A heat pipe cooling module assembly (20) for cooling electronic components (28) includes a plurality of heat pipe modules (22) comprising condenser and evaporator sections (24, 26) and working fluid therein. In a preferred embodiment, each evaporator section comprises a sandwich construction of a pair of flat outer plates (34), a pair of wick pads (36) and a separator plate (38) comprising channels extending from the evaporator section into the condenser section.
|
1. A heat pipe cooling module which cools electronic components and which includes condenser and evaporator sections and a working fluid therein, said evaporator section comprising a sandwich construction of a pair of flat outer plates to which the electronic components are to be thermally coupled, at least one wick pad adjacent one of said outer plates, and a plurality of spaced bars between said wick pad and the other of said outer plates and extending from said evaporator to said condenser sections to define structural support between said plates for resisting any deformation forces exerted thereon and from consequent decreased heat flow therein and to define a plurality of independent vapor flow channels to said condenser section.
7. A heat pipe cooling module assembly which cools electronic components and which includes plurality of modules each comprising a heat pipe having flat evaporator sections and means defining at least one condenser section couple thereto to form said modules into an assembled structure and to position said evaporator sections in spaced and parallel alignment, each of said evaporator sections comprising outer plates to which the electronic components are thermally coupled, at least one wick pad adjacent one of said outer plates, and a plurality of spaced channelling means between said wick pad and another of said outer plates to define both structural support for said plates and a plurality of independent vapor flow paths to said condenser section means.
10. A heat pipe cooling module assembly which cools electronic components and which includes a plurality of modules each comprising a heat pipe having condenser sections and flat evaporator sections, in which each of said evaporator sections comprises a deformation-resistent construction including a plurality of spaced bars and channels therebetween extending to and defining a plurality of independent vapor flow paths communicating with said condenser sections, a pair of pads of wick material on both sides of said channels, a pair of flat outer plates respectively secured to said wick pads, and means bonding said spaced bars, said wick pads and said outer plates together, said bars providing structural support of said plates for resisting any deformation forces exerted thereon, and means for securing said condenser sections of said modules together to form said modules into an assembled structure and to position said evaporator sections in spaced, parallel alignment, with the electronic components being thermally coupled to said flat evaporator sections.
2. A module according to
3. A module according to
4. A module according to
5. A module according to
6. A module according to
8. An assembly according to
9. An assembly according to
11. An assembly according to
12. An assembly according to
13. An assembly according to
|
1. Field of the Invention
The present invention relates to cooling of electronic components and, in particular, to cooling of high power density electronic components by heat pipe principles in a self-supporting structure.
2. Description of the Prior Art
With ever-increasing density and higher power of electronic components, e.g., in memories and logic arrays in high speed computers, waste heat rejection becomes a limiting factor in such improved computers in the absence of improved heat rejection techniques. In the past, cooling was effected by conduction of heat through a solid conductor, of flowing coolant such as air or freon directly over logic boards or through special paths adjacent thereto, examples being given in U.S. Pat. Nos. 3,411,041, 3,395,318, 3,648,113 and 4,006,388. Heat pipe thermal control has also been used as exemplified by U.S. Pat. Nos. 3,651,865 and 4,118,756. While adequate for thermal control requirements of the past, increased heat loads in new high speed equipment are exceeding the capabilities of the prior art. For example, cooling is needed at least for high power density 1,000 to 2,000 watts logic boards.
In addition, the need both to cool the components and to provide a support therefor did not necessarily result in efficient utilization and combination of the cooling and support structure.
The present invention is designed to meet and exceed such requirements and to integrate the cooling and supporting structure. It uses heat pipe cooling in a module which is designed to support electronic components. Each module utilizes condenser and evaporator sections in which the evaporator section is configured as a flat plate to which electronic components are directly attached. The condenser sections of a plurality of modules are coupled together and to a heat sink for drawing the heat away from the condenser sections.
Several advantages are derived from this configuration. It enables heat to be withdrawn directly, quickly and efficiently from the components. Individual electronic components or circuit boards of components defining a particular electronic function grouping a plurality of components may be attached directly and on both sides of the evaporator plate section for rapid movement of large quantities of heat therefrom. The evaporation plate section itself resists deforming pressures in order to maintain proper heat flow and evaporation.
Other aims and advantages as well as a more complete understanding of the present invention will appear from the following explanation of exemplary embodiments and the accompanying drawings thereof.
FIG. 1 is an end view in elevation of a plurality of modules coupled together for cooling of electronic components secured to individual module evaporation fins;
FIG. 2 is a perspective view of a module shown in FIG. 1;
FIG. 3 is a cross-sectional view of a module of FIG. 2 showing its condenser section and a portion of its evaporator fin section;
FIG. 4 is a cross-sectional view taken along lines 4--4 of FIG. 3 illustrating the construction of the evaporator section;
FIG. 5 is a front elevational view of a separator plate placed primarily in the evaporator section;
FIG. 6 is a top view of an open condenser section;
FIG. 7 is a partial view in perspective of a portion of the condenser section;
FIG. 8 is a view of the condenser section taken along lines 8--8 of FIG. 6;
FIG. 9 is an edge elevational view of a second embodiment of the present invention illustrating a plurality of cooling modules coupled to cooling plenums; and
FIG. 10 is a side view of the vapor flow separator plate used in the module illustrated in FIG. 9.
As shown in FIG. 1, a heat pipe cooling module assembly 20 comprises a plurality of modules 22, each having a condenser section 24 and an evaporator section 26. Each evaporator section has the appearance of a fin or flat plate. Electronic components 28 are coupled to both sides of evaporator plates of each module and may comprise separate electronic components, or circuit or printed wiring boards or the like which incorporate a plurality of individual components. The condenser sections of the several modules are secured together in any convenient manner to form an assembled structure and to position the evaporator sections in spaced, parallel alignment. A working fluid is sealed within each of the modules so that heat from the electronic components will evaporate the working fluid into a vapor which then moves to the several condenser sections 24. There, the vapor is condensed in to a liquid which then flows through wick material back into the evaporator sections. To remove the heat from the working fluid vapor, any convenient cooling plenum or other cooling means are coupled to condenser section 24. For example, enclosures 30 are placed between condenser sections 24 and coolant fluid is fed between the enclosures by conduit 32. If desired, a plurality of parallel tubes may be sealed to and extend through the condensers. Alternatively, the condenser sections may be abutted together at their sides, and a heat sink be thermally coupled to their top and/or edge surfaces.
Each module may be fabricated from any suitable material, such as copper, stainless steel, aluminum, aluminum oxide and beryllium oxide. Suitable working fluids include water, ammonia, methanol and freon. The particular materials of the module and working fluid are chosen in accordance with the operating temperature requirements in which the module assembly is to be used.
An individual module and its constituent parts are depicted in FIGS. 2-7, with components of the evaporator section being shown in FIGS. 4 and 5 and the condenser section in FIGS. 6-8. As best shown in FIGS. 2-4, each evaporator section 26 comprises a pair of flat outer plates 34 to which electronic components 28 are secured. A pair of pads 36 comprising wick material, for example, of crushed copper felt, is secured to outer plates 34, and a central separator plate 38 is secured to the wick pads. Thus, outer plates 34, wick pads 36 and separator plate 38 form a sandwich construction which is bonded together in any convenient manner such as by brazing.
To provide for flow of working fluid vapor, separator plate 38 is formed into a channel structure (see also FIG. 5) comprising a plurality of parallel bars 40 which form spaces therebetween comprising parallel slots 42. The bars are held in position by a peripheral enclosure 44 as a rectangular construction of segments 46, 48, 50 and 52, in which the parallel bars and slots extend between opposed segments 48 and 52. In addition, bars 40 provide a solid connection between outer plates 34. This sandwich construction of bars, plates and wick pads, therefore, provides a high resistance to crushing and deformation forces exerted on the evaporator section. As a result, the evaporation function is not disturbed even though such forces are present. As shown in FIG. 3, separator plate 38 is intended to extend from evaporator section 26 and entirely through condenser section 24, with projection 54 (see FIG. 5) of the separator plate defined by width reductions 56 in opposed segments 46 and 50.
As best shown in FIG. 3, outer plates 34 and wick pads 36 extend only slightly into condensor section 24.
As depicted in FIGS. 3 and 6-8, condenser section 24 comprises a casing 57 into which a plurality of spaces 58 and 60 are provided (see FIG. 6), including a central rectangular space 58 and lobe-shaped spaces 60. Central space 58 spans the distance between casing end segments 59. The lobe-shaped spaces are divided by rails 61 and extend from both sides of central space 58. As a result, the central space is bounded by end segments 59 and a plurality of elongated flat surfaces 62 on rails 61 which face one another. It is to be understood, of course, that surfaces 62 need not be perfectly aligned but could be staggered if so desired. Viewing FIGS. 3 and 7, formed on the interior of lobe spaces 60 is trough-shaped wick material 64. As best shown in FIG. 3, wick material 64 is bonded within lobe spaces 60 but terminates at faces 66 short of surfaces 62.
The thickness of separator plate 38 at its projection 54 approximately equals the distance between facing surfaces 62 so that the outer surfaces 68 of separator projection 54 are in contact with and bonded to surfaces 62, but are not in contact with terminal faces 66 of trough-shaped wicks 64.
As illustrated in FIG. 3, at its top 70 and bottom 72, condenser casing 57 is provided with respective openings 74 and 76. Separator projection 54 extends entirely through opening 74 but just short of the upper surfaces of top 70 so that an end cap 78 may be brazed to the opening to seal off the top. A ledge 80 (see also FIG. 7) extends around the periphery of opening 74 onto which end cap 78 rests.
At bottom 72 of condenser casing 57 (FIG. 3), opening 76 permits insertion of evaporator outer plates 34 and wick 36 so that they abut against lower surfaces 82 formed by the bottom surfaces of rails 61 and end segments 59.
The entire assembly may be brazed together to join end cap 78 to condenser casing 57, evaporator section 26 to condenser section 24, and the side and end surfaces of evaporator section 26 denoted by indicium 84 in FIG. 2 between wick pad 36 and respective outer plates 34 and separator plate 38.
The embodiment depicted in FIGS. 1-8 is primarily used when condenser sections 24 are higher than evaporator sections 22 of the respective modules so that vapor of the working fluid will flow upwardly through channel slots 42 from the electronic components and into condenser sections 24 for condensation therein. The condensed working fluid then drips downwardly through wick material 64 and exposed portions of separator projection 54 by a combination of capillary pumping and gravity back to the evaporator where evaporation can again take place.
For such uses where the modules may not be stationary with respect to gravity, such as in airborne installations, the embodiment depicted in FIGS. 9 and 10 may be used. As shown in FIG. 9, a plurality of modules 90 are coupled at both ends to a pair of plenums 92 through which a coolant flows. Each module 90 is a sealed unit including a central evaporator section 94 and a pair of condenser sections 96 at opposed ends. Condenser sections 96 fit within slots 98 formed within plenums 92 so that there is a thermal coupling between the modules and the plenum, as well as a means for supporting the modules and the plenums. Such a construction also permits the modules to be slipped in and out of slots 98 for insertion and removal from the plenums. A plurality of electronic components 100 are thermally coupled to the evaporator sections of the respective modules.
Each module 90 comprises a central separator plate 102 (see FIG. 10) with wick pads on its side surfaces and evaporator plates on the outside of the wick pads to form a sandwich construction thereof in the same manner as depicted in FIG. 4 and similar to that shown for evaporator section 26 of FIG. 3. The entire assembly may be brazed together at its outer surfaces to seal a working fluid within the module.
Separator plate 102 comprises a peripheral enclosure 108 comprising segments 110, 112, 114 and 116. Within the interior of enclosure 108 is a serpentine construction 118 with portions thereof comprising parallel bars 120 and alternating slots 122 and 124 extending between opposed segments 110 and 114. Parallel bars 120 terminate at ends 126 which are spaced from peripheral enclosure 108 to provide opposed openings 128 and 130. Thus, parallel slots 122 form vapor flow passages to space 128 within a condenser section 96. Likewise, parallel slots 124 form vapor flow passages to opposed condenser space 130 and the condenser section at the opposite end of the module. Connecting pieces 132 connect outer bars 120 of serpentine construction 118 to opposed enclosure segments 112 and 116. In a manner similar to that of FIGS. 1-8, bars 120 resist crushing forces on the evaporator section to prevent the heat pipe from being deformed.
In the operation of the embodiment depicted in FIGS. 9 and 10, it therefore does not matter whether one or the other of the condenser sections of modules 90 are above or below the central evaporator sections 94, since there will always be an upper condenser section with respect to its evaporator section.
Although the invention has been described with reference to particular embodiments thereof, it should be realized that various changes and modifications may be made therein without departing from the spirit and scope of the invention.
Patent | Priority | Assignee | Title |
4931905, | Jan 17 1989 | Grumman Aerospace Corporation | Heat pipe cooled electronic circuit card |
4958257, | Mar 29 1989 | Hughes Aircraft Company | Heat conducting interface for electronic module |
5043797, | Apr 03 1990 | GENERAL ELECTRIC COMPANY, A CORP OF NY | Cooling header connection for a thyristor stack |
5179500, | Feb 27 1990 | Grumman Aerospace Corporation | Vapor chamber cooled electronic circuit card |
5329425, | Feb 25 1991 | ALCATEL N V | Cooling system |
5339214, | Feb 12 1993 | Intel Corporation | Multiple-fan microprocessor cooling through a finned heat pipe |
5412535, | Aug 24 1993 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Apparatus and method for cooling electronic devices |
5508908, | Mar 31 1991 | Mitsubishi Denki Kabushiki Kaisha | Motor control unit with thermal structure |
5513070, | Dec 16 1994 | Intel Corporation | Dissipation of heat through keyboard using a heat pipe |
5523640, | Apr 22 1994 | MILACRON LLC | Liquid cooling for electrical components of a plastics processing machine |
5620646, | Apr 22 1994 | MILACRON LLC | Method for cooling electrical components in a plastics processing machine |
5712762, | Mar 01 1996 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Computer having a heat sink structure incorporated therein |
5875095, | Mar 01 1996 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Computer having a heat sink structure incorporated therein |
6227287, | May 25 1998 | Denso Corporation | Cooling apparatus by boiling and cooling refrigerant |
6388882, | Jul 19 2001 | Thermal Corp. | Integrated thermal architecture for thermal management of high power electronics |
6564860, | May 16 2000 | Northrop Grumman Systems Corporation | Evaporator employing a liquid superheat tolerant wick |
6856037, | Nov 26 2001 | Sony Corporation; BAR-COHEN, AVRAM | Method and apparatus for converting dissipated heat to work energy |
6880626, | Aug 28 2002 | Thermal Corp. | Vapor chamber with sintered grooved wick |
6896039, | May 12 1999 | Aavid Thermalloy, LLC | Integrated circuit heat pipe heat spreader with through mounting holes |
6899165, | Jun 15 2004 | Hua Yin Electric Co., Ltd. | Structure of a heat-pipe cooler |
6915843, | May 16 2000 | Northrop Grumman Systems Corporation | Wick having liquid superheat tolerance and being resistant to back-conduction, evaporator employing a liquid superheat tolerant wick, and loop heat pipe incorporating same |
6938680, | Jul 14 2003 | Thermal Corp.; Thermal Corp | Tower heat sink with sintered grooved wick |
6945317, | Apr 24 2003 | Thermal Corp. | Sintered grooved wick with particle web |
6994152, | Jun 26 2003 | Thermal Corp.; Thermal Corp | Brazed wick for a heat transfer device |
6997245, | Aug 28 2002 | Thermal Corp. | Vapor chamber with sintered grooved wick |
7013958, | Apr 24 2003 | Thermal Corp. | Sintered grooved wick with particle web |
7028759, | Jun 26 2003 | Thermal Corp. | Heat transfer device and method of making same |
7124809, | Jun 26 2003 | Thermal Corp. | Brazed wick for a heat transfer device |
7251889, | Jun 30 2000 | Northrop Grumman Systems Corporation | Manufacture of a heat transfer system |
7549461, | Jun 30 2000 | Northrop Grumman Systems Corporation | Thermal management system |
7661464, | Dec 09 2005 | Northrop Grumman Systems Corporation | Evaporator for use in a heat transfer system |
7708053, | Jun 30 2000 | Northrop Grumman Systems Corporation | Heat transfer system |
7823629, | Mar 20 2003 | Thermal Corp | Capillary assisted loop thermosiphon apparatus |
7931072, | Oct 02 2002 | Northrop Grumman Systems Corporation | High heat flux evaporator, heat transfer systems |
8042606, | Aug 09 2006 | UTAH STATE UNIVERISTY RESEARCH FOUNDATION | Minimal-temperature-differential, omni-directional-reflux, heat exchanger |
8047268, | Oct 02 2002 | Northrop Grumman Systems Corporation | Two-phase heat transfer system and evaporators and condensers for use in heat transfer systems |
8066055, | Jun 30 2000 | Northrop Grumman Systems Corporation | Thermal management systems |
8109325, | Oct 28 2002 | Northrop Grumman Systems Corporation | Heat transfer system |
8136580, | Jun 30 2000 | Northrop Grumman Systems Corporation | Evaporator for a heat transfer system |
8397798, | May 16 2000 | Northrop Grumman Systems Corporation | Evaporators including a capillary wick and a plurality of vapor grooves and two-phase heat transfer systems including such evaporators |
8627879, | Mar 20 2003 | Thermal Corp | Capillary assisted loop thermosiphon apparatus |
8752616, | Jun 30 2000 | Northrop Grumman Systems Corporation | Thermal management systems including venting systems |
9103602, | May 16 2000 | Northrop Grumman Systems Corporation | Evaporators including a capillary wick and a plurality of vapor grooves and two-phase heat transfer systems including such evaporators |
9200852, | Oct 02 2002 | Northrop Grumman Systems Corporation | Evaporator including a wick for use in a two-phase heat transfer system |
9273887, | Jun 30 2000 | Northrop Grumman Systems Corporation | Evaporators for heat transfer systems |
9631874, | Jun 30 2000 | Northrop Grumman Systems Corporation | Thermodynamic system including a heat transfer system having an evaporator and a condenser |
Patent | Priority | Assignee | Title |
3395318, | |||
3411041, | |||
3622846, | |||
3648113, | |||
3651865, | |||
3706010, | |||
4006388, | Mar 03 1975 | Hughes Aircraft Company | Thermally controlled electronic system package |
4019098, | Nov 25 1974 | Modine Manufacturing Company | Heat pipe cooling system for electronic devices |
4118756, | Mar 17 1975 | Hughes Aircraft Company | Heat pipe thermal mounting plate for cooling electronic circuit cards |
4327399, | Jan 12 1979 | Nippon Telegraph & Telephone Corporation | Heat pipe cooling arrangement for integrated circuit chips |
4366526, | Oct 03 1980 | Grumman Aerospace Corporation | Heat-pipe cooled electronic circuit card |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 28 1982 | BASIULIS, ALGERD | HUGHES AIRCRAFT COMPNY, A CORP OF DE | ASSIGNMENT OF ASSIGNORS INTEREST | 003999 | /0800 | |
May 03 1982 | Hughes Aircraft Company | (assignment on the face of the patent) | / | |||
Dec 16 1997 | HE HOLDINGS INC , HUGHES ELECTRONICS, FORMERLY KNOWN AS HUGHES AIRCRAFT COMPANY | Hughes Electronics Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 009123 | /0473 |
Date | Maintenance Fee Events |
Sep 12 1988 | M170: Payment of Maintenance Fee, 4th Year, PL 96-517. |
Dec 09 1992 | M184: Payment of Maintenance Fee, 8th Year, Large Entity. |
Dec 22 1992 | R160: Refund Processed. Maintenance Fee Has Already Been Paid. |
Aug 30 1996 | M185: Payment of Maintenance Fee, 12th Year, Large Entity. |
Sep 06 1996 | ASPN: Payor Number Assigned. |
Date | Maintenance Schedule |
Mar 05 1988 | 4 years fee payment window open |
Sep 05 1988 | 6 months grace period start (w surcharge) |
Mar 05 1989 | patent expiry (for year 4) |
Mar 05 1991 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 05 1992 | 8 years fee payment window open |
Sep 05 1992 | 6 months grace period start (w surcharge) |
Mar 05 1993 | patent expiry (for year 8) |
Mar 05 1995 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 05 1996 | 12 years fee payment window open |
Sep 05 1996 | 6 months grace period start (w surcharge) |
Mar 05 1997 | patent expiry (for year 12) |
Mar 05 1999 | 2 years to revive unintentionally abandoned end. (for year 12) |