A reprogrammable non-volatile memory array and constituent memory cells is disclosed. The semiconductor memory cells each have a data storage element constructed around an ultra-thin dielectric, such as a gate oxide. The gate oxide is used to store information by stressing the ultra-thin dielectric into breakdown (soft or hard breakdown) to set the leakage current level of the memory cell. The memory cell is read by sensing the current drawn by the cell. A suitable ultra-thin dielectric is high quality gate oxide of about 50 Å thickness or less, as commonly available from presently available advanced CMOS logic processes. The memory cells are first programmed by stressing the gate oxide until soft breakdown occurs. The memory cells are then subsequently reprogrammed by increasing the breakdown of the gate oxide.
|
12. A single polysilicon reprogrammable non-volatile memory cell comprising a select transistor coupled in series with a data storage element, the data storage element comprising a conductive structure, an ultra-thin dielectric underlying said conductive for physical storage of data, and a first doped semiconductor region underlying both the ultra-thin dielectric and the conductive structure, said select transistor having a gate that is controllable to address said memory cell, said ultra-thin dielectric being capable of being selectively broken down into one of a plurality of breakdown states, further wherein said conductive structure is formed at the same time as said gate, wherein the data storage element is a mos half-transistor.
11. A single polysilicon reprogrammable memory array comprising a plurality of row lines, a plurality of column lines, at least one shared line, and a plurality of memory cells at respective crosspoints of the row lines and column lines in the memory, each of the memory cells comprising a select transistor coupled in series with a data storage element between one of the column lines and one of the at least one shared line, the select transistor further having a gate coupled to one of the row lines and the data storage element comprising an ultra-thin dielectric for physical storage of data, said ultra-thin dielectric being capable of being selectively broken down into one of a plurality of breakdown states, further wherein said ultra-thin diectric is formed at the same time as a gate oxide of said mos field effect transistor, wherein the data storage element is a mos half-transistor.
1. A single polysilicon reprogrammable memory cell useful in a memory array having select and access lines, the memory cell comprising:
a mos field effect transistor having a gate, a gate dielectric underlying the gate, and first and second doped semiconductor regions underlying both the gate dielectric and the gate in a spaced apart relationship to define a channel region there between; a mos data storage element having a conductive structure, an ultra-thin dielectric underlying the conductive structure, and a first doped semiconductor region underlying both the ultra-thin dielectric and the conductive structure, said ultra-thin dielectric being formed at the same time as said gate dielectric, the first doped semiconductor region of the mos data storage element being coupled to the first doped semiconductor region of the mos field effect transistor, said ultra-thin dielectric being capable of being selectively broken down into one of a plurality of breakdown states, wherein each of the mos data storage elements comprises an inversion-enabled region underlying both the ultra-thin dielectric and the conductive structure and adjacent to the first doped region of the mos data storage element, further wherein said conductive structure is formed at the same time as said gate; a select line segment coupled to the gate of the mos field effect transistor; a first access line segment coupled to the second doped semiconductor region of the mos field effect transistor; and a second access line segment coupled to the conductive structure of the mos data storage element.
6. A method of operating a single polysilicon reprogrammable memory array comprising a plurality of row lines, a plurality of column lines, at least one source line, and a plurality of memory cells at respective crosspoints of the row lines and column lines, each of the memory cells comprising a mos field effect transistor coupled in series with a mos data storage element between one of the column lines and one of the at least one source line, the mos transistor further having a gate coupled to one of the row lines and the mos data storage element comprising an ultra-thin dielectric for physical storage of data, said ultra-thin dielectric being capable of being selectively broken down into one of a plurality of breakdown states, further wherein said ultra-thin diectric is formed at the same time as a gate oxide of said mos field effect transistor, the method comprising:
applying a first voltage to a selected one of the row lines for turning on each of mos field effect transistor having the gate thereof coupled to the selected row line; applying a second voltage to a selected one of the column lines; and applying a third voltage to the at least one source line; wherein the second voltage and the third voltage cause a potential difference across the ultra-thin dielectric of the memory cell coupled to the selected row line and the selected column line that is sufficient to break down the ultra-thin dielectric thereof into one of said plurality of breakdown states, further wherein said memory cells are read by monitoring an amount of current flowing through said mos data storage element and determining that a memory cell is programmed if said amount of current is above a predetermined threshold.
3. A method of operating a single polysilicon reprogrammable memory array comprising a plurality of row lines, a plurality of column lines, at least one source line, and a plurality of memory cells at respective crosspoints of the row lines and column lines, each of the memory cells comprising a mos field effect transistor coupled in series with a mos data storage element between one of the column lines and one of the at least one source line, the mos transistor further having a gate coupled to one of the row lines and the mos data storage element comprising an ultra-thin dielectric for physical storage of data, said ultra-thin dielectric being capable of being selectively broken down into one of a plurality of breakdown states, further wherein said ultra-thin diectric is formed at the same time as a gate oxide of said mos field effect transistor the method comprising:
applying a first voltage to a selected one of the row lines for turning on each of mos field effect transistor having the gate thereof coupled to the selected row line; applying a second voltage to a selected one of the column lines; and applying a third voltage to the at least one source line; wherein the second voltage and the third voltage cause a potential difference across the ultra-thin dielectric of the memory cell coupled to the selected row line and the selected column line that is sufficient to break down the ultra-thin dielectric thereof into one of said plurality of breakdown states, further wherein said memory cells are reprogrammed by applying said potential difference across the ultra-thin dielectric for a further period of time to further break down the ultra-thin dielectric into another of said plurality of breakdown states.
4. A method of operating a single polysilicon reprogrammable memory array comprising a plurality of row lines, a plurality of column lines, at least one source line, and a plurality of memory cells at respective crosspoints of the row lines and column lines, each of the memory cells comprising a mos field effect transistor coupled in series with a mos data storage element between one of the column lines and one of the at least one source line, the mos transistor further having a gate coupled to one of the row lines and the mos data storage element comprising an ultra-thin dielectric for physical storage of data, said ultra-thin dielectric being capable of being selectively broken down into one of a plurality of breakdown states, further wherein said ultra-thin diectric is formed at the same time as a gate oxide of said mos field effect transistor, the method comprising:
applying a first voltage to a selected one of the row lines for turning on each of mos field effect transistor having the gate thereof coupled to the selected row line; applying a second voltage to a selected one of the column lines; and applying a third voltage to the at least one source line; wherein the second voltage and the third voltage cause a potential difference across the ultra-thin dielectric of the memory cell coupled to the selected row line and the selected column line that is sufficient to break down the ultra-thin dielectric thereof into one of said plurality of breakdown states, further wherein said memory cells are reprogrammed by applying a second potential difference across the ultra-thin dielectric for a further period of time to further break down the ultra-thin dielectric into another of said plurality of breakdown states.
5. A method of operating a single polysilicon reprogrammable memory array comprising a plurality of row lines, a plurality of column lines, at least one source line, and a plurality of memory cells at respective crosspoints of the row lines and column lines, each of the memory cells comprising a mos field effect transistor coupled in series with a mos data storage element between one of the column lines and one of the at least one source line, the mos transistor further having a gate coupled to one of the row lines and the mos data storage element comprising an ultra-thin dielectric for physical storage of data, said ultra-thin dielectric being capable of being selectively broken down into one of a plurality of breakdown states, further wherein said ultra-thin diectric is formed at the same time as a gate oxide of said mos field effect transistor the method comprising:
applying a first voltage to a selected one of the row lines for turning on each of mos field effect transistor having the gate thereof coupled to the selected row line; applying a second voltage to a selected one of the column lines; and applying a third voltage to the at least one source line; wherein the second voltage and the third voltage cause a potential difference across the ultra-thin dielectric of the memory cell coupled to the selected row line and the selected column line that is sufficient to break down the ultra-thin dielectric thereof into one of said plurality of breakdown states, further wherein said memory cells are reprogrammed by increasing said first voltage to said selected one of the row lines in order to increase the amount of current used to break down the ultra-thin dielectric into another of said plurality of breakdown states.
2. A method of operating a single polysilicon reprogrammable memory array comprising a plurality of row lines, a plurality of column lines, at least one source line, and a plurality of memory cells at respective crosspoints of the row lines and column lines, each of the memory cells comprising a mos field effect transistor coupled in series with a mos data storage element between one of the column lines and one of the at least one source line, the mos transistor further having a gate coupled to one of the row lines and the mos data storage element comprising an ultra-thin dielectric for physical storage of data, said ultra-thin dielectric being capable of being selectively broken down into one of a plurality of breakdown states, further wherein said ultra-thin diectric is formed at the same time as a gate oxide of said mos field effect transistor the method comprising:
applying a first voltage to a selected one of the row lines for turning on each of mos field effect transistor having the gate thereof coupled to the selected row line; applying a second voltage to a selected one of the column lines; and applying a third voltage to the at least one source line; wherein the second voltage and the third voltage cause a potential difference across the ultra-thin dielectric of the memory cell coupled to the selected row line and the selected column line that is sufficient to break down the ultra-thin dielectric thereof into one of said plurality of breakdown states, further wherein said memory cells are reprogrammed by applying a second potential difference greater than said potential difference across the ultra-thin dielectric to further break down the ultra-thin dielectric into another of said plurality of breakdown states.
8. A single poloysilicon reprogrammable memory array comprising a plurality of row lines, a plurality of column lines, at least one shared line, and a plurality of memory cells at respective crosspoints of the row lines and column lines in the memory, each of the memory cells comprising:
a mos field effect transistor having a gate, a gate dielectric underlying the gate, and first and second doped semiconductor regions underlying both the gate dielectric and the gate in a spaced apart relationship to define a channel region therebetween; and a mos data storage element having a conductive structure, an ultra-thin dielectric underlying the conductive structure, and a first doped semiconductor region underlying both the ultra-thin dielectric and the conductive structure, wherein said ultra-thin diectric is formed at the same time as said gate dielectric of said mos field effect transistor, the first doped semiconductor region of the mos data storage element being coupled to the first doped semiconductor region of the mos field effect transistor, said ultra-thin dielectric being capable of being selectively broken down into one of a plurality of breakdown states, further wherein each of the mos data storage elements comprises an inversion-enabled region underling both the ultra-thin dielectric and the conductive structure and adjacent to the first doped region of the mos data storage element; further wherein said conductive structure is formed at the same time as said gate; wherein one of the column lines is coupled to the second doped semiconductor region of the mos field effect transistor or to the conductive structure of the mos data storage element, and one of the at least one shared lines is coupled to the conductive structure of the mos data storage element or to the second doped semiconductor region of the mos field effect transistor.
7. The method of
9. The memory array of
10. The memory array of
13. The memory cell of
14. The memory cell of
15. The memory cell of
16. The memory cell of
|
The present application hereby claims priority under 35 U.S.C. 120 from U.S. patent application Ser. No. 09/955,641 filed Sept. 18, 2001 entitled "SEMICONDUCTOR MEMORY CELL AND MEMORY ARRAY USING A BREAKDOWN PHENOMENA IN AN ULTRA-THIN DIELECTRIC".
The present invention relates to reprogrammable non-volatile memory, and more particularly, to a non-volatile reprogrammable semiconductor memory that uses a breakdown phenomena in an ultra-thin dielectric such as a MOS gate dielectric to store digital information.
Non-volatile memory retains stored data when power is removed, which is required or at least highly desirable in many different types of computers and other electronic devices. One commonly available type of nonvolatile memory is the programmable read-only memory ("PROM"), which uses word line--bit line crosspoint elements such as fuses, anti-fuses, and trapped charge devices such as the floating gate avalanche injection metal oxide semiconductor ("FAMOS") transistor to store logical information. PROM typically is not reprogrammable.
An example of one type of PROM cell that uses the breakdown of a silicon dioxide layer in a capacitor to store digital data is disclosed in U.S. Pat. No. 6,215,140, issued Apr. 10, 2001 to Reisinger et al. The basic PROM disclosed by Reisinger et al. uses a series combination of an oxide capacitor and a junction diode as the crosspoint element. An intact capacitor represents the logic value 0, and an electrically broken-down capacitor represents the logic value 1. The thickness of the silicon dioxide layer is adjusted to obtain the desired operation specifications. Silicon dioxide has a breakdown charge of about 10 C/cm2 (Coulomb/cm2). If a voltage of 10 volts is applied to a capacitor dielectric with a thickness of 10 nm (resultant field strength 10 mV/cm), a current of about 1 mA/cm2 flows. With 10 volts, this thus results in a substantial amount of time for programming a memory cell. However, it is more advantageous to design the capacitor dielectric to be thinner, in order to reduce the high power loss which occurs during electrical breakdown. For example, a memory cell configuration having a capacitor dielectric with a thickness of 3 to 4 nm can be operated at about 1.5 V. The capacitor dielectric does not yet break down at this voltage, so that 1.5 V is sufficient to read data from the memory cell. Data are stored, for example, at 5 V, in which case one cell strand in a memory cell configuration can be programmed within about 1 ms. The energy loss which occurs in this case per cm2 of capacitor dielectric is then about 50 Watts (10 Coulomb * 5 V). If the desired power loss is about 0.5 W, about 100 s are required to program a 1 Gigabit memory. If the permissible power losses are higher, the programming can be carried out correspondingly more quickly.
Some types of non-volatile memory are capable of being repeatedly programmed and erased, including erasable programmable read only semiconductor memory generally known as EPROM, and electrically erasable programmable read only semiconductor memory generally known as EEPROM. EPROM memory is erased by application of ultraviolet light and programmed by application of various voltages, while EEPROM memory is both erased and programmed by application of various voltages. EPROMs and EEPROMs have suitable structures, generally known as floating gates, that are charged or discharged in accordance with data to be stored thereon. The charge on the floating gate establishes the threshold voltage, or VT, of the device, which is sensed when the memory is read to determine the data stored therein. Typically, efforts are made to minimize gate oxide stress in these types of memory cells.
A device known as a metal nitride oxide silicon ("MNOS") device has a channel located in silicon between a source and drain and overlain by a gate structure that includes a silicon dioxide layer, a silicon nitride layer, and an aluminum layer. The MNOS device is switchable between two threshold voltage states VTH(high) and VTH(low) by applying suitable voltage pulses to the gate, which causes electrons to be trapped in the oxide-nitride gate (VTH(high)) or driven out of the oxide-nitride gate (VTH(low)). Typically, efforts are made to minimize gate oxide stress in these types of memory cells.
A junction breakdown memory cell that uses a stored charge on the gate of a gate controlled diode to store logic 0 and 1 values is disclosed in U.S. Pat. No. 4,037,243, issued Jul. 19, 1977 to Hoffman et al. Charge is stored on the gate by using a capacitance formed between the p-type electrode of the gate controlled diode and the gate electrode. Charge storage is enhanced by using a composite dielectric in the capacitor formed from silicon dioxide and silicon nitride layers in place of silicon dioxide. The application of an erase voltage to the electrode of the gate controlled diode causes the oxide-nitride interface surface to fill with negative charge, which is retained after the erase operation is completed. This negative interface charge causes the gate-controlled diode to operate in an induced junction mode even after the erase voltage is removed. When the gate-controlled diode is thereafter read, it exhibits field-induced junction breakdown of its channel and saturation current flows. The field induced junction breakdown voltage is less than metalurgalical junction breakdown voltage. However, the application of a write voltage to the electrode of the gate controlled diode causes the silicon dioxide/silicon nitride interface to fill with positive charge, which is retained after the write operation is completed. When the gate controlled diode is thereafter read, it will not break down because no channel exists. Only a slight current flows. The different current flows are sensed and indicate different logic states.
Improvements in the various processes used for fabricating the various types of nonvolatile memory tend to lag improvements in widely used processes such as the advanced CMOS logic process. For example, processes for devices such as Flash EEPROM devices tend to use 30% more mask steps than the standard advanced CMOS logic process to produce the various special regions and structures required for the high voltage generation circuits, the triple well, the floating gate, the ONO layers, and the special source and drain junctions typically found in such devices. Accordingly, processes for Flash devices tend to be one or two generations behind the standard advance CMOS logic process and about 30% more expensive on a cost-per-wafer basis. As another example, processes for antifuses must be suitable for fabricating various antifuse structures and high voltage circuits, and so also tend to be about one generation behind the standard advanced CMOS process.
Generally, great care is taken in the fabrication of the silicon dioxide layer used in metal-oxide-silicon (MOS) devices such as capacitors and transistors. The high degree of care is necessary to ensure that the silicon dioxide layer is not stressed during manufacture or subsequent normal operation of the integrated circuit, so that the desired device characteristics are attained and are stable over time. One example of how much care is taken during fabrication is disclosed in U.S. Pat. No. 5,241,200, issued Aug. 31, 1993 to Kuroda. Kuroda discloses the use of a diffused layer and a shunt to discharge charges accumulated in the word line during a wafer fabrication process. Avoiding this charge accumulation ensures that a large electric field is not applied to the gate insulating film, so that variations in the characteristics of transistors using the word line as their gate wiring line and degradation and breakdown of the gate insulating film are prevented. An example of how much care is taken in circuit design to avoid stressing the silicon dioxide layer of a transistor during normal circuit operation is disclosed in U.S. Pat. No. 6,249,472, issued Jun. 19, 2001 to Tamura et al. Tamura et al. disclose an antifuse circuit having an antifuse in series with a p-channel MOS transistor in one embodiment and in series with an n-channel MOS transistor in another embodiment. While the antifuse is fabricated without the additional film manufacturing processes typically required for fabricating antifuse circuits, Tamura et al. encounter another problem. When the antifuse is shorted out, the series-connected transistor is exposed to a high voltage sufficient to break down the silicon dioxide layer of the transistor. Tamura et al. disclose the addition of another transistor to the circuit to avoid exposing the first transistor to the break down potential.
The present invention is a reprogrammable non-volatile memory cell and memory array. The non-volatile memory is comprised of semiconductor memory cells having a data storage element constructed around an ultra-thin dielectric, such as a gate oxide, used to store information by stressing the ultra-thin dielectric into breakdown (soft or hard breakdown) to set the leakage current level of the memory cell. The memory cell is read by sensing the current drawn by the cell. A suitable ultra-thin dielectric is, for example, high quality gate oxide of about 50 Å thickness or less, as is commonly available from presently available advanced CMOS logic processes, for example. Such oxides are commonly formed by deposition, by oxide growth from a silicon active region, or by some combination thereof. Other suitable dielectrics include oxide-nitride-oxide composites, compound oxides, and so forth.
The memory cells are reprogrammable by increasing the magnitude of dielectric breakdown from a "soft" breakdown to a "hard" breakdown as the memory cells are reprogrammed. Importantly, as the magnitude of the breakdown increases, the amount of sensed leakage current increases. Using this phenomena, the memory cell can be reprogrammed, albeit a finite number of times.
In the following description, numerous specific details are provided to provide a thorough understanding of embodiments of the invention. One skilled in the relevant art will recognize, however, that the invention can be practiced without one or more of the specific details, or with other methods, components, materials, etc. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of the invention.
Reference throughout this specification to "one embodiment" or "an embodiment" means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of the phrases "in one embodiment" or "in an embodiment" in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
Initially, a detailed description of the memory cells and memory array incorporated into the smart card is disclosed. Then, a description of a smart card that incorporates the memory cells and memory array is disclosed.
An example of an arbitrary 4 by 4 portion of a memory array 100 that includes several such memory cells is shown in the schematic diagram of FIG. 1.
The MOS transistor 115 is also referred to herein as a select transistor and is used to "select" a particular memory cell for programming or reading. As will be seen below, during the programming step, a large voltage is applied to the select transistor and MOS half-transistor 111 to break down the gate oxide of the MOS half-transistor 111. However, it is undesirable to break down the gate oxide of the select transistor. Therefore, the gate oxide of the select transistor may be made, in some alternative embodiments, to have a thicker gate oxide than that of the MOS half-transistor 111. Additionally or in the alternative, the select transistor may be replaced by an I/O device that is more resistant to break down.
The gate of the MOS half-transistor 111 is connected to the column line C1. The other memory cells shown in
A MOS half-transistor functions as follows. During programming or read, a positive voltage (for a p-type active region) is applied to the gate, which is one terminal of the capacitor. The gate acts as one plate of the capacitor and also causes an n-type inversion layer to form under the gate. The inversion layer acts as the other plate of the capacitor, and together with the source/drain region forms the second terminal of the capacitor.
The use of half-transistor type data storage elements in the array 100 of
Although only a 4 by 4 portion of the memory array 100 is shown, in practice such memory arrays contain on the order of about one gigabit of memory cells when fabricated using, for example, an advanced 0.13 μm CMOS logic process, and even larger memories will be realized as CMOS logic processes improve further. The memory 100 in practice is organized into bytes and pages and redundant rows (not shown), which may be done in any desired manner. Many suitable memory organizations are well known in the art.
The memory array 100 preferably is laid out in a grid in which the column lines such as C1 and C2 are orthogonal to the row lines such as R1, R2, R3 and R4 as well as the diffused source lines. An active region mask, containing pattern 213 (FIG. 2), is used to form oxide isolation structures, which include oxide trenches 302 and 314 (FIG. 3), and to define the active regions such as 313 (FIG. 3), which will contain the various transistors, half-transistors, and diffused source lines of the memory array. The MOS half-transistor 111 and the MOS transistor 115 at the crosspoint of the row line R1 and the column line C1 and the MOS half-transistor 125 and the MOS transistor 121 at the crosspoint of the row line R2 and the column line C1 are formed in the p well active region 313 in the following manner.
An ultra-thin gate oxide layer 312 is formed followed by a deposition and doping of polysilicon, which is patterned using a gate mask containing patterns such as 211, 214, 221 and 224 for the gates 311 and 301 of half-transistor 111, 125 (as well as the gates (not shown) of half-transistors 112 and 126 and other half-transistors), and patterns such as R1 and R2 for the row lines R1 and R2, which also serve as gates for the select transistors 115, 121, 116 and 122 (as well as other select transistors). The various source and drain regions are formed by negative lightly doped drain ("NLDD") process steps (implants, spacers, and n+source/drain implants), creating the n+ regions 306, 308 and 310. The region 308 is also part of a diffused source line. A contact mask including patterns 210, 215, 220 and 225 (
The n+regions 406 and 410 allow the capacitors 425 and 411 to have very low resistance conductive states relative to the half-transistor 125 and 111 of
A variation of the memory array 100 is the memory array 500 shown in
As in the case of the memory array of
The operation of the memory array 100 is now explained with reference to the illustrative voltages shown in FIG. 8. It will be appreciated that the voltages are illustrative, and that different voltages are likely to be used in different applications or when different process technologies are used. During programming, the various memory cells in the memory array 100 are exposed to one of four possible voltage combinations, which are shown on lines 801, 802, 803 and 804 of FIG. 8. Read voltages are shown on lines 805, 806, 807 and 808.
Assume that the selected row and column ("SR/SC") is R1 and C1, which is intended to program the memory cell formed by transistor 115 and half-transistor 111. As shown on line 801, the voltage on the row line R1 is 2.5 volts and the voltage on the source line S1 is 0 volts, which is sufficient to turn on the transistor 115 and bring the drain of transistor 115 to zero volts. The voltage on the column line C1 is 7.0 volts, which causes a potential difference of 7 volts across the half-transistor 111. The gate oxide 212 in the half-transistor 111 is designed to break down at this potential difference, which programs the memory cell. When the half-transistor 111 breaks down, the resulting conductive path has sufficient resistivity to prevent the gate oxide 212 of the transistor 115 from becoming degraded or breaking down. As one example, in some devices, the channel resistance of the transistor 115 is on the order of about 10 KΩ while the resistance of the broken down oxide is on the order of greater than about 100 KΩ.
With R1 and C1 being the selected row and column, consider the impact on the memory cell formed by transistor 116 and half-transistor 112, which is at the crosspoint of a selected row and unselected column ("SR/UC"). As shown on line 802, the voltage on the row line R1 is 2.5 volts and the voltage on the source line S1 is 0 volts, which is sufficient to turn on the transistor 116 and bring the drain of transistor 115 to zero volts. However, the voltage on the column line C2 is 0 volts, which causes a potential difference of 0 volts across the half-transistor 112. The memory cell does not program.
With R1 and C1 being the selected row and column, consider the impact on the memory cell formed by transistor 121 and half-transistor 125, which is at the crosspoint of an unselected row and a selected column ("UR/SC"). As shown on line 803, the voltage on the row line R2 is 0 volts and the voltage on the source line S1 is 0 volts, so that the transistor 121 does not turn on and the node between the drain of the transistor 121 and the half-transistor 125 floats. The voltage on the column line C1 is 7.0 volts, which causes a potential difference of less than about 4 volts across the half-transistor 125. The memory cell does not program, and the potential difference of less than about 4 volts without any current flow is not sufficient to damage or degrade the gate oxide in either the half-transistor 125 or the transistor 121.
With R1 and C1 being the selected row and column, consider the impact on the memory cell formed by transistor 122 and half-transistor 126, which is at the crosspoint of an unselected row and an unselected column ("UR/UC"). As shown on line 804, the voltage on the row line R2 is 0 volts and the voltage on the source line S1 is 0 volts, so that the transistor 122 does not turn on. The voltage on the column line C2 also is 0 volts, so that no potential difference develops across the half-transistor 126. The memory cell does not program.
The memory array 100 is read in the following manner. A read select voltage of 2.5 volts is placed on the selected row ("SR") and a read column select voltage of 1.5 volts is placed on the selected column ("SC"). All other rows, which are unselected rows ("UR"), and all other columns, which are unselected columns ("UC"), are set at 0 volts. Assume that R1 and C1 are the selected row and column ("SR/SC") and that the memory cell formed by the transistor 115 and the half-transistor 111 is programmed. As shown on line 805, 2.5 volts (a read select voltage) are applied via row line R1 to the gate of the transistor 115 and 0 volts are applied to the source via the source line S1, causing current to be drawn from the column line C1, which is at 1.5 volts, to indicate that the memory cell is programmed. If the memory cell is not programmed, no current would flow to indicate that the memory cell is not programmed.
No current is drawn by memory cells at crosspoints having either an unselected row or an unselected column. As shown on line 806 for the case of a selected row line and an unselected column line, 2.5 volts are applied to the gate of the transistor in the memory cell, but as 0 volts are present on the column line, no current flows. As shown on line 807 for the case of an unselected row line and a selected column line, 0 volts are applied to the gate of the transistor in the memory cell. Although 1.5 volts are present on the column line, no current flows because the transistor remains off. As shown on line 808 for the case of an unselected row line and an unselected column line, 0 volts are applied to the gate of the transistor in the memory cell and 0 volts are present on the column line, so no current flows.
The operation of the memory array 500 is now explained with reference to the voltages shown in
Consider first the illustrative programming voltages listed in the table of FIG. 9. These voltages are appropriate where the half-transistor contains an ultra-thin gate oxide but the select transistors are input/output type devices having a gate oxide thickness greater than 50 Å. During programming, the various memory cells in the memory array 500 are exposed to one of four possible voltage combinations, which are shown on lines 901, 902, 903 and 904 of FIG. 9. Common to all voltage combinations is the value of the source line S1 voltage, which is 0 volts.
Assume that the selected row and column ("SR/SC") is R1 and C1, which is intended to program the memory cell formed by transistor 515 and half-transistor 511. As shown on line 901, the voltage on the row line R1 is 7.0 volts and the voltage on the column line C1 is 7.0 volts, which places 7.0 volts on the gate and drain and is sufficient to turn on the transistor 515. The source of transistor 515 is brought to 7.0 volts less a slight voltage drop across the transistor 515, which causes a potential difference of 6.6 volts across the half-transistor 511. The gate oxide 712 in the half-transistor 511 is designed to break down at this potential difference, which programs the memory cell. When the half-transistor 511 breaks down, the resulting conductive path has sufficient resistivity to prevent the gate oxide 712 of the transistor 515 from becoming degraded or breaking down.
With R1 and C1 being the selected row and column, consider the impact on the memory cell formed by transistor 516 and half-transistor 512, which is at the crosspoint of a selected row and an unselected column ("SR/UC"). As shown on line 902, the voltage on the row line R1 is 7.0 volts and the voltage on the column line C1 is 0 volts, which places 7.0 volts on the gate and is sufficient to turn on the transistor 516 and bring the source of transistor 516 to about the voltage on the column line C2, which is zero volts. Since the potential difference across the half-transistor 512 is about 0 volts, the memory cell does not program.
With R1 and C1 being the selected row and column, consider the impact on the memory cell formed by transistor 525 and half-transistor 521, which is at the crosspoint of an unselected row and a selected column ("UR/SC"). As shown on line 903, the voltage on the row line R2 is 0 volts and the voltage on the column line C1 is 7.0 volts, which places 0 volts on the gate and 7.0 volts on the drain. The transistor 525 does not turn on, although the 7.0 voltage difference between the potential on the drain and the potential on the source line S1 approximately divides between the transistor 525 and the half-transistor 125 and causes less than 4 volts to appear across the oxide of the half-transistor 521. The memory cell does not program, and the potential difference of less than about 4 volts without any current flow is not sufficient to damage or degrade the gate oxide in either the half-transistor 521 or the transistor 525.
With R1 and C1 being the selected row and column, consider the impact on the memory cell formed by transistor 526 and half-transistor 522, which is at the crosspoint of an unselected row and an unselected column ("UR/UC"). As shown on line 904, the voltage on the row line R2 is 0 volts and the voltage on the drain line C2 is 0 volts, so that the transistor 526 does not turn on. The voltage on the source line S1 also is 0 volts, so that no potential difference develops across the half-transistor 522. The memory cell does not program.
Consider next the illustrative programming voltages listed in the table of FIG. 10. These voltages are appropriate where both the half-transistors and the select transistors contain an ultra-thin gate oxide. During programming, the various memory cells in the memory array 500 are exposed to one of four possible voltage combinations, which are shown on lines 1001, 1002, 1003 and 1004 of FIG. 10. Common to all voltage combinations is the value of the source line S1 voltage, which is minus 4.5 volts.
Assume that the selected row and column ("SR/SC") is R1 and C1, which is intended to program the memory cell formed by transistor 515 and half-transistor 511. As shown on line 1001, the voltage on the row line R1 is 2.5 volts and the voltage on the column line C1 is 2.5 volts, which places 2.5 volts on the gate and drain and is sufficient to turn on the transistor 515. The source of transistor 515 is brought to 2.5 volts less a slight voltage drop across the transistor 515, which causes a potential difference of 6.6 volts across the half-transistor 511. The gate oxide 712 in the half-transistor 511 is designed to break down at this potential difference, which programs the memory cell. When the half-transistor 511 breaks down, the resulting conductive path has sufficient resistivity to prevent the gate oxide 712 of the transistor 515 from becoming degraded or breaking down.
With R1 and C1 being the selected row and column, consider the impact on the memory cell formed by transistor 516 and half-transistor 512, which is at the crosspoint of a selected row and an unselected column ("SR/UC"). As shown on line 1002, the voltage on the row line R1 is 2.5 volts and the voltage on the column line C1 is 0 volts, which places 2.5 volts on the gate and is sufficient to turn on the transistor 516 and bring the source of transistor 516 to about the voltage on the column line C2, which is zero volts. Since the potential difference across the half-transistor 512 is about 4.0 volts, the memory cell does not program.
With R1 and C1 being the selected row and column, consider the impact on the memory cell formed by transistor 525 and half-transistor 521, which is at the crosspoint of an unselected row and a selected column ("UR/SC"). As shown on line 1003, the voltage on the row line R2 is 0 volts and the voltage on the column line C1 is 2.5 volts, which places 0 volts on the gate and 2.5 volts on the drain. The transistor 525 does not turn on, although the 6.5 volt difference between the potential on the drain and the potential on the source line S1 approximately divides between the transistor 525 and the half-transistor 125 and causes less than about 4 volts to appear across the oxide of the half-transistor 521. The memory cell does not program, and the potential difference of less than about 4 volts without any current flow is not sufficient to damage or degrade the gate oxide in either the half-transistor 521 or the transistor 525.
With R1 and C1 being the selected row and column, consider the impact on the memory cell formed by transistor 526 and half-transistor 522, which is at the crosspoint of an unselected row and an unselected column ("UR/UC"). As shown on line 1004, the voltage on the row line R2 is 0 volts and the voltage on the drain line C2 is 0 volts, so that the transistor 526 does not turn on. Since the voltage on the source line S1 is minus 4.5 volts, the potential difference that develop across the half-transistor 522 is less than about 4 volts. The memory cell does not program, and the potential difference of less than about 4 volts without any current flow is not sufficient to damage or degrade the gate oxide in either the half-transistor 522 or the transistor 526.
Regardless of whether the programming voltages of the table of
No current is drawn by memory cells at crosspoints having either an unselected row or an unselected column. As shown on lines 906 and 1006 for the case of a selected row line and an unselected column line, 2.5 volts are applied to the gate of the transistor in the memory cell, but as 0 volts are present on the column line, no current flows. As shown on lines 907 and 1007 for the case of an unselected row line and a selected column line, 0 volts are applied to the gate of the transistor in the memory cell. Although 1.5 volts are present on the column line, no current flows because the transistor remains off. As shown on lines 908 and 1008 for the case of an unselected row line and an unselected column line, 0 volts are applied to the gate of the transistor in the memory cell and 0 volts are present on the column line, so no current flows.
Various studies of oxide breakdown, which were performed in contexts different than the memory cells shown in the arrays 100 (
Rasras et al. performed a carrier separation experiment which demonstrated that, under positive gate bias, impact ionization of the electrons in the substrate is the dominant source of the substrate hole current. Mahmoud Rasras, Ingrid De Wolf, Guido Groeseneken, Robin Degraeve, Herman e. Maes, Substrate Hole Current Origin after Oxide Breakdown, IEDM 00-537, 2000. A constant voltage stress experiment was performed on ultra-thin oxide in an arrangement in which channel inversion was involved, and established that both SBD and HBD may be used for storing data, and that a desired degree of SBD or HBD may be obtained by controlling the time over which the gate oxide storage element is stressed.
Sune et al. studied post SBD conduction in ultra-thin silicon dioxide films. Jordi Sune, Enrique Miranda, Post Soft Breakdown conduction in SiO2 Gate Oxides, IEDM 00-533, 2000. Various stages in the current-voltage ("I-V") characteristics of an ultra-thin gate oxide as degradation proceeds are shown in
Wu et al. studied the voltage dependency of voltage acceleration for ultra-thin oxides. E. Y. Wu et al., Voltage-Dependent Voltage-Acceleration of Oxide Breakdown for Ultra-Thin Oxides, IEDM 00-541, 2000.
Miranda et al. measured the I-V characteristics of nMOSFET devices having an oxide thickness of 3 nm and an area of 6.4×10-5 cm2 after the detection of successive breakdown events. Miranda et al., "Analytic Modeling of Leakage Current Through Multiple Breakdown Paths in SiO2 Films", IEEE 39th Annual International Reliability Physics Symposium, Orlando, Fla., 2001, pp 367-379.
The memory array 100 shown in
The memory incorporating the memory array 100 preferably is manufactured using any advanced process that makes n type gated devices, p type gated devices, or both types of devices, and can achieve a gate dielectric that is sufficiently thin to be stressed to SBD or HBD in a practical time using a voltage that is less than the junction voltage or the available thickest oxide breakdown voltage. Advanced CMOS logic processes are quite suitable, and are described in the literature; see, e.g., U.S. Pat. No. 5,700,729, issued Dec. 23, 1997 to Lee et al. Processing services using such processes are available from various manufacturers, including Taiwan Semiconductor Manufacturing Company, Ltd. ("TSMC") of Hsinchu, Taiwan, and San Jose, Calif.; United Microelectronics Corporation ("UMC") of Hsinchu, Taiwan, and Chartered Semiconductor Ltd. of Singapore and San Jose, Calif. However, any of a great many different MOS processes of different lithography may be used, including but not limited to 0.25 μm, 0.18 μm, 0.15 μm, and 0.13 μm which are commonly available at present, and lithography of 0.10 μm and better which are likely to be commonly available in the future.
All of the various MOS transistors, MOS half-transistors, and MOS capacitors used in the various memory cells described herein in most cases are normal low voltage logic transistors having, for example, an ultra-thin gate oxide thickness on the order of 50 Å for a 0.25 μm process, or on the order of 20 Å for a 0.13 μm process. The voltage across such an ultra-thin gate oxide can be temporarily during programming much higher than VCC, which typically is 2.5 volts for an integrated circuit fabricated with a 0.25 μm process, and 1.2 volts for an integrated circuit fabricated with a 0.13 μm process. Such ultra-thin oxides typically can stand up to as much as 4 or 5 volts without significant degradation on the transistor performance. In the event that voltages are used in the memory array that expose the cell select transistors to more than about 4 volts, which is the case for the voltages shown in the table of
The principles and structures discussed above can be used to form a reprogrammable memory cell. Consequently, the reprogrammable memory cells can be used to form a reprogrammable memory array. In particular, by controlling the degree of breakdown of the ultra-thin dielectrics of the half transistors or capacitors, the magnitude of the current that is drawn by the memory cells during a read operation can be used to indicate the data stored within a memory cell. Thus, the memory cell can be reprogrammed by successively increasing the degree or amount of breakdown of the ultra-thin dielectric.
As noted above, the amount of current drawn during reading of a memory cell is dependent upon the extent of the breakdown of the ultra-thin dielectric. Thus, the current drawn from a memory cell will be more for a hard breakdown condition then for a soft breakdown condition. Similarly, the current drawn from a memory cell will be more for a soft breakdown condition then for a no breakdown condition. Further, as shown above, the ultra-thin dielectric can be in any one of several (or plurality) breakdown states ranging from no breakdown to hard breakdown.
As an example to further illustrate, for a soft breakdown condition, current will be drawn during the read operation. If, however, the memory cell is not programmed, then the ultra-thin dielectric has not undergone any breakdown stress, and no current will be drawn during the read operation. In that situation, where the memory cell is programmed for a first time, the current drawn from non-programmed memory cells is extremely small, perhaps on the order of less than one picoampere (pA). For those memory cells that have been programmed a first time, typically to a first soft breakdown state, the current drawn during the read operation is some discrete amount, perhaps on the order of greater than ten picoamperes. Therefore, the read operation after a first programming should be able to distinguish between non-programmed memory cells which draw an extremely small current (less than 1 pA) and programmed memory cells that draw a current greater than 10 pA. It should be noted that the current drawn is in large part dependent upon the geometry of the memory cell and that the examples discussed above is merely exemplar. Therefore, other magnitudes of drawn current are entirely possible. The important consideration is that a differentiation exists between the amount of drawn current from a programmed memory cell and an unprogrammed memory cell. The differentiation should be sufficient for current sensing apparatus.
Such reprogrammable memory cells (and individual memory cells comprising of memory array) can be reprogrammed (i.e. programmed a second time and subsequent times) by incrementally stressing the ultra-thin dielectric layer to a second state of breakdown. This can be accomplished by programming the selected memory cells that are to be programmed using a higher programming voltage or applying the programming voltage for a greater amount of time. While either technique may be used, the crucial attribute is that the ultra-thin dielectric in programmed cells should undergo additional stress in order to induce greater breakdown.
It has been found that an increase in stress voltage of one volt will reduce the breakdown time by approximately three orders of magnitude. As an example, for a 20 angstrom thick gate oxide, the breakdown at four volts is about one second, whereas the breakdown at five volts is about one millisecond.
In accordance with the present invention, the breakdown of the gate oxide can be controlled by controlling the voltage applied to the gate of the row select transistors 115, 116, 117, and 118 of FIG. 1. The row select transistors are those transistors that select the specific row to be programmed. These row select transistors are controlled by lines R1, R2, R3, and R4 in
By controlling the gate voltage, the amount of current that is used to program the half-transistors can be carefully controlled. Thus, by applying different levels of gate bias on the row select transistor during programming, the amount of current causing breakdown can be controlled. For example, the voltage applied to the gate oxide can be held constant and the time for programming held constant, but the gate bias to the row select transistor can be used to control the amount of current breaking down the gate oxide. In this manner, the amount of breakdown to the gate oxide can be more accurately controlled.
Indeed, it is found that the amount of current during the read operation is related to the amount of current used to break down the gate oxide. In other words, the post break down current is related to the current used to initially break down the gate oxide.
As seen in
While five breakdown states are illustrated in
In one regard, the memory cells can be "erased" by simply raising the current sensing threshold. For example, after a first programming, assume that the memory cell is considered programmed if a current above 15 nA is sensed. Memory cells are considered not programmed if less than 15 nA is sensed. The entire memory cell array can be erased to a "clean slate" simply by raising the magnitude of current the current sensing circuit responds to. Thus, by raising the threshold to, for example, 5 microamps, all of the memory cells will be considered erased, since none of them (even the previously programmed memory cells) will exhibit a current more than 5 microamps during the read operation.
Thus, in summary, each memory cell can be programmed to one of a plurality of breakdown states. As reprogramming takes place, various memory cells are programmed to breakdown states that result in a larger and larger current being drawn by the memory cell. The current is sensed by the sense amplifier 1614 in order to determine whether or not a memory cell has been programmed. All cells that do not have a current drawn that is greater than some predetermined threshold (varying as the memory array is cycled through reprogramming procedures), are determined to carry one data state. All memory cells that exhibit a current draw that is greater than a predetermined threshold, will exhibit another memory state.
The description of the invention and its applications as set forth herein is illustrative and is not intended to limit the scope of the invention. Variations and modifications of the embodiments disclosed herein are possible, and practical alternatives to and equivalents of the various elements of the embodiments are known to those of ordinary skill in the art. For example, the various voltages set forth in the various examples are only illustrative, since one has some discretion as to the precise voltage to select within a range of voltages, and the voltages are in any event dependent on the device characteristics. The terms row line, column line, and source line have been used to describe types of lines commonly used in memories, but some memories may alternatives thereto. Generally speaking, row lines may be considered to be a specific type of select line, and column and source lines may be considered to be specific types of access lines. These and other variations and modifications of the embodiments disclosed herein may be made without departing from the scope and spirit of the invention.
Patent | Priority | Assignee | Title |
10217521, | Sep 01 2015 | Lattice Semiconductor Corporation | Multi-time programmable non-volatile memory cell |
10369067, | Oct 28 2008 | Covidien LP | Method and apparatus to detect transponder tagged objects, for example during medical procedures |
10595958, | Oct 28 2008 | Covidien LP | Wirelessly detectable objects for use in medical procedures and methods of making same |
10660726, | Jan 21 2015 | Covidien LP | Sterilizable wirelessly detectable objects for use in medical procedures and methods of making same |
10709521, | Jul 11 2016 | Covidien LP | Method and apparatus to account for transponder tagged objects used during clinical procedures, employing a shielded receptacle |
10716641, | Mar 27 2018 | Covidien LP | Method and apparatus to account for transponder tagged objects used during clinical procedures, employing a trocar |
10722323, | Nov 23 2009 | Covidien LP | Method and apparatus to account for transponder tagged objects used during medical procedures |
10770178, | Jul 11 2016 | Covidien LP | Method and apparatus to account for transponder tagged objects used during clinical procedures employing a shielded receptacle with antenna |
10803966, | Jul 16 2019 | Nanya Technology Corporation | Method of blowing an antifuse element |
10835348, | Jul 11 2016 | Covidien LP | Method and apparatus to account for transponder tagged objects used during clinical procedures, for example including count in and/or count out and presence detection |
10849713, | Mar 27 2018 | Covidien LP | Method and apparatus to account for transponder tagged objects used during clinical procedures, employing a trocar |
10874560, | Jan 21 2015 | Covidien LP | Detectable sponges for use in medical procedures and methods of making, packaging, and accounting for same |
11065080, | Jul 11 2016 | Covidien LP | Method and apparatus to account for transponder tagged objects used during clinical procedures, employing a trocar |
11065081, | Jan 21 2015 | Covidien LP | Sterilizable wirelessly detectable objects for use in medical procedures and methods of making same |
11289190, | Jul 11 2016 | Covidien LP | Method and apparatus to account for transponder tagged objects used during clinical procedures employing a shielded receptacle with antenna |
11295825, | Aug 26 2016 | Lattice Semiconductor Corporation | Multi-time programmable non-volatile memory cell |
11872094, | Jul 11 2016 | Covidien LP | Method and apparatus to account for transponder tagged objects used during clinical procedures, employing a trocar |
6791891, | Apr 02 2003 | Synopsys, Inc | Method of testing the thin oxide of a semiconductor memory cell that uses breakdown voltage |
6798693, | Sep 18 2001 | Synopsys, Inc | Semiconductor memory cell and memory array using a breakdown phenomena in an ultra-thin dielectric |
6882029, | Nov 27 2003 | United Microelectronics Corp.; United Microelectronics Corp | Junction varactor with high Q factor and wide tuning range |
6956258, | Oct 17 2001 | Synopsys, Inc | Reprogrammable non-volatile memory using a breakdown phenomena in an ultra-thin dielectric |
6972986, | Feb 03 2004 | Synopsys, Inc | Combination field programmable gate array allowing dynamic reprogrammability and non-votatile programmability based upon transistor gate oxide breakdown |
6977521, | Aug 15 2003 | Synopsys, Inc | Field programmable gate array |
6992925, | Apr 26 2002 | Synopsys, Inc | High density semiconductor memory cell and memory array using a single transistor and having counter-doped poly and buried diffusion wordline |
7031209, | Sep 26 2002 | Synopsys, Inc | Methods and circuits for testing programmability of a semiconductor memory cell and memory array using a breakdown phenomenon in an ultra-thin dielectric |
7042772, | Sep 26 2002 | Synopsys, Inc | Methods and circuits for programming of a semiconductor memory cell and memory array using a breakdown phenomenon in an ultra-thin dielectric |
7052962, | Apr 04 2003 | XILINX, Inc. | Non-volatile memory cell and method of manufacturing a non-volatile memory cell |
7061275, | Aug 15 2003 | Synopsys, Inc | Field programmable gate array |
7064973, | Feb 03 2004 | Synopsys, Inc | Combination field programmable gate array allowing dynamic reprogrammability |
7132350, | Jul 21 2003 | Macronix International Co., Ltd. | Method for manufacturing a programmable eraseless memory |
7135886, | Sep 20 2004 | Lattice Semiconductor Corporation | Field programmable gate arrays using both volatile and nonvolatile memory cell properties and their control |
7164290, | Jun 10 2004 | Lattice Semiconductor Corporation | Field programmable gate array logic unit and its cluster |
7180123, | Jul 21 2003 | Macronix International Co., Ltd. | Method for programming programmable eraseless memory |
7193436, | Apr 18 2005 | Lattice Semiconductor Corporation | Fast processing path using field programmable gate array logic units |
7253064, | Aug 29 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Cascode I/O driver with improved ESD operation |
7388770, | Jan 13 2005 | Kabushiki Kaisha Toshiba | One-time programable memory with additional programming time to ensure hard breakdown of the gate insulating film |
7471540, | Jan 24 2007 | Synopsys, Inc | Non-volatile semiconductor memory based on enhanced gate oxide breakdown |
7623368, | Jan 24 2007 | Synopsys, Inc | Non-volatile semiconductor memory based on enhanced gate oxide breakdown |
7692483, | Oct 10 2007 | Atmel Corporation | Apparatus and method for preventing snap back in integrated circuits |
7715247, | Sep 06 2008 | One-time programmable read-only memory with a time-domain sensing scheme | |
7764532, | May 06 2004 | Synopsys, Inc | High speed OTP sensing scheme |
7839160, | Mar 21 2007 | MARVELL INTERNATIONAL LTD | Stress programming of transistors |
7903379, | Aug 29 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Cascode I/O driver with improved ESD operation |
8026574, | May 06 2004 | Synopsys, Inc | Anti-fuse memory cell |
8085604, | Dec 12 2008 | Atmel Corporation | Snap-back tolerant integrated circuits |
8130532, | May 06 2004 | Synopsys, Inc | High speed OTP sensing scheme |
8134859, | Sep 25 2009 | Silicon Storage Technology, Inc | Method of sensing a programmable non-volatile memory element |
8149011, | Mar 21 2007 | CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | Stress programming of transistors |
8199590, | Sep 25 2009 | Silicon Storage Technology, Inc | Multiple time programmable non-volatile memory element |
8208312, | Sep 22 2009 | Silicon Storage Technology, Inc | Non-volatile memory element integratable with standard CMOS circuitry |
8283751, | May 06 2004 | Synopsys, Inc | Split-channel antifuse array architecture |
8313987, | May 06 2004 | Synopsys, Inc | Anti-fuse memory cell |
8339831, | Oct 07 2010 | eMemory Technology Inc. | Single polysilicon non-volatile memory |
8384155, | Jul 18 2006 | eMemory Technology Inc. | Semiconductor capacitor |
8501591, | Jul 21 2003 | Macronix International Co., Ltd. | Method for manufacturing a multiple-bit-per-cell memory |
8735297, | May 06 2004 | Synopsys, Inc | Reverse optical proximity correction method |
8767433, | May 06 2004 | Synopsys, Inc | Methods for testing unprogrammed OTP memory |
9123572, | May 06 2004 | Synopsys, Inc | Anti-fuse memory cell |
9245648, | Sep 26 2014 | Qualcomm Incorporated | Logic high-dielectric-constant (HK) metal-gate (MG) one-time-programming (OTP) memory device sensing method |
9514341, | Mar 31 2014 | Covidien LP; RF SURGICAL SYSTEMS LLC | Method, apparatus and article for detection of transponder tagged objects, for example during surgery |
9634015, | Aug 18 2015 | eMemory Technology Inc. | Antifuse-type one time programming memory cell and array structure with same |
9717565, | Jan 21 2015 | Covidien LP | Wirelessly detectable objects for use in medical procedures and methods of making same |
9730850, | Oct 28 2008 | Covidien LP; RF SURGICAL SYSTEMS LLC | Method and apparatus to detect transponder tagged objects, for example during medical procedures |
9763742, | Oct 28 2008 | Covidien LP; RF SURGICAL SYSTEMS LLC | Wirelessly detectable objects for use in medical procedures and methods of making same |
9799662, | Aug 18 2015 | eMemory Technology Inc. | Antifuse-type one time programming memory cell and array structure with same |
Patent | Priority | Assignee | Title |
4490900, | Jan 29 1982 | Atmel Corporation | Method of fabricating an MOS memory array having electrically-programmable and electrically-erasable storage devices incorporated therein |
5150179, | Jul 05 1990 | Texas Instruments Incorporated | Diffusionless source/drain conductor electrically-erasable, electrically-programmable read-only memory and method for making and using the same |
5578848, | May 04 1994 | Intellectual Ventures Holding 40 LLC | Ultra thin dielectric for electronic devices and method of making same |
5675547, | Jun 01 1995 | Sony Corporation | One time programmable read only memory programmed by destruction of insulating layer |
5745417, | Apr 07 1992 | Renesas Electronics Corporation | Electrically programmable and erasable nonvolatile semiconductor memory device and operating method therefor |
5909049, | Feb 11 1997 | MICROSEMI SOC CORP | Antifuse programmed PROM cell |
5986931, | Jan 02 1997 | JOHN MILLARD AND PAMELA ANN CAYWOOD 1989 REVOCABLE LIVING TRUST, THE | Low voltage single CMOS electrically erasable read-only memory |
6034893, | Jun 15 1999 | AMD TECHNOLOGIES HOLDINGS, INC ; GLOBALFOUNDRIES Inc | Non-volatile memory cell having dual avalanche injection elements |
6064595, | Dec 23 1998 | Lattice Semiconductor Corporation | Floating gate memory apparatus and method for selected programming thereof |
6157568, | Dec 23 1998 | Lattice Semiconductor Corporation | Avalanche programmed floating gate memory cell structure with program element in first polysilicon layer |
6166954, | Jul 14 1999 | INTEGRATED SILICON SOLUTION, INC | Single poly non-volatile memory having a PMOS write path and an NMOS read path |
6214666, | Dec 18 1998 | Lattice Semiconductor Corporation | Method of forming a non-volatile memory device |
6215140, | Sep 18 1998 | Siemens Aktiengesellschaft | Electrically programmable non-volatile memory cell configuration |
6232631, | Dec 21 1998 | Lattice Semiconductor Corporation | Floating gate memory cell structure with programming mechanism outside the read path |
6282123, | Dec 21 1998 | Lattice Semiconductor Corporation | Method of fabricating, programming, and erasing a dual pocket two sided program/erase non-volatile memory cell |
6294809, | Dec 28 1998 | Lattice Semiconductor Corporation | Avalanche programmed floating gate memory cell structure with program element in polysilicon |
6297103, | Feb 28 2000 | Micron Technology, Inc. | Structure and method for dual gate oxide thicknesses |
6421293, | Dec 23 1998 | STMICROELECTRONICS S A | One-time programmable memory cell in CMOS technology |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 17 2001 | Kilopass Technologies, Inc. | (assignment on the face of the patent) | / | |||
Apr 22 2002 | PENG, JACK ZEZHONG | KILOPASS TECHNOLOGY, INC | CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE NAME PREVIOUSLY RECORDED AT REEL: 012877 FRAME: 0804 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT | 040365 | /0509 | |
Apr 22 2002 | PENG, JACK ZEZHONG | KILOPASS TECHNOLOGY, INC | CORRECTIVE ASSIGNMENT TO CORRECT ASSIGNEE S NAME AND ADDRESS, PREVIOUSLY RECORDED ON 5 06 02 AT REEL 012877 FRAME 0804 | 018087 | /0413 | |
Apr 22 2002 | PENG, JACK ZEZHONG | KILOPASS TECHNOLOGIES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012877 | /0804 | |
Aug 30 2016 | KILOPASS TECHNOLOGY, INC | STRUCTURAL CAPITAL INVESTMENTS II, LP | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 039884 | /0004 | |
May 01 2018 | KILOPASS TECHNOLOGY, INC | Synopsys, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 046099 | /0269 |
Date | Maintenance Fee Events |
Sep 04 2007 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Sep 10 2007 | REM: Maintenance Fee Reminder Mailed. |
Aug 03 2011 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Mar 29 2012 | STOL: Pat Hldr no Longer Claims Small Ent Stat |
Aug 19 2015 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Mar 02 2007 | 4 years fee payment window open |
Sep 02 2007 | 6 months grace period start (w surcharge) |
Mar 02 2008 | patent expiry (for year 4) |
Mar 02 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 02 2011 | 8 years fee payment window open |
Sep 02 2011 | 6 months grace period start (w surcharge) |
Mar 02 2012 | patent expiry (for year 8) |
Mar 02 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 02 2015 | 12 years fee payment window open |
Sep 02 2015 | 6 months grace period start (w surcharge) |
Mar 02 2016 | patent expiry (for year 12) |
Mar 02 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |