An in vitro method for constructing an oligonucleotide concatamer library is revealed. The method has four steps. The first step involves the generation of a primer-bridged circular template oligonucleotide. In the second step, the primer-bridged circular template is used to generate a single-stranded oligonucleotide concatamer by rolling circle replication. In the third step, the single-stranded oligonucleotide concatamer is converted to a double-stranded oligonucleotide concatamer. Finally, the double-stranded oligonucleotide concatamer is cloned or used directly in in vitro assays which allow molecules of interest to be isolated or amplified.

Patent
   5648245
Priority
May 09 1995
Filed
May 09 1995
Issued
Jul 15 1997
Expiry
May 09 2015
Assg.orig
Entity
Small
402
2
all paid
1. An in vitro method for constructing an oligonucleotide concatamer library, comprising the steps of:
a) generating a population of primer-bridged circular template oligonucleotides by annealing linear primer oligonucleotides to linear template oligonucleotides and ligating said linear template oligonucleotides into circular template oligonucleotides;
b) generating a population of single-stranded oligonucleotide concatamers by rolling circle replication of said primer-bridged circular template oligonucleotides; and
c) generating a population of corresponding double-stranded oligonucleotide concatamers by synthesizing single stranded oligonucleotides which are complementary to said population of single-stranded oligonucleotide concatamers.
2. The method of claim 1, further comprising the step of:
d) cloning said double-stranded oligonucleotide concatamers.
3. The method of claim 1, wherein said primer-bridged circular template oligonucleotides are generated by:
i) producing linear single-stranded template oligonucleotides having a phosphorylated 5' end and a single-stranded primer oligonucleotide with permuted complementarity to said linear single-stranded template oligonucleotides;
ii) annealing said linear single-stranded primer oligonucleotides to said linear single-stranded template oligonucleotides; and
iii) ligating said linear single-stranded template oligonucleotides to form primer-bridged circular template oligonucleotides.
4. The method of claim 1, wherein said population of single-stranded oligonucleotide concatamers is generated by reacting said primer-bridged circular template oligonucleotides with nucleic acid polymerase in the presence of nucleoside triphosphates to form single-stranded oligonucleotide concatamers.
5. The method of claim 1, wherein said population of single-stranded oligonucleotide concatamers is converted to a population of double-stranded oligonucleotide concatamers by reacting said population of single-stranded oligonucleotide concatamers with nucleic acid polymerase in the presence of nucleoside triphosphates.
6. The method of claim 2, wherein said population of double-stranded oligonucleotide concatamers is cloned by:
i) inserting said double-stranded oligonucleotide concatamers into a plasmid vector to obtain a mixture of ligation products; and
ii) transforming a host cell with said mixture.
7. The method of claim 6, wherein said host cell is a bacterial cell.
8. The method of claim 1, wherein said oligonucleotide concatamer library is a DNA oligonucleotide concatamer library.
9. The method of claim 4, wherein said nucleic acid polymerase is a DNA polymerase.

This invention was made with Government support under Contract No. NIGMS 37706 from the National Institutes of Health. The Government may have certain rights in this invention.

1. Field of the Invention

This invention relates to a method for constructing oligonucleotide concatamer libraries by rolling circle replication of a single-stranded oligonucleotide. An oligonucleotide concatamer is defined herein as the structure formed by concatenation of unit-sized oligonucleotide components. Concatenation is the process of linking multiple subunits into a tandem series or chain, as occurs during replication of genomic subunits of phage lambda.

Natural genes and proteins often contain tandemly repeated sequence motifs that dramatically increase physiological specificity and activity. Given the selective values of such repeats, it is likely that several different mechanisms have been responsible for their generation. One mechanism that has been shown to generate relatively long tandem repeats (in the kilobase range) is rolling circle replication. In this patent application, we demonstrate that rolling circle synthesis in a simply enzymatic system can produce tandem repeats of monomers as short as 34 bp. These observations provide a facile means for constructing libraries of repeated motifs for use in "in vitro evolution" experiments designed to select molecules with defined biological or chemical properties.

2. Description of the Related Art

Analysis of naturally occurring macromolecular sequences has revealed repetitive structure at a variety of levels (1, 2). Particularly relevant to gene expression and replication are sets of short sequence motifs that often occur in multiple copies around promoter/enhancer regions and replication origins (3). The repetition of motifs within a control region has been shown in many cases to allow individual trans-acting factors to exert additive and/or cooperative effects; this design can improve the specificity of a control mechanism by increasing the signal of appropriate activity while decreasing the possibility of fortuitous inappropriate activity (4). Requirements for repeated sequence motifs have also been found in characterizing the activities of specific RNA (5-8) and protein (9-11) functions.

In investigating structure-function relationships in vitro and in vivo, several researchers have used strategies that involve the production of a large library of random sequences followed by selection for sequences with a given property (12). These schemes can produce experimentally useful reagents and provide a wealth of information about sequence requirements for the selected activity (e.g., refs. 13-15). Application of such a selection strategy depends on the ability to produce large libraries of random sequences, efficient selection procedures, and appropriate means for recovering and characterizing the selected molecules. Frequently, the techniques for selection or screen of molecules are insufficient to find active sequences. In particular, if several tandem copies of a functional segment are required for activity, then the problem of recovering an active sequence from a random pool becomes increasingly more difficult.

To circumvent the insufficiency of available selection techniques for many interesting biological and biochemical activities, we sought to produce libraries of random repeated sequences: pools of molecules in which each member contains tandem repeats of a different sequence element. The potential usefulness of such concatamer libraries can be illustrated by calculating the probability that a given 8-base pair element will occur independently in three positions in a single random 60-mer sequence (≈1 in 250 million). If we replace the random 60-mers with a library of trimerized random 20-mers, then this probability improves by ≈5 orders of magnitude.

We considered several different methods for constructing concatamer libraries. Chemical synthesis can be used to generate random pools of DNA sequence oligomers (12), but straightforward ligation to concatenate elements from these pools would not produce the desired result, since there is no means to ensure that ligation joins molecules of the same sequence. A straightforward method for generation of a small library would be to separately synthesize and concatenate a number of separate oligonucleotides (16); unfortunately, this would be cumbersome and expensive for large libraries.

As a more general procedure we chose a scheme based on the rolling circle replication used by many plasmids and viruses (17, 18). Rolling circle replication is a mode of replication in which a replication fork proceeds around a circular template for an indefinite number of revolutions. The nucleic acid strand newly synthesized in each revolution displaces the strand synthesized in the previous revolution, giving a tail containing a linear series of sequences complementary to the circular template strand.

Rolling circle replication involves two simultaneous processes: (i) DNA polymerase must synthesize sequences complementary to a circular template. (ii) As this replication proceeds, some mechanism must unwind the parental duplex to allow the polymerase to advance. Models for physiological rolling circle replication generally involve a template that is predominantly double stranded, with a helicase or single-strand DNA binding activity preceding the polymerase to allow replication to continue (17, 18). Characterized rolling circle replication mechanisms have been found to operate on templates on the order of kilobases and larger (18). Rolling circle replication of templates smaller than 100 bp by previously described mechanisms would be considered unlikely, since formulation of very short double-stranded circles would be topologically obstructed (19). Although there was no precedent, we chose to examine the ability of predominantly single-stranded circles to act as templates for rolling circles synthesis.

The present invention discloses a four-step in vitro method for constructing an oligonucleotide concatamer library. The first step involves the generation of a primer-bridged circular template oligonucleotide by annealing a linear primer oligonucleotide to a complementary linear template oligonucleotide and ligating the linear template oligonucleotide into a circular template oligonucleotide. The second step involves the generation of a single-stranded oligonucleotide concatamer by rolling circle replication of the circular oligonucleotide template. In the third step, the single-stranded oligonucleotide concatamer is converted to a double-stranded oligonucleotide concatamer. Finally, the double-stranded oligonucleotide concatamer is cloned or used directly in in vitro selection systems.

More specifically, the primer-bridged circular template oligonucleotide is generated by producing a linear single-stranded template oligonucleotide having a phosphorylated 5' end and a complementary single-stranded primer oligonucleotide, i.e., a primer oligonucleotide with permuted complementarity to the linear single-stranded template oligonucleotide. The linear single-stranded primer oligonucleotide is then annealed to the complementary linear single-stranded oligonucleotide primer. In the annealing, the 3' and 5' ends of the linear single-stranded template oligonucleotide are bridged together into a circle using the complementary primer oligonucleotide. The circle is made covalent by ligating the 3' and 5' ends of the linear single-stranded template oligonucleotide to form the primer-bridged circular template oligonucleotide.

The circularized primer-template oligonucleotide is reacted with nucleic acid polymerase in the presence of nucleoside triphosphates to form the single-stranded oligonucleotide concatamer.

The single-stranded oligonucleotide concatamer is then converted to a double-stranded oligonucleotide concatamer by reacting the single-stranded oligonucleotide concatamer with nucleic acid polymerase in the presence of nucleoside triphosphates to form the double-stranded oligonucleotide concatamer.

Finally, the double-stranded oligonucleotide concatamer is cloned by inserting the double-stranded oligonucleotide concatamer into a plasmid vector and transforming a host cell with the plasmid vector. Alternatively, the double-stranded oligonucleotide concatamer can be assayed directly for biological activity in an in vitro assay system that permits isolation or amplification of active molecules.

FIG. 1 demonstrates the method of the present invention for generation of a concatamer library using rolling circle replication. The template oligonucleotide, zf43 (SEQ ID NO:1), is circularized by bridging with a partially complementary oligonucleotide, zf39 (SEQ ID NO:2), as a guide. This primer-bridged template then reacts with DNA polymerase in the presence of deoxynucleoside triphosphate precursors. As synthesis proceeds, the polymerase creates duplex DNA. At some point, the circle becomes constrained so tightly that polymerization cannot proceed without some relief of the restraint. One possible outcome is shown: the constraint on the small circle might drive unwinding at the lagging end of the duplex. If this process is combined with continued polymerization, then a long repeating polymer would be produced. For this figure, the 52-based oligonucleotide, zf43 (SEQ ID NO:1), is shown as template; oligonucleotide zf42 (SEQ ID NO:3), used in other experiments, is identical in the constrained regions but has 10 fewer nonspecified residues (total length, 42 bases). Any template oligonucleotide could be used provided that a suitable primer oligonucleotide is produced to guide circularization.

FIG. 2 shows the time course of extension reactions for the electrophoretic separation of reaction products. The annealed primer-template diagrammed in FIG. 1 was extended with the indicated polymerase in the presence of [32 P]dCTP. At the indicated time points, aliquots were removed, denatured, and resolved on a sequencing-type gel. Base numbers on the right sizes deduced from standard DNA sequencing reactions run on the same gel. A delayed time course in the synthesis reaction with E. coli polymerase I (Pol I) (compare 30-min and 3-hr samples) has been seen with a variety of primer-template combinations and polymerase preparations.

FIG. 3 shows the partial digestion of reaction products with restriction enzyme Sty I. As above, samples were denatured and resolved on sequencing-type gels. Lanes: 1-3, digestion of zf42 extension product; 4-6, identical except that the template has been derived from oligonucleotide zf43, which is longer than zf42 by 10 bases. The broadened bands observed in lanes 4-6 apparently result from the presence of shorter (internally deleted) oligonucleotide molecules in the zf43 preparation.

FIG. 4 shows the full digestion of reaction products with Sty I. Lanes: 1, undigested products from a 4-hr extension using zf42 as template; 2-5, digestion with concentrations of Sty I in a range expected to yield full digestion. The major band at 42 nt presumably represents completely digested unit-length material (the doublet band may represent the two different product strands). A small amount of material migrating at 84 bp with the highest Sty I concentration is likely to result from a residual level of incomplete level of incomplete digestion. Other (minor) bands have not been characterized.

FIGS. 5-7 depict the structures of 18 clones from E. coli DNA polymerase I extension of primer-templates. Sequences of DNA from 18 arbitrarily chosen clones from putative rolling circle synthesis are shown. Plasmids pPD74.33, -74.34, and -74.36 were derived from zf43; all others were derived from zf42. In three cases (pPD74.19, -74.21, and -74.23), the plasmids analyzed apparently contained two different inserts that had been joined during ligation of insert to plasmid vector; in these cases, only the first insert is described.

FIG. 5 shows the ten "simple" products each had the structure predicted for rolling circle synthesis from the input primer-template. In several cases, the periodic repeat in these products differs in size by 1-4 bp from the design of the input oligonucleotide; this probably reflects a population of internally deleted oligonucleotides in 10 the original zf42 and zf43 preparations.

FIG. 6 shows that six products had an alternating pattern derived from two different input molecules. These are assumed to result from formation of dimeric primer-template circles in the initial ligation (two input molecules joined end to end to end). Consistent with this hypothesis, when the initial ligation to form zf42 circles was performed at a 10-fold higher concentration of template and primer, a majority of clones (70%) exhibited an alternating structure.

FIG. 7 shows that two products had structures that were not simply explained, although each had a repeated structure consistent with a rolling circle event.

The method of the present invention for generation of a concatamer library using rolling circle replication is shown in FIG. 1. The experimental design demonstrated in FIG. 1 was based on a consideration of possible behavior for a primer oligonucleotide that is being extended by DNA polymerase after annealing to a single-strand circular template. As the primer is extended, a double-stranded region of the circle will be formed. At a certain point, this double-stranded region will become sufficiently long to "strain" the circular topology. At this point, one of three events might occur: (i) the polymerase might stall or stop; (ii) the template might be forced to unravel behind the polymerase; or (iii) unwinding might occur at the site of polymerization-this could lead to self-priming of the product strand (20).

If unraveling behind the polymerase occurs, then a rolling circle mechanism could be set up; the production of new double-stranded regions as the polymerase progresses 5' to 3' would provide a stearic force unwinding the DNA duplex behind the active polymerase. Under these circumstances, the energy for both polymerization and helicase activity would be derived from utilization by DNA polymerase of nucleoside triphosphates.

The substrates we used to test this rolling circle replication scheme are shown in FIG. 1. A primer template pair is set up by using two oligonucleotides with a permuted region of complementarity. Annealing and ligation of these two oligonucleotides should produce a primed, partially single-stranded circle. To provide diversity in the template population, most of the unpaired residues are nonspecified (i.e., an equimolar mixture of A, G, C, and T). Rolling circle synthesis should then generate a population of long single-stranded products, each containing repeats complementary to an individual template molecule.

In initial experiments with several available DNA polymerase enzymes, we found that E. coli DNA polymerase I was particularly efficient in synthesizing high molecular weight products from the primer template; after 3 hr, a large amount of high molecular weight product had formed (FIG. 2).

After conversion to a double-stranded product, the material was further characterized by partial restriction digestion, with an enzyme cutting once in each repeat. The resulting ladder of bands (FIG. 3) was consistent with a tandem array structure derived from rolling circle synthesis. As expected, more complete digestion with the restriction enzyme (FIG. 4) produced material that was predominantly monomer length. An estimate of the yield from a 4-hr extension with E. coli polymerase I was obtained from these experiments: ≈15 ng of Sty I-sensitive high molecule weight material was synthesized per pmol of input oligonucleotides.

As a critical test of the rolling circle model, it was essential to show that the reaction indeed produced repeats derived from individual input templates. This was demonstrated by cloning and sequencing of reaction products. Since the original oligonucleotides contained 16 (or 26) nonspecified basis, repetition of the identical sequence in several consecutive members of a concatamer would be conclusive evidence that the cloned multimer is indeed derived by a replication event from a single template molecule.

From one set of synthesis reactions, we sequenced 18 different cloned products (FIGS. 5-7). All gave different sequences. Ten of these sequences had the predicted structures, with each having 3-5 tandem copies of a unique oligonucleotide from the original pool (FIG. 5). Six of the characterized clones had an alternating structure in which two of the initial oligonucleotides alternate in a mixed tandem array (FIG. 6). These products could result from dimer circles (bridged by two primer molecules) formed during annealing and ligation of the initial primer template. The remaining two clones had repeated structures that require more complex explanations but nonetheless evidence the occurrence of rolling circle replication events (FIG. 7).

Using other templates similar to those shown in FIG. 1, we have observed replication products with tandem repeats of monomers as short as 34 bp. In these and previous experiments, there has been no indication of specific sequence requirements for rolling circle synthesis. In particular, examination of the recovered sequences from FIGS. 5-7 reveal no evidence for bias in either base composition or secondary structure.

The following examples are used to more specifically describe the present invention. The following reagents and procedures were used in Examples 1-4. Oligonucleotides were made on an Applied Biosystems DNA synthesizer (model 380B), desalted, precipitated with ethanol, and used without further purification. Bacteriophage T4 DNA ligase, polynucleotide kinase, and DNA polymerase were from New England Biolabs. Escherichia coli DNA polymerase was from Bethesda Research Laboratories; DNA polymerase large fragment (Klenow) and Sty I were from Boehringer Mannheim. Modified phage T7 DNA polymerase (Sequenase) was from United States Biochemical.

Specific protocol for step 1 formation of the primer-bridged template using oligonucleotides zf42 and zf43 as template and oligonucleotide zf39 as primer.

Primer-bridged template was produced by dilute annealing followed by ligation. Template oligonucleotide (zf42 of zf43) (0.8 nmol) was phosphorylated with T4 polynucleotide kinase (60 Richardson units) in 250 μl of LK buffer (50 nM Tris.HCl, pH 7.8/10 nM MgCl2 /10 mM dithiothreitol/1 mM ATP/25 μg of bovine serum albumin per ml). After heating to 70°C for 10 min, the material was immediately diluted at 37°C into 12 ml of LK buffer containing 0.7 nmol of primer oligonucleotide (zf39). After 30 min at 23°C, the sample was transferred to 16°C and incubated for 4 hr with T4 DNA ligase (120 Weiss units). Ligase reactions were stopped by addition of EDTA (to 10 mM), SDS (to 0.1%), NH4 OAc (to 1M), and 50 μg of glycogen, extracted once each with 8 ml of phenol/chloroform (1:1) and chloroform and precipitated twice with ethanol. Final samples were resuspended in 25 μl of TEN (10 mM Tris.HCl, pH 7.5/1 mM EDTA/25 mM NaCl) and stored at -70°C In handling the annealed primer-template, care was taken to avoid transient low-salt or high-temperature conditions that could lead to denaturation.

Specific protocol for step 2 primer extension reactions using zf39 primer-bridged templates described in Example 1.

Primer extension reactions were carried out in 20 μl with 0.8 μl of primer-template. Extension reaction mixtures contained 10 mM Bistris propane chloride; 10 mM NaCl; 1 mM dithiothreitol; 1 mM each dATP, dTTP, dGTP; 0.25 mM dCTP (including [32 P]dCTP to a specific activity of 0.5 Ci/mmol; 1 Ci=37 (giga Becquerel or GBq); 0.1 mg of bovine serum albumin per ml; and the indicated polymerase (in some experiments 50 mM NaCl was added; this did not change the product electrophoresis pattern). Incubations were at 23°C for T4 and Klenow, large fragment of E. coli DNA polymerase I (18), and 37°C for E. coli DNA polymerase I and coliphage T7 DNA polymerase (Sequenase).

Although E. coli DNA polymerase was most efficient under the reaction conditions used, longer exposures revealed similar patterns for Klenow and T7; we have not extensively varied reaction conditions to optimize output with these enzymes. Similar reactions with thermophilic DNA polymerases (Vent, Pfu, and Taq; reactions at 58°C) produced no detectable rolling circle products but instead produced a series of products indicative of multiround rolling hairpin replication as described by Cavalier-Smith (20) (although we cannot rule out the possibility that some rolling hairpin products were also produced in reactions with the other polymerases, neither the partial digestion products nor the structures of cloned products were indicative of this as a major component of the E. coli polymerase I reaction material).

Specific protocol for step 3 formation of double-stranded oliqonucleotide concatamer.

For further characterization by restriction digestion and cloning, we used material from 4-hr extension products produced with E. coli DNA polymerase I. This analysis required that the product be converted to a double-stranded form. In initial experiments, an extra round of DNA synthesis was performed to produce the second strand. This was done by isolating the reaction product and allowing self-priming in a standard hairpin reaction (20). Subsequently, we found that much of the product was double stranded even without this second round of synthesis. A plausible explanation would be that self-priming hairpin structures (20) form at some frequency during the initial 4-hr synthesis reaction, perhaps after unraveling of the link between the elongating DNA terminus and the rolling circle template.

Partial digestion was carried out with restriction endonuclease Sty I, which should cut just once in each tandem repeat. To check the efficiency of the partial digest, samples were resolved after denaturation on a 6% acrylamide sequencing gel. Preparative samples were resolved in parallel without denaturation; these produced a shifted ladder of bands consistent with the double-stranded character of the material.

Specific protocol for step 4 cloning of digested rolling circle material into a double-stranded plasmid vector.

The nondenatured samples from the Sty I partial digest were excised, eluted, ligated into a suitable Sty I-cut bacterial plasmid vector and transformed into a Rec- bacterial host. The plasmid used was vector pPD18.56, to which a Sty I site had been added by oligonucleotide insertion (23). The Rec- bacterial host used was DH5α (24). Production of cloned libraries from the partial digest material was relatively efficient; by using standard protocols for bacterial transformation (106 colonies per μg of control plasmid DNA), several hundred clones were obtained with material derived from 1 pmol of input oligonucleotides. Much larger libraries could readily be obtained by optimizing and scaling up the bacterial transformation.

We have shown that E. coli DNA polymerase I is capable of carrying out a rolling circle type synthesis reaction on a very short circular template. Although the mechanism of this reaction has not been studied in detail, several theoretical considerations of topology and scale are relevant. First, the short templates used in these experiments would be unlikely to form fully double-stranded circuits without extreme topological strain.

As an alternative, it seems likely that the replicating complex consists of a predominantly single-stranded circle, with DNA polymerase working to extend a short double-stranded region. At a certain point, extending the total length of the double-stranded region would be energetically unfavorable. At this point, continued polymerase activity (at the leading end) could drive unwinding behind the polymerase.

A second constraint comes from a requirement for rotational positioning of DNA polymerase on the template. The twist in the local DNA helix at the site of synthesis necessitates a rotation of polymerase relative to template. This must occur without the polymerase physically passing through the cyclized DNA template. DNA polymerase I is sufficiently large (from the Klenow crystal structure; see ref. 21) that even with maximum contortion, a nucleotide chain of less than 60 residues could not encircle it.

As an alternative, polymerase could act essentially as a fixed surface while the template continually twists inward on itself. The combined forward and twisting motion of the template could provide the necessary constant interface between polymerase and template.

The ability of isolated polymerase to carry out rolling circle synthesis on a small DNA circle in vitro suggests that this process could have played an evolutionary role, along with mechanisms such as unequal recombination, transposition, and replication slippage (2, 18), in generating the plethora of natural tandem-repeat structures that appear in coding and noncoding sequences.

The enzymatic activities used in our scheme (kinase, ligase, and DNA polymerase) are readily available in vivo. Template oligonucleotides might come from a pool of replication intermediates or nucleic acid breakdown products present in cells.

The final requirement (permuted complementary between primer and template oligonucleotides) would be a relatively rare coincidence; nevertheless, even a small genome would be expected statistically to contain many suitable combinations of sequences.

Given the efficiency of the in vitro reaction, it is conceivable that short circles might replicate in vivo as part of a concerted physiological or pathological process. The smallest known circular replicons are small viroid and satellite virus RNAs of several hundred base pairs (22). It is conceivable that there are (as yet undiscovered) shorter plasmids or viroid-like parasites that replicate by using the single-stranded rolling circle mechanism described here.

We have already begun using these concatamer libraries to characterize cis-acting control sequences with defined activation patterns, with the goal of identifying the corresponding developmentally regulated transcription factors. Three other potential uses for concatamer libraries are notable.

(i) Vergnaud et al. (16) have used individually synthesized and concatamerized random oligonucleotides as hybridization probes to identify human DNA polymorphisms. The ability to make large libraries of random concatamers should greatly facilitate this approach.

(ii) In a variety of systems, sequences controlling translation have been localized to short repeated sequence motifs in the 3' nontranslated leader of the mRNA (5-8). By constructing a library of concatamers inserted into the 3' leader sequence for an easily assayed reporter gene/expression vector, it would be possible to identify control sequences producing different patterns of translational regulation.

(iii) Repeated motifs in proteins have been used in evolution to produce tight and very specific protein-protein interactions (9-11). Construction of a concatamer library in a protein coding context should allow in vitro or in vivo selection of repeated peptide sequence motifs that allow specific binding to a target protein.

Many of these selective schemes could be envisioned as a two-step process. Once a molecule with desired characteristics has been identified in any of the above screens, a second round of selection could be carried out to isolate sequences with optimal activity. This would only be done by starting with material in which each base is only partially randomized relative to the initially recovered active sequence (e.g., an A residue in the initial selected sequence might be replaced by a mixture of 90% A+5% G+3% T+2% C).

From an experimental point of view, the ability to produce large libraries of random or semirandom concatamers should have numerous applications. The rolling circle library technique described in this patent application should facilitate discovery and development of novel compounds for pharmaceutical, diagnostic, and other medical and chemical applications.

A variety of methods currently in use for discovery and development rely on the ability to select molecules with a desired property from a large (and partially or completely random) population. Application of such a selection strategy depends on the ability to produce large libraries of random sequences, on efficient selection procedures, and on appropriate means for recovering (and amplifying) selected molecules.

Frequently, the techniques for selection or screening of molecules are insufficient to find active sequences. In particular, if (as often occurs in natural systems) several tandem copies of a functional segment are required for activity, then the probability of finding an active sequence, even in a large random pool, becomes vanishly small. The methods described in this application allow such tandem sequences to be produced at frequencies which will permit many such screens to proceed.

The following examples will serve to exemplify the general applicability of the present invention in regard to DNA elements (Example 5), RNA elements (Example 6), and protein elements (Example 7).

DNA elements.

By incorporating rolling circle material into DNA shuttle vectors designed to follow gene expression, a given cell type can be used to select out enhancer sequences which optimize expression, maximize replication or allow response to a specific stimulus. This approach is particularly suited to the concatamer libraries, given the repetitive structure seen both in natural enhancers and optimal enhancers constructed in vitro.

RNA elements.

As with DNA elements in Example 5, it will be possible to select out elements (either in vitro or in vivo) which can impart specific regulatory or catalytic properties to an RNA molecule. These properties include improved translation, improved function as antisense or ribozyme inhibitors, or ability of the RNA to respond (by translation or degradation) to specific environmental conditions.

Protein elements.

The use of the present invention with protein elements will provide for the most varied and powerful applications. Rolling circle material, e.g. DNA, can be inserted into a protein expression vector, to allow the screening of random concatamers of amino acid sequences for biological function. In particular, the goal of these selections will be to obtain relatively small repetitive peptides that could be useful either as diagnostic agents (by virtue of specifically selected binding activities), or as therapeutic agents (by selecting or appending molecules that interfere with or stimulate activity of their targets). The activities that could be sought are limited only by the availability of activity assays. Exemplary targets for these screens include (1) viral and bacterial surface proteins or their cellular receptors; (2) specific components of non-desirable cells such as parasites and tumor cells; (3) receptors involved in tissue growth or regeneration; and (4) essential molecules in insect and non-insect pests.

The following examples will serve to exemplify the specific applicability of the present invention in regard to a diagnostic application (Example 8), and a pharmacological application (Example 9). Each example for concatamer libraries entails the following:

a) a desired biological activity and

b) means for selecting or amplifying molecules which produce the desired activity.

In each case, we will explain the advantages that a concatamer library would have as a starting material in obtaining a high-affinity/high-activity reagent.

Exemplary diagnostic application.

a) Desired activity: Tight and selective binding to a specific pathogen (e.g. virus or bacterium). This would provide a potential diagnostic reagent for sensitive detection of the pathogen in medical or other samples.

b) Means for selecting active molecules:

i) A bacterial library expressing randomized concatamers of fixed or variable length is constructed by the methods above. These concatamers are expressed either as RNA transcripts or as translated protein molecules (by cloning the rolling circle material into a plasmid expression vector).

ii) A large number of bacteria containing individual members of the library are grown as individual colonies, transferred to nitrocellulose or nylon filters, and lysed (such procedures are standard procedures in bacterial genetics, analogous techniques using bacteriophage, mammalian cells or yeast expression constructs could likewise be used).

iii) The pathogen to be detected is isolated in bulk, labelled with fluorescent or radioactive tracer, and bound to the filters. Colonies or phage plaques exhibiting binding are further characterized by examining specificity with a variety of related but distinct probes (e.g. other viral or bacterial strains).

Advantages of a concatamer library in obtaining high-affinity reagents: Viruses and bacteria almost invariably have large numbers of identical coat or cell proteins on their surface. By using a population of concatenated RNA or protein molecules as a starting point, the probability of obtaining a molecule which can bind simultaneously to several different surface proteins is maximized. This maximization would have the effect of greatly increasing both affinity and potential discrimination of the isolated reagent.

Exemplary pharmacological application.

a) Desired activity: Produce a molecule that will act as an agonist or antagonist interacting with a given cellular receptor. In this example, we will assume that a specific growth factor receptor has been isolated, and that there is a need to produce an agonist which functionally activates that receptor. Similar means could be used for any selectable process.

b) Means for selecting active molecules: These schemes start with a tissue culture cell line which is dependent for growth on the activity of the selected growth factor. This cell line is transformed with a library of concatamer sequences expressed in a secreted expression vector (one which produces protein products which will be presented in an autocrine fashion to cell surface receptors). Cell division in the absence of exogenously added growth factor is then selected as the primary screen, with secondary screens for:

i) dependence on the growth factor receptor and

ii) biochemical interaction between the selected concatamer and putative receptor.

Advantage of concatamer library: Many growth factors have a repetitive monomer structure, with several tandem copies of similar peptide sequence. In addition, many cellular receptors are multimers of individual polypeptide subunits. In isolating novel molecules with high affinity, these repetitive features would provide significant advantages to schemes starting with a concatamer library. A second consideration relates to the mechanism of activation for many growth factor receptors and other cellular regulatory components that are physiologically activated upon dimerization or higher order multimerization. A concatamer library should provide the ideal type of multisite activation reagent to promote such a dimerization or multimerization reaction.

While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention is not limited to the disclosed embodiments, but on the contrary is intended to cover various modifications and equivalent arrangements within the spirit and scope of the appended claims.

Thus, it is to be understood that variations in the method for constructing a nucleotide concatamer library can be made without departing from the novel aspects of this invention as defined in the claims.

The following publications were cited above and are hereby incorporated by reference and relied upon:

1. Britten, R. J. & Kohne, D. E. (1968) Science 161, 529-540.

2. Beridze, T. (1986) Satellite DNA (Springer, Berlin).

3. Trifonov, E. N. & Brendel, V. (1986) Gnomic: A dictionary of Genetic Codes (Balaban, Rehovot, Israel).

4. Ondek, B., Shepard, A. & Herr, W. (1987) EMBO J. 6, 1017-1025.

5. Theil, E. C. (1990) J. Biol. Chem. 265, 4771-4774.

6. Wharton, R. P. & Struhl, G. (1991) Cell 75, 855-862.

7. Goodwin, E. B., Okkema, P. G., Evans, T. C. & Kimble, J. (1993) Cell 75, 329-339.

8. Wightman, B., Ha, L. & Ruvkun, G. (1993) Cell 75, 855-862.

9. Corden, J. L. (1990) Trends Biochem. Sci. 5, 383-387.

10. Bork, P. (1992) Biochemistry 31, 10643-10651.

11. Engel, J. (1992) FEBS Lett. 307, 49-54.

12. Szostak, J. (1992) Biochemistry 31, 10643-10651.

13. Bartel, D. P. & Szostak, J. W. (1993) Science 261, 1411-1418.

14. Beutel, B. A. & Gold, L. (1992) J. Mol. Biol. 228, 803-812.

15. Barbas, C. F., Amberg, W., Simoncsits, A., Jones, T. M. & Lerner, R. A. (1993) Gene 137, 57-62.

16. Vergnaud, G., Mariat, D., Apiou, F., Aurias, A., Lathrop, M. & Lauthier, V. (1991) Genomics 11, 135-144.

17. Gilbert, W. & Dressier, D. (1968) Cold spring Habor Symp. Quant. Biol. 33, 473-484.

18. Baker, T. A. & Kornberg, A. (1992) DNA Replication (Freeman, N.Y.).

19. Koo, H.-S., Drak, J., Rice, J. A. & Crothers, D. M. (1990) Biochemistry 29, 4227-4234.

20. Cavallier-Smith, T. (1974) Nature (London) 250, 467-470.

21. Ollis, D. L., Brick, P., Hamlin, R., Xuong, N. G. & Steitz, T. A. (1985) Nature (London) 313, 762-7666.

22. Diener, T. O. (1991) FASEB J. 5, 2808-2813.

23. Okkena, P., Harrison, S., Plurger, V., Aryana, A. & Fire, A. (1993) Genetics 135, 385.

24. Ausubel, F. M., Brent, R., Kingston, R. C., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K. (eds) (1990) Current Protocols in Molecular Biology, John Wiley & Sons, New York.

__________________________________________________________________________
SEQUENCE LISTING
(1) GENERAL INFORMATION:
(iii) NUMBER OF SEQUENCES: 30
(2) INFORMATION FOR SEQ ID NO:1:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 26 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
CTTGGTCTACTGGAGCTACGGATTGC26
(2) INFORMATION FOR SEQ ID NO:2:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 37 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
GAAGGGTCGACTGCAGTCTAGACCAAGGCAATCCGTA37
(2) INFORMATION FOR SEQ ID NO:3:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 26 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:
CTTGGTCTACTGGAGCTACGGATTGC26
(2) INFORMATION FOR SEQ ID NO:4:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 26 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:
GCAATCCGTAGCTCCAGTAGACCAAG26
(2) INFORMATION FOR SEQ ID NO:5:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 51 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:
GCAATCCGTAGAGGTGAAATCACACCTGATACTAGCCCTCCAGAGACCAAG51
(2) INFORMATION FOR SEQ ID NO:6:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 48 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:
GCAATCCGTAGAATGTATATCTTCCCGACGTTCTCTCCAGAGACCAAG48
(2) INFORMATION FOR SEQ ID NO:7:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 52 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:
GCAATCCGTAGCTAAGAGGTATCAAACGGTGACTCGGCTCCAGTAGACCAAG52
(2) INFORMATION FOR SEQ ID NO:8:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 26 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:
GCAATCCGTAGCTCCAGTAGACCAAG26
(2) INFORMATION FOR SEQ ID NO:9:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 42 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:
GCAATCCGTAGGTTGAGCTCATAACAACTCCAGTAGACCAAG42
(2) INFORMATION FOR SEQ ID NO:10:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 41 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:
GCAATCCGTAGCTAATTGTATGACGGCTCCAGTAGACCAAG41
(2) INFORMATION FOR SEQ ID NO:11:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 43 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:
GCAATCCGTAGCCAGGCCTATCTGTGTCCTCCAGTAGACCAAG43
(2) INFORMATION FOR SEQ ID NO:12:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 42 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:
GCAATCCGTAGAGTATTTAATTAGAACCTCCAGTAGACCAAG42
(2) INFORMATION FOR SEQ ID NO:13:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 42 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:
GCAATCCGTAGTTCCAAGTTTGAGTTTCTCCAGTAGACCAAG42
(2) INFORMATION FOR SEQ ID NO:14:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 42 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:
GCAATCCGTAGAGAACACTAATGCCAACTCCAGTAGACCAAG42
(2) INFORMATION FOR SEQ ID NO:15:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 42 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:
GCAATCCGTAGGACGTAATCTGAAATCCTCCAGTAGACCAAG42
(2) INFORMATION FOR SEQ ID NO:16:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 41 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:
GCAATCCGTAGGATGTTCTTATACACCTCCAGTAGACCAAG41
(2) INFORMATION FOR SEQ ID NO:17:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 42 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:
GCAATCCGTAGCGTTATAATTGACCACCTCCAGTAGACCAAG42
(2) INFORMATION FOR SEQ ID NO:18:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 42 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:
GCAATCCGTAGAATGTGAAAATAATCTCTCCAGTAGACCAAG42
(2) INFORMATION FOR SEQ ID NO:19:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 34 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:
GCAATCCGTAGGGGGTGGCCTCCAGTAGACCAAG34
(2) INFORMATION FOR SEQ ID NO:20:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 37 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:
GCAATCCGTAGTCTAACTCTAGCTCCAGTAGACCAAG37
(2) INFORMATION FOR SEQ ID NO:21:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 42 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:
GCAATCCGTAGCCCGCACGAGTCTCTACTCCAGTAGACCAAG42
(2) INFORMATION FOR SEQ ID NO:22:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 26 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:
GCAATCCGTAGCTCCAGTAGACCAAG26
(2) INFORMATION FOR SEQ ID NO:23:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 41 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:
GCAATCCGTGCCAGTGAGTAACCATCCTCCAGTAGACCAAG41
(2) INFORMATION FOR SEQ ID NO:24:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 42 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:
GCAATCCGTAGACAGGATCCGACCCGGCTCCAGTAGACCAAG42
(2) INFORMATION FOR SEQ ID NO:25:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 42 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:
GCAATCCGTAGTATGCCCAGGTACCTGCTCCAGTAGACCAAG42
(2) INFORMATION FOR SEQ ID NO:26:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 42 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:
GCAATCCGTAGCCTTTTGTTTCGGCAGCTCCAGTAGACCAAG42
(2) INFORMATION FOR SEQ ID NO:27:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 42 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:
GCAATCCGTAGGACGTCGAGCAGCCCCCTCCAGTAGACCAAG42
(2) INFORMATION FOR SEQ ID NO:28:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 38 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:
GCAATCCGTAGACCCTCGACGACCTCCCTCCAGTAGAC38
(2) INFORMATION FOR SEQ ID NO:29:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 42 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:
GCAATCCGTAGCACTGGAACTCCCCTCCTCCAGTAGACCAAG42
(2) INFORMATION FOR SEQ ID NO:30:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 41 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:
GCAATCCGTAGACGAAGTGTTCGACCCTCCAGTAGACCAAG41
__________________________________________________________________________

Fire, Andrew, Xu, Si-Qun

Patent Priority Assignee Title
10000805, Mar 23 2011 Pacific Biosciences of California, Inc. Isolation of polymerase-nucleic acid complexes
10002316, Feb 27 2015 Becton, Dickinson and Company Spatially addressable molecular barcoding
10023605, Feb 15 2012 Pacific Biosciences of California, Inc. Labeled nucleotide analogs having protein shields
10041107, Apr 13 2009 REALSEQ BIOSCIENCES, INC Methods and compositions for detection of small RNAs
10041127, Sep 04 2012 GUARDANT HEALTH, INC Systems and methods to detect rare mutations and copy number variation
10047394, Dec 15 2009 Becton, Dickinson and Company Digital counting of individual molecules by stochastic attachment of diverse labels
10059991, Dec 15 2009 Becton, Dickinson and Company Digital counting of individual molecules by stochastic attachment of diverse labels
10077459, May 04 2016 Global Life Sciences Solutions Operations UK Ltd Cell-free protein expression using rolling circle amplification product
10125392, Jun 15 2005 COMPLETE GENOMICS INC Preparing a DNA fragment library for sequencing using tagged primers
10131937, Aug 06 2010 Roche Molecular Systems, Inc Assay systems for genetic analysis
10131947, Jan 25 2011 Roche Molecular Systems, Inc Noninvasive detection of fetal aneuploidy in egg donor pregnancies
10131951, Aug 06 2010 Roche Molecular Systems, Inc Assay systems for genetic analysis
10131958, Aug 28 2013 Becton, Dickinson and Company Massively parallel single cell analysis
10151003, Aug 28 2013 Becton, Dickinson and Company Massively Parallel single cell analysis
10155980, Aug 15 2016 ACCURAGEN HOLDINGS LIMITED Compositions and methods for detecting rare sequence variants
10167508, Aug 06 2010 Roche Molecular Systems, Inc Detection of genetic abnormalities
10202641, May 31 2016 Becton, Dickinson and Company Error correction in amplification of samples
10202646, Dec 15 2009 Becton, Dickinson and Company Digital counting of individual molecules by stochastic attachment of diverse labels
10208356, Aug 28 2013 Becton, Dickinson and Company Massively parallel single cell analysis
10233496, Aug 06 2010 Roche Molecular Systems, Inc Ligation-based detection of genetic variants
10253375, Aug 28 2013 Becton, Dickinson and Company Massively parallel single cell analysis
10273537, Oct 14 2011 Pacific Biosciences of California, Inc. Real-time redox sequencing methods
10289800, May 21 2012 Roche Molecular Systems, Inc Processes for calculating phased fetal genomic sequences
10301677, May 25 2016 Becton, Dickinson and Company Normalization of nucleic acid libraries
10302972, Jan 23 2015 PACIFIC BIOSCIENCES OF CALIFORNIA, INC Waveguide transmission
10308981, Aug 06 2010 Roche Molecular Systems, Inc Assay systems for determination of source contribution in a sample
10338066, Sep 26 2016 Becton, Dickinson and Company Measurement of protein expression using reagents with barcoded oligonucleotide sequences
10351909, Jun 15 2005 Complete Genomics, Inc. DNA sequencing from high density DNA arrays using asynchronous reactions
10392661, Dec 15 2009 Becton, Dickinson and Company Digital counting of individual molecules by stochastic attachment of diverse labels
10450562, Sep 09 2014 IGENOMX INTERNATIONAL GENOMICS CORPORATION Methods and compositions for rapid nucleic acid library preparation
10457995, Sep 04 2012 GUARDANT HEALTH, INC. Systems and methods to detect rare mutations and copy number variation
10494678, Sep 04 2012 GUARDANT HEALTH, INC Systems and methods to detect rare mutations and copy number variation
10501808, Sep 04 2012 GUARDANT HEALTH, INC. Systems and methods to detect rare mutations and copy number variation
10501810, Sep 04 2012 GUARDANT HEALTH, INC Systems and methods to detect rare mutations and copy number variation
10533223, Aug 06 2010 Roche Molecular Systems, Inc Detection of target nucleic acids using hybridization
10563255, Sep 24 2008 Pacific Biosciences of California, Inc. Intermittent detection during analytical reactions
10619186, Sep 11 2015 Becton, Dickinson and Company Methods and compositions for library normalization
10619203, Dec 15 2009 Becton, Dickinson and Company Digital counting of individual molecules by stochastic attachment of diverse labels
10640763, May 31 2016 Becton, Dickinson and Company Molecular indexing of internal sequences
10662473, Jan 28 2008 Complete Genomics, Inc. Methods and compositions for efficient base calling in sequencing reactions
10669570, Jun 05 2017 Becton, Dickinson and Company Sample indexing for single cells
10676779, Jun 05 2017 CELLULAR RESEARCH, INC Sample indexing for single cells
10683556, Sep 04 2012 GUARDANT HEALTH, INC Systems and methods to detect rare mutations and copy number variation
10697010, Feb 19 2015 Becton, Dickinson and Company High-throughput single-cell analysis combining proteomic and genomic information
10704085, Mar 05 2014 GUARDANT HEALTH, INC. Systems and methods to detect rare mutations and copy number variation
10704086, Mar 05 2014 GUARDANT HEALTH, INC. Systems and methods to detect rare mutations and copy number variation
10718019, Jan 25 2011 Roche Molecular Systems, Inc Risk calculation for evaluation of fetal aneuploidy
10718024, Jan 25 2011 Roche Molecular Systems, Inc Risk calculation for evaluation of fetal aneuploidy
10718693, Jun 05 2008 Ventana Medical Systems, Inc. Compositions comprising nanomaterials and method for using such compositions for histochemical processes
10722880, Jan 13 2017 CELLULAR RESEARCH, INC Hydrophilic coating of fluidic channels
10724088, Aug 15 2016 ACCURAGEN HOLDINGS LIMITED Compositions and methods for detecting rare sequence variants
10738364, Sep 04 2012 GUARDANT HEALTH, INC Systems and methods to detect rare mutations and copy number variation
10752942, Oct 09 2015 ACCURAGEN HOLDINGS LIMITED Methods and compositions for enrichment of amplification products
10780412, May 21 2012 The Scripps Research Institute Methods of sample preparation
10793916, Sep 04 2012 GUARDANT HEALTH, INC. Systems and methods to detect rare mutations and copy number variation
10801063, Dec 28 2013 GUARDANT HEALTH, INC Methods and systems for detecting genetic variants
10822643, May 02 2016 Becton, Dickinson and Company Accurate molecular barcoding
10822663, Sep 04 2012 GUARDANT HEALTH, INC. Systems and methods to detect rare mutations and copy number variation
10837063, Sep 04 2012 GUARDANT HEALTH, INC. Systems and methods to detect rare mutations and copy number variation
10870880, Mar 05 2014 GUARDANT HEALTH, INC. Systems and methods to detect rare mutations and copy number variation
10876152, Mar 05 2014 GUARDANT HEALTH, INC. Systems and methods to detect rare mutations and copy number variation
10876171, Sep 04 2012 GUARDANT HEALTH, INC. Systems and methods to detect rare mutations and copy number variation
10876172, Sep 04 2012 GUARDANT HEALTH, INC. Systems and methods to detect rare mutations and copy number variation
10883139, Dec 28 2013 GUARDANT HEALTH, INC Methods and systems for detecting genetic variants
10889858, Dec 28 2013 GUARDANT HEALTH, INC. Methods and systems for detecting genetic variants
10894974, Sep 04 2012 GUARDANT HEALTH, INC Systems and methods to detect rare mutations and copy number variation
10927419, Aug 28 2013 Becton, Dickinson and Company Massively parallel single cell analysis
10934585, Mar 23 2011 Pacific Biosciences of California, Inc. Loading extended polymerase-nucleic acid complexes
10941396, Feb 27 2012 Becton, Dickinson and Company Compositions and kits for molecular counting
10941443, Oct 14 2011 Pacific Biosciences of California, Inc. Real-time redox sequencing chips
10947600, Sep 04 2013 GUARDANT HEALTH, INC. Systems and methods to detect rare mutations and copy number variation
10954570, Aug 28 2013 Becton, Dickinson and Company Massively parallel single cell analysis
10961592, Sep 04 2012 GUARDANT HEALTH, INC. Systems and methods to detect rare mutations and copy number variation
10982265, Mar 05 2014 GUARDANT HEALTH, INC. Systems and methods to detect rare mutations and copy number variation
10995376, Sep 04 2013 GUARDANT HEALTH, INC. Systems and methods to detect rare mutations and copy number variation
11001834, Sep 29 2015 KAPA BIOSYSTEMS, INC High-molecular weight DNA sample tracking tags for next generation sequencing
11001899, Sep 04 2013 GUARDANT HEALTH, INC. Systems and methods to detect rare mutations and copy number variation
11014958, Feb 15 2012 Pacific Biosciences of California, Inc. Fluorescent polymerase enzyme substrates having protein shields
11031095, Aug 06 2010 Roche Molecular Systems, Inc Assay systems for determination of fetal copy number variation
11062791, Sep 30 2016 GUARDANT HEALTH, INC Methods for multi-resolution analysis of cell-free nucleic acids
11091796, Mar 05 2014 GUARDANT HEALTH, INC. Systems and methods to detect rare mutations and copy number variation
11091797, Mar 05 2014 GUARDANT HEALTH, INC. Systems and methods to detect rare mutations and copy number variation
11098356, Jan 28 2008 Complete Genomics, Inc. Methods and compositions for nucleic acid sequencing
11098358, Feb 19 2015 Becton, Dickinson and Company High-throughput single-cell analysis combining proteomic and genomic information
11118221, Dec 28 2013 GUARDANT HEALTH, INC. Methods and systems for detecting genetic variants
11124823, Jun 01 2015 Becton, Dickinson and Company Methods for RNA quantification
11149306, Dec 28 2013 GUARDANT HEALTH, INC. Methods and systems for detecting genetic variants
11149307, Dec 28 2013 GUARDANT HEALTH, INC. Methods and systems for detecting genetic variants
11156603, Apr 05 2010 Prognosys Biosciences, Inc. Spatially encoded biological assays
11162132, Apr 10 2015 10X GENOMICS SWEDEN AB Spatially distinguished, multiplex nucleic acid analysis of biological specimens
11164659, Nov 08 2016 Becton, Dickinson and Company Methods for expression profile classification
11177020, Feb 27 2012 The University of North Carolina at Chapel Hill Methods and uses for molecular tags
11203782, Mar 29 2018 ACCURAGEN HOLDINGS LIMITED Compositions and methods comprising asymmetric barcoding
11203786, Aug 06 2010 Roche Molecular Systems, Inc Detection of target nucleic acids using hybridization
11208684, Apr 05 2010 Prognosys Biosciences, Inc. Spatially encoded biological assays
11214798, Sep 09 2014 IGENOMX INTERNATIONAL GENOMICS CORPORATION Methods and compositions for rapid nucleic acid library preparation
11214830, Sep 24 2008 Pacific Biosciences of California, Inc. Intermittent detection during analytical reactions
11214832, Jan 28 2008 Complete Genomics, Inc. Methods and compositions for efficient base calling in sequencing reactions
11220685, May 31 2016 Becton, Dickinson and Company Molecular indexing of internal sequences
11242556, Mar 05 2014 GUARDANT HEALTH, INC. Systems and methods to detect rare mutations and copy number variation
11242569, Dec 17 2015 GUARDANT HEALTH, INC. Methods to determine tumor gene copy number by analysis of cell-free DNA
11269199, Jan 23 2015 Pacific Biosciences of California, Inc. Producing bragg gratings in optical waveguides
11270781, Jan 25 2011 Roche Molecular Systems, Inc Statistical analysis for non-invasive sex chromosome aneuploidy determination
11275978, May 26 2016 Becton, Dickinson and Company Molecular label counting adjustment methods
11286515, Jun 25 2013 Prognosys Biosciences, Inc. Methods and systems for determining spatial patterns of biological targets in a sample
11286519, Dec 11 2013 ACCURAGEN HOLDINGS LIMITED Methods and compositions for enrichment of amplification products
11293917, Apr 05 2010 Prognosys Biosciences, Inc. Systems for analyzing target biological molecules via sample imaging and delivery of probes to substrate wells
11299774, Apr 10 2015 10X GENOMICS SWEDEN AB Spatially distinguished, multiplex nucleic acid analysis of biological specimens
11302416, Sep 02 2015 GUARDANT HEALTH, INC Machine learning for somatic single nucleotide variant detection in cell-free tumor nucleic acid sequencing applications
11313856, Apr 05 2010 Prognosys Biosciences, Inc. Spatially encoded biological assays
11319583, Feb 01 2017 Becton, Dickinson and Company Selective amplification using blocking oligonucleotides
11319597, Sep 04 2013 GUARDANT HEALTH, INC. Systems and methods to detect rare mutations and copy number variation
11319598, Sep 04 2013 GUARDANT HEALTH, INC. Systems and methods to detect rare mutations and copy number variation
11332776, Sep 11 2015 Becton, Dickinson and Company Methods and compositions for library normalization
11332790, Dec 23 2019 10X GENOMICS, INC Methods for spatial analysis using RNA-templated ligation
11352659, Apr 13 2012 10X GENOMICS SWEDEN AB Methods of detecting analytes
11359228, Jun 25 2013 Prognosys Biosciences, Inc. Methods and systems for determining spatial patterns of biological targets in a sample
11365409, May 03 2018 Becton, Dickinson and Company Molecular barcoding on opposite transcript ends
11365442, Apr 05 2010 Prognosys Biosciences, Inc. Spatially encoded biological assays
11371076, Jan 16 2019 Becton, Dickinson and Company Polymerase chain reaction normalization through primer titration
11371086, Apr 05 2010 Prognosys Biosciences, Inc. Spatially encoded biological assays
11384386, Apr 05 2010 Prognosys Biosciences, Inc. Spatially encoded biological assays
11389779, Dec 05 2007 Complete Genomics, Inc. Methods of preparing a library of nucleic acid fragments tagged with oligonucleotide bar code sequences
11390912, Apr 10 2015 10X GENOMICS SWEDEN AB Spatially distinguished, multiplex nucleic acid analysis of biological specimens
11390914, Apr 23 2015 Becton, Dickinson and Company Methods and compositions for whole transcriptome amplification
11397882, May 26 2016 Becton, Dickinson and Company Molecular label counting adjustment methods
11401545, Apr 05 2010 Prognosys Biosciences, Inc. Spatially encoded biological assays
11404142, May 21 2012 Roche Molecular Systems, Inc Processes for calculating phased fetal genomic sequences
11407992, Jun 08 2020 10X Genomics, Inc. Methods of determining a surgical margin and methods of use thereof
11408029, Jun 25 2020 10X Genomics, Inc. Spatial analysis of DNA methylation
11414702, Jun 15 2005 Complete Genomics, Inc. Nucleic acid analysis by random mixtures of non-overlapping fragments
11421259, May 04 2016 Global Life Sciences Solutions Operations UK Ltd Cell-free protein expression using rolling circle amplification product
11427866, May 16 2016 ACCURAGEN HOLDINGS LIMITED Method of improved sequencing by strand identification
11434523, Sep 04 2012 GUARDANT HEALTH, INC. Systems and methods to detect rare mutations and copy number variation
11434524, Jun 10 2020 10X Genomics, Inc. Methods for determining a location of an analyte in a biological sample
11434531, Dec 28 2013 GUARDANT HEALTH, INC. Methods and systems for detecting genetic variants
11441185, Jan 25 2011 Roche Molecular Systems, Inc Noninvasive detection of fetal aneuploidy in egg donor pregnancies
11447813, Mar 05 2014 GUARDANT HEALTH, INC. Systems and methods to detect rare mutations and copy number variation
11460468, Sep 26 2016 Becton, Dickinson and Company Measurement of protein expression using reagents with barcoded oligonucleotide sequences
11467157, Sep 26 2016 Becton, Dickinson and Company Measurement of protein expression using reagents with barcoded oligonucleotide sequences
11479809, Apr 13 2011 10X GENOMICS SWEDEN AB Methods of detecting analytes
11479810, Apr 05 2010 Prognosys Biosciences, Inc. Spatially encoded biological assays
11492612, Jun 08 2020 10X Genomics, Inc. Methods of determining a surgical margin and methods of use thereof
11492660, Dec 13 2018 Becton, Dickinson and Company Selective extension in single cell whole transcriptome analysis
11505828, Dec 23 2019 SPATIAL TRANSCRIPTOMICS AB; 10X GENOMICS, INC Methods for spatial analysis using RNA-templated ligation
11512308, Jun 02 2020 10X Genomics, Inc. Nucleic acid library methods
11519022, Apr 05 2010 Prognosys Biosciences, Inc. Spatially encoded biological assays
11519033, Aug 28 2018 SPATIAL TRANSCRIPTOMICS AB; 10X GENOMICS, INC Method for transposase-mediated spatial tagging and analyzing genomic DNA in a biological sample
11525157, May 31 2016 Becton, Dickinson and Company Error correction in amplification of samples
11535882, Mar 30 2015 Becton, Dickinson and Company Methods and compositions for combinatorial barcoding
11535887, Apr 22 2020 10X Genomics, Inc. Methods for spatial analysis using targeted RNA depletion
11542543, Apr 05 2010 Prognosys Biosciences, Inc. System for analyzing targets of a tissue section
11549138, Apr 05 2010 Prognosys Biosciences, Inc. Spatially encoded biological assays
11555219, May 31 2019 10X Genomics, Inc. Method of detecting target nucleic acid molecules
11560587, Apr 05 2010 Prognosys Biosciences, Inc. Spatially encoded biological assays
11560592, May 26 2020 10X Genomics, Inc. Method for resetting an array
11560593, Dec 23 2019 10X Genomics, Inc. Methods for spatial analysis using RNA-templated ligation
11578359, Oct 09 2015 ACCURAGEN HOLDINGS LIMITED Methods and compositions for enrichment of amplification products
11578374, Sep 04 2013 GUARDANT HEALTH, INC. Systems and methods to detect rare mutations and copy number variation
11592447, Nov 08 2019 10X Genomics, Inc. Spatially-tagged analyte capture agents for analyte multiplexing
11597973, Dec 11 2013 ACCURAGEN HOLDINGS LIMITED Compositions and methods for detecting rare sequence variants
11608497, Nov 08 2016 Becton, Dickinson and Company Methods for cell label classification
11608498, Jun 02 2020 10X Genomics, Inc. Nucleic acid library methods
11608520, May 22 2020 10X Genomics, Inc. Spatial analysis to detect sequence variants
11608526, Dec 28 2013 GUARDANT HEALTH, INC. Methods and systems for detecting genetic variants
11613773, Apr 10 2015 10X GENOMICS SWEDEN AB Spatially distinguished, multiplex nucleic acid analysis of biological specimens
11618897, Dec 21 2020 10X Genomics, Inc. Methods, compositions, and systems for capturing probes and/or barcodes
11618918, Jun 25 2013 Prognosys Biosciences, Inc. Methods and systems for determining spatial patterns of biological targets in a sample
11618929, Aug 28 2013 Becton, Dickinson and Company Massively parallel single cell analysis
11624063, Jun 08 2020 10X Genomics, Inc. Methods of determining a surgical margin and methods of use thereof
11624086, May 22 2020 10X Genomics, Inc. Simultaneous spatio-temporal measurement of gene expression and cellular activity
11634708, Feb 27 2012 Becton, Dickinson and Company Compositions and kits for molecular counting
11634756, Apr 05 2010 Prognosys Biosciences, Inc. Spatially encoded biological assays
11639517, Oct 01 2018 Becton, Dickinson and Company Determining 5′ transcript sequences
11639525, Dec 28 2013 GUARDANT HEALTH, INC. Methods and systems for detecting genetic variants
11639526, Dec 28 2013 GUARDANT HEALTH, INC. Methods and systems for detecting genetic variants
11643683, Aug 15 2016 ACCURAGEN HOLDINGS LIMITED Compositions and methods for detecting rare sequence variants
11643693, Jan 31 2019 GUARDANT HEALTH, INC Compositions and methods for isolating cell-free DNA
11649485, Jan 06 2019 10X GENOMICS, INC Generating capture probes for spatial analysis
11649491, Dec 28 2013 GUARDANT HEALTH, INC. Methods and systems for detecting genetic variants
11649497, Jan 13 2020 Becton, Dickinson and Company Methods and compositions for quantitation of proteins and RNA
11661625, May 14 2020 Becton, Dickinson and Company Primers for immune repertoire profiling
11661626, Jun 25 2020 10X Genomics, Inc. Spatial analysis of DNA methylation
11661631, Jan 23 2019 Becton, Dickinson and Company Oligonucleotides associated with antibodies
11667959, Mar 05 2014 GUARDANT HEALTH, INC. Systems and methods to detect rare mutations and copy number variation
11667967, Dec 28 2013 GUARDANT HEALTH, INC. Methods and systems for detecting genetic variants
11680260, Dec 21 2020 10X GENOMICS, INC Methods, compositions, and systems for spatial analysis of analytes in a biological sample
11692218, Jun 02 2020 10X Genomics, Inc. Spatial transcriptomics for antigen-receptors
11702693, Jan 21 2020 10X GENOMICS, INC Methods for printing cells and generating arrays of barcoded cells
11702698, Nov 08 2019 10X Genomics, Inc. Enhancing specificity of analyte binding
11702706, Aug 28 2013 Becton, Dickinson and Company Massively parallel single cell analysis
11705217, Mar 28 2008 Pacific Biosciences of California, Inc. Sequencing using concatemers of copies of sense and antisense strands
11718639, Feb 15 2012 Pacific Biosciences of California, Inc. Fluorescent polymerase enzyme substrates having protein shields
11732292, Apr 05 2010 Prognosys Biosciences, Inc. Spatially encoded biological assays correlating target nucleic acid to tissue section location
11732299, Jan 21 2020 10X GENOMICS, INC Spatial assays with perturbed cells
11732300, Feb 05 2020 10X GENOMICS, INC Increasing efficiency of spatial analysis in a biological sample
11733238, Apr 05 2010 Prognosys Biosciences, Inc. Spatially encoded biological assays
11739372, Apr 10 2015 SPATIAL TRANSCRIPTOMICS AB; Illumina, Inc. Spatially distinguished, multiplex nucleic acid analysis of biological specimens
11739381, Mar 18 2021 10X Genomics, Inc. Multiplex capture of gene and protein expression from a biological sample
11739443, Nov 20 2020 Becton, Dickinson and Company Profiling of highly expressed and lowly expressed proteins
11752483, May 21 2012 The Scripps Research Institute Methods of sample preparation
11753673, Sep 01 2021 10X Genomics, Inc. Methods, compositions, and kits for blocking a capture probe on a spatial array
11753674, Jun 25 2013 Prognosys Biosciences, Inc. Methods and systems for determining spatial patterns of biological targets in a sample
11753675, Jan 06 2019 10X Genomics, Inc. Generating capture probes for spatial analysis
11761030, Apr 05 2010 Prognosys Biosciences, Inc. Spatially encoded biological assays
11761038, Jul 06 2020 SPATIAL TRANSCRIPTOMICS AB; 10X GENOMICS, INC Methods for identifying a location of an RNA in a biological sample
11767550, Apr 05 2010 Prognosys Biosciences, Inc. Spatially encoded biological assays
11767555, Dec 28 2013 GUARDANT HEALTH, INC. Methods and systems for detecting genetic variants
11767556, Dec 28 2013 GUARDANT HEALTH, INC. Methods and systems for detecting genetic variants
11768175, Mar 04 2020 10X GENOMICS, INC Electrophoretic methods for spatial analysis
11773433, Apr 22 2020 10X Genomics, Inc. Methods for spatial analysis using targeted RNA depletion
11773436, Nov 08 2019 Becton, Dickinson and Company Using random priming to obtain full-length V(D)J information for immune repertoire sequencing
11773441, May 03 2018 Becton, Dickinson and Company High throughput multiomics sample analysis
11773453, Sep 04 2012 GUARDANT HEALTH, INC. Systems and methods to detect rare mutations and copy number variation
11781130, Jun 08 2020 10X Genomics, Inc. Methods of determining a surgical margin and methods of use thereof
11782059, Sep 26 2016 Becton, Dickinson and Company Measurement of protein expression using reagents with barcoded oligonucleotide sequences
11788122, Apr 13 2011 10X GENOMICS SWEDEN AB Methods of detecting analytes
11795498, Apr 13 2011 10X GENOMICS SWEDEN AB Methods of detecting analytes
11795507, Dec 23 2019 10X Genomics, Inc. Methods for spatial analysis using RNA-templated ligation
11808769, Nov 08 2019 10X Genomics, Inc. Spatially-tagged analyte capture agents for analyte multiplexing
11817177, Sep 30 2016 GUARDANT HEALTH, INC. Methods for multi-resolution analysis of cell-free nucleic acids
11817179, Sep 30 2016 GUARDANT HEALTH, INC. Methods for multi-resolution analysis of cell-free nucleic acids
11821024, Jun 25 2013 Prognosys Biosciences, Inc. Methods and systems for determining spatial patterns of biological targets in a sample
11821035, Jan 29 2020 10X GENOMICS, INC Compositions and methods of making gene expression libraries
11827934, Mar 23 2011 Pacific Biosciences of California, Inc. Methods for isolating nucleic acids
11827935, Nov 19 2020 10X GENOMICS, INC Methods for spatial analysis using rolling circle amplification and detection probes
11834670, Apr 19 2017 GLOBAL LIFE SCIENCES SOLUTIONS USA LLC Site-specific DNA modification using a donor DNA repair template having tandem repeat sequences
11835462, Feb 11 2020 10X GENOMICS, INC Methods and compositions for partitioning a biological sample
11840687, Jun 02 2020 10X Genomics, Inc. Nucleic acid library methods
11840724, Sep 01 2021 10X Genomics, Inc. Methods, compositions, and kits for blocking a capture probe on a spatial array
11845979, Jun 02 2020 10X Genomics, Inc. Spatial transcriptomics for antigen-receptors
11845986, May 25 2016 Becton, Dickinson and Company Normalization of nucleic acid libraries
11859178, Jun 02 2020 10X Genomics, Inc. Nucleic acid library methods
11859246, Dec 11 2013 ACCURAGEN HOLDINGS LIMITED Methods and compositions for enrichment of amplification products
11866767, May 22 2020 10X Genomics, Inc. Simultaneous spatio-temporal measurement of gene expression and cellular activity
11866770, Apr 05 2010 Prognosys Biosciences, Inc. Spatially encoded biological assays
11873482, Dec 21 2020 10X Genomics, Inc. Methods, compositions, and systems for spatial analysis of analytes in a biological sample
11879158, Sep 04 2013 GUARDANT HEALTH, INC. Systems and methods to detect rare mutations and copy number variation
11891654, Feb 24 2020 10X GENOMICS, INC Methods of making gene expression libraries
11898205, Feb 03 2020 10X GENOMICS, INC Increasing capture efficiency of spatial assays
11913065, Sep 04 2012 Guardent Health, Inc. Systems and methods to detect rare mutations and copy number variation
6054274, Nov 12 1997 Agilent Technologies Inc Method of amplifying the signal of target nucleic acid sequence analyte
6096880, Apr 15 1993 ROCHESTER, UNIVERSITY OF Circular DNA vectors for synthesis of RNA and DNA
6143527, May 06 1996 Wyeth Chain reaction cloning using a bridging oligonucleotide and DNA ligase
6221603, Feb 04 2000 GE HEALTHCARE SV CORP Rolling circle amplification assay for nucleic acid analysis
6274320, Sep 16 1999 454 Life Sciences Corporation Method of sequencing a nucleic acid
6316229, Jul 20 1998 Yale University Single molecule analysis target-mediated ligation of bipartite primers
6365347, Apr 11 1997 Regents of the University of California, The Method for identifying disruptors of biological pathways using genetic selection
6368802, Apr 15 1993 University of Rochester Circular DNA vectors for synthesis of RNA and DNA
6838553, Oct 05 1999 Academia Sinica Peptide repeat immunogens
6902921, Oct 30 2001 454 Life Sciences Corporation Sulfurylase-luciferase fusion proteins and thermostable sulfurylase
6921642, Jun 20 2000 Qiagen GmbH Protein expression profiling
6956114, Oct 30 2001 454 Life Sciences Corporation Sulfurylase-luciferase fusion proteins and thermostable sulfurylase
6977153, Dec 31 2002 Qiagen GmbH Rolling circle amplification of RNA
7135312, Apr 15 1993 ROCHESTER, UNIVERSITY OF Circular DNA vectors for synthesis of RNA and DNA
7211390, Feb 26 2004 454 Life Sciences Corporation Method of sequencing a nucleic acid
7244559, Sep 16 1999 454 Life Sciences Corporation Method of sequencing a nucleic acid
7264929, Sep 16 1999 454 Life Sciences Corporation Method of sequencing a nucleic acid
7323305, Jan 29 2003 454 Life Sciences Corporation Methods of amplifying and sequencing nucleic acids
7335762, Sep 16 1999 454 Life Sciences Corporation Apparatus and method for sequencing a nucleic acid
7358047, Dec 15 1998 Qiagen GmbH Methods of forming circular nucleic acid probes and uses thereof
7553619, Feb 08 2002 Qiagen GmbH Detection method using dissociated rolling circle amplification
7575865, Jan 29 2003 454 Life Sciences Corporation Methods of amplifying and sequencing nucleic acids
7615625, Aug 04 1992 Replicon, Inc. In vitro amplification of nucleic acid molecules via circular replicons
7618776, Nov 21 1995 Yale University Rolling circle replication reporter systems
7682789, May 04 2007 Ventana Medical Systems, Inc.; Ventana Medical Systems, Inc Method for quantifying biomolecules conjugated to a nanoparticle
7838270, May 22 2001 The University of Chicago Target-dependent transcription using deletion mutants of N4 RNA polymerase
7897344, Nov 06 2007 COMPLETE GENOMICS, INC Methods and oligonucleotide designs for insertion of multiple adaptors into library constructs
7901889, Jul 26 2007 PACIFIC BIOSCIENCES OF CALIFORNIA, INC Molecular redundant sequencing
7901890, Nov 05 2007 COMPLETE GENOMICS, INC Methods and oligonucleotide designs for insertion of multiple adaptors employing selective methylation
7901891, Jun 15 2005 COMPLETE GENOMICS INC Nucleic acid analysis by random mixtures of non-overlapping fragments
7906490, Apr 15 1993 University of Rochester Circular DNA vectors for synthesis of RNA and DNA
7910302, Oct 27 2006 COMPLETE GENOMICS, INC Efficient arrays of amplified polynucleotides
7910354, Oct 27 2006 COMPLETE GENOMICS, INC Efficient arrays of amplified polynucleotides
7955795, Jun 06 2003 Qiagen GmbH Method of whole genome amplification with reduced artifact production
7960104, Oct 07 2005 COMPLETE GENOMICS INC Self-assembled single molecule arrays and uses thereof
7960116, Sep 28 2007 PACIFIC BIOSCIENCES OF CALIFORNIA, INC Nucleic acid sequencing methods and systems
7985557, May 23 2007 Ventana Medical Systems, Inc Polymeric carriers for immunohistochemistry and in situ hybridization
7989166, Apr 12 2005 IN SITU RCP A S Circle probes and their use in the identification of biomolecules
8003330, Sep 28 2007 PACIFIC BIOSCIENCES OF CALIFORNIA, INC Error-free amplification of DNA for clonal sequencing
8043834, Mar 31 2003 Qiagen GmbH Universal reagents for rolling circle amplification and methods of use
8080393, Apr 12 2005 Zimmer GmbH Methods for production of oligonucleotides
8133719, Jun 15 2005 COMPLETE GENOMICS INC Methods for making single molecule arrays
8143030, Sep 24 2008 PACIFIC BIOSCIENCES OF CALIFORNIA, INC Intermittent detection during analytical reactions
8153375, Mar 28 2008 PACIFIC BIOSCIENCE OF CALIFORNIA, INC Compositions and methods for nucleic acid sequencing
8158359, Jan 29 2003 454 Lice Sciences Corporation Methods of amplifying and sequencing nucleic acids
8236499, Mar 28 2008 PACIFIC BIOSCIENCES OF CALIFORNIA, INC Methods and compositions for nucleic acid sample preparation
8298768, Nov 29 2007 COMPLETE GENOMICS, INC Efficient shotgun sequencing methods
8304191, Sep 28 2007 Pacific Biosciences of California, Inc. Nucleic acid sequencing methods and systems
8309303, Apr 01 2005 Qiagen GmbH Reverse transcription and amplification of RNA with simultaneous degradation of DNA
8309330, Mar 28 2008 Pacific Biosciences of California, Inc. Diagnostic sequencing with small nucleic acid circles
8383369, Sep 24 2008 PACIFIC BIOSCIENCES OF CALIFORNIA, INC Intermittent detection during analytical reactions
8415099, Nov 05 2007 COMPLETE GENOMICS, INC Efficient base determination in sequencing reactions
8420798, Sep 01 2006 Ventana Medical Systems, Inc Method for producing nucleic acid probes
8440397, Feb 24 2006 COMPLETE GENOMICS INC High throughput genome sequencing on DNA arrays
8445191, May 23 2007 Ventana Medical Systems, Inc. Polymeric carriers for immunohistochemistry and in situ hybridization
8445194, Jun 15 2005 COMPLETE GENOMICS INC Single molecule arrays for genetic and chemical analysis
8445196, Jun 15 2005 COMPLETE GENOMICS INC Single molecule arrays for genetic and chemical analysis
8445197, Jun 15 2005 COMPLETE GENOMICS INC Single molecule arrays for genetic and chemical analysis
8455193, Mar 28 2008 Pacific Biosciences of California, Inc. Compositions and methods for nucleic acid sequencing
8481264, Sep 19 2008 PACIFIC BIOSCIENCES OF CALIFORNIA, INC Immobilized nucleic acid complexes for sequence analysis
8486620, May 23 2007 Ventana Medical Systems, Inc. Polymeric carriers for immunohistochemistry and in situ hybridization
8486625, Apr 20 1999 Illumina, Inc. Detection of nucleic acid reactions on bead arrays
8501405, Apr 27 2009 PACIFIC BIOSCIENCES OF CALIFORNIA, INC Real-time sequencing methods and systems
8518640, Oct 29 2007 COMPLETE GENOMICS, INC Nucleic acid sequencing and process
8535882, Jul 26 2007 Pacific Biosciences of California, Inc. Molecular redundant sequencing
8535886, Mar 28 2008 Pacific Biosciences of California, Inc. Methods and compositions for nucleic acid sample preparation
8551702, Nov 05 2007 COMPLETE GENOMICS, INC Efficient base determination in sequencing reactions
8551704, Feb 16 2007 PACIFIC BIOSCIENCES OF CALIFORNIA, INC Controllable strand scission of mini circle DNA
8592150, Dec 05 2007 COMPLETE GENOMICS, INC Methods and compositions for long fragment read sequencing
8609335, Oct 07 2005 COMPLETE GENOMICS INC Self-assembled single molecule arrays and uses thereof
8609421, Jun 12 2009 PACIFIC BIOSCIENCES OF CALIFORNIA, INC Single-molecule real-time analysis of protein synthesis
8617811, Jan 28 2008 COMPLETE GENOMICS, INC Methods and compositions for efficient base calling in sequencing reactions
8618265, Nov 01 2006 Ventana Medical Systems, Inc. Haptens, hapten conjugates, compositions thereof and method for their preparation and use
8628940, Sep 24 2008 PACIFIC BIOSCIENCES OF CALIFORNIA, INC Intermittent detection during analytical reactions
8658364, Mar 23 2011 PACIFIC BIOSCIENCES OF CALIFORNIA, INC Isolation of polymerase-nucleic acid complexes
8673562, Jun 15 2005 COMPLETE GENOMICS INC Using non-overlapping fragments for nucleic acid sequencing
8700338, Jan 25 2011 Roche Molecular Systems, Inc Risk calculation for evaluation of fetal aneuploidy
8703490, Jun 05 2008 Ventana Medical Systems, Inc Compositions comprising nanomaterials and method for using such compositions for histochemical processes
8712697, Sep 07 2011 Roche Molecular Systems, Inc Determination of copy number variations using binomial probability calculations
8715930, Mar 23 2011 PACIFIC BIOSCIENCES OF CALIFORNIA, INC Loading molecules onto substrates
8722326, Feb 24 2006 COMPLETE GENOMICS INC High throughput genome sequencing on DNA arrays
8756020, Jan 25 2011 Roche Molecular Systems, Inc Enhanced risk probabilities using biomolecule estimations
8765375, Jun 15 2005 COMPLETE GENOMICS INC Method for sequencing polynucleotides by forming separate fragment mixtures
8765379, Jun 15 2005 COMPLETE GENOMICS INC Nucleic acid sequence analysis from combined mixtures of amplified fragments
8765382, Jun 15 2005 COMPLETE GENOMICS INC Genome sequence analysis using tagged amplicons
8771957, Jun 15 2005 COMPLETE GENOMICS INC Sequencing using a predetermined coverage amount of polynucleotide fragments
8771958, Jun 15 2005 COMPLETE GENOMICS INC Nucleotide sequence from amplicon subfragments
8790876, Jan 29 2003 454 Life Sciences Corporation Methods of amplifying and sequencing nucleic acids
8795961, Sep 05 2008 PACIFIC BIOSCIENCES OF CALIFORNIA, INC Preparations, compositions, and methods for nucleic acid sequencing
8828659, Sep 01 2006 Ventana Medical Systems, Inc. Method for producing nucleic acid probes
8835358, Dec 15 2009 Becton, Dickinson and Company Digital counting of individual molecules by stochastic attachment of diverse labels
8846320, Nov 01 2006 Ventana Medical Systems, Inc. Haptens, hapten conjugates, compositions thereof and method for their preparation and use
8921046, Sep 19 2008 PACIFIC BIOSCIENCES OF CALIFORNIA, INC Nucleic acid sequence analysis
8940507, Apr 27 2009 PACIFIC BIOSCIENCES OF CALIFORNIA, INC Real-time sequencing methods and systems
9017954, May 23 2007 Ventana Medical Systems, Inc. Polymeric carriers for immunohistochemistry and in situ hybridization
9051611, Jul 26 2007 Pacific Biosciences of California, Inc. Molecular redundant sequencing
9057102, Sep 24 2008 PACIFIC BIOSCIENCES OF CALIFORNIA, INC Intermittent detection during analytical reactions
9062091, Feb 15 2012 PACIFIC BIOSCIENCES OF CALIFORNIA, INC Polymerase enzyme substrates with protein shield
9103822, May 23 2007 Ventana Medical Systems, Inc. Polymeric carriers for immunohistochemistry and in situ hybridization
9145585, Sep 01 2006 Ventana Medical Systems, Inc. Method for using permuted nucleic acid probes
9200320, Apr 27 2009 Pacific Biosciences of California, Inc. Real-time sequencing methods and systems
9206417, Jul 19 2012 Roche Molecular Systems, Inc Multiplexed sequential ligation-based detection of genetic variants
9222132, Jan 28 2008 Complete Genomics, Inc. Methods and compositions for efficient base calling in sequencing reactions
9228228, Oct 27 2006 Complete Genomics, Inc. Efficient arrays of amplified polynucleotides
9238834, Nov 29 2007 Complete Genomics, Inc. Efficient shotgun sequencing methods
9267172, Nov 05 2007 Complete Genomics, Inc. Efficient base determination in sequencing reactions
9279148, Apr 20 1999 ILLUMINA, INC Detection of nucleic acid reactions on bead arrays
9290808, Dec 15 2009 Becton, Dickinson and Company Digital counting of individual molecules by stochastic attachment of diverse labels
9290809, Dec 15 2009 Becton, Dickinson and Company Digital counting of individual molecules by stochastic attachment of diverse labels
9315857, Dec 15 2009 Becton, Dickinson and Company Digital counting of individual molecules by stochastic attachment of diverse label-tags
9334490, Nov 09 2006 COMPLETE GENOMICS INC Methods and compositions for large-scale analysis of nucleic acids using DNA deletions
9381517, Mar 23 2011 Pacific Biosciences of California, Inc. Apparatus for loading molecules onto substrates
9404146, Mar 28 2008 Pacific Biosciences of California, Inc. Compositions and methods for nucleic acid sequencing
9416402, Apr 13 2009 REALSEQ BIOSCIENCES, INC Methods and compositions for detection of small RNAs
9441267, Apr 20 1999 ILLUMINA, INC Detection of nucleic acid reactions on bead arrays
9475054, Mar 23 2011 Pacific Biosciences of California, Inc. Isolation of polymerase-nucleic acid complexes
9476054, Feb 24 2006 COMPLETE GENOMICS INC Two-adaptor library for high-throughput sequencing on DNA arrays
9487823, Dec 20 2002 Qiagen GmbH Nucleic acid amplification
9493818, Apr 13 2009 REALSEQ BIOSCIENCES, INC Methods and compositions for detection of small RNAS
9499863, Dec 05 2007 Complete Genomics, Inc. Reducing GC bias in DNA sequencing using nucleotide analogs
9523125, Jan 28 2008 Complete Genomics, Inc. Methods and compositions for efficient base calling in sequencing reactions
9524369, Jun 15 2009 COMPLETE GENOMICS, INC Processing and analysis of complex nucleic acid sequence data
9542527, Mar 28 2008 Pacific Biosciences of California, Inc. Compositions and methods for nucleic acid sequencing
9551028, Sep 19 2008 Pacific Biosciences of California, Inc. Nucleic acid sequence analysis
9556480, Sep 24 2008 Pacific Biosciences of California, Inc. Intermittent detection during analytical reactions
9567639, Aug 06 2010 Roche Molecular Systems, Inc Detection of target nucleic acids using hybridization
9567645, Aug 28 2013 Becton, Dickinson and Company Massively parallel single cell analysis
9567646, Aug 28 2013 Becton, Dickinson and Company Massively parallel single cell analysis
9575067, May 23 2007 Ventana Medical Systems, Inc. Polymeric carriers for immunohistochemistry and in situ hybridization
9582640, Mar 28 2008 Pacific Biosciences of California, Inc. Methods for obtaining a single molecule consensus sequence
9582877, Oct 07 2013 Becton, Dickinson and Company Methods and systems for digitally counting features on arrays
9598731, Sep 04 2012 GUARDANT HEALTH, INC. Systems and methods to detect rare mutations and copy number variation
9598736, Aug 28 2013 Becton, Dickinson and Company Massively parallel single cell analysis
9600626, Mar 28 2008 Pacific Biosciences of California, Inc. Methods and systems for obtaining a single molecule consensus sequence
9624490, Jul 19 2012 Roche Molecular Systems, Inc Multiplexed sequential ligation-based detection of genetic variants
9637784, Jun 15 2005 COMPLETE GENOMICS INC Methods for DNA sequencing and analysis using multiple tiers of aliquots
9637785, Jun 15 2005 COMPLETE GENOMICS INC Tagged fragment library configured for genome or cDNA sequence analysis
9637799, Aug 28 2013 Becton, Dickinson and Company Massively parallel single cell analysis
9650673, Jun 15 2005 COMPLETE GENOMICS, INC Single molecule arrays for genetic and chemical analysis
9683255, Sep 09 2005 Qiagen GmbH Method for activating a nucleic acid for a polymerase reaction
9708659, Dec 15 2009 Becton, Dickinson and Company Digital counting of individual molecules by stochastic attachment of diverse labels
9719986, Nov 01 2006 Ventana Medical Systems, Inc. Haptens, hapten conjugates, compositions thereof preparation and method for their preparation and use
9727810, Feb 27 2015 Becton, Dickinson and Company Spatially addressable molecular barcoding
9732383, Jul 26 2007 Pacific Biosciences of California, Inc. Molecular redundant sequencing
9738929, Sep 24 2008 PACIFIC BIOSCIENCES OF CALIFORNIA, INC Nucleic acid sequence analysis
9790559, Sep 04 2012 GUARDANT HEALTH, INC. Systems and methods to detect rare mutations and copy number variation
9816137, Dec 15 2009 Becton, Dickinson and Company Digital counting of individual molecules by stochastic attachment of diverse labels
9834822, Sep 04 2012 GUARDANT HEALTH, INC. Systems and methods to detect rare mutations and copy number variation
9840743, Sep 04 2012 GUARDANT HEALTH, INC. Systems and methods to detect rare mutations and copy number variation
9845502, Dec 15 2009 Becton, Dickinson and Company Digital counting of individual molecules by stochastic attachment of diverse labels
9850523, Sep 30 2016 GUARDANT HEALTH, INC Methods for multi-resolution analysis of cell-free nucleic acids
9890421, Aug 06 2010 Roche Molecular Systems, Inc Assay systems for genetic analysis
9902992, Sep 04 2012 GUARDANT HEALTH, INC Systems and methods to detect rare mutations and copy number variation
9905005, Oct 07 2013 Becton, Dickinson and Company Methods and systems for digitally counting features on arrays
9910956, Mar 28 2008 Pacific Biosciences of California, Inc. Sequencing using concatemers of copies of sense and antisense strands
9920366, Dec 28 2013 GUARDANT HEALTH, INC Methods and systems for detecting genetic variants
9944984, Jun 15 2005 Complete Genomics, Inc. High density DNA array
9968901, May 21 2012 The Scripps Research Institute Methods of sample preparation
9994897, Mar 08 2013 Roche Molecular Systems, Inc Non-invasive fetal sex determination
RE48913, Feb 27 2015 Becton, Dickinson and Company Spatially addressable molecular barcoding
RE49542, Apr 06 2005 GUARDANT HEALTH, INC. Method for the detection of cancer
Patent Priority Assignee Title
5426180, Mar 27 1991 ROCHESTER, UNIVERSITY OF Methods of making single-stranded circular oligonucleotides
5478731, Apr 12 1991 Stratagene Polycos vectors
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
May 09 1995Carnegie Institution of Washington(assignment on the face of the patent)
Jun 06 1995Carnegie Institution of WashingtonNATIONAL INSTITUTES OF HEALTH NIH , U S DEPT OF HEALTH AND HUMAN SERVICES DHHS , U S GOVERNMENTCONFIRMATORY LICENSE SEE DOCUMENT FOR DETAILS 0212880530 pdf
Jun 23 1995FIRE, ANDREWCarnegie Institution of WashingtonASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0076710133 pdf
Jun 23 1995XU, SI-QUNCarnegie Institution of WashingtonASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0076710133 pdf
Date Maintenance Fee Events
Dec 01 2000M283: Payment of Maintenance Fee, 4th Yr, Small Entity.
Jan 04 2005M2552: Payment of Maintenance Fee, 8th Yr, Small Entity.
Dec 18 2008M2553: Payment of Maintenance Fee, 12th Yr, Small Entity.


Date Maintenance Schedule
Jul 15 20004 years fee payment window open
Jan 15 20016 months grace period start (w surcharge)
Jul 15 2001patent expiry (for year 4)
Jul 15 20032 years to revive unintentionally abandoned end. (for year 4)
Jul 15 20048 years fee payment window open
Jan 15 20056 months grace period start (w surcharge)
Jul 15 2005patent expiry (for year 8)
Jul 15 20072 years to revive unintentionally abandoned end. (for year 8)
Jul 15 200812 years fee payment window open
Jan 15 20096 months grace period start (w surcharge)
Jul 15 2009patent expiry (for year 12)
Jul 15 20112 years to revive unintentionally abandoned end. (for year 12)