A specimen-receiving receptacle apparatus for use in minimally invasive surgical procedures can be remotely opened and closed from a proximal end of the apparatus, outside of the patient. The apparatus includes a belt having substantial longitudinal rigidity so that the belt can be forced longitudinally into the surgical site to open the specimen-retrieval receptacle from a remote end of the apparatus. The belt can be longitudinally pulled out of the surgical site to close the specimen-retrieval receptacle from outside of the patient. The belt is relatively flexible or easily deformable along an open end of the receptacle without deforming substantially out of the plane of the open receptacle end. This is achieved by aligning the belt with respect to the open end such that a large dimension of the belt is aligned transverse to the plane of the open receptacle end. In a preferred embodiment, the belt is extruded from nylon and has an elliptical cross-sectional shape.

Patent
   5352184
Priority
Mar 12 1992
Filed
Mar 12 1992
Issued
Oct 04 1994
Expiry
Mar 12 2012
Assg.orig
Entity
Small
228
3
EXPIRED
14. A surgical instrument for insertion in a patient to receive, contain, and remove a specimen, the instrument including:
a receptacle bag for receiving and containing the specimen; and
means for selectively opening or closing a mouth of the bag, the means including an elongate belt that has a major axis and a minor axis, is more flexible to bending perpendicular to the plane of the major axis, than to bending perpendicular to the plane of the minor axis, and can be activated from a location external to the patient to form a loop that is resistent to bending out of plane.
1. An instrument intended for percutaneous insertion through an access port for receiving, containing, and removing a specimen from a patient during a minimally invasive surgical procedure, the instrument including:
a rigid, elongate guide member that has a proximal end and a distal end;
an elongate belt that can be moved along the length of the guide member; has a proximal end outside the guide member; and has a belt portion that has a major axis and a minor axis, is more flexible to bending perpendicular to the plane of the major axis than to bending perpendicular to the plane of the minor axis, and forms a loop outside the distal end of the guide member when the proximal end of the belt is moved toward the guide member; and
a receptacle that is connected to the belt, can be opened by moving the proximal end of the belt toward the guide member, and can be closed by moving the proximal end of the belt away from the guide member.
19. A surgical instrument intended for percutaneous insertion through an access port for receiving, containing, and removing a specimen from a patient during a minimally invasive surgical procedure, the instrument including:
a rigid, hollow guide tube with a proximal end and a distal end;
a proximal handle portion adjacent the proximal end of the guide tube;
a free end of an elongate belt passing through the guide tube and being secured within the proximal handle portion;
an expanding portion of the elongate belt, the height of the expanding portion being more then 150% greater than the width of the expanding portion, and the expanding portion being moveable, upon movement of the proximal handle portion, between a retracted position within the guide tube and an extended position in the form of a planar loop outside the distal end of the guide tube, the plane of the loop being normal to the height of the expanding portion of the belt, and the loop being substantially more flexible to bending within the plane of the loop than to bending normal to the plane of the loop; and
a specimen-retaining receptacle having an elongate, generally tubular, sealed bag and a mouth hemmed around the expanding portion of the belt, the receptable being openable by causing the expanding portion of the belt to be moved to the extended position, and being closeable by causing the expanding portion of the belt to be moved to the retracted position.
2. The instrument as defined in 1, further including a tubular sleeve that surrounds a portion of the guide member and is adapted to contain and initially direct the receptacle through the access port.
3. The instrument as defined in claim 1, in which the belt portion has an elliptical cross-sectional shape and is sufficiently rigid to allow it to be pushed through a central opening in the guide member for opening the receptacle.
4. The instrument as defined in claim 1, in which the belt portion is formed from nylon.
5. The instrument as defined in claim 1, in which the receptacle is formed from a waterproof nylon sheet material and includes securing means for slidably securing the receptacle to the belt.
6. The instrument as defined in claim 5, in which the receptacle has a hemmed portion of receptacle sheet material and the belt extends through the hemmed portion.
7. The instrument as defined in claim 1, in which the belt has a fixed end secured at the distal end of the guide member.
8. The instrument as defined in claim 7, in which the proximal end of the belt is secured to an actuating tube that is slidably telescoped over the proximal end of the guide member.
9. The instrument as defined in claim 7 further including a collar secured about the distal end of the guide member, the fixed end of the belt being secured between the guide member and the collar.
10. The instrument as defined in claim 9, in which a portion of the receptacle is secured to the guide member or to the collar.
11. The instrument as defined in claim 10, in which a second portion of the receptacle is secured to the guide member between the guide member and the collar.
12. The instrument as defined in claim 1, in which the guide member is a rigid hollow tube.
13. The instrument defined in claim 1, in which the belt portion is about twice as high as it is wide.
15. The surgical instrument as defined in claim 14, in which the belt is formed from nylon.
16. The surgical instrument as defined in claim 15, in which the belt is configured to transmit forces selectively in either direction along its longitudinal axis to selectively open or close the mouth of the bag.
17. The surgical instrument as defined in claim 14, in which the bag is formed from nylon.
18. The instrument defined in claim 14, in which a portion of the belt is about twice as wide as it is high.

The present invention is directed to a reservoir for receiving and containing physiologic materials from body cavities. The reservoir is introduced through a surgical access port percutaneously inserted into a body cavity and directed to any site in the body cavity. The reservoir can be opened or closed remotely outside or exterior to the body cavity, more particularly, the present invention is directed to a flexible retrieval reservoir that can be remotely opened and closed from outside the body cavity by a control mechanism. This control mechanism can easily open and close the neck of the reservoir and allow the easy introduction of any specimen and the easy sequestration of this material so that it can be easily and safely removed or extracted from the body cavity. The ability to easily remotely open the reservoir is essential to the surgeon because his ability to move instruments and specimens is difficult and limited. The ability to easily remotely close the reservoir is just as essential to avoid contamination from the sequestered specimen. Many of the specimens are fragile, infected, chemically noxious, or malignant. Properly encapsulating the specimen in a closed reservoir is essential in preventing infections, chemical damage and malignant spread.

The advantages of minimally invasive endoscopic surgical procedures are well documented throughout the literature. They require substantially smaller incisions that are less traumatic to the patient resulting in accelerated patient recovery and convalescence. Many body cavities can be entered through small incisions by utilizing fiber optic visual systems and special surgical instruments. Thoroscopy, arthroscopy, cystoscopy and laparoscopy are some of the most common of these surgical procedures. One of the most common endoscopic surgical procedures is laparoscopic surgery. The abdominal wall is pierced with a trocar assembly including a sharp trocar within a hollow tube or access port. Multiple other ports are utilized, depending on the operative requirements, to introduce various other devices, including a light source and optical instruments to visualize the operative field and for the purpose of completing the surgical procedure.

Many times during the course of such an endoscopic surgical procedure, specimens must be removed from the patient's body through the relatively small incision. For this purpose, the specimen to be removed must best be captured in a reservoir so that it can be sequestered. Many of these specimens are noxious and should be properly encapsulated or enclosed to prevent contamination as they are removed through the body cavity incision.

The Wilk patent discloses a device that is extremely difficult to operate because it requires the opening of a relatively large planar sheet or membrane in an unstable area. This requires the sheet to be located on shifting organs. Also, the device disclosed in the Wilk patent does not have the capacity to easily remotely open or close the specimen collector. The Wilk device requires the surgeon to open a planar sheet in the body cavity, with extreme difficulty, with other instruments. The planar sheet has no integral mechanism to remotely open the sheet. Rather, it requires other instruments to perform this function and is not remotely controllable.

Surgical specimen receptacles for use in endoscopic surgical procedures are known in the art, as shown in the Clayman, et al. U.S. Pat. No. 5,037,379, where one is formed from a thin polymeric sheet material having a drawstring secured to an open end of the receptacle for the purpose of closing the receptacle around the specimen or other specimen to be removed. The receptacle is closed by pulling on the drawstring from a proximal location outside of the body cavity. Such specimen receptacles or surgical specimen bags are made from a readily collapsible sheet material so that the receptacle can be easily collapsed into a much smaller volume for insertion through the access port. The surgical receptacle sheet material should be a material that is non-porous, flexible and tear resistant. Often times the specimen to be removed is a diseased organ, such as an acute appendix, that contains a substantial amount of infectious fluid. For this purpose, the receptacle should have a remotely and easily controllable entry port that allows quick and easy introduction of the specimen without unwanted manipulation of the receptacle and the specimen. It further requires an easy remote control to encapsulate and enclose the specimen so it can be removed from the body cavity without contamination.

One of the problems associated with prior art endoscopic surgical specimen receptacles used in minimally invasive surgical procedures is that opening of such a receptacle in a body cavity requires manipulation of the receptacle with a surgical tool inserted in the body cavity through another access port. The additional effort in such a procedure may be eliminated in accordance with the principles of the present invention.

An endoscopic minimally invasive specimen-retrieval apparatus is manufactured in accordance with the principles of the present invention so that the receptacle, after closure, can be integrally and remotely opened and closed from a proximal end of the apparatus, outside of the patient.

Instead of employing a relatively limp drawstring closure, such as disclosed in Clayman, et al. U.S. Pat. No. 5,037,039, the apparatus of the present invention includes an elongate belt received within a tube having substantial longitudinal rigidity so that the tube can be directed longitudinally into the surgical site. The belt may be used to both close and alternately open the specimen-retrieval receptacle from a proximal end of the apparatus. The belt is relatively easily flexed around an open neck of the receptacle without bending substantially out of a plane of the open receptacle end by aligning the belt material with respect to the open receptacle end such that a larger or major axis of the belt is aligned perpendicular to the plane of the open receptacle end. In a preferred embodiment, the belt is extruded from nylon to have an elliptical cross-sectional shape with its major axis disposed perpendicular to the plane of the open receptacle end.

Accordingly, one aspect of the present invention is to provide an improved method and apparatus including a specimen-retrieval receptacle for containing and removing specimen from a patient during a minimally invasive surgical procedure wherein the receptacle can be easily remotely opened from outside of the body.

Another aspect of the present invention is to provide an improved method and apparatus for removing specimens from a surgical site during a minimally invasive surgical procedure wherein specimen, a diseased organ and/or infected or diseased body products can be removed from a body cavity of a patient by closing a specimen-retrieval receptacle about the material to be removed without the manipulation of receptable opening tools within the patient at the surgical site.

The above and other aspects, advantages and novel features of the present invention will become apparent from the following detailed description of the preferred embodiment taken in conjunction with the following figures of the drawing.

FIG. 1 is an elevational view showing minimally invasive laparoscopic surgery being performed on a patient using the method and apparatus of the present invention;

FIG. 2 is an enlarged, perspective view of the apparatus of the present invention;

FIG. 3 is enlarged, fragmentary perspective view of a portion of the apparatus of FIG. 2;

FIG. 4 is a detail view taken along the line 4--4 of FIG. 3 showing an elliptical cross-sectional shape of a belt portion of the device of FIG. 3;

FIG. 5 is a fragmentary, broken-away view showing the securement of hemmed receptacle ends and securement of one belt end to the apparatus, taken along line 5--5 of FIG. 3.

FIG. 6 is a fragmentary side elevational view of the specimen receptacle portion of the apparatus of FIG. 2;

FIG. 7 is a fragmentary top view showing the receptacle portion of the apparatus of FIG. 2 in an open position;

FIG. 8 is a fragmentary top view showing the receptacle portion of the apparatus of FIG. 2 in a closed position;

FIG. 9 is a fragmentary, broken away perspective view of the device of FIG. 2 positioned in an introducer sleeve, within an access port;

FIG. 10 is a view, similar to FIG. 10, depicting the device of FIG. 2 in a deployed condition inside a body cavity; and

FIG. 11 is a partially broken-away perspective view taken along the line 4--4 of FIG. 3 showing an alternative coextruded embodiment of the elliptical belt of the apparatus of FIG. 2.

In accordance with the principles of the present invention, a specimen-receiving apparatus 10 (FIGS. 1-3) includes a flexible receptacle 12 manufactured from a waterproof, flexible and tear resistant material, such as nylon. The receptacle 12 has an open end or neck 14 and an elongate, generally tubular, sealed specimen-retaining receptacle portion or bag 15 extending therefrom. The apparatus 10 also includes an operating belt 16, for opening and closing the end 14, slidably secured to the open end 14 of the receptacle 12. A rigid guide tube 18 is used to guide and constrain the belt 16 from a proximal location outside of the patient's body, along and through the guide tube 18, into a hemmed portion 19 of the open end 14 of receptacle 12. A collar 20 is disposed about a distal end 22 of the guide tube 18 for fixedly securing a distal end 63 of the belt 16 to the guide tube 18 such that a major axis or larger dimension A of the belt 16 (FIG. 4) is maintained transverse to the plane of the open end 14 of receptacle 12. A handle 24 (FIG. 2) is telescopically and slidably received over a proximal end 25 of the guide tube 18, and is fixedly secured to a proximal end 26 of the belt 16. Sliding movement of the handle 24 over guide tube 18 in a distal direction toward the receptacle 12 pushes the belt 16 in a distal direction (FIG. 6) within guide tube 18, thereby lengthening the portion of the belt 16 extending in a distal direction beyond the distal end 22 of guide tube 18. That additional elongate portion of the belt 16 is slidingly received within the hemmed portion 19 at the open end 14 of receptacle 12 to open the receptacle 12 (FIG. 7). Movement of the handle 24 in an opposite direction closes the specimen receptacle 12 (FIG. 8).

To prevent the hemmed portion 19 of the receptacle material from remaining bunched together after closing, one or both hemmed ends 27 and 29 of the receptacle 12 can be secured to the guide tube 18 or to the collar 20, for example, by frictionally securing the hemmed ends 27 and 29 between the guide tube 18 and the collar 20, as shown in FIG. 3. An introducer sleeve 31, surrounding the collar 20 and a portion of the guide tube 18, receives the receptacle 12 and a portion of the belt within hemmed receptacle portion 19 in a collapsed position, having at least a partially closed neck for initially inserting the receptacle 12 through an access port and into the body cavity at a surgical site. Alternatively, the receptacle 12 may be initially disposed in the introducer sleeve 31 in a closed condition. After insertion into the body cavity through the introducer sleeve disposed in the access port, the receptacle 12 may be fully opened by the belt 16 as described above.

FIG. 1 depicts a patient 30 undergoing laparoscopic surgery to remove a diseased organ or other specimen 32 using the apparatus 10 of the present invention. In accordance with the endoscopic minimally invasive surgical procedure of the present invention, after pressurization of the abdomen, trocar assemblies (not shown) are used to make perforations or incisions in the abdomen of patient 30 at trocar sites 34 and 36. Hollow tubular access ports 38 and 40 are installed during the perforation procedures and extend into the abdominal cavity or other body cavity. As shown in FIG. 1, initially an endoscope 42 is inserted through the first access port 38 to provide light transmitted through an optical fiber 43 and images for display on the monitor 46.

The apparatus 10 of the present invention may be inserted through a subsequently formed access port 40 for retrieval of one or more specimens 32. For the performance of laparoscopic surgery, access port 38 generally includes a conventional housing valve assembly connected to a carbon dioxide source (not shown) for maintaining pressurization of the abdominal cavity.

After installation of the access port 40 into a body cavity at the surgical site, the receptacle 12 is inserted into the body cavity therethrough. Prior to insertion into the access port 40, the open end 14 of the receptacle 12 preferably is partially closed and the tubular receptacle portion 15 is collapsed on itself to fit within the introducer sleeve 31 (FIG. 9). The sleeve 31 with the collapsed, and partially closed receptacle 12 disposed therein can be manually directed into the access port 40. By providing the sleeve 31 with a integral annular stop or shoulder 33 extending laterally from sleeve 31, the introducer sleeve 31 is prevented from extending beyond a distal end 48 of the access port 40. The shoulder 33 prevents the sleeve 31 from entering the body cavity by contact with the proximal end 35 of the access port 40. The introducer sleeve 31 also seals the port 40 from excessive loss of pressurization during insertion of the receptacle 12 into the body cavity. The receptacle 12 and the guide tube 18 then can be manually forced through the access port 40 into the surgical site of specimen 32, as shown in FIGS. 1 and 4, while retaining the introducer sleeve 31 within the access port 40. During insertion of the receptacle 12 and the guide tube 18 into the body cavity, the guide tube 18 moves longitudinally with respect to the introducer sleeve shoulder 33 and the shoulder 33 remains stationary in contact with proximal port end 35.

The receptacle portion 15 of receptacle 12 may be manufactured from a minimally biologically intrusive material having sufficient flexibility. One material that is particularly suitable is thin nylon material, for example, nylon 6, 6/6, 6/12 or 12/12. When the receptacle 12 emerges from the distal end 48 of access port 40, within the patient 30, the receptacle 12, under the influence of the expanding belt 16, expands to its operational, generally tubular receptacle shape, as shown in FIGS. 2, 6 and 10. In accordance with an important feature of the present invention, the end 14 of receptacle 12 can be opened within the patient 30 without the necessity of the surgeon inserting receptacle-opening manipulating tools through another incision in patient 30.

After opening of the receptacle 12, the open end 14 of the receptacle 12 is loaded with the specimen 32. The specimen 32 may be placed into the receptacle 12 and then the receptacle 12 is closed about the specimen, e.g., or organ 32 by pulling the handle 24 in a proximal direction, thereby drawing a portion of the belt 16 back into the guide tube 18 to close the receptacle 12.

The guide tube 18 and receptacle 12 then may be pulled outwardly in a proximal direction through the access port 40 for removal of specimen 32 from the patient 30. If the specimen 32 is too large to be removed from the patient 30 through the access port 40, the access port 40 first may be removed prior to the removal of the specimen-containing receptacle 12 and, if necessary, the incision at trocar site 36 can be minimally enlarged. Alternatively, the receptacle can be reopened while still in the body cavity and the specimen 32 may be subdivided while in the receptacle 12 and, if desired, a portion or all of the subdivided specimen can be aspirated out of the receptacle 12 prior to removal of the receptacle 12 from the body cavity of the patient 30.

In accordance with an important feature of the present invention, the belt 16 is manufactured from a material such as nylon, e.g., nylon 6, 6/6, 6/12 or 12/12, in the form of an elongate belt having substantial rigidity in a longitudinal direction while being relatively flexible and easily flexed around the open end 14 of receptacle 12, as shown in FIG. 3. Substantial rigidity in the longitudinal direction enables the belt 16 to be lengthened about the open end 14 of receptacle 12 by pushing handle 24 in a distal direction. The flexibility and capability of relatively easily flexing around the open end 14 of the receptacle 12 permits the belt 16 to slide easily within the hemmed portion 19 of the receptacle 12.

The belt 16 is configured to prevent substantial flexing out of a plane defined by the open end 14 of receptacle 12. This resistance to flexing is achieved, in a preferred embodiment, by manufacturing the belt 16 with an elliptical cross-sectional shape, having a major axis or larger dimension A and a minor axis or smaller dimension B (FIG. 4), and by maintaining the belt 16 within the hemmed portion 19 at the open end 14 of receptacle 12 such that the major axis A is aligned or transverse to the plane passing through the open end 14 of the receptacle 12. Dimension A preferably is at least approximately 50% greater than the dimension B, and more preferably in the range of about 75% to about 150% greater than dimension B. For example, in the preferred embodiment, dimension A is approximately 0.080±0.005 inch and dimension B is approximately 0.040±0.005 inch. The aforementioned alignment and relative dimensions of belt 16 within the hemmed portion 19 of open end 14 of receptacle 12 provides the belt 16 with substantial resistance to flexing in a direction normal to the plane of the open end 14 while permitting the belt 16 to be relatively easily flexed in a direction parallel to the plane of the end 14, for receptacle opening and closing operations, respectively.

In a preferred embodiment, the belt 16 is extruded from nylon or other polymeric material having a relatively low coefficient of friction and in an elliptical cross-sectional shape, as shown in FIG. 4. The elliptical exterior surfaces of the belt 16 preferably have no sharp corners in contact with inner surfaces of the hemmed receptacle portion 19 to achieve low friction sliding engagement of the belt 16 through the hemmed portion 19 during opening and closing of receptacle 12.

In accordance with another embodiment of the present invention, as shown in FIG. 11, an alternative belt 50 having an elliptical cross-sectional shape including a major axis or larger dimension A and a minor axis or smaller dimension B, preferably dimensioned as described above with reference to FIG. 4, is manufactured by coextruding a polyurethane material 52 about a nylon core 54. The interior nylon core 54, having a circular cross sectional shape provides rigidity, while the polyurethane material 52 provides flexibility and a low coefficient of friction to the exterior of the belt 50. The dimension C or diameter of the core 54, relative to the B dimension is preferably about one-half of the B dimension, or in a specific example, in the range of from about 0.020 to about 0.025 inch while the other relative dimensions A and B may be the same as recited hereinabove with respect to FIG. 4.

As shown in FIG. 2, the handle 24 may be manufactured in two interlocking parts, a distal portion 60, and a proximal portion 62 that interlock over guide tube 18 during manufacture of the apparatus 10. During manufacture, the belt 16 is secured at the distal end 63 to the guide tube 18 under collar 20, and the belt 16 is slidingly secured to the receptacle 12 at open end 14 through hemmed portion 19. A free end of the belt 16 passes through the guide tube 18 in a proximal direction toward handle 24. The distal handle portion 60 is telescopically received completely over the guide tube 18, and the free belt end 26 then is secured within an inner end of the proximal handle portion 62, for example, using a set screw 64. The proximal handle portion 62 is telescopically received over guide tube 18 and the two handle portions 60 and 62 are interlocked together, for example, by manually press-fitting a reduced diameter end portion 66 of the proximal handle portion 62 into the distal handle portion 60.

Numerous modifications and alternative embodiments of the invention will be apparent to those skilled in the art in view of the foregoing description. Accordingly, this description is to be construed as illustrative only and is for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details of the structure may be varied substantially without departing from the spirit of the invention, and the exclusive use of all modifications which come within the scope of the appended claims is reserved.

Goldberg, Edward M., Melinyshyn, Lev, Poloyko, Alexander, Goldberg, Mark C.

Patent Priority Assignee Title
10004558, Jan 12 2009 Cilag GmbH International Electrical ablation devices
10034661, Aug 23 2013 Covidien LP Specimen retrieval device
10092291, Jan 25 2011 Ethicon Endo-Surgery, Inc Surgical instrument with selectively rigidizable features
10098527, Feb 27 2013 Cilag GmbH International System for performing a minimally invasive surgical procedure
10098691, Dec 18 2009 Cilag GmbH International Surgical instrument comprising an electrode
10105141, Jul 14 2008 Cilag GmbH International Tissue apposition clip application methods
10154833, Mar 01 2013 Covidien LP Specimen retrieval device with pouch stop
10188374, Dec 23 2011 Atropos Limited Pneumoperitoneum device
10194894, Dec 17 2010 Covidien LP Specimen retrieval device
10206709, May 14 2012 Cilag GmbH International Apparatus for introducing an object into a patient
10245053, Oct 09 2009 Applied Medical Resources Corporation Single incision laparoscopic tissue retrieval system
10258317, Jan 23 2012 Covidien LP Reusable surgical retrieval apparatus with disposable cartridge assembly
10258406, Feb 28 2011 Cilag GmbH International Electrical ablation devices and methods
10278761, Feb 28 2011 Cilag GmbH International Electrical ablation devices and methods
10314603, Nov 25 2008 Cilag GmbH International Rotational coupling device for surgical instrument with flexible actuators
10314649, Aug 02 2012 Ethicon Endo-Surgery, Inc Flexible expandable electrode and method of intraluminal delivery of pulsed power
10327745, Oct 19 2011 Covidien LP Surgical retrieval apparatus for thoracic procedures
10335130, Oct 23 2008 Covidien LP Surgical retrieval apparatus
10342598, Aug 15 2012 Cilag GmbH International Electrosurgical system for delivering a biphasic waveform
10376251, Dec 23 2011 Atropos Limited Pneumoperitoneum device
10478166, Dec 16 2016 Laparoscopic morcellating receptacle and methods of use
10478248, Feb 15 2007 Cilag GmbH International Electroporation ablation apparatus, system, and method
10492880, Jul 30 2012 Ethicon Endo-Surgery, Inc Needle probe guide
10499889, Dec 23 2011 Atropos Limited Inflatable pneumoperitoneum device
10537345, Oct 14 2005 Applied Medical Resources Corporation Tissue retrieval system
10653400, Aug 07 2017 Covidien LP Specimen retrieval device
10675058, Jan 19 2017 Covidien LP Devices, systems, and methods for large tissue specimen removal
10772614, Aug 23 2013 Covidien LP Specimen retrieval device
10779882, Oct 28 2009 Cilag GmbH International Electrical ablation devices
10874386, Jan 24 2018 Covidien LP Specimen retrieval device
10973543, Jan 10 2018 Covidien LP Dual wall tissue extraction bag
11026711, Jun 14 2013 Covidien LP Specimen retrieval device including an integrated sliding grasper
11045176, May 18 2018 Covidien LP Specimen retrieval device
11064984, May 07 2019 Covidien LP Specimen containment device
11065051, Nov 03 2017 Covidien LP Specimen retrieval device
11083443, Apr 24 2018 Covidien LP Specimen retrieval device
11134929, Dec 23 2011 Atropos Limited Pneumoperitoneum device
11134932, Aug 13 2018 Covidien LP Specimen retrieval device
11172915, Apr 24 2019 Covidien LP Specimen retrieval devices with selective bag release
11191557, Oct 09 2009 Applied Medical Resources Corporation Single incision laparoscopic tissue retrieval system
11191559, Sep 19 2018 Covidien LP Specimen retrieval device
11246578, May 15 2019 MEDTRONIC ENGINEERING AND INNOVATION CENTER PRIVATE LIMITED Tissue collection bags with inner surface pouches
11284918, May 14 2012 Cilag GmbH International Apparatus for introducing a steerable camera assembly into a patient
11344300, Mar 26 2019 Covidien LP Specimen capture stapler
11357524, Oct 14 2005 Applied Medical Resources Corporation Tissue retrieval system
11399834, Jul 14 2008 Cilag GmbH International Tissue apposition clip application methods
11426151, Jun 04 2019 Covidien LP Bag closure for specimen retrieval device
11446015, Oct 30 2019 Covidien LP Specimen retrieval bag
11484191, Feb 27 2013 Cilag GmbH International System for performing a minimally invasive surgical procedure
11547428, Nov 15 2019 Applied Medical Resources Corporation Redeploy able tissue retrieval system
11707263, Nov 16 2018 Applied Medical Resources Corporation Tissue retrieval system with retention features
11730459, Feb 22 2018 Covidien LP Specimen retrieval devices and methods
11730480, Sep 14 2018 Covidien LP Method and apparatus for accessing matter disposed within an internal body vessel
11805999, Aug 13 2018 Covidien LP Specimen retrieval device
11832850, Jan 19 2017 Covidien LP Devices, systems, and methods for large tissue specimen removal
5556376, Jul 22 1988 Multifunctional devices having loop configured portions and collection systems for endoscopic surgical procedures and methods thereof
5611803, Dec 22 1994 IMAGYN MEDICAL TECHNOLOGIES, INC Tissue segmentation device
5645083, Feb 10 1994 WILK PATENT DEVELOPMENT CORP Peritoneal surgical method
5647372, Jun 30 1992 United States Surgical Corporation Specimen retrieval pouch and method for use
5759187, Nov 05 1991 Granit Medical Innovations LLC Surgical retrieval assembly and associated method
5779716, Oct 06 1995 Advanced Cardiovascular Systems, INC Device for removing solid objects from body canals, cavities and organs
5785677, Jun 22 1993 Laparoscopy bag
5865826, Sep 27 1995 FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E V Device and method for widening a hollow body having an at least partially elastic region
5971995, Mar 30 1998 Ethicon, Inc Surgical pouch instrument
5997547, Nov 05 1991 Granit Medical Innovations, LLC Surgical retrieval assembly and associated method
6059793, Nov 20 1998 ANCEL SURGICAL R & D, INC Reusable laproscopic retrieval mechanism and method for use
6165121, Sep 23 1997 MARDIL, INC Cardiac reinforcement device
6168604, Jan 26 1998 Advanced Cardiovascular Systems, INC Guide wire device for removing solid objects from body canals
6228095, Oct 14 1999 Conmed Corporation Specimen retrieval device
6258102, Nov 20 1998 ANCEL SURGICAL R & D, INC Reusable laproscopic retrieval mechanism
6264663, Oct 06 1995 Advanced Cardiovascular Systems, INC Device for removing solid objects from body canals, cavities and organs including an invertable basket
6387102, Nov 20 1998 ANCEL SURGICAL R & D, INC Reusable laparoscopic retrieval mechanism
6419639, Aug 05 1999 National Institute of Health Laparoscopic SAC holder assembly
6595912, Mar 10 2000 Paracor Medical, Inc Expandable cardiac harness for treating congestive heart failure
6602184, Mar 10 2000 Paracor Medical, Inc Expandable cardiac harness for treating congestive heart failure
6610077, Jan 23 2001 ABBOTT CARDIOVASCULAR SYSTEMS INC; Abbott Laboratories Expandable emboli filter and thrombectomy device
6612978, Dec 22 1999 Paracor Medical, Inc Expandable cardiac harness for treating congestive heart failure
6612979, Mar 10 2000 Paracor Medical, Inc Expandable cardiac harness for treating congestive heart failure
6663558, Dec 22 1999 Paracor Medical, Inc Expandable cardiac harness for treating congestive heart failure
6682474, Mar 10 2000 Paracor Medical, Inc Expandable cardiac harness for treating congestive heart failure
6685628, May 15 2002 Endoscopic balloon for spill-proof laparoscopic ovarian cystectomy
6702732, Dec 22 1999 Paracor Medical, Inc Expandable cardiac harness for treating congestive heart failure
6755779, Dec 01 2000 MARDIL, INC Apparatus and method for delivery of cardiac constraint jacket
7077802, Mar 10 2000 Paracor Medical, Inc. Expandable cardiac harness for treating congestive heart failure
7081086, Feb 27 2004 Paracor Medical, Inc Expandable cardiac harness for treating congestive heart failure
7097611, Mar 10 2000 Paracor Medical, Inc Expandable cardiac harness for treating congestive heart failure
7124493, Mar 10 2000 Paracor Medical, Inc. Method of manufacturing a cardiac harness
7146226, Nov 07 2003 Paracor Medical, Inc. Cardiac harness for treating congestive heart failure and for defibrillating and/or pacing/sensing
7149588, Nov 07 2003 Paracor Medical, Inc. Cardiac harness for treating congestive heart failure and for defibrillating and/or pacing/sensing
7155295, Nov 07 2003 Paracor Medical, Inc Cardiac harness for treating congestive heart failure and for defibrillating and/or pacing/sensing
7158839, Nov 07 2003 Paracor Medical, Inc Cardiac harness for treating heart disease
7164952, Nov 07 2003 Paracor Medical, Inc. Cardiac harness for treating congestive heart failure and for defibrillating and/or pacing/sensing
7187984, Jun 02 2004 Paracor Medical, Inc. Cardiac harness for treating congestive heart failure and for defibrillating and/or pacing/sensing
7189202, Mar 10 2000 Paracor Medical, Inc. Self-sizing cardiac harness for treating congestive heart failure
7189203, Nov 15 2002 Paracor Medical, Inc Cardiac harness delivery device and method
7225036, Feb 12 2004 Paracor Medical, Inc Cardiac harness for treating congestive heart failure and for defibrillating and/or pacing/sensing
7229405, Nov 15 2002 Paracor Medical, Inc Cardiac harness delivery device and method of use
7276021, Oct 31 2001 Paracor Medical, Inc Heart failure treatment device and method
7282024, Jan 12 2004 Paracor Medical, Inc. Cardiac harness having interconnected strands
7291105, Jul 10 2003 Paracor Medical, Inc Self-anchoring cardiac harness
7338435, Nov 15 2002 Paracor Medical, Inc. Cardiac harness delivery device and method
7361139, Nov 15 2002 Paracor Medical, Inc. Cardiac harness delivery device and method
7381181, Sep 10 2001 Paracor Medical, Inc. Device for treating heart failure
7404793, Apr 30 2004 Paracor Medical, Inc. Heart failure treatment device and method
7410461, Mar 10 2000 Paracor Medical, Inc. Cardiac treatment apparatus
7422558, Jan 09 2004 Paracor Medical, Inc. Device for treating heart failure
7435213, Jan 09 2004 Paracor Medical, Inc. Device for treating heart failure
7479153, Jan 16 2001 Boston Scientific Scimed, Inc. Endovascular guidewire filter and methods of use
7485089, Sep 05 2002 Paracor Medical, Inc Cardiac harness
7500946, Nov 15 2002 Paracor Medical, Inc. Cardiac harness delivery device and method
7547310, Mar 29 2005 Covidien LP Specimen retrieval apparatus
7572219, May 03 2004 Paracor Medical, Inc. Cardiac harness delivery device and method
7587247, Aug 01 2005 Paracor Medical, Inc Cardiac harness having an optimal impedance range
7588545, Sep 10 2003 Boston Scientific Scimed, Inc Forceps and collection assembly with accompanying mechanisms and related methods of use
7618437, Jul 15 2005 Granit Medical Innovation, LLC Endoscope retrieval instrument assembly
7655004, Feb 15 2007 Cilag GmbH International Electroporation ablation apparatus, system, and method
7670346, Mar 29 2005 Covidien LP Specimen retrieval apparatus
7731722, Jul 31 2003 Nordson Corporation Ureteral backstop filter and retrieval device
7736299, Nov 15 2002 Paracor Medical, Inc. Introducer for a cardiac harness delivery
7762960, May 13 2005 Boston Scientific Scimed, Inc Biopsy forceps assemblies
7815662, Mar 08 2007 Ethicon Endo-Surgery, Inc Surgical suture anchors and deployment device
7909850, Oct 25 1999 Boston Scientific Scimed, Inc. Forceps for medical use
7942896, Nov 25 2003 SciMed Life Systems, Inc. Forceps and collection assembly and related methods of use and manufacture
7955292, Jul 28 2004 MTP Medical Technical Promotion GmbH Endosurgical extraction bag for collecting body tissue or body fluid
7976454, Jan 07 2002 Paracor Medical, Inc. Cardiac harness
8016771, Mar 27 2002 Covidien LP Minimally invasive removal device with breakaway sheath
8029504, Feb 15 2007 Cilag GmbH International Electroporation ablation apparatus, system, and method
8037591, Feb 02 2009 Ethicon Endo-Surgery, Inc Surgical scissors
8070759, May 30 2008 Cilag GmbH International Surgical fastening device
8075572, Apr 26 2007 Ethicon Endo-Surgery, Inc Surgical suturing apparatus
8083686, Sep 10 2003 Boston Scientific Scimed, Inc. Forceps and collection assembly with accompanying mechanisms and related methods of use
8100922, Apr 27 2007 Ethicon Endo-Surgery, Inc Curved needle suturing tool
8109941, Feb 28 2005 Boston Scientific Scimed, Inc. Distal release retrieval assembly and related methods of use
8114072, May 30 2008 Ethicon Endo-Surgery, Inc Electrical ablation device
8114119, Sep 09 2008 Ethicon Endo-Surgery, Inc Surgical grasping device
8157834, Nov 25 2008 Cilag GmbH International Rotational coupling device for surgical instrument with flexible actuators
8172772, Dec 11 2008 Ethicon Endo-Surgery, Inc Specimen retrieval device
8192351, Aug 13 2007 Paracor Medical, Inc. Medical device delivery system having integrated introducer
8206401, Jul 15 2005 Granit Medical Innovation LLC Endoscope cutting and retrieving snare instrument
8211125, Aug 15 2008 Ethicon Endo-Surgery, Inc Sterile appliance delivery device for endoscopic procedures
8241204, Aug 29 2008 Ethicon Endo-Surgery, Inc Articulating end cap
8252057, Jan 30 2009 Cilag GmbH International Surgical access device
8262563, Jul 14 2008 Ethicon Endo-Surgery, Inc Endoscopic translumenal articulatable steerable overtube
8262655, Nov 21 2007 Ethicon Endo-Surgery, Inc Bipolar forceps
8262680, Mar 10 2008 Ethicon Endo-Surgery, Inc Anastomotic device
8317726, May 13 2005 Boston Scientific Scimed, Inc. Biopsy forceps assemblies
8317806, May 30 2008 Ethicon Endo-Surgery, Inc Endoscopic suturing tension controlling and indication devices
8337394, Oct 01 2008 Ethicon Endo-Surgery, Inc Overtube with expandable tip
8353487, Dec 17 2009 Ethicon Endo-Surgery, Inc User interface support devices for endoscopic surgical instruments
8361066, Jan 12 2009 Cilag GmbH International Electrical ablation devices
8361112, Jun 27 2008 Ethicon Endo-Surgery, Inc Surgical suture arrangement
8366737, Jan 23 2001 Abbott Cardiovascular Systems Inc. Expandable emboli filter and thrombectomy device
8403926, Jun 05 2008 Ethicon Endo-Surgery, Inc Manually articulating devices
8409200, Sep 03 2008 Ethicon Endo-Surgery, Inc Surgical grasping device
8425505, Feb 15 2007 Cilag GmbH International Electroporation ablation apparatus, system, and method
8449538, Feb 15 2007 Cilag GmbH International Electroporation ablation apparatus, system, and method
8460205, Sep 10 2003 Boston Scientific Scimed, Inc. Forceps and collection assembly with accompanying mechanisms and related methods of use
8480657, Oct 31 2007 Ethicon Endo-Surgery, Inc Detachable distal overtube section and methods for forming a sealable opening in the wall of an organ
8480689, Sep 02 2008 Ethicon Endo-Surgery, Inc Suturing device
8486087, May 03 2010 Covidien LP System and method for removing excised tissue
8496574, Dec 17 2009 KARL STORZ ENDOVISION, INC Selectively positionable camera for surgical guide tube assembly
8506564, Dec 18 2009 Ethicon Endo-Surgery, Inc Surgical instrument comprising an electrode
8529563, Aug 25 2008 Ethicon Endo-Surgery, Inc Electrical ablation devices
8551111, Feb 28 2005 Boston Scientific Scimed, Inc. Distal release retrieval assembly and related methods of use
8568410, Aug 31 2007 Ethicon Endo-Surgery, Inc Electrical ablation surgical instruments
8579897, Nov 21 2007 Ethicon Endo-Surgery, Inc Bipolar forceps
8579914, Dec 17 2010 Covidien LP Specimen retrieval device
8585712, Feb 03 2010 Covidien LP Surgical retrieval apparatus
8608652, Nov 05 2009 Ethicon Endo-Surgery, Inc Vaginal entry surgical devices, kit, system, and method
8652147, Oct 14 2005 Applied Medical Resources Corporation Device for isolating and removing tissue from a body cavity
8652150, May 30 2008 Ethicon Endo-Surgery, Inc Multifunction surgical device
8672859, May 13 2005 Boston Scientific Scimed, Inc. Biopsy forceps assemblies
8679003, May 30 2008 Ethicon Endo-Surgery, Inc Surgical device and endoscope including same
8721658, Oct 14 2005 Applied Medical Resources Corporation Tissue retrieval system
8734464, Jan 06 2011 Covidien LP Surgical retrieval apparatus for thoracic procedures
8771260, May 30 2008 Ethicon Endo-Surgery, Inc Actuating and articulating surgical device
8777961, Oct 04 2010 Covidien LP Surgical retrieval apparatus
8795291, Apr 29 2011 Covidien LP Specimen retrieval device
8828031, Jan 12 2009 Ethicon Endo-Surgery, Inc Apparatus for forming an anastomosis
8888792, Jul 14 2008 Cilag GmbH International Tissue apposition clip application devices and methods
8906035, Jun 04 2008 Ethicon Endo-Surgery, Inc Endoscopic drop off bag
8906036, Nov 21 2011 Covidien LP Surgical retrieval apparatus
8920431, Dec 23 2011 Atropos Limited Pneumoperitoneum device
8939897, Oct 31 2007 Ethicon Endo-Surgery, Inc. Methods for closing a gastrotomy
8956286, Dec 23 2011 Atropos Limited Pneumoperitoneum device
8956370, Oct 01 2010 Applied Medical Resources Corporation Laparoscopic tissue retrieval system
8968329, Oct 19 2011 Covidien LP Surgical retrieval apparatus for thoracic procedures
8979870, Feb 28 2005 Boston Scientific Scimed, Inc. Distal release retrieval assembly and related methods of use
8986199, Feb 17 2012 Ethicon Endo-Surgery, Inc Apparatus and methods for cleaning the lens of an endoscope
9005198, Jan 29 2010 Ethicon Endo-Surgery, Inc Surgical instrument comprising an electrode
9005215, Oct 04 2010 Covidien LP Specimen retrieval apparatus
9011431, Jan 12 2009 Cilag GmbH International Electrical ablation devices
9028483, Dec 18 2009 Cilag GmbH International Surgical instrument comprising an electrode
9033995, Oct 09 2009 Applied Medical Resources Corporation Single incision laparoscopic tissue retrieval system
9049987, Mar 17 2011 Cilag GmbH International Hand held surgical device for manipulating an internal magnet assembly within a patient
9078662, Jul 03 2012 Cilag GmbH International Endoscopic cap electrode and method for using the same
9084588, Nov 21 2011 Covidien LP Surgical retrieval apparatus
9113848, Feb 03 2010 Covidien LP Surgical retrieval apparatus
9186169, Oct 14 2005 Boston Scientific Scimed, Inc. Snare with loop made of heat shrinkable shape memory material and method of use thereof
9220526, Nov 25 2008 Cilag GmbH International Rotational coupling device for surgical instrument with flexible actuators
9226772, Jan 30 2009 Ethicon Endo-Surgery, Inc Surgical device
9233241, Feb 28 2011 Cilag GmbH International Electrical ablation devices and methods
9254169, Feb 28 2011 Cilag GmbH International Electrical ablation devices and methods
9265492, Dec 23 2011 Atropos Limited Pneumoperitoneum device
9277957, Aug 15 2012 Cilag GmbH International Electrosurgical devices and methods
9308008, Dec 21 2012 COOPERSURGICAL, INC Surgical bag device and remote operating mechanism
9314620, Feb 28 2011 Ethicon Endo-Surgery, Inc Electrical ablation devices and methods
9364201, Mar 27 2002 Covidien LP Minimally invasive removal device with breakaway sheath
9370341, Oct 23 2008 Covidien LP Surgical retrieval apparatus
9370378, Feb 03 2010 Covidien LP Surgical retrieval apparatus
9375268, Feb 15 2007 Cilag GmbH International Electroporation ablation apparatus, system, and method
9427255, May 14 2012 Cilag GmbH International Apparatus for introducing a steerable camera assembly into a patient
9468452, Dec 17 2010 Covidien LP Specimen retrieval device
9545290, Jul 30 2012 Ethicon Endo-Surgery, Inc Needle probe guide
9549747, Jan 23 2012 Covidien LP Reusable surgical retrieval apparatus with disposable cartridge assembly
9572623, Aug 02 2012 Ethicon Endo-Surgery, Inc Reusable electrode and disposable sheath
9579115, Oct 14 2005 Applied Medical Resources Corporation Tissue retrieval system
9592067, Jun 14 2013 Covidien LP Specimen retrieval device including a reusable shaft with interchangeable pouch
9622730, Nov 21 2011 Covidien LP Surgical retrieval apparatus
9629618, Apr 29 2011 Covidien LP Specimen retrieval device
9788885, Aug 15 2012 Cilag GmbH International Electrosurgical system energy source
9788888, Jul 03 2012 Cilag GmbH International Endoscopic cap electrode and method for using the same
9827008, Oct 14 2005 Boston Scientific Scimed, Inc Snare with loop made of heat shrinkable shape memory material and method of use thereof
9883910, Mar 17 2011 Cilag GmbH International Hand held surgical device for manipulating an internal magnet assembly within a patient
9901329, Dec 16 2016 Laparoscopic morcellating receptacle and methods of use
9949748, Oct 01 2010 Applied Medical Resources Corporation Laparoscopic tissue retrieval system
9987031, Jun 14 2013 Covidien LP Specimen retrieval device including an integrated sliding grasper
9993229, Nov 08 2011 Covidien LP Specimen retrieval device
Patent Priority Assignee Title
5037379, Jun 22 1990 Vance Products Incorporated Surgical tissue bag and method for percutaneously debulking tissue
5143082, Apr 03 1991 Ethicon, Inc. Surgical device for enclosing an internal organ
5147371, Jun 28 1991 Apparatus for removing gallstones and tissue during surgery
/////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Mar 11 1992GOLDBERG, MARK C URESIL CORPORATION, AN ILLINOIS CORP ASSIGNMENT OF ASSIGNORS INTEREST 0060730589 pdf
Mar 11 1992MELINYSHYN, LEVURESIL CORPORATION, AN ILLINOIS CORP ASSIGNMENT OF ASSIGNORS INTEREST 0060730589 pdf
Mar 11 1992POLOYKO, ALEXANDERURESIL CORPORATION, AN ILLINOIS CORP ASSIGNMENT OF ASSIGNORS INTEREST 0060730589 pdf
Mar 11 1992GOLDBERG, EDWARD M URESIL CORPORATION, AN ILLINOIS CORP ASSIGNMENT OF ASSIGNORS INTEREST 0060730589 pdf
Mar 12 1992Uresil Corporation(assignment on the face of the patent)
Date Maintenance Fee Events
Jan 13 1998M283: Payment of Maintenance Fee, 4th Yr, Small Entity.
Apr 23 2002REM: Maintenance Fee Reminder Mailed.
Oct 04 2002EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Oct 04 19974 years fee payment window open
Apr 04 19986 months grace period start (w surcharge)
Oct 04 1998patent expiry (for year 4)
Oct 04 20002 years to revive unintentionally abandoned end. (for year 4)
Oct 04 20018 years fee payment window open
Apr 04 20026 months grace period start (w surcharge)
Oct 04 2002patent expiry (for year 8)
Oct 04 20042 years to revive unintentionally abandoned end. (for year 8)
Oct 04 200512 years fee payment window open
Apr 04 20066 months grace period start (w surcharge)
Oct 04 2006patent expiry (for year 12)
Oct 04 20082 years to revive unintentionally abandoned end. (for year 12)