In embodiments, a new analog-to-digital converter (ADC) architecture can be used with switch-mode power supplies (SMPS) operating at switching frequencies higher than 10 MHz. Analog-to-digital converter embodiments can achieve very low power consumption, fast conversion time, and can be implemented with a simple hardware. Another noteworthy benefit is that certain ADC embodiments feature a non-linear gain characteristic that provides improved load transient response for digital controllers.
|
1. An Analog-to-digital Converter (ADC) circuit comprising:
a first differential input stage and a second differential input state to receive input voltages as low as zero volts and to produce a reference bias voltage and an output bias voltage;
a reference delay line to receive the reference bias voltage and an output measurement delay line to receive the output bias voltage, each containing different numbers of delay cells; and
an error decoder to determine an output voltage error by comparing propagation times of a clock signal (CLK) through the reference delay line and the output measurement delay line and send a digital equivalent of the output voltage error to a digital compensator.
2. The circuit of
3. The circuit of
4. The circuit of
5. The circuit of
6. The circuit of
7. The circuit of
8. The circuit of
9. The circuit of
10. The circuit of
|
This application claims priority to U.S. Provisional Application No. 60/892,126, entitled “WIDE-INPUT WINDOWED NONLINEAR ANALOG-TO-DIGITAL CONVERTER FOR HIGH-FREQUENCY DIGITALLY CONTROLLED SMPS” by Prodić et al., filed on Feb. 28, 2007.
A portion of the disclosure of this patent document contains material that is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the U.S. Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
The invention relates generally to switch-mode power supplies (SMPS) circuits, and more particularly to a wide-input windowed nonlinear analog-to-digital converter for high-frequency digitally controlled SMPS.
Digital control offers attractive features that can result in significant enhancements of low-power switch-mode power supplies (SMPS). Digital realization allows development of new control techniques that increase overall efficiency of power stage through multimode operation, enable active monitoring of SMPS parameters and subsequent auto-tuning and improve transient response by avoiding gain and parameter variation problems characteristic for analog implementations or using nonlinear control techniques. Also, with the support of automated design tools and hardware description languages (HDL), digital systems can be designed in a short time and easily modified. These tools also allow simple transfer of the designs from one implementation technology to another, i.e.: design portability. This is a highly desirable feature in modern IC design where the chip implementation technologies are changing constantly.
In spite the fact that all of these characteristics are very suitable for low-power applications, in miniature battery-powered devices such as mobile phones, PDA-s, and MP3 players, PWM analog controlled SMPS are almost exclusively used. This is mostly due to the absence of low-power digital architectures that can support operation at constant switching frequencies significantly higher than 1 MHz. The power consumption of the existing digital controllers is often comparable to that of the supplied low-power electronic loads resulting in a poor overall efficiency of the SMPS. At higher switching frequencies the analog controllers take much less power, and consequently are more suitable solution, even though they do not posses most of the abovementioned features. One of the main limitations to maximum switching frequency at which digital controllers can be effectively used in low-power applications is analog-to-digital converter (ADC). Conventional high-speed ADC architectures are usually not suitable solutions.
One problem with conventional ADCs used in low-power dc-dc converters is their poor utilization in terms of performance. Conventional devices usually operate only around one operating point, corresponding to the output voltage of the power stage, which is usually constant.
Preferred Embodiment(s) of the present invention will be described in detail based on the following figures, wherein:
In embodiments, a new analog-to-digital converter (ADC) architecture can be used with switch-mode power supplies (SMPS) operating at switching frequencies higher than 10 MHz. Analog-to-digital converter embodiments can achieve very low power consumption, fast conversion time, and can be implemented with a simple hardware. Another noteworthy benefit is that certain ADC embodiments feature a non-linear gain characteristic that provides improved load transient response for digital controllers. This solution can also allow for operation with low input voltages.
In an embodiment, an ADC combining dual differential input stage, delay lines and nonlinear error logic is provided. The ADC embodiment allows operation with input voltages as low as zero volts and has quantization steps and conversion time independent of the operating point. The nonlinear error logic additionally improves dynamic response by creating non-uniform quantization steps that increase gain of the ADC for non-zero output voltage errors. An ADC embodiment includes a new architecture designed in 0.18-μm CMOS process and tested through simulations. Embodiments employing this digital architecture can enable control of upcoming switching converters that are likely to operate at switching frequencies beyond 100 MHz.
The ADC 102 converts the analog value of the power stage output voltage, vout(t), into its digital equivalent vout[n]. Based on the digital reference value Vref a digital error signal e[n] is formed. This error is then processed by the digital compensator 104 that produces digital variable d[n]. Based on d[n] the digital-pulse width modulator (DPWM) 106 produces a pulse-width modulated analog signal c(t) that regulate operation of the solid-state switch sw1. The frequency of c(t), i.e.: switching frequency fsw=1/Ts, in this type of implementation can be constant.
To satisfy requirements for tight output voltage regulation and fast dynamic response the ADC should be able to perform conversion accurately, inside one switching cycle. Meaning that in a SMPS converter operating at 10 MHz, the ADC should be able to perform conversion in less then 100 ns. In general, such ADCs are complex, require large on-chip area, and take significant amount of power. Consequently, they are not suitable for implementation in low-power SMPS operating at high-switching frequencies.
Two differential stages 202, 204, as illustrated in
Vbias
where, ev(t) is output voltage error and K is a constant that depends on Ibias and the sizing of the transistors in differential stages 202, 204 as well as on the construction of delay cells in delay lines 206, 208. The equation in relationship (1) shows that the difference in propagation times through two delay lines 206, 208 only depends on the voltage difference and is not influenced by the changes of Vref.
In this structure both conversion speed and quantization steps depend on Ibias and the construction of delay cells. This means that ADC embodiments can provide more functions such as dynamic variation of quantization steps, and variable conversion time can be added by replacing currently used current-starved delay cells with digitally programmable ones shown in
In embodiments, non-linear quantization steps are utilized to introduce variable gain and improve controller transient response without causing limit cycle oscillations. In digitally controlled SMPS it is usually desirable to limit the minimum size of the ADC's input voltage quantization step resulting in zero error value, i.e. limit the width of zero error bin. If quantization step (delta)Vq is too small higher DPWM resolution is required to eliminate possible limit cycle oscillations. On the other hand, outside the zero error bin larger steps result in lower sensitivity to output voltage variations and reduced loop gain caused by nonlinear quantization effects.
is made to be larger for non-zero values and a nonlinear gain characteristic is created.
System Verification
An ADC embodiment is implemented as an application specific integrated circuit (ASIC) and designed in 0.18 μm CMOS process.
These results verify that proposed architecture can provide an effective digital control solution for the fastest switching power converters available, as well as for upcoming systems expected to operate at frequencies beyond 100 MHz
The foregoing description of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations will be apparent to the practitioner skilled in the art. Particularly, it will be evident that the above-described features of detecting and ranking images with numerical ranks in order of usefulness based on vignette score can be incorporated into other types of software applications beyond those described. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention for various embodiments and with various modifications that are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the following claims and their equivalents.
Prodić, Aleksandar, Lukić, Zdravko
Patent | Priority | Assignee | Title |
10171099, | Apr 12 2016 | Microchip Technology Incorporated | Time-based delay line analog to digital converter |
10355707, | Apr 12 2016 | Microchip Technology Incorporated | Microcontroller with digital delay line analog-to-digital converters and digital comparators |
10958258, | Dec 29 2017 | Texas Instruments Incorporated | Delay based comparator |
11088702, | Dec 12 2018 | Texas Instruments Incorporated | Analog-to-digital converter with interpolation |
11309903, | Dec 23 2020 | Texas Instruments Incorporated | Sampling network with dynamic voltage detector for delay output |
11316505, | Dec 29 2017 | Texas Instruments Incorporated | Delay based comparator |
11316525, | Jan 26 2021 | Texas Instruments Incorporated | Lookup-table-based analog-to-digital converter |
11316526, | Dec 18 2020 | Texas Instruments Incorporated | Piecewise calibration for highly non-linear multi-stage analog-to-digital converter |
11387840, | Dec 21 2020 | Texas Instruments Incorporated | Delay folding system and method |
11424758, | Dec 31 2018 | Texas Instruments Incorporated | Conversion and folding circuit for delay-based analog-to-digital converter system |
11438001, | Dec 24 2020 | Texas Instruments Incorporated | Gain mismatch correction for voltage-to-delay preamplifier array |
11595053, | Dec 12 2018 | Texas Instruments Incorporated | Analog-to-digital converter with interpolation |
11881867, | Feb 01 2021 | Texas Instruments Incorporated | Calibration scheme for filling lookup table in an ADC |
11901231, | Sep 25 2020 | Disco Corporation | Separation method of wafer |
7741986, | Nov 28 2007 | Denso Corporation | Method for controlling delay time of pulse delay circuit and pulse delay circuit thereof |
9209822, | Oct 25 2013 | Kabushiki Kaisha Toshiba | A/D converter and semiconductor integrated circuit |
9306593, | May 30 2013 | Renesas Electronics Corporation | Semiconductor device and semiconductor device operating method |
9722625, | May 30 2013 | Renesas Electronics Corporation | Semiconductor device and semiconductor device operating method |
9906235, | Apr 12 2016 | Microchip Technology Incorporated | Microcontroller with digital delay line analog-to-digital converters and digital comparators |
9948317, | Apr 12 2016 | Microchip Technology Incorporated | Time-based delay line analog to digital converter |
Patent | Priority | Assignee | Title |
3818339, | |||
6507171, | Dec 29 2000 | PINEAPPLE34, LLC | Method and apparatus for measuring battery charge and discharge current using a direct analog-to-digital conversion of a charge/discharge replica current |
6850178, | Jul 13 2001 | Denso Corporation | Analog-to-digital conversion method and device |
6867604, | Jun 28 2002 | International Business Machines Corporation | Apparatus for accurately measuring battery voltage |
7106234, | Jan 22 2004 | Analog Devices, Inc | Digital to analog converter with reduced output noise |
7330144, | Oct 06 2005 | Denso Corporation | Analog-to-digital conversion method and analog to digital converter |
20020172112, | |||
20050062482, | |||
20070076831, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 20 2008 | Exar Corporation | (assignment on the face of the patent) | / | |||
Feb 02 2009 | LUKIC, ZDRAVKO | Exar Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022344 | /0244 | |
Feb 02 2009 | PRODIC, ALEKSANDER | Exar Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022344 | /0244 | |
May 27 2014 | Exar Corporation | STIFEL FINANCIAL CORP | SECURITY INTEREST | 033062 | /0123 | |
May 27 2014 | Cadeka Microcircuits, LLC | STIFEL FINANCIAL CORP | SECURITY INTEREST | 033062 | /0123 | |
Mar 09 2015 | STIFEL FINANCIAL CORP | Exar Corporation | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 035168 | /0384 | |
Mar 09 2015 | STIFEL FINANCIAL CORP | Cadeka Microcircuits, LLC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 035168 | /0384 | |
May 12 2017 | ENTROPIC COMMUNICATIONS, LLC F K A ENTROPIC COMMUNICATIONS, INC | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | SECURITY AGREEMENT | 042453 | /0001 | |
May 12 2017 | Maxlinear, Inc | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | SECURITY AGREEMENT | 042453 | /0001 | |
May 12 2017 | EAGLE ACQUISITION CORPORATION | Exar Corporation | MERGER AND CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 044126 | /0634 | |
May 12 2017 | Exar Corporation | Exar Corporation | MERGER AND CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 044126 | /0634 | |
May 12 2017 | Exar Corporation | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | SECURITY AGREEMENT | 042453 | /0001 | |
Jul 01 2020 | JPMORGAN CHASE BANK, N A | MUFG UNION BANK, N A | SUCCESSION OF AGENCY REEL 042453 FRAME 0001 | 053115 | /0842 | |
Jun 23 2021 | MUFG UNION BANK, N A | MAXLINEAR COMMUNICATIONS LLC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 056656 | /0204 | |
Jun 23 2021 | MUFG UNION BANK, N A | Exar Corporation | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 056656 | /0204 | |
Jun 23 2021 | MUFG UNION BANK, N A | Maxlinear, Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 056656 | /0204 |
Date | Maintenance Fee Events |
Dec 10 2012 | REM: Maintenance Fee Reminder Mailed. |
Apr 28 2013 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Apr 28 2012 | 4 years fee payment window open |
Oct 28 2012 | 6 months grace period start (w surcharge) |
Apr 28 2013 | patent expiry (for year 4) |
Apr 28 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 28 2016 | 8 years fee payment window open |
Oct 28 2016 | 6 months grace period start (w surcharge) |
Apr 28 2017 | patent expiry (for year 8) |
Apr 28 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 28 2020 | 12 years fee payment window open |
Oct 28 2020 | 6 months grace period start (w surcharge) |
Apr 28 2021 | patent expiry (for year 12) |
Apr 28 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |