
5624447, Mar 20 1995 SYMMETRY MEDICAL MANUFACTURING, INC Surgical tool guide and entry hole positioner
5626613, May 04 1995 Arthrex, Inc. Corkscrew suture anchor and driver
5628751, Jun 21 1993 United States Surgical Corporation Orthopedic fastener applicator with rotational or longitudinal driver
5628752, Aug 03 1993 HOWMEDICA OSTEONICS CORP Ratcheting compression device
5632746, Aug 16 1989 Medtronic, Inc Device or apparatus for manipulating matter
5639276, Sep 23 1994 RAPID DEVELOPMENT SYSTEMS, INC Device for use in right ventricular placement and method for using same
5643320, Mar 13 1995 DePuy Orthopaedics, Inc Soft tissue anchor and method
5645589, Aug 22 1994 Linvatec Corporation Anchor and method for securement into a bore
5645596, Jul 07 1993 Asahi Kogaku Kogyo Kabushiki Kaisha Ceramic vertebrae prosthesis
5645597, Dec 29 1995 Disc replacement method and apparatus
5645599, Apr 22 1996 PARADIGM SPINE Interspinal vertebral implant
5645850, Mar 06 1995 Ethicon, Inc. Blending containing absorbable polyoxaamides
5647857, Mar 16 1995 LifeShield Sciences LLC Protective intraluminal sheath
5648088, Mar 06 1995 Ethicon, Inc.; Ethicon, Inc Blends of absorbable polyoxaesters containing amines and/or amide groups
5649931, Jan 16 1996 ZIMMER TECHNOLOGY, INC Orthopaedic apparatus for driving and/or removing a bone screw
5653763, Mar 29 1996 ZIMMER SPINE, INC Intervertebral space shape conforming cage device
5658335, Mar 09 1995 ALLEN, RONALD CHARLES, SOLE TRUSTEE, OR HIS SUCCESSORS IN TRUST, UNDER THE RONALD CHARLES ALLEN LIVING TRUST, DATED MARCH 28, 2009, AND ANY AMENDMENTS THERETO Spinal fixator
5662683, Aug 22 1995 ORTHOHELIX SURGICAL DESIGNS, INC Open helical organic tissue anchor and method of facilitating healing
5665095, Dec 15 1994 JACOBSON, ROBERT E ; MIRSON, BRIAN Stereotactic guidance device
5665122, Jan 31 1995 Expandable intervertebral cage and surgical method
5667508, May 01 1996 K2M, INC Unitary locking cap for use with a pedicle screw
5669915, Mar 22 1995 Aesculap AG Drilling jig for surgical drilling tools
5669926, Jan 25 1993 ZIMMER SPINE, INC Surgical instrument
5674294, Sep 14 1993 COMMISSARIAT A L ENERGIE ATOMIQUE; UNIVERSITE PIERRE ET MARIE CURIE PARIS VI Intervertebral disk prosthesis
5674295, Oct 17 1994 RAYMEDICA, LLC Prosthetic spinal disc nucleus
5674296, Nov 14 1994 MEDTRONIC SOFAMOR DANEK, INC Human spinal disc prosthesis
5676701, Jan 14 1993 HOWMEDICA OSTEONICS CORP Low wear artificial spinal disc
5679723, Nov 30 1994 Ethicon, Inc. Hard tissue bone cements and substitutes
5681263, Feb 25 1994 Vermon Endoscope for ultrasonic echography
5683465, Mar 18 1996 Artificial intervertebral disk prosthesis
5693100, Feb 22 1991 Middle expandable intervertebral disk implant
5695513, Mar 01 1996 Distalock, LLC Flexible cutting tool and methods for its use
5697977, Mar 18 1994 Method and apparatus for spondylolisthesis reduction
5698213, Mar 06 1995 Ethicon, Inc Hydrogels of absorbable polyoxaesters
5700239, Jul 24 1990 Multifunctional devices for use in endoscopic surgical procedures and method therefor
5700583, Mar 06 1995 Ethicon, Inc Hydrogels of absorbable polyoxaesters containing amines or amido groups
5702391, May 16 1995 Intervertebral fusion device
5702449, Jun 07 1995 SDGI Holdings, Inc Reinforced porous spinal implants
5702450, Jun 28 1993 Intervertebral disk prosthesis
5702453, Dec 09 1994 SDGI Holdings, Inc Adjustable vertebral body replacement
5702454, Apr 21 1993 Sulzer Orthopadie AG Process for implanting an invertebral prosthesis
5707359, Nov 14 1995 Expanding trocar assembly
5713870, Nov 27 1991 Retractable safety penetrating instrument with laterally extendable spring strip
5713903, Mar 22 1991 United States Surgical Corporation Orthopedic fastener
5716415, Oct 01 1993 DEPUY ACROMED, INC Spinal implant
5716416, Sep 10 1996 Artificial intervertebral disk and method for implanting the same
5720753, Mar 22 1991 United States Surgical Corporation Orthopedic fastener
5725531, Dec 27 1995 Reaming device
5725541, Jan 22 1996 The Anspach Effort, Inc. Soft tissue fastener device
5725588, Apr 13 1995 Warsaw Orthopedic, Inc Acetabular cup having polyaxial locking screws
5728097, Mar 17 1992 SDGI Holdings, Inc Method for subcutaneous suprafascial internal fixation
5728116, Jan 13 1994 Ethicon, Inc. Spiral surgical tack
5735853, Jun 17 1994 SPHEROFIX AB Bone screw for osteosynthesis
5741253, Jun 13 1988 Warsaw Orthopedic, Inc Method for inserting spinal implants
5741282, Jan 22 1996 ANSPACH EFFORT, INC THE Soft tissue fastener device
5743881, Nov 03 1995 Aptec Medical Corporation Laparoscopic surgical instrument and method of using same
5743912, Aug 23 1995 Biomat Upper femoral epiphysis osteosynthesis implant
5743914, Jun 06 1996 ORTHOPAEDIC BIOSYSTEMS LTD , INC Bone screw
5749879, Aug 16 1989 Medtronic, Inc Device or apparatus for manipulating matter
5749889, Feb 13 1996 Conmed Corporation Method and apparatus for performing biopsy
5752969, Jun 17 1993 Sofamor S.N.C. Instrument for the surgical treatment of an intervertebral disc by the anterior route
5755797, Apr 21 1993 Sulzer Medizinaltechnik AG Intervertebral prosthesis and a process for implanting such a prosthesis
5755798, Oct 26 1995 Artos Medizinische Produkte GmbH Intervertebral implant
5756127, Oct 29 1996 Wright Medical Technology, Inc. Implantable bioresorbable string of calcium sulfate beads
5762500, Jan 05 1996 SARGON LAZAROF AND MONALISA LAZAROF, CO- TRUSTEES OF THE SARGON LAZAROF AND MONALISA FAMILY TRUST Process for preparing a tooth prosthesis for attachment to an abutment within a mouth of a patient
5762629, Oct 30 1991 HOWMEDICA OSTEONICS CORP Oval cannula assembly and method of use
5766252, Jan 24 1995 HOWMEDICA OSTEONICS CORP Interbody spinal prosthetic implant and method
5772661, Jun 13 1988 Warsaw Orthopedic, Inc Methods and instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the antero-lateral aspect of the spine
5772662, Jun 23 1986 HOWMEDICA OSTEONICS CORP Femoral fixation system
5772678, Oct 20 1995 COOPERSURGICAL, INC Retractable disposable tip reusable trocar obturator
5776156, Sep 05 1995 United States Surgical Corporation Endoscopic cutting instrument
5782800, Jul 22 1988 Expandable multifunctional manipulating instruments for various medical procedures and methods therefor
5782832, Oct 01 1996 HOWMEDICA OSTEONICS CORP Spinal fusion implant and method of insertion thereof
5782865, Aug 25 1995 GROTZ, R THOMAS Stabilizer for human joints
5788703, Feb 17 1995 Allo Pro AG Apparatus for the placement of a medullary space blocker
5792044, Mar 22 1996 SDGI Holdings, Inc Devices and methods for percutaneous surgery
5797909, Jun 13 1988 Warsaw Orthopedic, Inc Apparatus for inserting spinal implants
5800549, Apr 30 1997 HOWMEDICA OSTEONICS CORP Method and apparatus for injecting an elastic spinal implant
5807275, Jul 19 1995 Medical Biopsy, Inc. Biopsy needle
5807327, Dec 08 1995 Ethicon, Inc Catheter assembly
5810721, Mar 04 1996 Edwards Lifesciences, LLC Soft tissue retractor and method for providing surgical access
5810821, Mar 28 1997 Biomet Manufacturing, LLC Bone fixation screw system
5810866, Nov 27 1991 Automatic retractable safety penetrating instrument for portal sleeve introduction
5814084, Jan 16 1996 RTI Surgical, Inc Diaphysial cortical dowel
5820628, Aug 16 1989 Medtronic, Inc Device or apparatus for manipulating matter
5823979, Jan 24 1995 Device for stabilizing joints of the limbs
5824084, Jul 03 1996 CLEVELAND CLINIC FOUNDATION, THE Method of preparing a composite bone graft
5824093, Oct 17 1994 RAYMEDICA, LLC Prosthetic spinal disc nucleus
5824094, Oct 17 1997 TLIF, LLC Spinal disc
5827289, Jan 26 1994 ORTHOPHOENIX, LLC Inflatable device for use in surgical protocols relating to treatment of fractured or diseased bones
5833657, May 30 1995 Ethicon, Inc Single-walled balloon catheter with non-linear compliance characteristic
5836948, Jan 02 1997 Kyphon SARL Spine distraction implant and method
5837752, Jul 17 1997 Massachusetts Institute of Technology Semi-interpenetrating polymer networks
5846259, Feb 18 1994 MEDTRONIC AVE , INC Telescoping catheter and method of use
5848986, Aug 12 1992 Vidamed, Inc. Medical probe with electrode guide for transurethral ablation
5849004, Jul 17 1996 ORTHOPEDIC DESIGNS, INC Surgical anchor
5851212, Jun 11 1997 ZIMMER SPINE, INC Surgical instrument
5851216, Apr 14 1993 TYCO HEALTHCARE GROUP AG; Covidien AG Trocar
5857995, Apr 12 1996 HOWMEDICA OSTEONICS CORP Multiple bladed surgical cutting device removably connected to a rotary drive element
5859150, Mar 06 1995 Ethicon, Inc Prepolymers of absorbable polyoxaesters
5860973, Feb 27 1995 Warsaw Orthopedic, Inc Translateral spinal implant
5860977, Jan 02 1997 Kyphon SARL Spine distraction implant and method
5865846, Nov 14 1994 Human spinal disc prosthesis
5865848, Sep 12 1997 Artifex, Ltd.; BHC Engineering, L.P. Dynamic intervertebral spacer and method of use
5871485, Mar 18 1998 Device for internal fixation of femoral neck fractures
5873854, Dec 23 1996 Datascope Corp Method for percutaneous insertion of catheters
5876404, Oct 27 1997 Kyphon SARL Spine distraction implant and method
5888220, May 06 1994 DISC DYNAMICS, INC Articulating joint repair
5888221, Aug 11 1992 Spinal stabilization implant system
5888223, Dec 08 1995 R&B SURGICAL SOLUTIONS, LTD Anterior stabilization device
5888224, Sep 21 1993 Synthes USA, LLC Implant for intervertebral space
5888226, Nov 12 1997 Intervertebral prosthetic disc
5888227, Oct 20 1995 Synthes USA, LLC Inter-vertebral implant
5888228, Oct 20 1995 Synthes USA, LLC Intervertebral implant with cage and rotating element
5893850, Nov 12 1996 DEPUY SYNTHES PRODUCTS, INC Bone fixation device
5893889, Jun 20 1997 Artificial disc
5893890, Mar 18 1994 Perumala Corporation Rotating, locking intervertebral disk stabilizer and applicator
5895428, Nov 01 1996 Load bearing spinal joint implant
5902231, Mar 22 1996 Warsaw Orthopedic, Inc Devices and methods for percutaneous surgery
5904690, Aug 16 1989 Medtronic, Inc Device or apparatus for manipulating matter
5904696, Nov 05 1996 Ethicon, Inc. Spiral surgical tack
5908422, Jan 13 1997 Synthes USA, LLC Helical osteosynthetic implant
5916228, Sep 29 1997 BIOCURV MEDICAL INSTRUMENTS, INC Tongue scraper
5916267, Apr 07 1997 SITISO, ARTHIT; BAILLY, FRANK; WAGNER, JOHN; ITIRAVIVONG, DR PIBUL; KUPTNIRATSAIKUL, DR SOMSAK; TEJAPONGVORACHAI, DR TAWECHAI; TIENBOON, PRAKIT Anterior spinal implant system for vertebral body prosthesis
5919235, Sep 30 1996 Sulzer Orthopaedie AG Intervertebral prosthesis
5925056, Apr 12 1996 HOWMEDICA OSTEONICS CORP Surgical cutting device removably connected to a rotary drive element
5925074, Dec 03 1996 ATRIUM MEDICAL CORPORATION Vascular endoprosthesis and method
5928235, Jun 01 1993 Endocare AG Osteosynthesis auxiliary for the treatment of subtrochanteric, peritrochanteric, and femoral-neck fractures
5928244, Oct 04 1996 United States Surgical Corporation Tissue fastener implantation apparatus and method
5931870, Oct 09 1996 Smith & Nephew, Inc Acetabular ring prosthesis with reinforcement buttress
5935129, Mar 07 1997 INNOVASIVE DEVICES, INC Methods and apparatus for anchoring objects to bone
5947999, Dec 03 1996 MEDICREA INternational Surgical clip and method
5948000, Oct 03 1996 United States Surgical Corporation System for suture anchor placement
5954635, Mar 22 1996 SDGI Holdings Inc. Devices and methods for percutaneous surgery
5954722, Jul 29 1997 DEPUY ACROMED, INC Polyaxial locking plate
5954747, Nov 20 1997 BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC Meniscus repair anchor system
5957902, Sep 28 1998 TEVES DESIGN, INC Surgical tool for enlarging puncture opening made by trocar
5957924, May 22 1997 Bionx Implants Oy Installation tool for suture anchor
5961554, Dec 31 1996 Intervertebral spacer
5964730, Aug 15 1996 Advanced Cardiovascular Systems, Inc. Protective sheath for catheter balloons
5964761, Jul 15 1997 ZIMMER SPINE, INC Method and instruments for percutaneous arthroscopic disc removal, bone biopsy and fixation of vertebrae
5967783, Oct 19 1998 Altiva Corporation Threaded dental implant with a core to thread ratio facilitating immediate loading and method of installation
5967970, Sep 26 1997 System and method for balloon-assisted retraction tube
5968044, Sep 25 1990 Innovasive Devices, Inc. Bone fastener
5968098, Oct 22 1996 HOWMEDICA OSTEONICS CORP Apparatus for fusing adjacent bone structures
5972015, Aug 15 1997 ORTHOPHOENIX, LLC Expandable, asymetric structures for deployment in interior body regions
5972385, Jan 15 1997 Depuy Spine, Inc Collagen-polysaccharide matrix for bone and cartilage repair
5976139, Jul 17 1996 ORTHOPEDIC DESIGNS NORTH AMERICA, INC Surgical fastener assembly
5976146, Jul 11 1997 Olympus Corporation Surgical operation system and method of securing working space for surgical operation in body
5976186, Sep 08 1994 HOWMEDICA OSTEONICS CORP Hydrogel intervertebral disc nucleus
5976187, Jan 21 1997 Spinal Innovations, LLC Fusion implant
5980522, Jul 22 1994 Expandable spinal implants
5984927, Mar 03 1998 Ethicon, Inc. Device for sutureless attachment of soft tissue to bone
5984966, Mar 02 1998 Bionx Implants Oy Bioabsorbable bone block fixation implant
5985307, Apr 14 1993 Emory University Device and method for non-occlusive localized drug delivery
5989255, Aug 06 1998 SMITH & NEPHEW Orthopaedic done screw apparatus
5989291, Feb 26 1998 HOWMEDICA OSTEONICS CORP; HOWMEDICA OTEONICS CORP Intervertebral spacer device
5993459, Oct 04 1996 Suture anchor installation system with insertion tool
5997510, Mar 26 1997 Ethicon Endo-Surgery, Inc. Surgical trocar having obturator handle with flexible contact portion
5997538, Mar 23 1998 New York Society for the Ruptured and Crippled Maintaining the Hospital Rotationally ratcheting bone screw
5997541, Jan 18 1996 Synthes USA, LLC Threaded washer
6001100, Aug 19 1997 Bionx Implants Oy Bone block fixation implant
6001101, Jul 05 1994 BIOMET C V Screw device with threaded head for permitting the coaptation of two bone fragments
6004327, Aug 03 1993 HOWMEDICA OSTEONICS CORP Ratcheting compression device
6005161, Jan 28 1986 Kensey Nash Corporation Method and device for reconstruction of articular cartilage
6007519, Jul 30 1997 Central access cannulation device
6007566, Mar 25 1997 Mitek Surgical Products, Inc. System for anchoring tissue to bone
6007580, Jun 13 1995 Bionx Implants Oy Joint prosthesis
6010508, Oct 25 1996 Automatic impact device
6010513, Nov 26 1997 Bionx Implants Oy Device for installing a tissue fastener
6012494, Mar 16 1995 Deutsche Forschungsanstalt fur Luft- und Raumfahrt e.V. Flexible structure
6015410, Dec 23 1997 Bionx Implants Oy Bioabsorbable surgical implants for endoscopic soft tissue suspension procedure
6015436, Jun 07 1996 ULRICH GMBH & CO KG Implant for filling a space between vertebrae
6019762, Apr 30 1998 Orthodyne, Inc. Adjustable length orthopedic fixation device
6019792, Apr 23 1998 SDGI Holdings, Inc Articulating spinal implant
6019793, Oct 21 1996 Synthes USA, LLC Surgical prosthetic device
6022350, May 13 1996 STRYKER EUROPEAN HOLDINGS III, LLC Bone fixing device, in particular for fixing to the sacrum during osteosynthesis of the backbone
6022352, Mar 28 1997 Biomet Manufacturing, LLC Bone fixation screw system
6030162, Dec 18 1998 Acumed LLC Axial tension screw
6030364, Oct 03 1997 Boston Scientific Corporation Apparatus and method for percutaneous placement of gastro-intestinal tubes
6030401, Oct 07 1998 NUBASIVE, INC Vertebral enplate decorticator and osteophyte resector
6033406, Mar 17 1992 SDGI Holdings, Inc. Method for subcutaneous suprafascial pedicular internal fixation
6033412, Apr 03 1997 Automated implantable bone distractor for incremental bone adjustment
6036701, Jan 13 1994 Ethicon, Inc. Spiral surgical tack
6039740, Aug 07 1997 SPHEROFIX AB Method and a device for implant locking
6039761, Feb 12 1997 LI MEDICAL TECHNOLOGIES, INC Intervertebral spacer and tool and method for emplacement thereof
6039763, Oct 27 1998 DISC REPLACEMENT TECHNOLOGIES, INC Articulating spinal disc prosthesis
6045552, Mar 18 1998 Kyphon SARL Spine fixation plate system
6045579, May 01 1997 ZIMMER SPINE, INC Adjustable height fusion device
6048309, Mar 04 1996 Edwards Lifesciences, LLC Soft tissue retractor and delivery device therefor
6048342, Jan 02 1997 Kyphon SARL Spine distraction implant
6048346, Aug 13 1997 ORTHOPHOENIX, LLC Systems and methods for injecting flowable materials into bones
6048360, Mar 18 1997 Boston Scientific Scimed, Inc Methods of making and using coiled sheet graft for single and bifurcated lumens
6049026, Jul 03 1996 CLEVELAND CLINIC FOUNDATION, THE Apparatus and methods for preparing an implantable graft
6053922, Jul 18 1995 FLEX TECHNOLOGY, INC Flexible shaft
6053935, Nov 08 1996 Boston Scientific Corporation Transvaginal anchor implantation device
6056763, Nov 18 1998 Tongue scraper
6063121, Jul 29 1998 Vertebral body prosthesis
6066142, Oct 22 1998 DEPUY ACROMED, INC Variable position bone drilling alignment guide
6066154, Jan 26 1994 ORTHOPHOENIX, LLC Inflatable device for use in surgical protocol relating to fixation of bone
6066175, Feb 16 1993 Fusion stabilization chamber
6068630, Jan 02 1997 Kyphon SARL Spine distraction implant
6068648, Jan 26 1998 Synthes USA, LLC Tissue anchoring system and method
6071982, Apr 18 1997 CAMBRIDGE SCIENTIFIC, INC Bioerodible polymeric semi-interpenetrating network alloys for surgical plates and bone cements, and method for making same
6073051, Jun 24 1997 NEUROTHERM, INC Apparatus for treating intervertebal discs with electromagnetic energy
6074390, Jan 02 1997 Kyphon SARL Spine distraction implant and method
6080155, Jun 13 1988 Warsaw Orthopedic, Inc Method of inserting and preloading spinal implants
6080158, Aug 23 1999 Intervertebral fusion device
6080193, May 01 1997 ZIMMER SPINE, INC Adjustable height fusion device
6083225, Mar 14 1996 HOWMEDICA OSTEONICS CORP Method and instrumentation for implant insertion
6083244, Sep 13 1996 TENDON TECHNOLOGY, LTD Apparatus and method for tendon or ligament repair
6090112, Jan 02 1997 Kyphon SARL Spine distraction implant and method
6090143, Sep 21 1998 Box cage for intervertebral body fusion
6096038, Jun 10 1991 Warsaw Orthopedic, Inc Apparatus for inserting spinal implants
6096080, May 06 1998 Alphatec Spine, Inc Apparatus for spinal fusion using implanted devices
6099531, Aug 20 1998 Bonutti Skeletal Innovations LLC Changing relationship between bones
6102914, Jul 23 1996 Biomat B.V. Detachably connecting cap for a screw used in orthopaedic surgery
6102950, Jan 19 1999 Intervertebral body fusion device
6106557, Jul 23 1998 STRYKER EUROPEAN HOLDINGS III, LLC Reconstruction system for vertebra
6110210, Apr 08 1999 RAYMEDICA, LLC Prosthetic spinal disc nucleus having selectively coupled bodies
6113624, Oct 02 1995 Ethicon, Inc Absorbable elastomeric polymer
6113637, Oct 22 1998 SOFAMOR DANEK HOLDINGS, INC Artificial intervertebral joint permitting translational and rotational motion
6113638, Feb 26 1999 IMDS Corporation Method and apparatus for intervertebral implant anchorage
6113640, Jun 11 1997 Bionx Implants Oy Reconstructive bioabsorbable joint prosthesis
6117174, Sep 16 1998 Spinal implant device
6119044, Jun 02 1997 Advanced Bionics AG Cochlear electrode array with positioning stylet
6120508, Jun 19 1998 IMT Integral Medizintechnik AG Rasp determined for one-time use, particularly bone rasp as well as process for its production
6123705, Jun 13 1988 Warsaw Orthopedic, Inc Interbody spinal fusion implants
6123711, Jun 10 1999 BIOMET U S RECONSTRUCTION, LLC; Biomet, Inc; ZB MANUFACTURING, LLC; Biomet Manufacturing, LLC Tissue fixation device and method
6126660, Jul 29 1998 SOFAMOR DANEK HOLDINGS, INC Spinal compression and distraction devices and surgical methods
6126661, Jan 20 1997 ORTHOFIX S R L Intramedullary cavity nail and kit for the treatment of fractures of the hip
6126663, Apr 15 1999 Expandable bone connector
6126686, Dec 10 1996 CLARIAN HEALTH PARTNERS, INC Artificial vascular valves
6126689, Jul 30 1998 Trinity Orthopedics, LLC Collapsible and expandable interbody fusion device
6127597, Mar 07 1997 Kyphon SARL Systems for percutaneous bone and spinal stabilization, fixation and repair
6129762, Aug 22 1994 Linvatec Corporation Anchor and method for securement into a bore
6129763, Sep 13 1996 WENZEL SPINE, INC Expandable osteosynthesis cage
6132435, Sep 14 1999 Synthes USA, LLC Torque limiting device for surgical use
6136031, Jun 17 1998 HOWMEDICA OSTEONICS CORP Artificial intervertebral disc
6139558, Mar 15 1999 Dental Concepts LLC Oral hygiene appliance
6139579, Oct 31 1997 DEPUY ACROMED, INC Spinal disc
6146384, Oct 13 1995 Warsaw Orthopedic, Inc Orthopedic fixation device and method of implantation
6146387, Aug 26 1998 Linvatec Corporation Cannulated tissue anchor system
6146420, Dec 10 1997 Warsaw Orthopedic, Inc Osteogenic fusion device
6146421, Aug 04 1997 Gordon, Maya, Roberts and Thomas, Number 1, LLC Multiple axis intervertebral prosthesis
6147135, Dec 31 1998 Ethicon, Inc Fabrication of biocompatible polymeric composites
6149652, Feb 05 1998 Kyphon SARL Spine distraction implant and method
6152926, Jan 02 1997 Kyphon SARL Spine distraction implant and method
6156038, Oct 27 1997 Kyphon SARL Spine distraction implant and method
6159179, Mar 12 1999 DEPUY SYNTHES PRODUCTS, INC Cannula and sizing and insertion method
6159211, Oct 22 1998 DEPUY MOTECH ACROMED, INC Stackable cage system for corpectomy/vertebrectomy
6159244, Jul 30 1999 ZIMMER SPINE, INC Expandable variable angle intervertebral fusion implant
6161350, Nov 04 1996 Fastener assembly serving as a product, or combined with other components as a product allows automatic controlled movements in one direction and prevents movements in the opposite direction when forces are applied
6162234, Jan 21 1994 FREEDLAND, YOSEF Adjustable button cinch anchor orthopedic fastener
6162236, Jul 11 1994 Terumo Kabushiki Kaisha Trocar needle and expandable trocar tube
6162252, Dec 12 1997 DEPUY ACROMED, INC Artificial spinal disc
6165218, Nov 08 1995 Sulzer Orthopaedie AG Intervertebral prosthesis
6165486, Nov 19 1998 Carnegie Mellon University; University of Pittsburgh Biocompatible compositions and methods of using same
6168595, Feb 11 1997 OrthoMatrix, Inc. Modular intramedullary fixation system and insertion instrumentation
6168597, Feb 28 1996 BIEDERMANN TECHNOLOGIES GMBH & CO KG Bone screw
6171610, Apr 24 1998 THE CHILDREN S MEDICAL CENTER CORPORATION Guided development and support of hydrogel-cell compositions
6174337, Jan 06 1997 ULTRACAP TECHNOLOGIES CORPORATION Method of construction of electrochemical cell device using capillary tubing and optional permselective polymers
6175758, Jul 15 1997 ZIMMER SPINE, INC Method for percutaneous arthroscopic disc removal, bone biopsy and fixation of the vertebrae
6176882, Feb 20 1998 Biedermann Motech GmbH Intervertebral implant
6179794, Nov 19 1998 Adjustable vibrating head massaging device
6179873, Aug 11 1995 SPINAL IMPLANT INNOVATIONS LLC Intervertebral implant, process for widening and instruments for implanting an intervertebral implant
6183471, Jan 02 1997 Kyphon SARL Spine distraction implant and method
6183472, Apr 09 1998 STRYKER EUROPEAN HOLDINGS III, LLC Pedicle screw and an assembly aid therefor
6183474, Mar 13 1996 ORTHOPEDIC DESIGNS NORTH AMERICA, INC Surgical fastener assembly
6183517, Dec 16 1998 ZIMMER SPINE, INC Expandable intervertebral fusion implant and applicator
6187043, Dec 22 1987 Implantable prosthetic device
6187048, May 24 1994 HOWMEDICA OSTEONICS CORP Intervertebral disc implant
6190387, Jan 02 1997 Kyphon SARL Spine distraction implant
6190414, Oct 31 1996 HOWMEDICA OSTEONICS CORP Apparatus for fusion of adjacent bone structures
6193757, Oct 29 1998 Warsaw Orthopedic, Inc Expandable intervertebral spacers
6197033, Apr 07 1999 Warsaw Orthopedic, Inc Guide sleeve for offset vertebrae
6197041, Jun 26 1991 United States Surgical Corporation Trocar
6197065, Nov 01 1993 Biomet Manufacturing, LLC Method and apparatus for segmental bone replacement
6197325, Nov 27 1990 AMERICAN RED CROSS, THE; AMERICAN NATIONAL RED CROSS, THE Supplemented and unsupplemented tissue sealants, methods of their production and use
6200322, Aug 13 1999 Warsaw Orthopedic, Inc Minimal exposure posterior spinal interbody instrumentation and technique
6203565, Jun 28 1990 P Tech, LLC Surgical devices assembled using heat bondable materials
6206826, Dec 18 1997 Warsaw Orthopedic, Inc Devices and methods for percutaneous surgery
6206922, Feb 22 1996 Warsaw Orthopedic, Inc Methods and instruments for interbody fusion
6213957, Sep 08 1995 SITESELECT MEDICAL TECHNOLOGIES, LTD Apparatus and method for removing tissue
6214368, May 19 1995 Etex Corporation Bone substitution material and a method of its manufacture
6217509, Mar 22 1996 SDGI Holdings, Inc. Devices and methods for percutaneous surgery
6217579, Jul 22 1994 Expandable spinal implants
6221082, Jun 09 1998 NuVasive, Inc Spinal surgery guidance platform
6224603, Jun 09 1998 NuVasive, Inc Transiliac approach to entering a patient's intervertebral space
6224631, Mar 20 1998 ZIMMER SPINE, INC Intervertebral implant with reduced contact area and method
6224894, Mar 06 1995 Ethicon, Inc. Copolymers of absorbable polyoxaesters
6228058, Apr 03 1997 Conmed Corporation Sleeve trocar with penetration indicator
6231606, Feb 16 1996 Smith & Nephew, Inc. Graft anchor
6235030, Jan 02 1997 Kyphon SARL Spine distraction implant
6235043, Jan 26 1994 ORTHOPHOENIX, LLC Inflatable device for use in surgical protocol relating to fixation of bone
6238397, Jan 02 1997 Kyphon SARL Spine distraction implant and method
6238491, May 05 1999 DAVIDSON, JAMES A Niobium-titanium-zirconium-molybdenum (nbtizrmo) alloys for dental and other medical device applications
6241733, Feb 10 1999 Alphatec Spine, Inc Tome apparatus for implanting spinal fusion device
6241734, Aug 14 1998 ORTHOPHOENIX, LLC Systems and methods for placing materials into bone
6241769, May 06 1998 Alphatec Spine, Inc Implant for spinal fusion
6245107, May 28 1999 Anova Corporation Methods and apparatus for treating disc herniation
6248108, Sep 30 1998 Bionx Implants Oy Bioabsorbable surgical screw and washer system
6248110, Jan 26 1994 ORTHOPHOENIX, LLC Systems and methods for treating fractured or diseased bone using expandable bodies
6248131, May 06 1994 DISC DYNAMICS, INC Articulating joint repair
6251111, Oct 20 1999 Warsaw Orthopedic, Inc Jack for pulling a vertebral anchor
6251140, May 27 1998 NuVasive, Inc Interlocking spinal inserts
6258093, Feb 01 1999 FLEX TECHNOLOGY, INC Surgical reamer cutter
6261289, Oct 26 1998 EXPANDING ORTHOPEDICS, INC Expandable orthopedic device
6264676, Nov 08 1996 Boston Scientific Scimed, Inc Protective sheath for transvaginal anchor implantation devices
6264695, Sep 30 1999 REPLICATION MEDICAL, INC Spinal nucleus implant
6267763, Mar 31 1999 HOWMEDICA OSTEONICS CORP Method and apparatus for spinal implant insertion
6267765, Jun 03 1997 Medicrea Technologies Multidirectional adaptable vertebral osteosyntsis device with reduced space requirement
6267767, Nov 06 1998 KARL STORZ SE & CO KG Instrumentarium and method for implanting a cruciate ligament replacement in a knee joint
6277149, Jun 08 1999 Warsaw Orthopedic, Inc Ramp-shaped intervertebral implant
6280444, Jan 02 1997 Kyphon SARL Spine distraction implant and method
6280456, Aug 15 1997 ORTHOPHOENIX, LLC Methods for treating bone
6280474, Jan 09 1997 SURGICAL SPECIALTIES CORPORATION LIMITED Devices for tissue repair and methods for preparation and use thereof
6280475, Sep 08 1994 HOWMEDICA OSTEONICS CORP Hydrogel intervertebral disc nucleus implantation method
6287313, Nov 23 1999 Warsaw Orthopedic, Inc Screw delivery system and method
6290724, May 27 1998 NuVasive, Inc Methods for separating and stabilizing adjacent vertebrae
6293909, Aug 07 1998 SciMed Life Systems, Inc. Device and method of using a surgical assembly with mesh sheath
6293952, Jul 31 1997 GYRUS ACMI, INC Medical instrument system for piercing through tissue
6296644, Feb 25 2000 Spinal instrumentation system with articulated modules
6296647, Aug 07 1998 STRYKER EUROPEAN HOLDINGS III, LLC Instrument for the positioning of an implant in the human spine
6302914, Jun 07 1995 Warsaw Orthopedic, Inc Lordotic interbody spinal fusion implants
6306136, Jul 28 1997 STRYKER EUROPEAN HOLDINGS III, LLC Implant, in particular front cervical plate
6306177, May 06 1994 DISC DYNAMICS, INC Biomaterial system for in situ tissue repair
6312443, Dec 21 1999 NuVasive, Inc Expandable cannula
6319254, Apr 22 1999 Newdeal Compression osteosynthesis screw, and an ancillaty device for use therewith
6319272, Nov 08 1996 Boston Scientific Corporation Transvaginal anchor implantation device and method of use
6331312, May 19 1995 Etex Corporation Bioresorbable ceramic composites
6332882, Jan 02 1997 Kyphon SARL Spine distraction implant
6332883, Jan 02 1997 Kyphon SARL Spine distraction implant
6332894, Mar 07 2000 ZIMMER TECHNOLOGY, INC Polymer filled spinal fusion cage
6332895, Mar 08 2000 ZIMMER SPINE, INC Expandable intervertebral fusion implant having improved stability
6342074, Apr 30 1999 Altus Partners, LLC Anterior lumbar interbody fusion implant and method for fusing adjacent vertebrae
6346092, Dec 14 1998 Datascope Corp Intra-aortic balloon catheter and insertion sheath
6348053, Nov 12 1996 DEPUY SYNTHES PRODUCTS, INC Bone fixation device
6355043, Mar 01 1999 Sulzer Orthopedics Ltd. Bone screw for anchoring a marrow nail
6361537, May 18 2001 Surgical plate with pawl and process for repair of a broken bone
6361538, Jan 31 2000 BIOMET C V Method for treating orthopedic fractures with a fixation member
6361557, Feb 05 1999 Medtronic Ave, Inc Staplebutton radiopaque marker
6364828, Jan 06 2000 Koninklijke Philips Electronics N V Elongated flexible inspection neck
6364897, Feb 04 1993 Bonutti Skeletal Innovations LLC Method and apparatus for positioning a suture anchor
6368325, May 27 1998 NuVasive, Inc Bone blocks and methods for inserting bone blocks into intervertebral spaces
6368350, Mar 11 1999 ZIMMER SPINE, INC Intervertebral disc prosthesis and method
6368351, Mar 27 2001 Spider-Tek, LLC Intervertebral space implant for use in spinal fusion procedures
6371971, Nov 15 1999 Boston Scientific Scimed, Inc Guidewire filter and methods of use
6371989, Sep 13 1996 WENZEL SPINE, INC Method of providing proper vertebral spacing
6375681, Jun 23 1998 ZIMMER BIOMET SPINE, INC Vertebral body replacement
6375682, Aug 06 2001 X-Pantu-Flex DRD Limited Liability Company Collapsible, rotatable and expandable spinal hydraulic prosthetic device
6375683, May 02 1997 STRYKER EUROPEAN HOLDINGS III, LLC Implant in particular for replacing a vertebral body in surgery of the spine
6379355, Jan 02 1997 Kyphon SARL Spine distraction implant and method
6379363, Sep 24 1999 Zimmer Biomet CMF and Thoracic, LLC Method and apparatus for reattachment of a cranial flap using a cranial clamp
6387130, Apr 16 1999 NuVasive, Inc Segmented linked intervertebral implant systems
6398793, Aug 11 2000 Acuderm Inc. Disposable dermal curette
6402750, Apr 04 2000 KRT INVESTORS, INC Devices and methods for the treatment of spinal disorders
6409766, Jul 30 1998 Trinity Orthopedics, LLC Collapsible and expandable interbody fusion device
6409767, Nov 05 1999 European Foot Platform Ankle prosthesis
6413278, Mar 30 1998 Marfly 2, LP Prosthetic system
6416551, May 21 1999 Depuy Spine, Inc Intervertebral endoprosthesis with a toothed connection plate
6419641, Nov 28 2000 Promex Technologies, LLC Flexible tip medical instrument
6419676, Jan 02 1997 Kyphon SARL Spine distraction implant and method
6419677, Jan 02 1997 Kyphon SARL Spine distraction implant and method
6419704, Oct 08 1999 ANOVA CORP Artificial intervertebral disc replacement methods and apparatus
6419705, Jun 23 1999 ZIMMER SPINE, INC Expandable fusion device and method
6419706, Dec 19 1997 SOFAMOR S N C Partial disc prosthesis
6423061, Mar 14 2000 AMEI TECHNOLOGIES INC High tibial osteotomy method and apparatus
6423067, Apr 29 1999 Theken Spine, LLC Nonlinear lag screw with captive driving device
6423071, Jul 25 2000 Surgical tool and method for passing pilot-line sutures through spinal vertebrae
6423083, Jan 23 1997 ORTHOPHOENIX, LLC Inflatable device for use in surgical protocol relating to fixation of bone
6423089, Dec 03 1996 ATRIUM MEDICAL CORPORATION Vascular endoprosthesis and method
6425887, Dec 09 1998 Cook Medical Technologies LLC Multi-directional needle medical device
6425919, Aug 18 1999 INTRINSIC THERAPEUTICS, INC Devices and methods of vertebral disc augmentation
6425920, Oct 13 1999 Spinal fusion implant
6428541, Apr 09 1998 ORACLE INTERNATIONAL CORPORATION OIC Method and instrumentation for vertebral interbody fusion
6428556, Aug 25 1999 MAQUET CARDIOVASCULAR LLC Longitudinal dilator and method
6436101, Oct 13 1999 POROSTEON INC Rasp for use in spine surgery
6436140, Aug 28 1998 Sofamor S.N.C. Expandable interbody fusion cage and method for insertion
6436143, Feb 22 1999 NuVasive, Inc Method and apparatus for treating intervertebral disks
6440138, Apr 06 1998 ORTHOPHOENIX, LLC Structures and methods for creating cavities in interior body regions
6440154, Nov 08 1996 SciMed Life Systems, Inc. Protective sheath for transvaginal anchor implantation device
6440169, Feb 10 1998 STRYKER EUROPEAN HOLDINGS III, LLC Interspinous stabilizer to be fixed to spinous processes of two vertebrae
6443989, Dec 04 2000 Warsaw Orthopedic, Inc Posterior expandable fusion cage
6447518, Jul 18 1995 FLEX TECHNOLOGY, INC Flexible shaft components
6447527, Apr 23 1998 SURGIQUEST, INC Apparatus and methods for the penetration of tissue
6447540, Nov 15 1996 Cook Medical Technologies LLC Stent deployment device including splittable sleeve containing the stent
6450989, Apr 27 1998 Ethicon Endo-Surgery, Inc Dilating and support apparatus with disease inhibitors and methods for use
6451019, Oct 20 1998 Kyphon SARL Supplemental spine fixation device and method
6451020, Jan 02 1997 Kyphon SARL Spine distraction implant and method
6454806, Jul 26 1999 EAST COAST MEDICAL & DENTAL DEVICES, INC Spinal surgical prosthesis
6454807, Nov 30 2000 Warsaw Orthopedic, Inc Articulated expandable spinal fusion cage system
6458134, Aug 17 1999 HOWMEDICA OSTEONICS CORP Bone connector system with anti-rotational feature
6461359, Nov 10 1999 CLIFFORD TRIBUS Spine stabilization device
6468277, Apr 04 2000 DEPUY SYNTHES SALES, INC ; DEPUY SYNTHES PRODUCTS, INC; DEPUY MITEK HOLDING CORPORATION; Depuy Synthes Products, LLC; DEPUY SPINE, LLC Orthopedic screw and method
6468279, Jan 27 1998 Kyphon SARL Slip-fit handle for hand-held instruments that access interior body regions
6468309, Oct 05 2000 CLEVELAND CLINIC FOUNDATION, THE Method and apparatus for stabilizing adjacent bones
6468310, Jul 16 2001 HOWMEDICA OSTEONICS CORP; HOWMEDICA OTEONICS CORP Intervertebral spacer device having a wave washer force restoring element
6471724, Mar 27 1995 SDGI Holdings, Inc. Methods and instruments for interbody fusion
6475226, Feb 03 1999 Boston Scientific Scimed, Inc Percutaneous bypass apparatus and method
6478029, Feb 22 1993 Hearport, Inc. Devices and methods for port-access multivessel coronary artery bypass surgery
6478796, Jan 02 1997 Kyphon SARL Spin distraction implant and method
6478805, Apr 16 1999 NuVasive, Inc System for removing cut tissue from the inner bore of a surgical instrument
6482235, Aug 18 1999 INTRINSIC THERAPEUTICS, INC Devices and methods of vertebral disc augmentation
6485491, Sep 15 2000 Warsaw Orthopedic, Inc Posterior fixation system
6485518, Dec 10 1999 NuVasive, Inc Facet screw and bone allograft intervertebral support and fusion system
6488693, Jan 26 2000 Edwards Lifesciences, LLC Vascular incisor and method
6488710, Jul 02 1999 Reinforced expandable cage and method of deploying
6489309, Aug 08 1997 Siemens Healthcare Diagnostics Products GmbH Polysaccharide conjugates of biomolecules
6491626, Apr 16 1999 NuVasive, Inc Articulation systems for positioning minimally invasive surgical tools
6491695, Nov 05 1999 Apparatus and method for aligning vertebrae
6491714, May 03 1996 ZipTek LLC Surgical tissue repair and attachment apparatus and method
6491724, Aug 13 1999 ANOVA CORP Spinal fusion cage with lordosis correction
6494860, Feb 08 2001 OSCOR, INC Introducer with multiple sheaths and method of use therefor
6494883, May 26 2000 ANOVA CORP Bone reinforcers
6494893, Mar 05 1993 Covidien LP Trocar system having expandable port
6498421, Jun 15 2001 Amega Lab, L.L.C. Ultrasonic drilling device with arc-shaped probe
6500178, Jan 02 1997 Kyphon SARL Spine distraction implant and method
6500205, Apr 19 2000 Warsaw Orthopedic, Inc Expandable threaded arcuate interbody spinal fusion implant with cylindrical configuration during insertion
6506192, Oct 26 1998 Musculoskeletal Transplant Foundation Allograft bone fixation screw
6508839, Aug 18 1999 INTRINSIC THERAPEUTICS, INC Devices and methods of vertebral disc augmentation
6511471, Dec 22 2000 BIOCARDIA DEVICECO, INC Drug delivery catheters that attach to tissue and methods for their use
6511481, Mar 30 2001 DEPUY SYNTHES PRODUCTS, INC Method and apparatus for fixation of proximal femoral fractures
6512958, Apr 26 2001 Medtronic, Inc. Percutaneous medical probe and flexible guide wire
6514256, Jan 02 1997 Kyphon SARL Spine distraction implant and method
6517543, Aug 17 1999 HOWMEDICA OSTEONICS CORP Bone connector system with anti-rotational feature
6517580, Mar 03 2000 SCIENT X SOCIETE ANONYME Disk prosthesis for cervical vertebrae
6520907, Mar 22 1996 SDGI Holdings, Inc. Methods for accessing the spinal column
6520991, May 11 1999 Expandable implant for inter-vertebral stabilization, and a method of stabilizing vertebrae
6527774, Nov 08 2000 CLEVELAND CLINIC FOUNDATION, THE Apparatus for attaching fractured sections of bone
6527803, Jun 23 1998 STRYKER EUROPEAN HOLDINGS III, LLC Intersomatic spine implant having anchoring elements
6527804, Dec 11 1998 STRYKER EUROPEAN HOLDINGS III, LLC Intervertebral disk prosthesis
6530930, Jun 09 1998 Nu Vasive, Inc. Spinal surgery guidance platform
6533791, Nov 13 1997 Sulzer Orthopedics Ltd. Instrument system for the operative correction of vertebral displacements
6533797, Nov 24 1999 NuVasive, Inc Control grip assembly
6533818, Apr 26 2000 Pearl Technology Holdings, LLC Artificial spinal disc
6540747, Apr 16 1999 NuVasive, Inc System for securing joints together
6544265, Nov 08 2000 CLEVELAND CLINIC FOUNDATION, THE Apparatus for implantation into bone related applications
6547793, Dec 06 1996 David A., McGuire Systems and methods for producing osteotomies
6547795, Aug 13 2001 DEPUY ACROMED, INC Surgical guide system for stabilization of the spine
6547823, Jan 22 1999 Warsaw Orthopedic, Inc Intervertebral implant
6551319, Nov 08 2000 CLEVELAND CLINIC FOUNDATION, THE Apparatus for implantation into bone
6551322, Oct 05 2000 CLEVELAND CLINIC FOUNDATION, THE Apparatus for implantation into bone
6554831, Sep 01 2000 Hopital Sainte-Justine Mobile dynamic system for treating spinal disorder
6554833, Oct 26 1998 EXPANDING ORTHOPEDICS INC Expandable orthopedic device
6554852, Aug 25 1999 Multi-anchor suture
6558389, Nov 30 1999 Endosteal tibial ligament fixation with adjustable tensioning
6558390, Feb 16 2000 MIS IP HOLDINGS LLC Methods and apparatus for performing therapeutic procedures in the spine
6558424, Jun 28 2001 Depuy Acromed Modular anatomic fusion device
6562046, Nov 23 1999 SDGI Holdings, Inc. Screw delivery system and method
6562049, Mar 01 2000 Cook Medical Technologies LLC Medical introducer apparatus
6562072, Jan 23 1998 Aesculap AG Implant for insertion between spinal column vertebrae
6562074, Oct 17 2001 IMDS LLC Adjustable bone fusion implant and method
6575919, Oct 19 1999 ORTHOPHOENIX, LLC Hand-held instruments that access interior body regions
6575979, Feb 16 2000 MIS IP HOLDINGS LLC Method and apparatus for providing posterior or anterior trans-sacral access to spinal vertebrae
6576016, May 01 1997 ZIMMER SPINE, INC Adjustable height fusion device
6579291, Oct 10 2000 KRT INVESTORS, INC Devices and methods for the treatment of spinal disorders
6579293, Aug 02 2000 ARTHRODESIS TECHNOLOGY LLC Intramedullary rod with interlocking oblique screw for tibio-calcaneal arthrodesis
6579320, Dec 11 1998 STRYKER EUROPEAN HOLDINGS III, LLC Intervertebral disc prosthesis with contact blocks
6579321, May 17 1999 Vanderbilt University Intervertebral disc replacement prosthesis
6582390, Nov 08 2000 LifeShield Sciences LLC Dual lumen peel-away sheath introducer
6582431, Feb 06 1997 HOWMEDICA OSTEONICS CORP Expandable non-threaded spinal fusion device
6582433, Apr 09 2001 Kyphon SARL Spine fixation device and method
6582437, Aug 26 1999 Warsaw Orthopedic, Inc Devices and methods for implanting fusion cages
6582441, Feb 24 2000 Boston Scientific Neuromodulation Corporation Surgical insertion tool
6582453, Jul 14 2000 Arthrocare Corporation Method and apparatus for attaching connective tissues to bone using a suture anchoring device
6582466, Dec 11 1998 STRYKER EUROPEAN HOLDINGS III, LLC Intervertebral disc prosthesis with reduced friction
6582467, Oct 31 2000 Warsaw Orthopedic, Inc Expandable fusion cage
6582468, Dec 11 1998 STRYKER EUROPEAN HOLDINGS III, LLC Intervertebral disc prosthesis with compressible body
6585730, Aug 30 2000 Arthrocare Corporation Method and apparatus for attaching connective tissues to bone using a knotless suture anchoring device
6585740, Nov 26 1998 Synthes USA, LLC Bone screw
6589240, Aug 28 2001 Rex Medical, L.P. Tissue biopsy apparatus with collapsible cutter
6589249, May 12 1998 SciMed Life Systems, Inc. Manual bone anchor placement devices
6592553, Jul 05 2000 Cardiac Pacemakers, Inc Introducer assembly and method therefor
6592624, Nov 24 1999 DBD CREDIT FUNDING, LLC Prosthetic implant element
6592625, Oct 20 1999 KRT INVESTORS, INC Spinal disc annulus reconstruction method and spinal disc annulus stent
6595998, Jun 01 2001 SPINE WAVE INC ; SPINE WAVE, INC Tissue distraction device
6596008, Jul 15 1997 ZIMMER SPINE, INC Method and instruments for percutaneous arthroscopic disc removal, bone biopsy and fixation of the vertebral
6599294, Jan 30 1999 Aesculap AG Surgical instrument for introducing intervertebral implants
6599297, Sep 12 1997 Cochlear Bone Anchored Solutions AB Device for ventilating the middle ear
6602293, Nov 01 1996 The Johns Hopkins University; Johns Hopkins University, The Polymeric composite orthopedic implant
6607530, May 10 1999 K2M, INC Systems and methods for spinal fixation
6607544, Jan 26 1994 ORTHOPHOENIX, LLC Expandable preformed structures for deployment in interior body regions
6607558, Jul 03 2001 Axiomed Spine Corporation Artificial disc
6610066, Sep 24 1999 Medtronic Xomed, Inc. Suction rasp and handpiece adapter assembly and powered surgical handpiece assembly including a suction rasp
6610091, Oct 22 1999 Globus Medical, Inc Facet arthroplasty devices and methods
6610094, Nov 08 1995 CENTERPULSE ORTHOPEDICS LTD Intervertebral prosthesis
6613050, Oct 24 1996 ZIMMER SPINE, INC Method and apparatus for spinal fixation
6613054, Aug 14 1998 ORTHOPHOENIX, LLC Systems and methods for placing materials into bone
6616678, Oct 01 1997 Boston Scientific Scimed, Inc Dilation systems and related methods
6620196, Aug 30 2000 Warsaw Orthopedic, Inc Intervertebral disc nucleus implants and methods
6623505, Aug 15 1997 ORTHOPHOENIX, LLC Expandable structures for deployment in interior body regions
6626943, Aug 24 2001 Sulzer Orthopedics LTD Artificial intervertebral disc
6626944, Feb 20 1998 Kyphon SARL Interspinous prosthesis
6629998, Aug 23 2000 Intervertebral retrieval device
6632224, Nov 12 1996 DEPUY SYNTHES PRODUCTS, INC Bone fixation system
6632235, Apr 19 2001 Synthes USA, LLC Inflatable device and method for reducing fractures in bone and in treating the spine
6635059, Jan 03 2001 Cannulated locking screw system especially for transiliac implant
6635060, Jul 06 2000 ZIMMER SPINE, INC Bone preparation instruments and methods
6635362, Feb 16 2001 High temperature coatings for gas turbines
6641564, Nov 06 2000 Greatbatch Ltd Safety introducer apparatus and method therefor
6641582, Jul 06 2000 ZIMMER SPINE, INC Bone preparation instruments and methods
6641587, Aug 14 1998 ORTHOPHOENIX, LLC Systems and methods for treating vertebral bodies
6641614, May 01 1997 ZIMMER SPINE, INC Multi-variable-height fusion device
6645213, Aug 13 1997 ORTHOPHOENIX, LLC Systems and methods for injecting flowable materials into bones
6645248, Aug 24 2001 Sulzer Orthopedics LTD Artificial intervertebral disc
6648890, Nov 12 1996 INTERVENTIONAL SPINE, INC Bone fixation system with radially extendable anchor
6648893, Oct 27 2000 ORTHOFIX HOLDINGS, INC ; ORTHOFIX INC Facet fixation devices
6648917, Oct 17 2001 IMDS LLC Adjustable bone fusion implant and method
6652527, Oct 20 1998 Kyphon SARL Supplemental spine fixation device and method
6652592, Oct 27 1997 RTI Surgical, Inc Segmentally demineralized bone implant
6655962, Aug 17 1999 Nobel Biocare USA, Inc Immediate provisional implant
6656178, Jul 28 1999 Urquhart-Dykes & Lord Vertebral-column fusion devices and surgical methods
6656180, Sep 05 2001 Applied Orthopaedics LLC Apparatus for retaining vertebrae in a desired spatial relationship
6660004, Sep 01 1999 SDGI Holdings, Inc. Multi-axial bone screw assembly
6660037, Nov 08 1995 CENTERPULSE ORTHOPEDICS LTD Intervertebral prosthesis
6663647, Jan 26 1994 ORTHOPHOENIX, LLC Inflatable device for use in surgical protocol relating to fixation of bone
6666890, Apr 19 2000 Warsaw Orthopedic, Inc Bone hemi-lumbar interbody spinal implant having an asymmetrical leading end and method of installation thereof
6666891, Nov 13 2000 Warsaw Orthopedic, Inc Device and method for lumbar interbody fusion
6669698, Oct 24 2000 Warsaw Orthopedic, Inc Vertebrae fastener placement guide
6669729, Mar 08 2002 LESFACETS, LLC Apparatus and method for the replacement of posterior vertebral elements
6669732, Oct 17 1997 TLIF, LLC Spinal disc
6673074, Aug 02 2001 ZIMMER SPINE, INC Apparatus for retaining bone portions in a desired spatial relationship
6676663, Jul 19 2001 Applicator device for controllably injecting a surgical cement into bones
6676664, Aug 05 1999 GRIFOLS, S A ; GRIFOLS S A Device for metering hardenable mass for vertebroplastia and other similar bone treatments
6676665, Aug 11 2000 ORTHOPHOENIX, LLC Surgical instrumentation and method for treatment of the spine
6679833, Mar 22 1996 Warsaw Orthopedic, Inc Devices and methods for percutaneous surgery
6679915, Apr 23 1998 Warsaw Orthopedic, Inc Articulating spinal implant
6682535, Jun 16 1999 Joimax GmbH Apparatus for decompressing herniated intervertebral discs
6682561, Jun 18 1998 PIONEER SURGICAL TECHNOLOGY, INC Spinal fixation system
6682562, Mar 10 2000 Choice Spine, LP Intervertebral disc prosthesis
6685706, Nov 19 2001 DEPUY SYNTHES PRODUCTS, INC Proximal anchors for bone fixation system
6685742, Nov 12 2002 WARSAW OTHOPEDIC, INC Articulated anterior expandable spinal fusion cage system
6689125, Jan 22 2001 KRT INVESTORS, INC Devices and methods for the treatment of spinal disorders
6689152, Sep 09 1998 Edwards Lifesciences Corporation Introducer/dilator with balloon protection and methods of use
6689168, Oct 05 2000 The Cleveland Clinic Foundation Method and apparatus for stabilizing adjacent bones
6692499, Jul 02 1997 Bionx Implants Oy; Linvatec Biomaterials Oy Surgical fastener for tissue treatment
6692563, Jul 03 2001 Kyphon SARL Magnesium-ammonium-phosphates cements, the production of the same and the use thereof
6695842, Oct 27 1997 Kyphon SARL Interspinous process distraction system and method with positionable wing and method
6695851, Mar 27 1995 SDGI Holdings, Inc. Methods and instruments for interbody fusion
6699246, Jan 02 1997 Kyphon SARL Spine distraction implant
6699247, Jan 02 1997 Kyphon SARL Spine distraction implant
6706070, May 01 1997 ZIMMER SPINE, INC Multi-variable-height fusion device
6709458, Feb 04 2000 Warsaw Orthopedic, Inc Expandable push-in arcuate interbody spinal fusion implant with tapered configuration during insertion
6712819, Oct 20 1998 Kyphon SARL Mating insertion instruments for spinal implants and methods of use
6716216, Aug 14 1998 ORTHOPHOENIX, LLC Systems and methods for treating vertebral bodies
6716247, Feb 04 2000 Warsaw Orthopedic, Inc Expandable push-in interbody spinal fusion implant
6716957, Mar 05 1999 HOWMEDICA OSTEONICS CORP Bioabsorbable materials and medical devices made therefrom
6719760, Aug 26 1999 Warsaw Orthopedic, Inc Devices and methods for implanting fusion cages
6719761, Aug 13 1997 ORTHOPHOENIX, LLC System and methods for injecting flowable materials into bones
6719773, Jun 01 1998 ORTHOPHOENIX, LLC Expandable structures for deployment in interior body regions
6719796, Jul 26 1999 EAST COAST MEDICAL & DENTAL DEVICES, INC Spinal surgical prosthesis
6723096, Aug 26 1999 Warsaw Orthopedic, Inc Devices and methods for implanting fusion cages
6723126, Nov 01 2002 Warsaw Orthopedic, Inc Laterally expandable cage
6723127, Jul 16 2001 HOWMEDICA OSTEONICS CORP; HOWMEDICA OTEONICS CORP Artificial intervertebral disc having a wave washer force restoring element
6723128, Aug 20 2001 Prosthetic device for correcting deformity of spine
6726691, Aug 14 1998 ORTHOPHOENIX, LLC Methods for treating fractured and/or diseased bone
6730126, Nov 13 2000 Device and method for lumbar interbody fusion
6733093, Jul 25 2002 SOUCY INTERNATIONAL INC Split wheel and method for installing endless track
6733460, Dec 12 2001 FUKUDA DENSHI CO , LTD Arteriosclerosis diagnosing apparatus
6733532, Dec 11 1998 STRYKER EUROPEAN HOLDINGS III, LLC Intervertebral disc prosthesis with improved mechanical behavior
6733534, Jan 29 2002 Warsaw Orthopedic, Inc System and method for spine spacing
6733535, Jun 28 1988 SDGI Holdings, Inc Spinal fusion implant having a trailing end adapted to engage an insertion device
6733635, Jun 29 1999 JFE Steel Corporation Method of repairing a coke oven buckstay and a moving device for use in such method
6740090, Feb 16 2000 MIS IP HOLDINGS LLC Methods and apparatus for forming shaped axial bores through spinal vertebrae
6740093, Feb 28 2000 SPINE WAVE, INC Method and apparatus for treating a vertebral body
6740117, Oct 01 2001 HOWMEDICA OSTEONICS CORP; HOWMEDICA OTEONICS CORP Intervertebral spacer device having a radially thinning slotted belleville spring
6743166, Feb 12 1999 KARL STORZ GMBH CO KG Apparatus for introducing an intubation tube into the trachea
6743255, Aug 13 1999 ANOVA CORP Spinal fusion cage with lordosis correction
6746451, Jun 01 2001 Cavitech, LLC Tissue cavitation device and method
6749560, Oct 26 1999 GYRUS ACMI, INC Endoscope shaft with slotted tube
6752831, Dec 08 2000 OSTEOTECH, INC Biocompatible osteogenic band for repair of spinal disorders
6755837, Sep 23 2002 Maxilon Laboratories, Inc.; MAXILON LABORATORIES, INC Apparatus and method for harvesting bone
6755841, May 08 2000 DEPUY SYNTHES PRODUCTS, INC Medical installation tool
6758673, Dec 05 2001 Periosteal distraction
6758847, Jul 08 1997 Atrionix, Inc. Circumferential ablation device assembly and methods of use and manufacture providing an ablative circumferential band along an expandable member
6758861, Jul 16 2001 HOWMEDICA OSTEONICS CORP; HOWMEDICA OTEONICS CORP Intervertebral spacer device having a wave washer force restoring element
6758862, Mar 21 2002 Warsaw Orthopedic, Inc Vertebral body and disc space replacement devices
6761720, Oct 15 1999 Zimmer Spine Intervertebral implant
6764491, Oct 21 1999 Warsaw Orthopedic, Inc Devices and techniques for a posterior lateral disc space approach
6764514, Apr 26 1999 Warsaw Orthopedic, Inc Prosthetic apparatus and method
6770075, May 17 2001 MEDICAL DEVICE ADVISORY DEVELOPMENT GROUP, LLC Spinal fixation apparatus with enhanced axial support and methods for use
6773460, Dec 05 2000 Warsaw Orthopedic, Inc Anterior variable expandable fusion cage
6780151, Oct 26 1999 GYRUS ACMI, INC Flexible ureteropyeloscope
6783530, Oct 22 1999 Expanding Orthopedics Inc. Expandable orthopedic device
6790210, Feb 16 2000 MIS IP HOLDINGS LLC Methods and apparatus for forming curved axial bores through spinal vertebrae
6793656, Mar 17 1992 SDGI Holdings, Inc. Systems and methods for fixation of adjacent vertebrae
6793678, Mar 27 2003 Depuy Acromed, Inc.; DEPUY ACROMED, INC Prosthetic intervertebral motion disc having dampening
6793679, Feb 04 2000 Warsaw Orthopedic, Inc Expandable push-in arcuate interbody spinal fusion implant with tapered configuration during insertion
6796983, Jan 02 1997 Kyphon SARL Spine distraction implant and method
6805685, Nov 19 1999 Prismedical Corporation In-line IV drug delivery pack with controllable dilution
6805695, Apr 04 2000 KRT INVESTORS, INC Devices and methods for annular repair of intervertebral discs
6805697, May 07 1999 University of Virginia Patent Foundation Method and system for fusing a spinal region
6805714, Apr 02 2001 ULRICH GMBH & CO KG Anchorable vertebral implant
6808526, Jul 13 1998 Sepitec Foundation Osteosynthesis screw, especially for application by a translaminar vertebral screw
6808537, Jul 07 2000 Warsaw Orthopedic, Inc Expandable implant with interlocking walls
6814736, Aug 13 1997 ORTHOPHOENIX, LLC Methods for injecting flowable materials into bones
6814756, Feb 04 2000 Warsaw Orthopedic, Inc Expandable threaded arcuate interbody spinal fusion implant with lordotic configuration during insertion
6821298, Apr 18 2000 Warsaw Orthopedic, Inc Anterior expandable spinal fusion cage system
6824565, Sep 08 2000 ZYVOGEN, LLC System and methods for inserting a vertebral spacer
6830589, Jun 23 1999 ZIMMER SPINE, INC Expandable fusion device and method
6835205, Apr 04 2000 KRT INVESTORS, INC Devices and methods for the treatment of spinal disorders
6835206, Apr 18 2000 Warsaw Orthopedic, Inc Anterior expandable spinal fusion cage system
6835208, Mar 30 1998 Marfly 2, LP Prosthetic system
6840941, Oct 31 2001 DEPUY ACROMED INC Vertebral endplate chisel
6840944, May 21 2002 Vertebral body end plate cutter
6852126, Jul 17 2000 NuVasive, Inc Stackable interlocking intervertebral support system
6852127, Jun 12 2000 Ortho Development Corporation Method of implanting an intervertebral spacer
6852129, Oct 17 2001 IMDS LLC Adjustable bone fusion implant and method
6855167, Dec 05 2001 Warsaw Orthopedic, Inc Spinal intervertebral implant, interconnections for such implant and processes for making
6863668, Aug 16 2002 Edwards Lifesciences Corporation Articulation mechanism for medical devices
6863672, Apr 06 1998 ORTHOPHOENIX, LLC Structures and methods for creating cavities in interior body regions
6863673, Oct 17 2001 IMDS LLC Methods for adjustable bone fusion implants
6866682, Sep 02 1999 STRYKER EUROPEAN HOLDINGS III, LLC Distractable corpectomy device
6875215, Feb 15 2002 John Stanley, Taras Distraction pin for fracture fixation
6878167, Apr 24 2002 ANOVA CORP Methods and apparatus for placing intradiscal devices
6881228, Jun 04 1999 SDGI Holdings, Inc. Artificial disc implant
6881229, Jun 14 2001 SINTX TECHNOLOGIES, INC Metal-ceramic composite articulation
6883520, Aug 18 1999 INTRINSIC THERAPEUTICS INC Methods and apparatus for dynamically stable spinal implant
6887243, Mar 30 2001 DEPUY SYNTHES PRODUCTS, INC Method and apparatus for bone fixation with secondary compression
6887248, May 27 1998 NuVasive, Inc. Bone blocks and methods for inserting bone blocks into intervertebral spaces
6890333, Mar 30 2001 DEPUY SYNTHES PRODUCTS, INC Method and apparatus for bone fixation with secondary compression
6893464, Mar 05 2002 The Regents of the University of California Method and apparatus for providing an expandable spinal fusion cage
6893466, Aug 30 2000 SDGI Holdings, Inc. Intervertebral disc nucleus implants and methods
6899716, Feb 16 2000 MIS IP HOLDINGS LLC Method and apparatus for spinal augmentation
6899719, Jan 26 1994 ORTHOPHOENIX, LLC Systems and methods for treating fractured or diseased bone using expandable bodies
6899735, Oct 02 2002 Warsaw Orthopedic, Inc Modular intervertebral prosthesis system
6902566, Jan 02 1997 Kyphon SARL Spinal implants, insertion instruments, and methods of use
6905512, Dec 14 1998 Phoenix Biomedical Corporation System for stabilizing the vertebral column including deployment instruments and variable expansion inserts therefore
6908465, Mar 30 2001 DEPUY SYNTHES PRODUCTS, INC Distal bone anchors for bone fixation with secondary compression
6908506, Jul 03 2000 Kyphon SARL Magnesium ammonium phosphate cement composition
6916323, Aug 21 2001 BIOMET C V Method and apparatus for percutaneously securing a bone screw and a bone plate to a bone of a patient
6921403, Feb 16 2000 MIS IP HOLDINGS LLC Method and apparatus for spinal distraction and fusion
6923810, Jun 13 1988 Warsaw Orthopedic, Inc Frusto-conical interbody spinal fusion implants
6923811, May 10 1999 K2M, INC Systems and methods for spinal fixation
6923813, Sep 03 2003 ORTHOPHOENIX, LLC Devices for creating voids in interior body regions and related methods
6923814, Oct 30 2001 NuVasive, Inc System and methods for cervical spinal fusion
6929606, Jan 29 2001 Depuy Spine, Inc Retractor and method for spinal pedicle screw placement
6929647, Feb 21 2001 HOWMEDICA OSTEONICS CORP Instrumentation and method for implant insertion
6936071, Jul 02 1999 ATHYRIUM OPPORTUNITIES III ACQUISITION LP; CENTINEL SPINE LLC Intervertebral implant
6936072, Aug 18 1999 INTRINSIC THERAPEUTICS, INC Encapsulated intervertebral disc prosthesis and methods of manufacture
6942668, Nov 19 2001 DEPUY SYNTHES PRODUCTS, INC Proximal anchors for bone fixation system
6945973, May 01 2003 NuVasive, Inc Slidable bone plate system
6945975, Jul 07 2003 AESCULAP INC Bone fixation assembly and method of securement
6946000, Dec 22 2000 Zimmer Spine Intervertebral implant with deformable wedge
6949100, Apr 08 1999 ORTHOFIX S R L Bone screw for use in orthopaedic surgery
6949108, Feb 28 2001 HOLMED, LLC Curette with detachable tip
6951561, May 06 2003 DEPUY SYNTHES PRODUCTS, INC Spinal stabilization device
6952129, Jan 12 2004 eMemory Technology Inc.; EMEMORY TECHNOLOGY INC Four-phase dual pumping circuit
6953477, Nov 01 2002 Warsaw Orthopedic, Inc Laterally expandable cage
6955691, Nov 21 2003 Kyungwon Medical Co., Ltd. Expandable interfusion cage
6962606, Feb 04 2000 Warsaw Orthopedic, Inc Expandable push-in interbody spinal fusion implant
6964674, Sep 20 1999 NuVasive, Inc Annulotomy closure device
6964686, May 17 1999 Vanderbilt University Intervertebral disc replacement prosthesis
6966910, Apr 05 2002 Dynamic fixation device and method of use
6966912, Sep 15 2000 Warsaw Orthopedic, Inc Device and method for preparing a space between adjacent vertebrae to receive an insert
6969404, Oct 08 1999 ANOVA CORP Annulus fibrosis augmentation methods and apparatus
6969405, Apr 23 2003 Inflatable intervertebral disc replacement prosthesis
6972035, Apr 19 2000 Warsaw Orthopedic, Inc Expandable threaded arcuate interbody spinal fusion implant with cylindrical configuration during insertion
6974479, Dec 10 2002 Warsaw Orthopedic, Inc System and method for blocking and/or retaining a prosthetic spinal implant
6979341, Jan 26 1994 ORTHOPHOENIX, LLC Expandable preformed structures for deployment in interior body regions
6979352, Nov 21 2002 Depuy Acromed Methods of performing embolism-free vertebroplasty and devices therefor
6979353, Dec 03 2001 HOWMEDICA OSTEONICS CORP Apparatus for fusing adjacent bone structures
6981981, Jan 26 1994 ORTHOPHOENIX, LLC Inflatable device for use in surgical protocol relating to fixation of bone
6997929, May 16 2003 SPINE WAVE, INC Tissue distraction device
7004945, Nov 01 2001 SPINE WAVE, INC Devices and methods for the restoration of a spinal disc
7004971, Dec 31 2002 DEPUY ACROMED, INC Annular nucleus pulposus replacement
7008431, Oct 30 2001 DEPUY SYNTHES PRODUCTS, INC Configured and sized cannula
7008453, Feb 04 2000 Warsaw Orthopedic, Inc Expandable push-in arcuate interbody spinal fusion implant with cylindrical configuration during insertion
7014633, Feb 16 2000 FORDHAM CAPITAL PARTNERS, LLC Methods of performing procedures in the spine
7018089, Sep 17 2002 Kyphon SARL Apparatus and methods for mixing two components
7018412, Aug 20 2001 ZIMMER BIOMET SPINE, INC Allograft spinal implant
7018415, Sep 23 2002 Warsaw Orthopedic, Inc Expandable spinal fusion device and methods of promoting spinal fusion
7018416, Jul 06 2000 ZIMMER SPINE, INC Bone implants and methods
7018453, Dec 31 2003 Sun Chemical Corporation Low VOC web offset heatset inks
7022138, Jul 31 2003 Spinal interbody fusion device and method
7025746, Dec 26 2001 Yale University Vascular access device
7025787, Nov 26 2001 COMPANION SPINE, LLC Implantable joint prosthesis and associated instrumentation
7029473, Oct 20 1998 Kyphon SARL Deflectable spacer for use as an interspinous process implant and method
7029498, Mar 31 2000 Koenigsee Implantate und Instrumente zur Osteosynthese GmbH Variable height vertebral implant
7037339, Sep 27 2001 ZIMMER BIOMET SPINE, INC Modular spinal fusion device
7041107, Apr 22 2002 INION LTD Instrument
7044954, Jan 26 1994 ORTHOPHOENIX, LLC Method for treating a vertebral body
7048694, Nov 28 2000 Promex Technologies, LLC Flexible tip medical instrument
7048736, May 17 2002 Warsaw Orthopedic, Inc Device for fixation of spinous processes
7060068, Oct 24 2000 Warsaw Orthopedic, Inc Vertebrae fastener placement guide
7060073, Oct 21 1999 Warsaw Orthopedic, Inc Devices and techniques for a posterior lateral disc space approach
7063701, May 05 1999 Warsaw Orthopedic, Inc Screws of cortical bone having a trailing end configured to cooperatively engage an implant
7063702, May 05 1999 Warsaw Orthopedic, Inc Screws of cortical bone and method of manufacture thereof
7063703, Jan 27 1998 Kyphon SARL Slip-fit handle for hand-held instruments that access interior body regions
7063725, Oct 21 2002 Warsaw Orthopedic, Inc Systems and techniques for restoring and maintaining intervertebral anatomy
7066960, Jun 28 2002 Intervertebral disk replacement
7066961, Jun 28 1988 Warsaw Orthopedic, Inc Spinal implant
7069087, Feb 25 2000 NEUROTHERM, INC Apparatus and method for accessing and performing a function within an intervertebral disc
7070598, Jun 25 2002 Warsaw Orthopedic, Inc Minimally invasive expanding spacer and method
7070601, Jan 16 2003 DEPUY SYNTHES PRODUCTS, INC Locking plate for bone anchors
7074203, Sep 25 1990 INNOVASIVE DEVICES, INC Bone anchor and deployment device therefor
7074226, Sep 19 2002 Warsaw Orthopedic, Inc Oval dilator and retractor set and method
7081120, Apr 26 1999 Warsaw Orthopedic, Inc Instrumentation and method for delivering an implant into a vertebral space
7081122, Oct 19 1999 ORTHOPHOENIX, LLC Hand-held instruments that access interior body regions
7083650, May 12 2004 MOSKOWITZ, NATHAN C Artificial expansile total lumbar and thoracic discs for posterior placement without supplemental instrumentation and its adaptation for anterior placement of artificial cervical, thoracic and lumbar discs
7087053, May 27 2004 ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC Catheter with bifurcated, collapsible tip for sensing and ablating
7087055, Jun 25 2002 Warsaw Orthopedic, Inc Minimally invasive expanding spacer and method
7087083, Mar 13 2001 Zimmer Spine Self locking fixable intervertebral implant
7089063, May 16 2000 ATRIONIX, INC Deflectable tip catheter with guidewire tracking mechanism
7094239, May 05 1999 Warsaw Orthopedic, Inc Screws of cortical bone and method of manufacture thereof
7094257, Feb 14 2003 ZIMMER BIOMET SPINE, INC Expandable intervertebral implant cage
7094258, Aug 18 1999 INTRINSIC THERAPEUTICS, INC Methods of reinforcing an annulus fibrosis
7101375, Jan 02 1997 Kyphon SARL Spine distraction implant
7114501, Aug 14 2000 SPINE WAVE, INC Transverse cavity device and method
7115128, Jun 13 1988 Warsaw Orthopedic, Inc Method for forming through a guard an implantation space in the human spine
7115163, Mar 04 2002 Kyphon SARL Magnesium ammonium phosphate cement composition
7118572, Feb 03 2003 Orthopedic Designs, Inc. Femoral neck compression screw system with ortho-biologic material delivery capability
7118579, Feb 04 2001 Warsaw Orthopedic, Inc Instrumentation for inserting an expandable interbody spinal fusion implant
7118580, Sep 14 1999 ATHYRIUM OPPORTUNITIES III ACQUISITION LP; CENTINEL SPINE LLC Instrument for inserting intervertebral implants
7118598, Feb 04 2000 Warsaw Orthopedic, Inc Expandable push-in arcuate interbody spinal fusion implant with cylindrical configuration during insertion
7124761, Aug 18 1999 INTRINSIC THERAPEUTICS, INC Deployment devices and methods for vertebral disc augmentation
7125424, Sep 28 2001 ZIMMER BIOMET SPINE, INC Skeletal stabilization implant
7128760, Mar 27 2001 Warsaw Orthopedic, Inc Radially expanding interbody spinal fusion implants, instrumentation, and methods of insertion
7135424, Jan 25 2001 Outlast Technologies LLC Coated articles having enhanced reversible thermal properties and exhibiting improved flexibility, softness, air permeability, or water vapor transport properties
7153304, Dec 29 2000 ZIMMER BIOMET SPINE, INC Instrument system for preparing a disc space between adjacent vertebral bodies to receive a repair device
7153305, Mar 08 2001 Spine Wave, Inc. Method for treating tibial plateau compression fractures
7153306, Aug 14 1998 ORTHOPHOENIX, LLC Systems and methods for reducing fractured bone using a fracture reduction cannula
7153307, Aug 14 1998 ORTHOPHOENIX, LLC Systems and methods for placing materials into bone
7156874, Dec 05 2000 STRYKER EUROPEAN HOLDINGS III, LLC Spinal intervertebral implant adjustable in situ comprising hard pass point
7156875, Apr 19 2000 Warsaw Orthopedic, Inc Arcuate artificial hemi-lumbar interbody spinal fusion implant having an asymmetrical leading end
7156876, Oct 09 2002 Depuy Acromed, Inc. Intervertebral motion disc having articulation and shock absorption
7156877, Jun 29 2001 Regents of the University of California, The Biodegradable/bioactive nucleus pulposus implant and method for treating degenerated intervertebral discs
7163558, Nov 30 2001 SPINE, ZIMMER Intervertebral implant with elastically deformable wedge
7166107, Sep 11 2000 INNOVATIVE SURGICAL DESIGNS, INC Percutaneous technique and implant for expanding the spinal canal
7172612, Dec 12 2000 Olympus Corporation Trocar and trocar system
7179293, Dec 10 1997 Warsaw Orthopedic, Inc. Osteogenic fusion device
7179294, Apr 25 2002 Warsaw Orthopedic, Inc Articular disc prosthesis and method for implanting the same
7189242, Apr 09 1998 Warsaw Orthopedic, Inc Method and instrumentation for vertebral interbody fusion
7201751, Jan 02 1997 Kyphon SARL Supplemental spine fixation device
7204851, Aug 30 2000 Warsaw Orthopedic, Inc Method and apparatus for delivering an intervertebral disc implant
7207991, Jun 13 1988 Warsaw Orthopedic, Inc Method for the endoscopic correction of spinal disease
7211112, Feb 10 2004 ATLAS SPINE, INC Spinal fusion device
7214227, Mar 22 2004 Theken Spine, LLC Closure member for a medical implant device
7217291, Dec 08 2003 Kyphon SARL System and method for replacing degenerated spinal disks
7217293, Nov 21 2003 Warsaw Orthopedic, Inc Expandable spinal implant
7220280, Oct 16 2002 Advanced Medical Technologies AG Spreader implant for placement between vertebrae
7220281, Aug 18 1999 INTRINSIC THERAPEUTICS, INC Implant for reinforcing and annulus fibrosis
7223227, May 13 2002 Spinal disc therapy system
7223292, May 03 2001 Synthes USA, LLC Intervertebral implant for transforaminal posterior lumbar interbody fusion procedure
7226481, May 16 2003 SPINEOLOGY, INC Expandable porous mesh bag device and methods of use for reduction, filling, fixation, and supporting of bone
7226483, May 03 2001 Synthes USA, LLC Method of performing a transforaminal posterior lumber interbody fusion procedure
7235101, Sep 15 2003 Warsaw Orthopedic, Inc Revisable prosthetic device
7238204, Jul 12 2000 Zimmer Spine Shock-absorbing intervertebral implant
7241297, Nov 08 2002 Warsaw Orthopedic, Inc Transpedicular intervertebral disk access methods and devices
7244273, Dec 17 1999 DSM IP ASSETS B V Prosthetic device
7250060, Jan 27 2004 Warsaw Orthopedic, Inc Hybrid intervertebral disc system
7252671, Aug 14 1998 ORTHOPHOENIX, LLC Systems and methods for treating vertebral bodies
7267683, Aug 13 1996 NEUROTHERM, INC Method for treating intervertebral discs
7267687, Oct 02 2001 Rex Medical, L.P Spinal implant and method of use
7270679, May 30 2003 Warsaw Orthopedic, Inc Implants based on engineered metal matrix composite materials having enhanced imaging and wear resistance
7276062, Mar 12 2003 Biosense Webster, Inc Deflectable catheter with hinge
7282061, Aug 13 1996 NEUROTHERM, INC Method of treating intervertebral disc
7291173, May 06 2003 AESCULAP IMPLANT SYSTEMS, INC Artificial intervertebral disc
7300440, Mar 27 1995 Warsaw Orthopedic, Inc. Methods and instruments for interbody fusion
7306628, Oct 29 2002 MEDTRONIC EUROPE SARL Interspinous process apparatus and method with a selectably expandable spacer
7309357, Dec 30 2004 Infinesse, Corporation Prosthetic spinal discs
7311713, Mar 08 2001 Spine Wave, Inc. Method of interbody fusion with stacked elements
7316714, Aug 05 2003 Tyler Fusion Technologies, LLC Artificial functional spinal unit assemblies
7318840, Dec 06 1999 SDGI Holdings, Inc. Intervertebral disc treatment devices and methods
7320689, Jul 15 2003 CERVITECH, INC Multi-part cervical endoprosthesis with insertion instrument
7320708, Nov 13 2002 Warsaw Orthopedic, Inc Cervical interbody device
7322962, Apr 23 2004 Device and method for treatment of intervertebral disc disruption
7326211, Aug 23 2001 DEPUY SYNTHES PRODUCTS, INC Deployment tool for distal bone anchors with secondary compression
7326248, Mar 09 2001 Warsaw Orthopedic, Inc Expandable interbody spinal fusion implant with expansion constraining member and method for use thereof
7335203, Feb 12 2003 Kyphon SARL System and method for immobilizing adjacent spinous processes
7351262, Jun 05 2003 Warsaw Orthopedic, Inc Bone implants and methods of making same
7361140, Sep 03 2001 Joimax GmbH; Blazejewski Medi-Tech GmbH Connector for a combination cable, combination cable connected thereto, socket therefor, device for feeding light, plug connection system and endoscopy system
7371238, Feb 16 2001 Medtronic Spine LLC Method and device for treating scoliosis
7377942, Aug 06 2003 Warsaw Orthopedic, Inc Posterior elements motion restoring device
7383639, Jul 12 2005 Kyphon SARL Measurement instrument for percutaneous surgery
7400930, Aug 13 1996 NEUROTHERM, INC Method for treating intervertebral discs
7406775, Apr 22 2004 Globus Medical, Inc Implantable orthopedic device component selection instrument and methods
7410501, Mar 27 2001 Warsaw Orthopedic, Inc Radially expanding interbody spinal fusion implants, instrumentation, and method of insertion
7413576, Dec 08 2000 Warsaw Orthopedic, Inc Biocompatible osteogenic band for repair of spinal disorders
7422594, Jun 20 2003 STRYKER EUROPEAN HOLDINGS III, LLC Drilling tool guide wire alignment device
7434325, Jul 26 2004 Warsaw Orthopedic, Inc. Systems and methods for determining optimal retractor length in minimally invasive procedures
7442211, May 27 2003 Simplify Medical Pty Ltd Intervertebral prosthetic disc
7445636, Mar 27 2001 Warsaw Orthopedic, Inc Instrumentation for use with radially expanding interbody spinal fusion implant
7445637, Aug 08 2001 COMPANION SPINE, LLC Vertebra stabilizing assembly
7470273, Jun 25 2004 ZIMMER BIOMET SPINE, INC Tool for intervertebral implant manipulation
7473256, Oct 23 2003 MIS IP HOLDINGS LLC Method and apparatus for spinal distraction
7473268, Oct 20 1998 Kyphon SARL Mating insertion instruments for spinal implants and methods of use
7476251, Oct 29 2002 Kyphon SARL Interspinous process apparatus and method with a selectably expandable spacer
7485134, Dec 07 2001 SIMONSON, CYNTHIA JEANNE Vertebral implants adapted for posterior insertion
7488326, Jan 02 2004 ZIMMER, INC Combination targeting guide and driver instrument for use in orthopaedic surgical procedures
7491237, Mar 26 2004 Synthes USA, LLC Allograft implant
7500991, Dec 31 2002 Depuy Synthes Products, LLC Banana cage
7503920, Aug 11 2004 SEASPINE, INC Spinal surgery system and method
7503933, Jun 07 1995 Warsaw Orthopedic, Inc Lordotic interbody spinal fusion implants
7507241, Apr 05 2004 CORELINK, LLC Expandable bone device
7517363, Jun 27 2002 Depuy Synthes Products, LLC Intervertebral disc having translation
7520888, Feb 14 2006 Warsaw Orthopedic, Inc Treatment of the vertebral column
7547317, Mar 21 2006 MIS IP HOLDINGS LLC Methods of performing procedures in the spine
7556629, Mar 30 2001 DEPUY SYNTHES PRODUCTS, INC Method and apparatus for bone fixation with secondary compression
7556651, Jan 09 2004 3SPINE, INC Posterior spinal device and method
7569054, Feb 27 1995 Warsaw Orthopedic, Inc Tubular member having a passage and opposed bone contacting extensions
7569074, Dec 11 2003 Warsaw Orthopedic, Inc Expandable intervertebral implant
7572279, Nov 10 2004 Polyaxial bone screw with discontinuous helically wound capture connection
7575580, Apr 15 2005 Warsaw Orthopedic, Inc Instruments, implants and methods for positioning implants into a spinal disc space
7575599, Jul 30 2004 Simplify Medical Pty Ltd Intervertebral prosthetic disc with metallic core
7578820, Sep 02 2003 Warsaw Orthopedic, Inc Devices and techniques for a minimally invasive disc space preparation and implant insertion
7588574, Oct 23 2003 MIS IP HOLDINGS LLC Kits for enabling axial access and procedures in the spine
7601173, Sep 02 2003 Synthes USA, LLC Multipiece allograft implant
7608083, Feb 15 2001 AURIS HEALTH, INC Robotically controlled medical instrument with a flexible section
7618458, Dec 09 2003 BIEDERMANN TECHNOLOGIES GMBH & CO KG Height-adjustable intervertebrae implant
7621950, Jan 27 1999 Kyphon SARL Expandable intervertebral spacer
7621960, Jan 22 2001 Warsaw Orthopedic, Inc Modular interbody fusion implant
7625377, Jul 02 2001 MANDACO 569 LTD - TRADING AS SURGICRAFT Collapsible and expandable instrument for insertion in a dorsal vertebra
7625378, Sep 30 2002 Warsaw Orthopedic, Inc Devices and methods for securing a bone plate to a bony segment
7625394, Aug 05 2005 Warsaw Orthopedic, Inc Coupling assemblies for spinal implants
7637905, Jan 15 2003 SOLAR CAPITAL LTD , AS SUCCESSOR AGENT Endoluminal tool deployment system
7641657, Jun 10 2003 MIS IP HOLDINGS LLC Method and apparatus for providing posterior or anterior trans-sacral access to spinal vertebrae
7641670, Aug 20 1998 ZIMMER SPINE, INC Cannula for receiving surgical instruments
7641692, Aug 08 2000 COMPANION SPINE, LLC Implantable joint prosthesis
7647123, Aug 13 1996 NEUROTHERM, INC Method for treating intervertebral discs
7648523, Dec 08 2004 DECIMA SPINE, INC Method and apparatus for spinal stabilization
7655010, Sep 30 2003 Depuy Spine, Inc Vertebral fusion device and method for using same
7666186, Sep 27 2002 Surgitech, LLC Surgical system with a blade
7666266, Dec 04 2003 Nippon Steel Corporation Surface conditioning prior to chemical conversion treatment of a steel member
7670354, Aug 20 1998 ZIMMER SPINE, INC Cannula for receiving surgical instruments
7670374, Aug 16 2005 IZI Medical Products, LLC Methods of distracting tissue layers of the human spine
7674265, Apr 24 2003 Warsaw Orthopedic, Inc Minimally invasive instruments and methods for preparing vertebral endplates
7674273, Aug 20 1998 ZIMMER SPINE, INC Method for performing a surgical procedure and a cannula for use in performing the surgical procedure
7682370, Aug 20 1998 ZIMMER SPINE, INC Surgical tool for use in expanding a cannula
7682400, Jun 10 2004 SPINAL VENTURES LLC Non-soft tissue repair
7691120, Aug 26 2003 ZIMMER SPINE, INC Access systems and methods for minimally invasive surgery
7691147, Dec 06 2002 Synthes USA, LLC Intervertebral implant
7699878, Nov 13 2002 Synthes USA, LLC Method for locking an artificial facet between two vertebral bodies
7703727, Jul 21 2004 Universal adjustable spacer assembly
7704280, Jul 22 2003 Synthes USA, LLC Intervertebral implant comprising temporary blocking means
7717944, Oct 20 1999 Warsaw Orthopedic, Inc. Instruments and methods for stabilization of bony structures
7722530, Aug 01 2000 ZIMMER SPINE, INC Method of securing vertebrae
7722612, May 19 2004 SINTEA BIOTECH S P A Devices, kit and method for kyphoplasty
7722674, Aug 12 2005 HOWMEDICA OSTEONICS CORP Linearly expanding spine cage for enhanced spinal fusion
7727263, Feb 16 2000 MIS IP HOLDINGS LLC Articulating spinal implant
7731751, Mar 31 2005 ST CLOUD CAPITAL PARTNERS III SBIC, LP Expandable spinal devices and method of insertion
7740633, Oct 23 2003 MIS IP HOLDINGS LLC Guide pin for guiding instrumentation along a soft tissue tract to a point on the spine
7744599, Feb 16 2000 MIS IP HOLDINGS LLC Articulating spinal implant
7744650, May 19 2005 Aesculap AG Vertebral body replacement implant
7749270, Apr 29 2005 Warsaw Orthopedic, Inc Expandable intervertebral implant and associated instrumentation
7762995, Apr 25 2002 The Board of Trustees of the Leland Stanford Junior University Expandable guide sheath and apparatus and methods using such sheaths
7763025, Oct 23 2003 MIS IP HOLDINGS LLC Spinal fusion kit for guiding instrumentation through soft tissue to a point on the spine
7763028, Feb 13 2004 Warsaw Orthopedic, Inc Spacer with height and angle adjustments for spacing vertebral members
7763038, Dec 09 2005 Suture needle retention device
7763055, Oct 20 1999 Warsaw Orthopedic, Inc. Instruments and methods for stabilization of bony structures
7766930, May 15 2001 ZIMMER BIOMET SPINE, INC Cannula for receiving surgical instruments
7771473, Jul 06 2006 ZIMMER BIOMET SPINE, INC Expandable spinal fusion cage
7771479, Jan 09 2004 3SPINE, INC Dual articulating spinal device and method
7785368, Aug 16 2005 IZI Medical Products, LLC Spinal tissue distraction devices
7789914, Jun 07 1995 Warsaw Orthopedic, Inc Implant having arcuate upper and lower bearing surfaces along a longitudinal axis
7794463, Feb 16 2000 MIS IP HOLDINGS LLC Methods and apparatus for performing therapeutic procedures in the spine
7799032, Oct 23 2003 MIS IP HOLDINGS LLC Guide pin introducer for guiding instrumentation through soft tissue to a point on the spine
7799033, Oct 23 2003 MIS IP HOLDINGS LLC Access kits for enabling axial access and procedures in the spine
7799036, Jul 31 2001 ZIMMER BIOMET SPINE, INC Method and apparatus for securing vertebrae
7799080, Apr 22 2005 Spinal disc prosthesis and methods of use
7799081, Sep 14 2004 Aeolin, LLC System and method for spinal fusion
7799083, May 02 2005 SEASPINE, INC Prosthesis for restoring motion in an appendage or spinal joint and an intervertebral spacer
7803161, Oct 20 2000 Warsaw Orthopedic, Inc. Methods and instruments for interbody surgical techniques
7814429, Jun 14 2006 Dassault Systemes Computerized collaborative work
7819921, Aug 12 2005 HOWMEDICA OSTEONICS CORP Linearly expanding spine cage for enhanced spinal fusion
7824410, Oct 30 2001 Depuy Synthes Products, LLC Instruments and methods for minimally invasive spine surgery
7824429, Jul 19 2002 DEPUY SYNTHES PRODUCTS, INC Method and apparatus for spinal fixation
7824445, Jul 26 1999 EAST COAST MEDICAL & DENTAL DEVICES, INC Corpectomy vertebral body replacement implant system
7828807, Apr 29 2005 Warsaw Orthopedic, Inc. Implantation of a deformable prosthesic device
7837734, Dec 08 2003 Kyphon SARL System and method for replacing degenerated spinal disks
7846183, Feb 06 2004 SPINAL ELEMENTS, INC ; Amendia, Inc Vertebral facet joint prosthesis and method of fixation
7846206, Jun 09 2004 Stryker European Operations Limited Methods and apparatuses for bone restoration
7850695, Aug 01 2000 ZIMMER BIOMET SPINE, INC Method of securing vertebrae
7850733, Feb 10 2004 ATLAS SPINE, INC PLIF opposing wedge ramp
7854766, May 12 2004 Moskowitz Family LLC Artificial total lumbar disc for unilateral safe and simple posterior placement in the lumbar spine, and removable bifunctional screw which drives vertical sliding expansile plate expansion, and interplate widening, and angled traction spikes
7857832, Dec 08 2004 DECIMA SPINE, INC Method and apparatus for spinal stabilization
7857840, Oct 02 2006 The Cleveland Clinic Foundation Fastener assembly
7862590, Apr 08 2005 Warsaw Orthopedic, Inc Interspinous process spacer
7862595, Oct 20 1999 Warsaw Orthopedic, Inc. Instruments and methods for stabilization of bony structures
7867259, Oct 20 1999 Warsaw Orthopedic, Inc. Instruments and methods for stabilization of bony structures
7874980, Sep 23 2004 Medigus Ltd. Articulation section
7875077, Jan 09 2004 3SPINE, INC Support structure device and method
7879098, Oct 19 2005 Expandable lordosis stabilizing cage
7887589, Nov 23 2004 Minimally invasive spinal disc stabilizer and insertion tool
7892171, Aug 20 1998 ZIMMER BIOMET SPINE, INC Cannula for receiving surgical instruments
7892249, Aug 20 1998 ZIMMER BIOMET SPINE, INC Cannula for receiving surgical instruments
7901438, Dec 08 2004 DECIMA SPINE, INC Method and apparatus for spinal stabilization
7901459, Jan 09 2004 3SPINE, INC Split spinal device and method
7909870, Dec 11 2003 TAURUS GMBH & CO KG Height-adjustable spinal implant and operating instrument for the implant
7909874, Jan 30 2008 Artificial spinal disk
7918874, Aug 11 2004 SEASPINE, INC Devices for introduction into a body along a substantially straight guide to form a predefined curved configuration, and methods employing same
7922719, Oct 06 2004 FIRST COMMERCE BANK Adjustable angle pawl handle for surgical instruments
7922729, Feb 04 2001 Warsaw Orthopedic, Inc Instrumentation for inserting and deploying an expandable interbody spinal fusion implant
7931674, Mar 21 2005 MEDTRONIC EUROPE SARL Interspinous process implant having deployable wing and method of implantation
7931689, Feb 27 2001 SPINEOLOGY, INC Method and apparatus for treating a vertebral body
7935051, Jun 26 2002 NuVasive, Inc. Surgical access system and related methods
7938832, Apr 21 2006 DEPUY SYNTHES PRODUCTS, INC Method and apparatus for spinal fixation
7942903, Apr 12 2005 Moskowitz Family LLC Bi-directional fixating transvertebral body screws and posterior cervical and lumbar interarticulating joint calibrated stapling devices for spinal fusion
7947078, Jan 09 2007 SEASPINE, INC Devices for forming curved or closed-loop structures
7951199, Jun 15 2005 Lateral expandable interbody fusion cage
7955391, Aug 16 2005 IZI Medical Products, LLC Methods for limiting the movement of material introduced between layers of spinal tissue
7959675, Apr 08 2005 ADVANCED VERTEBRAL SOLUTIONS, LLC Spine implant insertion device and method
7963967, Oct 12 2006 Woodse Enterprises, Inc. Bone preparation tool
7963993, Aug 16 2005 IZI Medical Products, LLC Methods of distracting tissue layers of the human spine
7967864, Aug 16 2005 IZI Medical Products, LLC Spinal tissue distraction devices
7967865, Aug 16 2005 IZI Medical Products, LLC Devices for limiting the movement of material introduced between layers of spinal tissue
7985231, Dec 31 2007 Kyphon SARL Bone fusion device and methods
7993403, Oct 29 1998 Warsaw Orthopedic, Inc. Expandable intervertebral spacers
7998176, Jun 08 2007 DEPUY SYNTHES PRODUCTS, INC Method and apparatus for spinal stabilization
8007535, Jun 02 2005 ZIMMER SPINE, INC Interbody fusion ring and method of using the same
8012212, Apr 07 2003 CERVITECH, INC Cervical intervertebral disk prosthesis
8021424, Jan 25 2008 Aesculap AG Intervertebral implant
8021426, Jun 15 2005 OUROBOROS MEDICAL, INC , A DELAWARE CORPORATION Mechanical apparatus and method for artificial disc replacement
8025697, Sep 21 2006 CUSTOM SPINE ACQUISITION, INC Articulating interbody spacer, vertebral body replacement
8034109, Feb 24 2005 Morphogeny, LLC Linked slideable and interlockable rotatable components
8034110, Jul 31 2006 Depuy Synthes Products, LLC Spinal fusion implant
8038703, Jan 23 1998 ZOLL CIRCULATION, INC Selective organ cooling apparatus and method
8043293, Mar 22 2006 Beacon Biomedical, LLC Pivotable interbody spacer
8043381, Oct 29 2007 ZIMMER SPINE, INC Minimally invasive interbody device and method
8052754, Sep 28 2007 Zimmer GmbH Intervertebral endoprosthesis
8057544, Aug 16 2005 IZI Medical Products, LLC Methods of distracting tissue layers of the human spine
8057545, Aug 25 2006 Warsaw Orthopedic, Inc. Revision spacer
8062375, Oct 15 2009 Globus Medical, Inc. Expandable fusion device and method of installation thereof
8075621, Feb 04 2000 Warsaw Orthopedic, Inc Expandable push-in arcuate interbody spinal fusion implant with tapered configuration during insertion
8097036, May 02 2005 SEASPINE, INC Motion restoring intervertebral device
8100978, Apr 01 2007 SPINAL KINETICS LLC Prosthetic intervertebral discs having expandable cores that are implantable using minimally invasive surgical techniques
8105382, Dec 07 2006 DEPUY SYNTHES PRODUCTS, INC Intervertebral implant
8109972, Apr 18 2005 MEDTRONIC EUROPE SARL Interspinous process implant having deployable wings and method of implantation
8109977, Jul 19 2002 DEPUY SYNTHES PRODUCTS, INC Method and apparatus for spinal fixation
8114088, Sep 19 2008 ZIMMER BIOMET SPINE, INC Geared spinal implant inserter-distractor
8118871, Aug 05 2003 Tyler Fusion Technologies, LLC Expandable articulating intervertebral implant
8128700, Sep 13 2006 Synthes USA, LLC Allograft intervertebral implant and method of manufacturing the same
8128702, Apr 18 2005 MEDTRONIC EUROPE SARL Interspinous process implant having deployable wings and method of implantation
8133232, Jul 17 2007 CORELINK, LLC Expandable bone device
8147549, Nov 24 2008 Warsaw Orthopedic, Inc.; Warsaw Orthopedic, Inc Orthopedic implant with sensor communications antenna and associated diagnostics measuring, monitoring, and response system
8177812, Dec 31 2007 Kyphon SARL Bone fusion device and methods
8187327, May 18 2005 ORTHOPHOENIX, LLC Selectively-expandable bone scaffold
8187332, Nov 03 2004 NEUROPRO SPINAL JAXX, INC Bone fusion device
8192495, Dec 10 2008 HOWMEDICA OSTEONICS CORP Lockable spinal implant
8202322, Sep 12 2008 Dynamic six-degrees-of-freedom intervertebral spinal disc prosthesis
8206423, Jan 05 2005 SEASPINE, INC Devices for introduction into a body via a substantially straight conduit to form a predefined curved configuration, and methods employing such devices
8216312, May 31 2007 ZIMMER BIOMET SPINE, INC Spinal interbody system and method
8216314, Feb 13 2008 Intelligent Implant Systems Distractable spinal implant assembly
8216317, Mar 31 2008 STRYKER EUROPEAN HOLDINGS III, LLC Spinal implant apparatus and methods
8221501, Dec 11 2003 Warsaw Orthopedic, Inc Expandable intervertebral implant
8221502, Nov 21 2003 Wasaw Orthopedic, Inc. Expandable spinal implant
8221503, Nov 09 2001 ZIMMER BIOMET SPINE, INC Spinal implant
8231675, Dec 19 2002 Synthes USA, LLC Intervertebral implant
8231681, Apr 27 2006 Warsaw Orthopedic Self-contained expandable implant and method
8236029, Aug 11 2004 SEASPINE, INC Devices for introduction into a body via a substantially straight conduit to for a predefined curved configuration, and methods employing such devices
8236058, Sep 27 2005 VERTEBRATION, INC Spine surgery method and implant
8241328, Jan 05 2005 SEASPINE, INC Devices for introduction into a body via a substantially straight conduit to form a predefined curved configuration, and methods employing such devices
8241358, Mar 29 2007 ST CLOUD CAPITAL PARTNERS III SBIC, LP Radially expandable spinal interbody device and implantation tool
8241361, Sep 20 2007 WALDEMAR LINK GMBH & CO KG Endoprosthesis component
8241364, Apr 02 2009 Globus Medical, Inc Method of installation of intervertebral spacers
8246622, Jul 27 2008 NLT SPINE LTD Tool and corresponding method for removal of material from within a body
8257440, Aug 05 2003 Tyler Fusion Technologies, LLC Method of insertion of an expandable intervertebral implant
8257442, May 01 2006 Warsaw Orthopedic, Inc. Expandable intervertebral spacers and methods of use
8262666, Apr 27 2007 ATLAS SPINE, INC Implantable distractor
8262736, Mar 27 2001 Warsaw Orthopedic, Inc Radially expanding implants
8267939, Feb 28 2008 STRYKER EUROPEAN HOLDINGS III, LLC Tool for implanting expandable intervertebral implant
8267965, Oct 22 2007 FLEXUSPINE, INC Spinal stabilization systems with dynamic interbody devices
8273128, Oct 10 2007 CUSTOM SPINE ACQUISITION, INC Sliding intervertebral implant method
8273129, Feb 10 2004 Atlas Spine, Inc. PLIF opposing wedge ramp
8287599, Nov 16 2006 Rex Medical, L.P. Spinal implant and method of use
8292959, Aug 01 2003 ZIMMER BIOMET SPINE, INC Spinal implant
8303663, Jul 22 2009 SPINEX TEC, LLC Methods and apparatuses for vertebral body distraction and fusion employing a coaxial screw gear sleeve mechanism
8317866, Jun 02 2010 Warsaw Orthopedic, Inc. System and methods for a laterally expanding implant
8323345, Feb 14 2008 CTL Medical Corporation Anterior lumbar interbody fusion cage device and associated method
8328812, Jul 27 2008 NLT SPINE LTD Tool and corresponding method for removal of material from within a body
8328852, Mar 14 2008 MAZOR ROBOTICS LTD Segmented insert for intervertebral support
8337559, Apr 21 2005 Globus Medical, Inc. Expandable vertebral prosthesis
8343193, Mar 08 2001 Spine Wave, Inc. Method of supporting and distracting opposing vertebral bodies
8343222, Apr 28 2005 Spinal disc prosthesis and instruments
8353961, Feb 07 2008 K2M, INC Expandable vertebral device with cam lock
8361154, Mar 31 2007 SPINAL KINETICS LLC Temporarily bound prosthetic intervertebral discs implantable by minimally invasive surgical techniques
8366777, Nov 23 2006 BIEDERMANN TECHNOLOGIES GMBH & CO KG Expandable intervertebral implant
8377098, Jan 19 2007 Tyler Fusion Technologies, LLC Artificial functional spinal unit system and method for use
8382842, May 14 2009 NuVasive, Inc Expandable support device and method of use
8394129, Mar 10 2011 DEPUY SYNTHES PRODUCTS, INC Method and apparatus for minimally invasive insertion of intervertebral implants
8398712, Feb 04 2005 Simplify Medical Pty Ltd Intervertebral prosthetic disc with shock absorption
8398713, Sep 03 2010 Globus Medical, Inc. Expandable fusion device and method of installation thereof
8403990, Jan 20 2005 Warsaw Orthopedic, Inc. Expandable spinal fusion cage and associated instrumentation
8409282, Oct 20 2004 The Board of Trustees of the Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
8409290, Mar 08 2006 SEASPINE, INC. Interbody device for spinal applications
8409291, Apr 07 2011 Warsaw Orthopedic, Inc. Laterally expandable interbody spinal fusion implant
8414650, Feb 01 2010 SB Technologies, LLC Composite interbody device
8425559, Oct 20 2004 Boston Scientific Neuromodulation Corporation Systems and methods for posterior dynamic stabilization of the spine
8435298, Sep 03 2010 Globus Medical, Inc. Expandable fusion device and method of installation thereof
8454617, Jun 22 2007 SPINAL ELEMENTS, INC Devices for treating the spine
8454698, May 27 2003 Simplify Medical Pty Ltd Prosthetic disc for intervertebral insertion
8465524, Jan 05 2005 SEASPINE, INC Devices for introduction into a body via a substantially straight conduit to form a predefined curved configuration, and methods employing such devices
8470043, Dec 23 2008 SPINAL ELEMENTS, INC Tissue removal tools and methods of use
8480715, May 22 2007 ZIMMER SPINE, INC Spinal implant system and method
8480742, Aug 02 2005 PERUMALA HOLDINGS, LLC A BELIZE LIMITED LIABILITY COMPANY Total artificial disc
8480748, Oct 07 2010 Lordotic expandable interbody implant and method
8486109, Aug 11 2004 SEASPINE, INC Devices for introduction into a body via a substantially straight conduit to form a predefined curved configuration, and methods employing such devices
8486148, Jan 16 2008 ST CLOUD CAPITAL PARTNERS III SBIC, LP Hinged spinal fusion cages
8491591, Nov 01 2002 DEPUY SYNTHES PRODUCTS, INC Device for straightening and stabilizing the vertebral column
8491653, Nov 20 2003 Warsaw Orthopedic, Inc. Intervertebral body fusion cage with keels and implantation methods
8491657, Mar 28 2007 GUILLEN, FRANCISCO ROS; SCHAUMBURG, GERALD Expanding cage for vertebral surgery
8491659, Sep 03 2010 Globus Medical, Inc. Expandable fusion device and method of installation thereof
8506635, Jun 02 2010 Warsaw Orthopedic, Inc. System and methods for a laterally expanding implant
8518087, Mar 10 2011 DEPUY SYNTHES PRODUCTS, INC Method and apparatus for minimally invasive insertion of intervertebral implants
8518120, Oct 15 2009 Globus Medical, Inc.; Globus Medical, Inc Expandable fusion device and method of installation thereof
8523909, May 01 2007 Spinal Simplicity, LLC Interspinous process implants having deployable engagement arms
8523944, Dec 31 2008 Octagon Spine LLC Methods and apparatus for vertebral body distraction and fusion employing flexure members
8535380, May 13 2010 STOUT MEDICAL GROUP, L P Fixation device and method
8545567, Nov 14 2008 Spinal fusion device
8551092, Jun 07 2004 Depuy Synthes Products, LLC Orthopaedic implant with sensors
8551173, Jan 17 2008 DEPUY SYNTHES PRODUCTS, INC Expandable intervertebral implant and associated method of manufacturing the same
8556978, Aug 16 2005 IZI Medical Products, LLC Devices and methods for treating the vertebral body
8556979, Oct 15 2009 Globus Medical, Inc.; Globus Medical, Inc Expandable fusion device and method of installation thereof
8568481, Dec 07 2006 DEPUY SYNTHES PRODUCTS, INC Intervertebral implant
8579977, Apr 24 2008 Spine surgery method and inserter
8579981, Feb 03 2003 Warsaw Orthopedic, Inc Expanding interbody implant and articulating inserter and method
8591583, Aug 16 2005 IZI Medical Products, LLC Devices for treating the spine
8591585, Apr 12 2010 Globus Medical, Inc.; Globus Medical, Inc Expandable vertebral implant
8597330, Jan 05 2005 SEASPINE, INC Devices for introduction into a body via a substantially straight conduit to form a predefined curved configuration, and methods employing such devices
8597333, Mar 10 2011 DEPUY SYNTHES PRODUCTS, INC Method and apparatus for minimally invasive insertion of intervertebral implants
8597360, Nov 03 2004 NEUROPRO TECHNOLOGIES, INC Bone fusion device
8603168, Aug 05 2003 Tyler Fusion Technologies, LLC Artificial functional spinal unit system and method for use
8603170, Feb 28 2008 STRYKER EUROPEAN HOLDINGS III, LLC Expandable intervertebral implant
8603177, Apr 05 2007 ZIMMER BIOMET SPINE, INC Interbody implant
8623091, Jun 29 2010 DEPUY SYNTHES PRODUCTS, INC Distractible intervertebral implant
8628576, Feb 14 2011 AMPLIFY SURGICAL, INC Expandable intervertebral implants and instruments
8628577, Mar 19 2009 Ex Technology, LLC Stable device for intervertebral distraction and fusion
8628578, Dec 19 2011 Warsaw Orthopedic, Inc.; WARSAW OTHOPEDIC, INC Expandable interbody implant and methods of use
8632595, Sep 03 2010 Globus Medical, Inc. Expandable fusion device and method of installation thereof
8636746, Dec 31 2009 SPINEX TEC, LLC Methods and apparatus for insertion of vertebral body distraction and fusion devices
8641764, Oct 11 2006 ADVANCED VERTEBRAL SOLUTIONS, LLC Spine implant insertion device and method
8663329, Jan 28 2012 Expandable implant for mammalian bony segment stabilization
8663331, Nov 30 2007 CUSTOM SPINE ACQUISITION, INC Maximum support TLIF implant
8668740, Jan 21 2010 Globus Medical, Inc Expandable vertebral prosthesis
8672977, Aug 09 2007 SEASPINE, INC Device and method for spinous process distraction
8679161, Feb 17 2005 Kyphon SARL Percutaneous spinal implants and methods
8679183, Jun 25 2010 Globus Medical Expandable fusion device and method of installation thereof
8685095, Apr 19 2011 Warsaw Orthopedic, Inc.; Warsaw Orthopedic, Inc Expandable implant system and methods of use
8685098, Jun 25 2010 Globus Medical, Inc.; Globus Medical, Inc Expandable fusion device and method of installation thereof
8696751, Dec 10 2008 HOWMEDICA OSTEONICS CORP Adjustable distraction cage with linked locking mechanisms
8702757, Nov 06 2009 Depuy Synthes Products, LLC Minimally invasive interspinous process spacer implants and methods
8702798, Nov 23 2006 Biedermann Technologies GmbH & Co. KG Expandable intervertebral implant
8709086, Oct 15 2009 Globus Medical, Inc.; Globus Medical, Inc Expandable fusion device and method of installation thereof
8709088, Sep 18 2009 SPINAL SURGICAL STRATEGIES, INC , A NEVADA CORPORATION D B A KLEINER DEVICE LABS Fusion cage with combined biological delivery system
8715351, Nov 29 2012 Spine Wave, Inc. Expandable interbody fusion device with graft chambers
8721723, Jan 12 2009 Globus Medical, Inc.; Globus Medical, Inc Expandable vertebral prosthesis
8728160, Jan 27 1999 Kyphon SARL Expandable intervertebral spacer
8728166, Sep 26 2005 Warsaw Orthopedic, Inc. Hybrid intervertebral spinal fusion implant
8740954, Dec 19 2007 Integral Spine Solutions, Inc. Device and method for orthopedic fracture fixation
8753398, Aug 05 2003 Tyler Fusion Technologies, LLC Method of inserting an expandable intervertebral implant without overdistraction
8758349, Oct 13 2008 DFINE, INC Systems for treating a vertebral body
8758441, Oct 22 2007 Simplify Medical Pty Ltd Vertebral body replacement and method for spanning a space formed upon removal of a vertebral body
8764806, Dec 07 2009 Devices and methods for minimally invasive spinal stabilization and instrumentation
8771360, Jul 22 2009 SPINEX TEC, LLC Methods and apparatuses for vertebral body distraction and fusion employing a coaxial screw gear sleeve mechanism
8777993, Jul 14 2011 SEASPINE, INC Laterally deflectable implant
8778025, Aug 02 2010 Rotatable cam lift for an expandable bone cage
8795366, Jan 11 2010 Innova Spinal Technologies, LLC Expandable intervertebral implant and associated surgical method
8795374, Apr 01 2007 SPINAL KINETICS LLC Prosthetic intervertebral discs that are implantable by minimally invasive surgical techniques and that have cores that are insertable in situ using end plate guideways
8801787, Aug 16 2005 IZI Medical Products, LLC Methods of distracting tissue layers of the human spine
8801792, Apr 12 2006 Simplify Medical Pty Ltd Posterio spinal device and method
8808376, Aug 16 2005 IZI Medical Products, LLC Intravertebral implants
8828085, Mar 15 2013 KCMD INNOVATIONS INC Hinged spinal insert device
8845638, May 12 2011 SEASPINE, INC Tissue disruption device and corresponding methods
8845728, Sep 23 2011 Spinal fixation devices and methods of use
8845731, Sep 03 2010 Globus Medical, Inc. Expandable fusion device and method of installation thereof
8845732, Sep 03 2010 Globus Medical, Inc. Expandable fusion device and method of installation thereof
8845733, Jun 24 2010 DEPUY SYNTHES PRODUCTS, INC Lateral spondylolisthesis reduction cage
8845734, Sep 03 2010 Globus Medical, Inc. Expandable fusion device and method of installation thereof
8852242, Mar 10 2011 DEPUY SYNTHES PRODUCTS, INC Method and apparatus for minimally invasive insertion of intervertebral implants
8852243, Mar 10 2011 DEPUY SYNTHES PRODUCTS, INC Method and apparatus for minimally invasive insertion of intervertebral implants
8852279, Sep 03 2010 Globus Medical, Inc. Expandable fusion device and method of installation thereof
8864833, Sep 30 2011 Globus Medical, Inc Expandable fusion device and method of installation thereof
8888853, Oct 15 2009 Globus Medical Inc. Expandable fusion device and method of installation thereof
8888854, Oct 15 2009 Globus Medical, Inc. Expandable fusion device and method of installation thereof
8894711, Jan 11 2010 Innova Spinal Technologies, LLC Expandable intervertebral implant and associated surgical method
8900235, Jan 05 2005 SEASPINE, INC Devices for introduction into a body via a substantially straight conduit to form a predefined curved configuration, and methods employing such devices
8900307, Jun 26 2007 DEPUY SYNTHES PRODUCTS, INC Highly lordosed fusion cage
8906098, Jan 05 2005 NLT Spine Ltd. Devices for introduction into a body via a substantially straight conduit to form a predefined curved configuration, and methods employing such devices
8920506, Nov 16 2006 Rex Medical, L.P. Spinal implant and method of use
8926704, Oct 15 2009 Globus Medical, Inc. Expandable fusion device and method of installation thereof
8936641, Apr 05 2008 DEPUY SYNTHES PRODUCTS, INC Expandable intervertebral implant
8940049, Apr 01 2014 Ex Technology, LLC Expandable intervertebral cage
8940050, Apr 15 2009 DEPUY SYNTHES PRODUCTS, INC Flexible vertebral spacer
8940052, Jul 26 2012 DEPUY SYNTHES PRODUCTS, INC Expandable implant
8961609, Aug 16 2005 IZI Medical Products, LLC Devices for distracting tissue layers of the human spine
8968408, Jun 22 2007 SPINAL ELEMENTS, INC Devices for treating the spine
8979860, Jun 24 2010 DEPUY SYNTHES PRODUCTS, INC Enhanced cage insertion device
8979929, Aug 16 2005 IZI Medical Products, LLC Spinal tissue distraction devices
8986387, Sep 09 2013 INTEGRITY IMPLANTS INC Staged, bilaterally expandable trial
8986388, Jul 15 2010 SEASPINE, INC Surgical systems and methods for implanting deflectable implants
8986389, Feb 03 2003 Warsaw, Orthopedic, Inc. Expanding interbody implant and articulating inserter and method
9005291, Jul 09 2013 SEASPINE, INC Orthopedic implant with adjustable angle between tissue contact surfaces
9017408, Feb 16 2010 SEASPINE, INC Medical device lock mechanism
9017413, Jul 14 2011 SEASPINE, INC Expanding implant for insertion between two regions of tissue and corresponding method
9039767, Mar 13 2013 Spine Wave, Inc. Method and inserter for interbody fusion
9039771, Oct 15 2009 Globus Medical, Inc Expandable fusion device and method of installation thereof
9044334, Jul 21 2010 SEASPINE, INC Spinal surgery implants and delivery system
9044338, Aug 16 2005 IZI Medical Products, LLC Spinal tissue distraction devices
9060876, Jan 20 2015 INTEGRITY IMPLANTS INC Stabilized intervertebral scaffolding systems
9066808, Aug 16 2005 IZI Medical Products, LLC Method of interdigitating flowable material with bone tissue
9078767, Mar 06 2014 Spine Wave, Inc. Expandable spinal interbody fusion device
9089428, Feb 01 2010 SB Technologies, LLC Method of manufacturing a composite interbody device
9095446, Aug 25 2004 Spine Wave, Inc. Expandable interbody fusion device
9095447, May 31 2007 Spine Wave, Inc. Expandable interbody fusion device
9101488, Jul 15 2010 Spine Wave, Inc. Apparatus for use in spinal surgery
9101489, Oct 07 2013 Spine Wave, Inc. Expandable anterior lumbar interbody fusion device
9101491, Dec 29 2008 NuVasive, Inc Spinal surgical implant and related methods
9101492, Jul 27 2009 MEDICREA INternational Set comprising an intervertebral implant for immobilising a vertebra with respect to another and an instrument for installing this implant
9107766, Mar 06 2014 Spine Wave, Inc. Expandable spinal interbody fusion device and inserter
9119730, Oct 15 2009 Globus Medical, Inc. Expandable fusion device and method of installation thereof
9237956, Dec 06 2012 KCMD INNOVATIONS INC Spinal insert and method of spinal adjustment
9254138, May 12 2011 SEASPINE, INC Tissue disruption device and corresponding methods
9259326, Aug 16 2005 IZI Medical Products, LLC Spinal tissue distraction devices
9271846, Feb 03 2003 Warsaw Orthopedic, Inc. Expanding interbody implant and articulating inserter and method
9277928, Mar 11 2013 DEPUY SYNTHES PRODUCTS, INC Method and apparatus for minimally invasive insertion of intervertebral implants
9282979, Jun 24 2010 DEPUY SYNTHES PRODUCTS, INC Instruments and methods for non-parallel disc space preparation
9283092, Jul 15 2010 SEASPINE, INC Laterally deflectable implant
9295562, Jan 17 2008 DePuy Synthes Products, Inc. Expandable intervertebral implant and associated method of manufacturing the same
9314348, Jun 04 2014 Wenzel Spine, Inc.; WENZEL SPINE, INC Bilaterally expanding intervertebral body fusion device
9320610, Aug 16 2011 STRYKER EUROPEAN HOLDINGS III, LLC Expandable implant
9320615, Jun 29 2010 DEPUY SYNTHES PRODUCTS, INC Distractible intervertebral implant
9326866, Aug 16 2005 IZI Medical Products, LLC Devices for treating the spine
9333091, Feb 14 2003 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
9358123, Aug 09 2011 NEUROPRO SPINAL JAXX, INC Bone fusion device, apparatus and method
9387087, Oct 19 2012 Tyber Medical LLC Orthopedic systems for spine and tracking control
9402732, Oct 11 2010 DEPUY SYNTHES PRODUCTS, INC Expandable interspinous process spacer implant
9402739, Feb 07 2014 Globus Medical, Inc Variable lordosis spacer and related methods of use
9408712, Jul 15 2010 SEASPINE, INC Surgical systems and methods for implanting deflectable implants
9414923, Apr 15 2010 Warsaw Orthopedic, Inc. Implant and method for producing an implant
9414934, Apr 05 2008 DePuy Synthes Products, Inc. Expandable intervertebral implant
9414936, Dec 19 2011 Warsaw Orthopedic, Inc. Expandable interbody implant and methods of use
9433510, Jan 17 2008 DePuy Synthes Products, Inc. Expandable intervertebral implant and associated method of manufacturing the same
9439776, Feb 14 2003 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
9439777, Feb 14 2003 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
9445825, Feb 10 2011 WRIGHT MEDICAL TECHNOLOGY, INC Expandable surgical device
9445918, Oct 22 2012 NuVasive, Inc Expandable spinal fusion implants and related instruments and methods
9445919, Dec 19 2011 Warsaw Orthopedic, Inc.; Warsaw Orthopedic, Inc Expandable interbody implant and methods of use
9463099, Mar 14 2014 CORELINK, LLC Orthopedic expandable devices
9474623, Apr 05 2008 DePuy Synthes Products, Inc. Expandable intervertebral implant
9492288, Feb 20 2013 Tyler Fusion Technologies, LLC Expandable fusion device for positioning between adjacent vertebral bodies
9510954, Oct 15 2009 Globus Medical, Inc. Expandable fusion device and method of installation thereof
9522070, Mar 07 2013 DEPUY SYNTHES PRODUCTS, INC Intervertebral implant
9532884, Jul 14 2011 SEASPINE, INC Laterally deflectable implant
9566167, Aug 22 2013 K2M, Inc. Expandable spinal implant
9579215, Jun 29 2010 DePuy Synthes Products, Inc. Distractible intervertebral implant
9592129, Mar 30 2009 DePuy Synthes Products, Inc. Zero profile spinal fusion cage
9597197, Jan 17 2008 DePuy Synthes Products, Inc. Expandable intervertebral implant and associated method of manufacturing the same
9662223, Nov 23 2006 Biedermann Technologies GmbH & Co. KG Expandable intervertebral implant
9662224, Feb 07 2014 Globus Medical, Inc. Variable lordosis spacer and related methods of use
9675470, Oct 19 2011 P&H Medical Products, LLC Laterally expandable spinal prosthesis
9717601, Feb 28 2013 DEPUY SYNTHES PRODUCTS, INC Expandable intervertebral implant, system, kit and method
9724207, Feb 14 2003 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
9730803, Feb 14 2003 DePuy Synthes Products, Inc. Method of in-situ formation of an intervertebral fusion device
9730806, Oct 27 2014 Warsaw Orthopedic, Inc.; Warsaw Orthopedic, Inc Spinal implant system and method
9750552, Jul 06 2009 DePuy Synthes Products, Inc. Expandable fixation assemblies
9750618, Nov 29 2016 SPINAL ELEMENTS, INC Intervertebral implant device with independent distal-proximal expansion
9788962, Oct 11 2010 DePuy Synthes Products, Inc. Expandable interspinous process spacer implant
9788963, Feb 14 2003 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
9788971, May 22 2013 NuVasive, Inc Expandable fusion implant and related methods
9801639, Jun 24 2010 DePuy Synthes Products, Inc. Lateral spondylolisthesis reduction cage
9801640, Jun 24 2010 DePuy Synthes Products, Inc. Lateral spondylolisthesis reduction cage
9801729, Feb 14 2003 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
9801734, Aug 09 2013 NuVasive, Inc Lordotic expandable interbody implant
9808351, Feb 14 2003 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
9808353, May 20 2013 K2M, Inc. Adjustable implant and insertion tool
9814589, Feb 14 2003 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
9814590, Feb 14 2003 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
9833334, Jun 24 2010 DePuy Synthes Products, Inc. Enhanced cage insertion assembly
9839528, Feb 07 2014 Globus Medical, Inc.; Globus Medical, Inc Variable lordosis spacer and related methods of use
9839530, Jun 26 2007 DePuy Synthes Products, Inc. Highly lordosed fusion cage
9848991, Jul 19 2013 BOEHM, HEINRICH Expandable implant for the spinal column
9872779, Dec 19 2011 Warsaw Orthopedic, Inc. Expandable interbody implant and methods of use
9895236, Jun 24 2010 DePuy Synthes Products, Inc. Enhanced cage insertion assembly
9907670, Jan 21 2015 Warsaw Orthopedic, Inc. Unitarily formed expandable spinal implant and method of manufacturing and implanting same
9924978, Nov 06 2009 DePuy Synthes Products, Inc. Minimally invasive interspinous process spacer implants and methods
9925060, Feb 14 2003 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
9931223, Apr 05 2008 DePuy Synthes Products, Inc. Expandable intervertebral implant
9931226, Nov 11 2014 Globus Medical, Inc Spinal implants and instruments
9937053, Nov 04 2014 Warsaw Orthopedic, Inc. Expandable interbody implant
9949769, Mar 06 2004 DePuy Synthes Products, Inc. Dynamized interspinal implant
9962272, Jun 28 2017 SPINAL ELEMENTS, INC Intervertebral implant device with lordotic expansion
9974664, Jan 24 2013 BioSpine, LLC Adjustable interbody fusion device and method of use
9980823, Nov 23 2006 Biedermann Technologies GmbH & Co. KG Expandable intervertebral implant
9980825, May 13 2013 BioSpine, LLC Adjustable interbody fusion devices
9993350, Apr 05 2008 DePuy Synthes Products, Inc. Expandable intervertebral implant
20010011174,
20010012950,
20010016741,
20010016775,
20010027320,
20010032020,
20010037126,
20010039452,
20010039453,
20010049529,
20010049530,
20010049531,
20010056302,
20020001476,
20020010070,
20020016583,
20020026195,
20020026244,
20020029084,
20020032462,
20020032483,
20020035400,
20020037799,
20020045904,
20020045942,
20020045943,
20020055740,
20020055781,
20020058947,
20020068974,
20020068976,
20020068977,
20020072801,
20020077700,
20020077701,
20020082584,
20020082608,
20020087152,
20020087163,
20020091387,
20020091390,
20020099385,
20020107519,
20020107573,
20020120335,
20020128713,
20020128715,
20020128716,
20020138078,
20020138146,
20020143331,
20020143334,
20020143335,
20020151895,
20020151976,
20020156482,
20020161444,
20020165612,
20020169471,
20020172851,
20020173796,
20020173841,
20020173851,
20020183761,
20020183778,
20020183848,
20020191487,
20020193883,
20020198526,
20030004575,
20030004576,
20030006942,
20030014112,
20030014113,
20030014116,
20030018390,
20030023305,
20030028250,
20030028251,
20030032963,
20030040796,
20030040799,
20030045937,
20030045939,
20030050644,
20030063582,
20030065330,
20030065396,
20030069582,
20030069593,
20030069642,
20030073998,
20030074063,
20030074075,
20030078667,
20030083642,
20030083688,
20030108588,
20030130664,
20030130739,
20030135275,
20030139648,
20030139812,
20030139813,
20030153874,
20030171812,
20030187431,
20030187445,
20030187506,
20030191414,
20030191489,
20030191531,
20030195518,
20030195547,
20030195630,
20030199979,
20030204261,
20030208122,
20030208136,
20030208203,
20030208220,
20030208270,
20030220643,
20030220648,
20030220695,
20030229350,
20030229372,
20030233096,
20030233102,
20030233145,
20030233146,
20040002761,
20040006391,
20040008949,
20040010251,
20040010260,
20040010263,
20040010318,
20040019354,
20040019359,
20040024408,
20040024409,
20040024410,
20040024463,
20040024465,
20040030387,
20040034343,
20040034429,
20040049190,
20040049203,
20040049223,
20040049270,
20040054412,
20040059333,
20040059337,
20040059339,
20040059350,
20040059418,
20040064144,
20040068269,
20040073213,
20040073308,
20040073310,
20040082953,
20040083000,
20040087947,
20040088055,
20040092933,
20040092948,
20040092988,
20040093083,
20040097924,
20040097930,
20040097932,
20040097941,
20040097973,
20040098131,
20040102774,
20040102784,
20040102846,
20040106925,
20040106940,
20040111161,
20040116997,
20040117019,
20040117022,
20040127906,
20040127990,
20040127991,
20040133124,
20040133229,
20040133279,
20040133280,
20040138748,
20040143284,
20040143332,
20040143734,
20040147129,
20040147877,
20040147950,
20040148027,
20040153064,
20040153065,
20040153115,
20040153156,
20040153160,
20040158206,
20040158258,
20040162617,
20040162618,
20040167561,
20040167562,
20040167625,
20040172133,
20040172134,
20040176775,
20040186052,
20040186471,
20040186482,
20040186528,
20040186570,
20040186573,
20040186577,
20040193271,
20040193277,
20040199162,
20040210231,
20040210310,
20040215343,
20040215344,
20040220580,
20040220668,
20040220669,
20040220672,
20040225292,
20040225296,
20040225361,
20040230191,
20040230309,
20040243229,
20040243239,
20040243241,
20040249377,
20040249461,
20040249466,
20040254520,
20040254575,
20040254643,
20040254644,
20040260297,
20040260300,
20040260397,
20040266257,
20040267271,
20040267367,
20050004578,
20050010292,
20050010293,
20050010298,
20050015148,
20050015152,
20050019365,
20050021041,
20050033289,
20050033295,
20050033434,
20050033440,
20050038431,
20050038515,
20050038517,
20050043737,
20050043796,
20050043800,
20050054948,
20050055097,
20050060036,
20050060038,
20050065519,
20050065609,
20050065610,
20050069571,
20050070908,
20050070911,
20050070913,
20050071011,
20050080443,
20050080488,
20050085912,
20050090443,
20050090833,
20050090852,
20050090899,
20050096745,
20050102202,
20050107880,
20050113916,
20050113917,
20050113918,
20050113919,
20050113927,
20050113928,
20050118228,
20050118550,
20050119657,
20050119662,
20050119750,
20050119751,
20050119752,
20050119754,
20050124989,
20050124992,
20050124999,
20050125061,
20050125062,
20050125066,
20050130929,
20050131267,
20050131268,
20050131269,
20050131406,
20050131409,
20050131411,
20050131536,
20050131538,
20050131540,
20050131541,
20050137595,
20050137602,
20050142211,
20050143734,
20050143763,
20050143827,
20050149022,
20050149030,
20050149034,
20050149191,
20050149194,
20050149197,
20050154396,
20050154463,
20050154467,
20050165398,
20050165406,
20050165420,
20050165484,
20050165485,
20050171539,
20050171541,
20050171552,
20050171608,
20050171610,
20050177173,
20050177235,
20050177240,
20050182412,
20050182413,
20050182414,
20050182418,
20050187556,
20050187558,
20050187559,
20050187564,
20050197702,
20050197707,
20050203512,
20050216018,
20050216026,
20050216081,
20050216087,
20050222681,
20050222684,
20050228383,
20050228391,
20050228397,
20050234425,
20050234451,
20050234452,
20050234456,
20050240182,
20050240189,
20050240193,
20050240269,
20050251142,
20050251149,
20050251260,
20050256525,
20050256576,
20050261682,
20050261684,
20050261695,
20050261769,
20050261781,
20050267471,
20050273166,
20050273173,
20050277938,
20050278023,
20050278026,
20050278027,
20050278029,
20050283238,
20050283244,
20050287071,
20060004326,
20060004456,
20060004457,
20060004458,
20060009778,
20060009779,
20060009851,
20060015105,
20060015119,
20060020284,
20060022180,
20060030850,
20060030872,
20060030933,
20060030943,
20060032621,
20060036241,
20060036244,
20060036246,
20060036256,
20060036259,
20060036261,
20060036273,
20060036323,
20060036324,
20060041258,
20060041314,
20060045904,
20060058790,
20060058807,
20060058876,
20060058880,
20060064101,
20060064102,
20060064171,
20060064172,
20060069436,
20060069439,
20060069440,
20060074429,
20060079908,
20060084867,
20060084977,
20060084988,
20060085002,
20060085009,
20060085010,
20060089642,
20060089646,
20060089654,
20060089715,
20060089718,
20060089719,
20060095045,
20060095046,
20060095134,
20060095138,
20060100622,
20060100706,
20060100707,
20060106381,
20060106397,
20060106459,
20060111715,
20060111728,
20060111785,
20060119629,
20060122609,
20060122610,
20060122701,
20060122703,
20060122704,
20060129244,
20060136062,
20060136064,
20060142759,
20060142765,
20060142776,
20060142858,
20060142864,
20060149136,
20060149229,
20060149237,
20060149252,
20060149379,
20060149380,
20060149385,
20060155379,
20060161162,
20060161166,
20060167547,
20060167553,
20060173545,
20060178743,
20060178745,
20060178746,
20060184192,
20060184247,
20060184248,
20060189999,
20060190083,
20060190085,
20060195102,
20060195103,
20060195191,
20060200139,
20060200164,
20060200239,
20060200240,
20060200241,
20060200242,
20060200243,
20060206116,
20060206207,
20060212118,
20060217711,
20060229627,
20060229629,
20060235403,
20060235412,
20060235423,
20060235521,
20060235531,
20060241643,
20060241663,
20060241770,
20060247634,
20060247770,
20060247771,
20060247781,
20060253120,
20060253201,
20060254784,
20060264896,
20060264939,
20060264945,
20060265067,
20060265075,
20060265077,
20060271049,
20060271061,
20060276897,
20060276899,
20060276901,
20060276902,
20060282167,
20060287726,
20060287727,
20060293662,
20060293663,
20060293753,
20070006692,
20070010716,
20070010717,
20070010824,
20070010826,
20070010844,
20070010845,
20070010846,
20070010848,
20070010886,
20070010889,
20070016191,
20070032703,
20070032790,
20070032791,
20070043361,
20070043362,
20070043363,
20070043440,
20070048382,
20070049849,
20070049934,
20070049935,
20070050034,
20070050035,
20070055201,
20070055236,
20070055237,
20070055246,
20070055264,
20070055265,
20070055266,
20070055267,
20070055271,
20070055272,
20070055273,
20070055274,
20070055275,
20070055276,
20070055277,
20070055278,
20070055281,
20070055284,
20070055300,
20070055377,
20070060933,
20070060935,
20070067034,
20070067035,
20070068329,
20070073292,
20070073399,
20070078436,
20070078463,
20070093689,
20070093897,
20070093899,
20070093901,
20070093906,
20070118132,
20070118222,
20070118223,
20070123868,
20070123891,
20070123892,
20070123986,
20070129730,
20070135922,
20070142843,
20070149978,
20070150059,
20070150060,
20070150061,
20070150063,
20070150064,
20070161992,
20070162005,
20070162127,
20070162132,
20070162138,
20070167945,
20070168036,
20070168038,
20070173939,
20070173940,
20070178222,
20070179612,
20070179615,
20070179616,
20070179618,
20070185578,
20070191953,
20070191954,
20070191959,
20070197935,
20070198023,
20070198025,
20070198089,
20070203491,
20070208423,
20070208426,
20070213717,
20070213737,
20070213826,
20070219634,
20070225706,
20070225726,
20070225807,
20070225815,
20070233074,
20070233076,
20070233083,
20070233089,
20070233130,
20070233244,
20070233254,
20070250167,
20070260245,
20070260255,
20070260314,
20070270823,
20070270954,
20070270957,
20070270968,
20070276373,
20070276375,
20070276497,
20070282443,
20070282449,
20070288091,
20070299521,
20080009877,
20080015694,
20080015701,
20080021556,
20080021557,
20080021558,
20080021559,
20080027437,
20080027438,
20080027453,
20080027454,
20080027544,
20080027550,
20080033440,
20080045966,
20080051890,
20080051897,
20080051902,
20080058598,
20080058937,
20080058944,
20080065082,
20080065219,
20080071356,
20080071380,
20080077148,
20080077150,
20080077241,
20080082172,
20080082173,
20080097436,
20080097454,
20080097611,
20080103601,
20080108990,
20080108996,
20080119935,
20080125865,
20080132934,
20080133012,
20080133017,
20080140085,
20080140207,
20080147129,
20080147193,
20080154377,
20080154379,
20080161927,
20080167657,
20080172128,
20080177306,
20080177312,
20080177388,
20080183204,
20080188945,
20080195096,
20080195209,
20080195210,
20080208255,
20080208344,
20080221586,
20080221687,
20080228225,
20080229597,
20080234732,
20080234733,
20080243126,
20080243251,
20080243254,
20080249622,
20080249628,
20080255563,
20080255574,
20080255618,
20080262619,
20080269904,
20080281346,
20080281364,
20080281425,
20080287981,
20080287997,
20080300685,
20080306537,
20080312743,
20080319477,
20090005870,
20090005873,
20090018524,
20090030423,
20090048631,
20090048678,
20090054898,
20090054911,
20090054988,
20090054991,
20090062807,
20090069813,
20090069895,
20090076607,
20090076610,
20090088789,
20090099568,
20090105712,
20090105745,
20090112217,
20090112320,
20090112324,
20090131986,
20090149857,
20090164020,
20090177281,
20090177284,
20090182429,
20090192613,
20090192614,
20090198339,
20090216234,
20090221967,
20090222043,
20090222096,
20090222099,
20090222100,
20090234364,
20090234389,
20090234398,
20090240333,
20090240334,
20090240335,
20090248159,
20090248163,
20090275890,
20090276049,
20090276051,
20090292361,
20090299479,
20100016905,
20100016968,
20100030217,
20100040332,
20100042218,
20100049324,
20100070036,
20100076492,
20100076502,
20100076559,
20100082109,
20100094422,
20100094424,
20100094426,
20100100098,
20100100183,
20100106191,
20100114105,
20100114147,
20100125334,
20100174314,
20100179594,
20100185290,
20100185292,
20100191241,
20100191334,
20100191336,
20100204795,
20100204796,
20100211107,
20100211176,
20100211182,
20100217269,
20100222884,
20100234849,
20100234956,
20100241231,
20100249935,
20100256768,
20100262240,
20100268231,
20100268338,
20100274358,
20100280619,
20100286777,
20100286783,
20100292700,
20100292796,
20100298938,
20100305700,
20100305704,
20100324607,
20100324683,
20100331845,
20100331891,
20110004216,
20110004308,
20110004310,
20110009970,
20110015747,
20110029082,
20110029083,
20110029085,
20110029086,
20110035011,
20110040332,
20110046674,
20110054538,
20110066186,
20110071527,
20110082552,
20110093074,
20110093076,
20110098531,
20110098628,
20110098818,
20110112586,
20110130835,
20110130838,
20110144692,
20110144753,
20110153020,
20110159070,
20110160773,
20110160861,
20110160866,
20110172716,
20110172774,
20110190816,
20110190891,
20110230971,
20110238072,
20110251690,
20110270261,
20110276142,
20110282453,
20110282459,
20110301711,
20110301712,
20110307010,
20110313465,
20110319899,
20110319997,
20110319998,
20110320000,
20120004726,
20120004732,
20120006361,
20120010715,
20120022654,
20120029636,
20120029637,
20120029639,
20120035730,
20120059474,
20120059475,
20120071977,
20120071980,
20120083887,
20120083889,
20120109319,
20120123546,
20120136443,
20120150304,
20120150305,
20120158146,
20120158147,
20120158148,
20120185049,
20120191204,
20120197299,
20120197403,
20120197405,
20120203290,
20120203347,
20120209383,
20120215262,
20120215315,
20120215316,
20120226357,
20120232552,
20120232658,
20120253395,
20120253406,
20120265309,
20120277795,
20120277869,
20120277877,
20120290090,
20120290097,
20120310350,
20120310352,
20120323327,
20120323328,
20120323329,
20120330421,
20120330422,
20130006361,
20130006362,
20130023937,
20130023993,
20130023994,
20130030536,
20130030544,
20130053966,
20130060337,
20130073044,
20130079790,
20130085572,
20130085574,
20130109925,
20130110240,
20130116791,
20130123924,
20130123927,
20130138214,
20130144387,
20130144388,
20130144391,
20130150906,
20130158663,
20130158664,
20130158667,
20130158668,
20130158669,
20130173004,
20130190875,
20130190876,
20130190877,
20130197642,
20130197647,
20130204371,
20130211525,
20130211526,
20130218276,
20130231747,
20130238006,
20130253585,
20130261746,
20130261747,
20130268077,
20130274883,
20130310937,
20130310939,
20130325128,
20140018816,
20140025169,
20140039622,
20140039626,
20140046333,
20140046446,
20140052259,
20140058512,
20140058513,
20140067073,
20140081267,
20140086962,
20140094916,
20140094917,
20140100662,
20140107790,
20140114414,
20140114423,
20140121774,
20140128977,
20140128980,
20140135934,
20140142706,
20140148904,
20140163682,
20140163683,
20140172103,
20140172105,
20140172106,
20140180421,
20140188225,
20140228959,
20140236296,
20140243892,
20140243981,
20140243982,
20140249629,
20140249630,
20140257484,
20140257486,
20140257494,
20140277139,
20140277204,
20140277464,
20140277473,
20140277474,
20140277476,
20140277481,
20140277507,
20140296983,
20140303731,
20140303732,
20140324171,
20140336764,
20140343678,
20150012097,
20150012098,
20150045894,
20150057755,
20150066145,
20150088256,
20150094610,
20150094812,
20150094813,
20150094814,
20150100128,
20150112398,
20150112437,
20150112438,
20150157470,
20150164655,
20150173914,
20150173916,
20150182347,
20150190242,
20150196400,
20150196401,
20150202052,
20150216671,
20150216672,
20150216673,
20150223946,
20150230929,
20150230932,
20150238324,
20150250606,
20150272743,
20150305881,
20150320571,
20160000577,
20160016309,
20160022437,
20160022438,
20160038301,
20160038304,
20160045333,
20160051373,
20160051374,
20160051376,
20160058573,
20160067055,
20160074170,
20160074175,
20160081814,
20160089247,
20160100954,
20160106551,
20160113776,
20160120660,
20160120662,
20160128843,
20160199195,
20160199196,
20160206440,
20160220382,
20160228258,
20160235455,
20160242929,
20160256291,
20160310296,
20160317313,
20160317317,
20160317714,
20160331541,
20160331546,
20160331548,
20160338854,
20160367265,
20160367380,
20160374821,
20170000622,
20170035578,
20170056179,
20170071756,
20170100177,
20170100255,
20170100260,
20170119542,
20170128226,
20170209284,
20170216045,
20170266015,
20170290674,
20170290675,
20170290677,
20170296352,
20170304074,
20170367843,
20170367844,
20170367845,
20180028200,
20180036141,
20180055649,
20180071111,
20180078379,
20180116811,
20180161171,
20180161175,
20180168819,
20180193164,
20180256360,
20180256362,
20180360616,
20190008654,
20190021868,
20190083276,
20190105171,
20190117409,
20190133785,
20190142602,
20190269521,
20190336301,
20190388238,
20200008950,
20200015982,
20200030114,
20200060843,
20200078192,
20200129308,
20200297506,
20200375754,
20200375755,
20200383799,
20200405497,
20200405500,
20210000160,
20210177619,
20210353427,
AU2005314079,
AU2006279558,
CA2617872,
CN101031260,
CN101087566,
CN101185594,
CN101631516,
CN101909548,
CN102164552,
CN103620249,
CN104023674,
CN104023675,
CN104042366,
CN104822332,
CN104921848,
CN104939876,
CN105025846,
CN105188582,
CN105769391,
CN105769392,
CN107205829,
CN1177918,
CN1383790,
CN1819805,
CN204971722,
D374287, Sep 15 1993 ZIMMER TECHNOLOGY, INC Orthopadeic washer
D439980, Oct 19 1999 ORTHOPHOENIX, LLC Hand-held surgical instrument
D449691, Oct 19 1999 ORTHOPHOENIX, LLC Hand-held surgical instrument
D450676, Jan 05 2001 Bionix Development Corporation Curette tip
D467657, Oct 19 2001 ORTHOPHOENIX, LLC Hand held surgical instrument
D469871, Oct 19 2001 ORTHOPHOENIX, LLC Hand held surgical instrument
D472323, Jan 15 2002 ORTHOPHOENIX, LLC Hand-held mixer for flowable materials
D482787, Sep 04 2002 ORTHOPHOENIX, LLC Hand held surgical instrument
D483495, Oct 25 2000 ORTHOPHOENIX, LLC Hand-held mixer for flowable materials
D490159, Oct 04 2002 ORTHOPHOENIX, LLC Hand-held mixer for flowable materials
D492032, Feb 12 2003 ORTHOPHOENIX, LLC Impact handle for hand held surgical instruments
D492775, Feb 12 2003 ORTHOPHOENIX, LLC Impact handle for hand held surgical instruments
D493533, Feb 14 2003 NuVasive, Inc. Intervertebral implant
D495417, Feb 12 2003 ORTHOPHOENIX, LLC Slip-fit handle for hand held surgical instruments
D506828, Sep 23 2003 ORTHOPHOENIX, LLC Y-adapter
D512506, Sep 16 2003 ORTHOPHOENIX, LLC Hand held surgical instrument for creating cavities in interior body regions
D536096, Sep 22 2004 Joimax GmbH Operation table
D584812, Jul 07 2006 Joimax GmbH Medical pump
D626233, Feb 28 2008 STRYKER EUROPEAN HOLDINGS III, LLC Expandable intervertebral implant
DE10357960,
DE19710392,
DE19832798,
DE20101793,
DE202006005868,
DE202008001079,
DE2804936,
DE3023353,
DE3801459,
DE3911610,
DE4012622,
DE9407806,
EP77159,
EP260044,
EP270704,
EP282161,
EP433717,
EP509084,
EP525352,
EP529275,
EP609084,
EP611557,
EP621020,
EP625336,
EP678489,
EP743045,
EP853929,
EP1046376,
EP1157676,
EP1283026,
EP1290985,
EP1308132,
EP1374784,
EP1378205,
EP1385449,
EP1405602,
EP1532949,
EP1541096,
EP1605836,
EP1683593,
EP1698305,
EP1829486,
EP1843723,
EP1845874,
EP1924227,
EP1925272,
EP2237748,
EP2331023,
EP2368529,
EP2641571,
EP2645965,
EP2699065,
EP2705809,
EP2764851,
EP2777633,
EP3263072,
EP3366263,
FR2649311,
FR2699065,
FR2712486,
FR2718635,
FR2728778,
FR2730159,
FR2745709,
FR2800601,
FR2801189,
FR2808182,
FR2874814,
FR2913331,
FR2948277,
FR3026294,
GB2157788,
GB2173565,
JP10085232,
JP11089854,
JP2003010197,
JP2003126266,
JP2003526457,
JP2006501901,
JP2006516456,
JP2007054666,
JP2007530243,
JP2008126085,
JP2008507363,
JP2011509766,
JP2011520580,
JP2012020153,
JP2012508048,
JP2013508031,
JP2013516206,
JP2014502867,
JP2015500707,
JP2015525652,
JP2017505196,
JP4988203,
JP5164571,
JP6319742,
JP64052439,
JP6500039,
JP7184922,
JP7213533,
JP7502419,
RE38335, May 24 1994 ZIMMER SPINE, INC Surgical instrument
WO12033,
WO13620,
WO24343,
WO44288,
WO53127,
WO67650,
WO67651,
WO67652,
WO74605,
WO76409,
WO101893,
WO101895,
WO110316,
WO112054,
WO117464,
WO180751,
WO195838,
WO203870,
WO217824,
WO217825,
WO230338,
WO243601,
WO243628,
WO245627,
WO247563,
WO271921,
WO285250,
WO302021,
WO303951,
WO305937,
WO307854,
WO320169,
WO321308,
WO322165,
WO328587,
WO343488,
WO359180,
WO2003101308,
WO2004008949,
WO2004030582,
WO2004034924,
WO2004062505,
WO2004064603,
WO2004069033,
WO2004078220,
WO2004078221,
WO2004080316,
WO2004082526,
WO2004098420,
WO2004098453,
WO2004108022,
WO2005027734,
WO2005032433,
WO2005039455,
WO2005051246,
WO2005081877,
WO2005094297,
WO2005112834,
WO2005112835,
WO2005115261,
WO2006017507,
WO2006044920,
WO2006047587,
WO2006047645,
WO2006058079,
WO2006058281,
WO2006060420,
WO2006063083,
WO2006065419,
WO2006066228,
WO2006072941,
WO2006078972,
WO2006081843,
WO2006108067,
WO2006118944,
WO2007009107,
WO2007022194,
WO2007028098,
WO2007048012,
WO2007067726,
WO2007084427,
WO2007119212,
WO2007124130,
WO2008005627,
WO2008011378,
WO2008044057,
WO2008064842,
WO2008070863,
WO2008103781,
WO2008103832,
WO2009064787,
WO2009092102,
WO2009124269,
WO2009143496,
WO2009147527,
WO2009152919,
WO2010011348,
WO2010068725,
WO2010075451,
WO2010075555,
WO2010088766,
WO2010121002,
WO2010136170,
WO2010148112,
WO2011013047,
WO2011046459,
WO2011046460,
WO2011060087,
WO2011079910,
WO2011119617,
WO2011142761,
WO2011150350,
WO2012009152,
WO2012027490,
WO2012028182,
WO2012030331,
WO2012089317,
WO2012103254,
WO2012122294,
WO2012129197,
WO2012135764,
WO2013006669,
WO2013023096,
WO2013025876,
WO2013043850,
WO2013062903,
WO2013082184,
WO2013148176,
WO2013149611,
WO2013158294,
WO2013173767,
WO2013184946,
WO2014014610,
WO2014018098,
WO2014026007,
WO2014035962,
WO2014088521,
WO2014116891,
WO2014144696,
WO2015004660,
WO2015013479,
WO2015022039,
WO2015048997,
WO2016069796,
WO2016118246,
WO2016127139,
WO2017040881,
WO2017136620,
WO2018078148,
WO9109572,
WO9204423,
WO9207594,
WO9214423,
WO9304634,
WO9304652,
WO9317669,
WO9404100,
WO9531158,
WO9628100,
WO9700054,
WO9726847,
WO9834552,
WO9834568,
WO9902214,
WO9926562,
WO9942062,
WO9952478,
WO9953871,
WO9960956,
WO9962417,
WO9963914,
/////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Oct 24 2019MEDOS INTERNATIONAL SARL(assignment on the face of the patent)
Aug 12 2020GONZALEZ, DIDIERSynthes GmbHASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0557680974 pdf
Aug 12 2020HUNZIKER, MARKUSSynthes GmbHASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0557680974 pdf
Oct 27 2020Synthes GmbHDEPUY SYNTHES PRODUCTS, INCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0557690183 pdf
Oct 29 2020DEPUY SYNTHES PRODUCTS, INCMEDOS INTERNATIONAL SARLASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0557690445 pdf
Date Maintenance Fee Events
Oct 24 2019BIG: Entity status set to Undiscounted (note the period is included in the code).


Date Maintenance Schedule
Sep 20 20254 years fee payment window open
Mar 20 20266 months grace period start (w surcharge)
Sep 20 2026patent expiry (for year 4)
Sep 20 20282 years to revive unintentionally abandoned end. (for year 4)
Sep 20 20298 years fee payment window open
Mar 20 20306 months grace period start (w surcharge)
Sep 20 2030patent expiry (for year 8)
Sep 20 20322 years to revive unintentionally abandoned end. (for year 8)
Sep 20 203312 years fee payment window open
Mar 20 20346 months grace period start (w surcharge)
Sep 20 2034patent expiry (for year 12)
Sep 20 20362 years to revive unintentionally abandoned end. (for year 12)