A band gap engineered, charge trapping memory cell includes a charge trapping element that is separated from a gate by a blocking layer of metal doped silicon oxide material having a medium dielectric constant, such as aluminum doped silicon oxide, and separated from the semiconductor body including the channel by an engineered tunneling dielectric.

Patent
   7737488
Priority
Aug 09 2007
Filed
Aug 27 2007
Issued
Jun 15 2010
Expiry
Mar 03 2028
Extension
189 days
Assg.orig
Entity
Large
37
190
all paid
15. A method for manufacturing a charge trapping memory comprising:
forming a semiconductor body including a channel region on a semiconductor body, the channel region having a channel surface, and source and drain terminals adjacent the channel;
forming a gate overlying the channel region;
forming dielectric stack between the channel surface and the gate, including forming a tunneling dielectric layer; forming a charge trapping dielectric layer; and forming a blocking dielectric layer, the blocking dielectric layer comprising a metal doped silicon oxide having a dielectric constant κ between 4.5 and 7.
1. A charge trapping memory comprising an array of memory cells, respective memory cells in the array including:
a semiconductor body including a channel having a channel surface, and source and drain terminals adjacent the channel; a dielectric stack between a gate and the channel surface;
the dielectric stack comprising:
a tunneling dielectric layer;
a charge trapping dielectric layer on the tunneling dielectric layer;
a blocking dielectric layer on the charge trapping dielectric layer, the blocking dielectric layer comprising a metal doped silicon oxide having a dielectric constant κ between 4.5 and 7.
13. A charge trapping memory comprising an array of memory cells, respective memory cells in the array including:
a semiconductor body including a channel having a channel surface, and source and drain terminals adjacent the channel;
a tunneling dielectric layer on the channel surface, including a first silicon oxide layer adjacent the channel and having a thickness of 20 Å or less, a silicon nitride layer on the first silicon oxide layer having a thickness of 30 Å or less, and a silicon oxide layer on the silicon nitride layer having a thickness of 30 Å or less;
a charge trapping layer on the tunneling dielectric layer comprising silicon nitride having a thickness of 50 Å or more;
a blocking dielectric layer on the charge trapping layer, the blocking dielectric layer comprising aluminum doped silicon oxide having between 0.1 and 50 atomic % aluminum relative to a sum of aluminum and silicon atoms; and
a gate on the blocking dielectric layer comprising polysilicon.
2. The memory of claim 1, wherein the blocking dielectric layer is on the channel surface.
3. The memory of claim 1, wherein the tunneling dielectric layer is on the channel surface, and an electron barrier height between the gate and the blocking dielectric layer is more than 3 eV.
4. The memory of claim 1, wherein the tunneling dielectric layer comprises a combination of materials arranged to establish a relatively low valence band energy level near the channel surface, and an increase in valence band energy level at a first offset from the channel surface and a decrease in valence band energy at a second offset more than 2 nm from the channel surface.
5. The memory of claim 1, including:
circuitry, coupled to the array of memory cells, to apply bias voltages to selected memory cells for read, program and erase operations, including bias voltages across the gate and semiconductor body to induce an electric field having a magnitude of less than 14 MV/cm to cause hole tunneling through the tunneling dielectric layer.
6. The memory of claim 1, wherein the metal in the metal doped silicon oxide comprises aluminum having a concentration between 0.1 and 50 atomic percent relative to a sum of aluminum and silicon atoms.
7. The memory of claim 1, wherein the tunneling dielectric layer is on the channel surface, and the gate comprises a metal, metal compound, n+ doped polysilicon or p+ doped polysilicon.
8. The memory of claim 1, wherein the tunneling dielectric layer comprises a first silicon oxide layer adjacent the channel and having a thickness less than 20 Å, a low barrier height layer on the first silicon oxide layer, having a hole tunneling barrier height less than 3 eV, and an isolation layer isolating the low barrier height layer from the charge trapping dielectric layer.
9. The memory of claim 8, wherein the thickness of the first silicon oxide layer is 15 Å or less.
10. The memory of claim 1, wherein the tunneling dielectric layer comprises a first silicon oxide layer adjacent the channel and having a thickness of 20 Å or less, a silicon nitride layer on the first silicon oxide layer having a thickness of 30 Å or less, and a silicon oxide layer on the silicon nitride layer having a thickness of 30 Å or less.
11. The memory of claim 1, wherein the tunneling dielectric layer is on the channel surface, and the electron barrier height for the blocking layer is greater than 3 eV.
12. The memory of claim 1, wherein the tunneling dielectric layer is on the channel surface, and the electron barrier height for the blocking layer is greater than 3.2 eV and the dielectric constant is greater than 5.
14. The memory of claim 13, wherein the dielectric constant of the blocking dielectric layer is greater than 5, and the gate comprises P+ polysilicon.
16. The method of claim 15, wherein an electron barrier height between the gate and the blocking dielectric layer is more than 3 eV.
17. The method of claim 15, wherein the tunneling dielectric layer comprises a combination of materials arranged to establish a relatively low valence band energy level near the channel surface, and an increase in valence band energy level at a first offset from the channel surface and a decrease in valence band energy at a second offset more than 2 nm from the channel surface.
18. The method of claim 15, wherein the metal in the metal doped silicon oxide comprises aluminum having a concentration between 0.1 and 50 atomic percent relative to a sum of aluminum and silicon atoms.
19. The method of claim 15, wherein the gate comprises a metal, a metal compound, n+ doped polysilicon or p+ doped polysilicon.
20. The method of claim 15, wherein the tunneling dielectric layer comprises a first silicon oxide layer adjacent the channel and having a thickness less than 20 Å, a low barrier height layer on the first silicon oxide layer, having a hole tunneling barrier height less than 3 eV, and an isolation layer isolating the low barrier height layer from the charge trapping dielectric layer.
21. The method of claim 20, wherein the thickness of the first silicon oxide layer is 15 Å or less.
22. The method of claim 15, wherein the tunneling dielectric layer comprises a first silicon oxide layer adjacent the channel and having a thickness of 20 Å or less, a silicon nitride layer on the first silicon oxide layer having a thickness of 30 Å or less, and a silicon oxide layer on the silicon nitride layer having a thickness of 30 Å or less.
23. The method of claim 15, wherein the electron barrier height for the blocking layer is greater than 3 eV.
24. The method of claim 15, wherein the electron barrier height for the blocking layer is greater than 3.2 eV and the dielectric constant is greater than 5.

The benefit of U.S. Provisional Patent Application No. 60/954,820, filed on 9 Aug. 2007, is hereby claimed.

1. Field of the Invention

The present invention relates to flash memory technology, and more particularly to scalable charge trapping memory technology adaptable for high speed erase and program operations.

2. Description of Related Art

Flash memory is a class of non-volatile integrated circuit memory technology. Traditional flash memory employs floating gate memory cells. As the density increases in memory devices, and the floating gate memory cells get closer and closer together, interference between the charge stored in adjacent floating gates becomes a problem. This is limiting the ability to increase the density of flash memory based on floating gate memory cells. Another type of memory cell used for flash memory can be referred to as a charge trapping memory cell, which uses a dielectric charge trapping layer in place of the floating gate. Charge trapping memory cells use dielectric charge trapping material that does not cause cell-to-cell interference like that encountered with floating gate technology, and is expected to be applied for higher density flash memory.

The typical charge trapping memory cell consists of a field effect transistor FET structure having a source and drain separated by a channel, and a gate separated from the channel by a stack of dielectric material including a tunnel dielectric layer, the charge storage layer, and a blocking dielectric layer. According to the early conventional designs referred to as SONOS devices, the source, drain and channel are formed in a silicon substrate (S), the tunnel dielectric layer is formed of silicon oxide (O), the charge storage layer is formed of silicon nitride (N), the blocking dielectric layer is formed a silicon oxide (O), and the gate comprises polysilicon (S). The SONOS device is programmed by electron tunneling using one of a number of well-known biasing technologies, and erased by hole tunneling or electron de-trapping. In order to achieve practical operational speeds for the erase operation, the tunneling dielectric layer must be quite thin (less than 30 Å). However at that thickness, the endurance and charge retention characteristics of the memory cell are poor relative to traditional floating gate technology. Also, with relatively thick tunneling dielectric layers, the electric field required for the erase operation also cause electron injection from the gate through the blocking dielectric layer. This electron injection causes an erase saturation condition in which the charge level in the charge trapping device converges on an equilibrium level. See, U.S. Pat. No. 7,075,828, entitled “Operation Scheme with Charge Balancing Erase for Charge Trapping Non-Volatile Memory”, invented by Lue et al. However, if the erase saturation level is too high, the cell cannot be erased at all, or the threshold margin between the programmed and erased states becomes too small for many applications.

On one hand, technology has been investigated to improve the ability of the blocking dielectric layer to reduce electron injection from the gate for the high electric fields needed for erase. See, U.S. Pat. No. 6,912,163, entitled “Memory Device Having High Work Function Gate and Method of Erasing Same,” Invented by Zheng et al., issued 28 Jun. 2005; and U.S. Pat. No. 7,164,603, entitled “Operation Scheme with High Work Function Gate and Charge Balancing for Charge Trapping Non-Volatile Memory”, invented by Shih et al., Shin et al., “A Highly Reliable SONOS-type NAND Flash Memory Cell with Al2O3 or Top Oxide,” IEDM, 2003 (MANOS); and Shin et al., “A Novel NAND-type MONOS Memory using 63 nm Process Technology for a Multi-Gigabit Flash EEPROMs”, IEEE 2005. In the just-cited references, the second Shin et al. article describes a SONOS type memory cell in which the gate is implemented using tantalum nitride and the blocking dielectric layer is implemented using aluminum oxide (referred to as the TANOS device), which maintains a relatively thick tunneling dielectric layer at about 4 nm. The relatively high work function of tantalum nitride inhibits electron injection through the gate, and the high dielectric constant of aluminum oxide reduces the magnitude of the electric field through the blocking dielectric layer relative to the electric field for the tunneling dielectric layer. Shin et al. report a trade-off between the breakdown voltage of the memory cell, the thickness of the aluminum oxide layer and the thickness of the tunneling dielectric layer. With a 4 nm thick silicon dioxide tunneling dielectric in a TANOS device, relatively high erase voltages are proposed in order to achieve erase speeds. An increase in erase speeds would require increasing the voltages applied or decreasing the thickness of the tunneling dielectric layer. Increasing the voltage applied for erase is limited by the breakdown voltage. Decreasing the thickness of the tunneling dielectric layer is limited by issues of charge retention, as mentioned above.

On the other hand, technology has been investigated to improve the performance of the tunneling dielectric layer for erase at lower electric fields. See, U.S. Patent Application Publication No. US 2006/0198189 A1, “Non-Volatile Memory Cells, Memory Arrays Including the Same and Method of Operating Cells and Arrays,” Invented by Lue et al., publication date Sep. 7, 2006 (describing a “BE-SONOS device”); Lue et al., “BE-SONOS: A Bandgap Engineered SONOS with Excellent Performance and Reliability”, IEEE, December 2005; Wang et al., “Reliability and Processing Effects of the Bandgap Engineered SONOS (BE-SONOS) Flash Memory”, IEEE, May 2007. See also, U.S. Patent Application Publication No. 2006/0261401 A1, entitled “Novel Low Power Non-Volatile Memory and Gate Stack”, by Bhattacharyya, published 23 Nov. 2006.

BE-SONOS technology has been proven to provide excellent performance, overcoming many of the erase speed, endurance and charge retention issues of prior art SONOS type memory. However, the problem of the erase saturation continues to limit operational parameters of the device. Furthermore, as the device sizes shrink, it is expected that erase saturation problems will intensify.

These prior art technologies have emphasized the advantages of high-K dielectrics like aluminum oxide. The higher dielectric constant can improve/performance by enhancing the program and erase speed, improving the memory window in threshold voltage for the cells, and reducing the operating voltage during program and erase by reducing the effective oxide thickness EOT. However, it is difficult to manufacture high κ materials like aluminum oxide with high quality. Therefore, the use of high κ materials for the blocking dielectric comes with the trade-off of lower reliability and lower data retention.

Accordingly, is desirable to provide a new memory technology which is readily manufactured with high quality, and overcomes the reliability and data retention issues of prior art technologies, and that can be applied in very small memory devices.

A blocking dielectric engineered, charge trapping memory cell is described including a charge trapping element that is separated from one of a gate and a semiconductor body including a channel by a blocking dielectric comprising a metal doped silicon oxide, such as aluminum doped silicon oxide, and that is separated from the other of the semiconductor body including the channel and the gate by a tunneling dielectric. The blocking dielectric layer is engineered to have a dielectric constant κ greater than silicon dioxide, and preferably in a range of about 4.5 to 7, and is paired with a gate material providing a relatively high electron barrier height, such as greater than 2.5 eV. As discussed in detail below, the electron barrier height and dielectric constant are tuned by selecting concentration of metal in the metal doped silicon oxide and by selecting a suitable gate material, to enable fast programming and fast erase without erase saturation, with excellent reliability and retention characteristics. A process for manufacturing the memory cell is described, which includes forming the metal doped silicon oxide layer as the blocking dielectric.

The technology is combined in the memory described here with a bandgap engineered tunneling dielectric that includes a combination of materials having negligible charge trapping efficiency, and band offset characteristics. The bandgap engineered tunneling dielectric lowers the operating voltages required for the device, and enables the use of blocking dielectrics having a medium range, compared to the prior art without significant tradeoffs in performance, while providing improved reliability. The band offset characteristics include a relatively large hole tunneling barrier height in a thin region at the interface with the semiconductor body, and an increase in valence band energy level so that the hole tunneling barrier height at a first offset less than 2 nm for example from the channel surface, from the interface is relatively low. The band offset characteristics also include an increase in conduction band energy by providing a thin layer of relatively high electron tunneling barrier height at a second offset more than 2 nm from the channel surface, separating the material with a relatively lower hole tunneling barrier height from the charge trapping layer.

The valence band energy level at the first offset is such that an electric field sufficient to induce hole tunneling through the thin region between the interface with the semiconductor body and the offset, is also sufficient to raise the valence band energy level after the offset to a level that effectively eliminates the hole tunneling barrier in the engineered tunneling dielectric after the offset. This structure enables electric field assisted hole tunneling at high speeds while effectively preventing charge leakage through the engineered tunneling dielectric in the absence of electric fields or in the presence of smaller electric fields induced for the purpose of other operations, such as reading data from the cell or programming adjacent cells.

In a representative device, the engineered tunneling dielectric layer consists of an ultrathin silicon oxide layer O1 (e.g. <=15 A), an ultrathin silicon nitride layer N1 (e.g. <=30 A) and an ultrathin silicon oxide layer O2 (e.g. <=30 A), which results in an increase in the valence band energy level of about 2.6 eV at an offset 15 A or less, from the interface with the semiconductor body. The O2 layer separates the N1 layer from the charge trapping layer, at a second offset (e.g. about 35 to 45 Å from the interface), by a region of lower valence band energy level (higher hole tunneling barrier) and higher conduction band energy level. The electric field sufficient to induce hole tunneling between the interface and the first offset also raises the valence band energy level after the second offset to a level that effectively eliminates the hole tunneling barrier, because the second offset is at a greater distance from the interface. Therefore, the O2 layer does not significantly interfere with the electric field assisted hole tunneling, while improving the ability of the engineered tunneling dielectric to block leakage during low fields.

The blocking dielectric structure in a representative memory device, consists of aluminum doped silicon oxide, with from 0.1 to 50 atomic percent aluminum, which has a dielectric constant (κ about 4.5 to 7). Therefore, the electric field intensity in the blocking dielectric structure is relatively low compared to that in the tunneling dielectric layer.

Embodiments of the memory cell described herein include gates comprising polysilicon, such as n+ polysilicon, or metal, such as aluminum. In alternatives, the gates comprise materials having work functions that are greater than the work functions of n+ polysilicon, including for example, p+ polysilicon, platinum, tantalum nitride, and other materials chosen for work function, conductivity and manufacturability.

The present technology combines techniques for reducing the electric field in the blocking dielectric layer relative to the tunneling dielectric layer, with techniques for reducing the magnitude of the electric field required for erase to achieve high speed erase operations without saturation, enabling a large memory window compared to prior devices. Also, charge retention and endurance characteristics of the memory cell are very good.

Circuitry is coupled to the array of memory cells to apply bias voltages to selected memory cells for read, program and erase operations.

Other aspects and advantages of the present invention can be seen on review of the drawings, the detailed description in the claims which follow.

FIG. 1 is a simplified diagram of an embodiment of a memory cell according to the present invention.

FIG. 2 is a band diagram for a tunneling dielectric layer including band offset technology at a low electric fields.

FIG. 3 is a band diagram for a tunneling dielectric layer including band offset technology at high electric fields.

FIG. 4 illustrates the electric field intensities during an erase operation for an embodiment of a memory cell according to the present invention.

FIG. 5 is a graph of dielectric constant κ versus atomic percent aluminum doping in silicon oxide.

FIG. 6 is a schematic diagram of a NAND-type memory array employing memory cells according to the present invention.

FIG. 7 is a simplified cross-sectional view of memory cells according to the present invention in a NAND configuration, taken perpendicular to word lines.

FIG. 8 is a simplified cross-sectional view of memory cells according to the present invention in a NAND configuration, taken through a word line.

FIG. 9 is a block diagram of an integrated circuit memory employing memory cells and bias circuitry according to embodiments of the present invention.

FIG. 10 is a graph of flat band voltage versus erase bias time showing erase curves for dielectric constants ranging from 3.9 to 8 for an embodiment of a memory cell according to the present invention.

FIG. 11 is a graph of flat band voltage versus erase bias time showing erase curves for work functions at the gate/blocking dielectric interface ranging from 3 to 4 eV, for an embodiment of a memory cell according to the present invention.

A detailed description of embodiments of the present invention is provided with reference to the FIGS. 1-11.

FIG. 1 is a simplified diagram of a charge trapping memory cell employing a medium κ blocking dielectric layer and a band gap engineered dielectric tunneling layer. The memory cell includes a channel 10 in a semiconductor body, and a source 11 and a drain 12 adjacent channel.

A gate 18 in this embodiment comprises p+ polysilicon. N+ polysilicon may also be used. Other embodiments employ metals, metal compounds or combinations of metals and metal compounds for the gate 18, such as platinum, tantalum nitride, metal silicides, aluminum or other metal or metal compound gate materials. For some applications, it is preferable to use materials having work functions higher than 4.5 eV. A variety of high work function materials suitable for use as a gate terminal are described in U.S. Pat. No. 6,912,163, referred to above. Such materials are typically deposited using sputtering and physical vapor deposition technologies, and can be patterned using reactive ion etching.

In the embodiment illustrated in FIG. 1, the dielectric tunneling layer comprises a composite of materials, including a first layer 13, referred to as a hole tunneling layer, of silicon dioxide on the surface 10a of the channel 10 formed for example using in-situ steam generation ISSG with optional nitridation by either a post deposition NO anneal or by addition of NO to the ambient during deposition. The thickness of the first layer 13 of silicon dioxide is less than 20 Å, and preferably 15 Å or less.

A layer 14, referred to as a band offset layer, of silicon nitride lies on the first layer 13 of silicon oxide formed for example using low-pressure chemical vapor deposition LPCVD, using for example dichlorosilane DCS and NH3 precursors at 680 degrees C. In alternative processes, the band offset layer comprises silicon oxynitride, made using a similar process with an N2O precursor. The thickness of the layer 14 of silicon nitride is less than 30 Å, and preferably 25 Å or less.

A second layer 15 of silicon dioxide, referred to as an isolation layer, lies on the layer 14 of silicon nitride formed for example using LPCVD high temperature oxide HTO deposition. The thickness of the second layer 15 of silicon dioxide is less than 30 Å, and preferably 25 Å or less. The structure of the dielectric tunneling layer is described in more detail below with reference to FIGS. 2 and 3.

A charge trapping layer 16 in this embodiment comprises silicon nitride having a thickness greater than 50 Å, including for example about 70 Å in this embodiment formed for example using LPCVD. Other charge trapping materials and structures may be employed, including for example silicon oxynitride (SixOyNz), silicon-rich nitride, silicon-rich oxide, trapping layers including embedded nano-particles and so on. A variety of charge trapping materials is described in the above referenced U.S. Patent Application Publication No. 2006/0261401 A1, entitled “Novel Low Power Non-Volatile Memory and Gate Stack”, by Bhattacharyya, published 23 Nov. 2006.

The blocking dielectric layer 17 in this embodiment comprises aluminum doped silicon oxide, having a tuned dielectric constant κ between about 4.5 and 7. Al-doped silicon oxide can be formed by chemical vapor deposition CVD or atomic layer deposition ALD using precursors that provide aluminum, silicon and oxygen, such as Al—[O—C—(CH3)3]3 for aluminum, dichlorosilane SiH2Cl2 or tetraethoxysilane TEOS for silicon and N2O, O2, or O3 for oxygen. Using these processes, a layer of aluminum doped silicon oxide can be formed with very few defects, which provides a blocking dielectric layer that provides excellent retention characteristics. The dielectric constant is tuned by controlling the concentration of aluminum in the silicon oxide, as discussed below. The thickness of layer 17 of metal doped silicon oxide can be for example in the range of about 5 to 18 nanometers, while the thickness of the layer 16 of silicon nitride can be for example in the range of 5 to 7 nanometers. The layer 17 of aluminum doped silicon oxide in one example is about 9 nm. The thickness and quality of the blocking dielectric layer have a close relationship to cell reliability, especially for data retention. Although metal-doped silicon oxide can have a higher dielectric constant, the oxide quality (such as reflected by the number of crystal structure defects) becomes worse with increased doping levels. Therefore, the physical thickness of the layer must be increased (thicker than conventional SiO2 sample) to maintain low leakage. However, it is not necessary to increase the thickness of metal-doped silicon dioxide by the full ratio of dielectric constants. Therefore, the EOT can be reduced and the operation voltage can be lowered.

In a representative embodiment, the first layer 13 can be 13 Å of silicon dioxide; the band offset layer 14 can be 20 Å of silicon nitride; the isolation layer 15 can be 25 Å of silicon dioxide; the charge trapping layer 16 can be 70 Å of silicon nitride; and the blocking dielectric layer 17 can be 90 Å of aluminum doped silicon oxide, with about 10 atomic % aluminum (κ about 5.5, and band gap close to that silicon dioxide). The gate material can be p+ polysilicon (work function about 5.1 eV). This results in an electron barrier height between the gate and the blocking dielectric layer of about 3.9 eV.

In other embodiments described herein, “tuned” κ dielectric material such as hafnium-doped silicon oxide (HfO2 having a κ of about 10), titanium-doped silicon (TiO2 having a κ of about 60), praseodymium-doped silicon oxide (Pr2O3 having a κ of about 30), and zirconium (Zr)-doped silicon oxide, and lanthanum (La)-doped silicon oxide. Combinations of metals can be utilized, for example silicon oxide may be doped with combinations of Al and Hf, Al and Zr, Al and La or Al, Hf and La. Nitrogen doping may be combined with metal doping in some embodiments. The atomic percent concentration of the metal and other materials in the silicon oxide is tuned to achieve the desired dielectric constant, and can be as mentioned above in the range of 0.1 to 50 atomic percent. For Al-doped sample, there is almost no effect of doping concentration on the conduction and valence band energy levels because the bandgap of Al2O3 is almost the same as that of SiO2.

For the Hf-doped samples, the conduction and valence energy levels become smaller when we increase the Hf doping concentration. However, the dielectric constant of Hf-doped silicon oxide can be higher than that of Al-doped silicon oxide in the same doping concentration level. So that the Hf-doped silicon oxide also can be used in this invention.

For most of metal-doped silicon oxide, except aluminum, the conduction band energy levels decreases and valence band energy level increases with the increase in metal doping concentration. However, the dielectric constants of these samples are almost much higher than that of Al-doped silicon oxide, which may compensate for the reduce electron barrier heights. Embodiments of the metal doped silicon oxide can include more than one metal doping material, and can include nitrogen doping in combination with metal doping, in order to tune the dielectric constant and band gap to suit the needs of a particular implementation.

The gate 18 comprises a material selected to provide sufficient electron barrier height for the blocking dielectric layer. Materials that may be used for the gate 18 include N+ poly silicon, Al, P+ poly silicon, Ti, TiN, Ta, TaN, Ru, Pt, Ir, RuO2, IrO2, W, WN, and others.

For 10% Al-doped silicon oxide, the dielectric constant is ˜5.5 and the desired barrier height is ˜3 eV to obtain the erase saturation VFB<−2V. Since the barrier height of Al2O3 is almost the same as SiO2, the electron barrier height of 10% Al-doped silicon oxide with N+ polysilicon gate is ˜3.1 eV. This also indicates that the work function of gate materials must be higher than 4.2 eV because the work function of N+ poly silicon gate is ˜4.3 eV. Therefore, the gate materials that can be used for 10% Al-doped silicon oxide are N+ poly silicon, P+ poly silicon, Ti, TiN, Ta, TaN, Ru, Pt, Ir, RuO2, IrO2, W, WN etc. P+ polysilicon is preferred in this example because of the ready manufacturability and process integration, and because the work function of P+ polysilicon is higher than that of N+ polysilicon. It is desirable to select a dielectric constant greater than 5 and an electron barrier height greater than 3.2 eV, according to the simulations described below.

FIG. 2 is a diagram of the energy levels of the conduction and valence bands of the dielectric tunneling structure the including the stack of layers 13-15 of FIG. 1 under a low electric field, showing a “U-shaped” conduction band and an “inverted U-shaped” valence band. From the right side, the band gap for the semiconductor body is shown in region 30, the valence and conduction bands for the hole tunneling layer are shown in region 31, the band gap for the offset layer is shown in region 32, the valence and conduction bands for the isolation layer are shown in region 33 and the valence and conduction bands for the charge trapping layer are shown in region 34. Electrons, represented by the circles with the negative sign, trapped within the charge trapping region 34 are unable to tunnel to the conduction band in the channel, because the conduction band of the tunneling dielectric layer in all three regions 31, 32, 33 remains high relative to the energy level of the trap. The likelihood of electron tunneling correlates with the area under the “U-shaped” conduction band in the tunneling dielectric layer and above a horizontal line at the energy level of the trap to the channel. Thus, electron tunneling is very unlikely at low field conditions. Likewise, holes in the valence band of the channel in region 30 are blocked by the full thickness of regions 31, 32 and 33 from tunneling to the charge trapping layer 34, and the high hole tunneling barrier height at the channel interface. The likelihood of hole tunneling correlates with the area over the “inverted U-shaped” valence band in the tunneling dielectric layer and below a horizontal line at the energy level of the channel to the charge trapping layer. Thus, hole tunneling is very unlikely at low field conditions. For the representative embodiment, in which the hole tunneling layer comprises silicon dioxide, a hole tunneling barrier height of about 4.5 eV prevents hole tunneling. The valence band in the silicon nitride remains 1.9 eV below that of the valence band in the channel. Therefore, the valence band in all three layers 31, 32, 33 the tunneling dielectric structure remain significantly below the valence band in the channel 30. The tunneling layer described herein therefore is characterized by band offset characteristics, include a relatively large hole tunneling barrier height in a thin region (layer 31) at the interface with the semiconductor body, and an increase 37 in valence band energy level at a first offset less than 2 nm from the channel surface. The band offset characteristics also include a decrease 38 in valence band energy level at a second offset from the channel by providing a thin layer 33 of relatively high tunneling barrier height material, resulting in the inverted U-shaped valence band shape. Likewise, the conduction band has a U-shape caused by the same selection of materials.

FIG. 3 shows the band diagram for the dielectric tunneling structure under conditions of an electric field of about −12 MV/cm in the tunneling layer 31, for the purposes of inducing hole tunneling (in FIG. 3, the O1 layer is about 15 Å thick). Under the electric field the valence band slopes upward from the channel surface. Therefore, at an offset distance from the channel surface the valence band in the tunneling dielectric structure increases in band energy level substantially, and in the illustration rises above the band energy in the valence band in the channel region. Therefore, the hole tunneling probability is increased substantially as the area (shaded in FIG. 3) between the level of the valence band in the channel and above sloped, inverted U-shaped valence band in the tunneling stack is reduced. The band offset effectively eliminates the blocking function of the offset layer in region 32 and isolation layer in region 33 from the tunneling dielectric during high electric field allowing a large hole tunneling current under relatively small electric fields (e.g. E<14 MV/cm).

The isolation layer 33 isolates the offset layer 32 from a charge trapping layer 34. This increases the effective blocking capability during low electric field for both electrons and holes, improving charge retention.

The offset layer 32 in this embodiment must be thin enough that it has negligible charge trapping efficiency. Also, the offset layer is a dielectric, and not conductive. Thus, for an embodiment employing silicon nitride, the offset layer should be less than 30 Å thick, and more preferably about 25 Å or less.

The hole tunneling layer 31, for an embodiment employing silicon dioxide, should be less than 20 Å thick, and more preferably less than 15 Å thick. For example, in a preferred embodiment, the hole tunneling layer 31 is silicon dioxide about 13 Å thick, and exposed to a nitridation process as mentioned above resulting in an ultrathin silicon oxynitride.

The tunneling dielectric layer can be implemented in embodiments of the present invention using a composite of silicon oxide, silicon oxynitride and silicon nitride without precise transitions between the layers, so long as the composite results in the required inverted U-shape valence band, having a change in valence band energy level at the offset distance from the channel surface needed for efficient hole tunneling. Also, other combinations of materials could be used to provide band offset technology.

The description of the dielectric tunneling layer focuses on “hole tunneling” rather than electron tunneling because the technology has solved the problems associated with the need to rely on hole tunneling in SONOS type memory. For example, a tunnel dielectric consisting of silicon dioxide which is thin enough to support hole tunneling at practical speeds, will be too thin to block leakage by electron tunneling. The effects of the engineering however, also improve performance of electron tunneling. So, both programming by electron tunneling and erasing by hole tunneling are substantially improved using band gap engineering.

FIG. 4 is a schematic illustration of the gate stack for a charge trapping memory cell like that FIG. 1, showing electric field dynamics during an erase process. The gate stack includes a hole tunneling layer 43, a band offset layer 44, and an isolation layer 45 which in combination act as the dielectric tunneling layer for the device. A charge trapping layer 46 is shown on the tunneling dielectric layer. A blocking dielectric layer 47 consisting of a medium κ insulator such as aluminum doped silicon oxide separates the charge trapping layer 46 from the metal gate 48. During an erase process, the electric field is induced by bias voltages VG and VW applied at the gate and channel of the memory cell, and results in an electric field ETUN 50 through the dielectric tunneling layer 43, 44, 45 and an electric field EB 51 through the blocking layer 47. The magnitude of the electric field ETUN 50 through the dielectric tunneling layer is sufficient to induce hole tunneling current 52 into the trapping layer 46. The magnitude of the electric field EB 51 through the blocking dielectric layer 47 is reduced relative to that through the silicon dioxide in the tunneling dielectric layer because of the higher dielectric constant by an amount that is about 3.9/K, where 3.9 is the dielectric constant for silicon dioxide. Therefore, because of sufficient electron affinity of the gate 48, the relatively lower electric field EB 51 and the thickness of the blocking dielectric layer 47, electron tunneling current 53 is effectively blocked, allowing large memory windows without erase saturation effects. Memory devices as taught herein are operable with bias voltages across the gate and semiconductor body low enough that a maximum electric field of 14 MV/cm or less occurs in the tunneling dielectric layer during erase, with a corresponding lower electric field in the blocking dielectric layer.

FIG. 5 shows the dielectric constant of Al-doped silicon oxide with various aluminum dopant concentrations, where the dielectric constant ranges from 4˜8. The Al-doped silicon oxide is the preferred material for top dielectric because Al-doped silicon oxide has a large barrier height (the barrier height is does not fall significantly with the increase of Al dopant) and can be tuned to have a suitable dielectric constant. For very low atomic percent aluminum, the dielectric constant approaches that of pure silicon dioxide which is 3.9. Between about 0.1 atomic percent and about 50 atomic percent aluminum, the dielectric constant ranges from about 4 to about 7. Aluminum doped silicon dioxide has an electron tunneling barrier that is very close to that of pure silicon dioxide, and decreases only a small amount with increase in atomic percent of aluminum, at least in the range of up to 50 atomic percent. The preferred range is about 1 to 10 atomic % aluminum, where the dielectric constant is about 4.5 to 5.5, because the number of defects in the material will be very low, but the dielectric constant is high enough and the band gap is large enough, that it can be paired with a readily manufacturable gate material like p+ polysilicon. With a tunable dielectric constant, and a high electron barrier height, aluminum doped silicon dioxide is an excellent material for this use, enabling the formation of memory cells having low or negative erase saturation thresholds, fast program and erase, high retention and low EOT and low voltage operation. All of these attribute support scaling of the memory cell to very small gate length dimensions, including gate lengths of 50 nm and less.

Memory cells implemented as described above can be arranged in a NAND-type array as shown in FIG. 6. The array includes a plurality of bit lines BL-1, BL-2, BL-3, BL-4, . . . , and a plurality of word lines WL-1, WL-2, . . . , WL-N−1, WL-N. Groups of N memory cells are connected in series between a block select transistor coupled to a corresponding bit line and a source select transistor coupled to a source line. A block select word line BST is coupled to a row of block select transistors and a source select word line SST is coupled to a row of source line connect transistors. Thus, for example, for a representative bit line, BL-2, in the figure, a block select transistor 60 connects a series of memory cells 61-1 through 61-N to the bit line BL-2 in response to the signal BST on the block select word line. The last memory cell 61-N in the series is connected to source select transistor 62 which couples the series to the source line SL in response to the signal SST on a source select word line.

In the alternative, the memory cells can be arranged AND-type, NOR-type and virtual ground-type arrays often applied in flash memory devices.

Programming may be accomplished in the NAND array by applying incremental stepped pulse programming ISPP or other processes for inducing Fowler Nordheim tunneling. ISPP involves applying a stepped programming voltage, starting at a gate bias of for example about plus 17 V, and incrementing the voltage for each programming step by about 0.2 V. Each pulse can have a constant pulse width of about 10 μs for example. In variations of the technique, the pulse width and the increment applied for each succeeding pulse can be varied to meet the needs of the particular implementation. The memory cells of this type have demonstrated relatively linear programming characteristics, and very large memory windows compared to the prior art, making them particularly well-suited to storing multiple bits per cell with multilevel programming technologies. In alternative embodiments, the so-called voltage pulse self-boosting technique is applied for programming. Other biasing arrangements can be applied as well, selected for compatibility with array characteristics.

Other programming bias techniques can be applied. For NOR array structures, various biasing arrangements for inducing hot electron tunneling or FN tunneling may be applied as well as other techniques known in the art.

FIGS. 7 and 8 show cross-sectional views of a representative memory cell structure as described herein implemented in a NAND-type array, taken across the word lines and along the word line respectively. FIG. 7 shows a semiconductor body 70 including channel regions 74, 75 and source/drain terminals 71, 72, 73 contacting the channel regions. The channel length between the source and drain terminals is preferably less than 50 nm, and in preferred embodiments 30 nm or less. The composite dielectric tunneling layer 76, the charge trapping layer 77, the blocking dielectric layer 78 and the metal gate word line layer 79 are arranged in stacks 80 and 81 over the channel regions 74 and 75 of respectively.

FIG. 8 shows the structure of FIG. 7 taken in cross section along a word line which includes the same stack with the same reference numerals as described with reference to FIG. 7. Column of series connected cells are separated by shallow trench isolation STI structures 82, 83, 84. In the illustration, the surfaces of the channel 74, and of the adjacent channel 74A, are planar. Implementations of the device may include recessed (concave) channel surfaces in this cross-section, or extended (convex) channel surfaces, depending on the manufacturing techniques and the desired product. The tunneling dielectric layer 76 and the rest of the stack 77, 78, 79 overlie the channel surfaces, whether planar, concave or convex, in a conformal manner. The channel width between the STI structures (e.g., 82, 83) is preferably less than 50 nm, and more preferably as small as the STI techniques allow.

FIG. 9 is a simplified block diagram of an integrated circuit employing blocking dielectric engineered BE-SONOS memory cells as described herein having a metal or polysilicon gate, a blocking layer of aluminum doped silicon oxide or other metal doped silicon oxide having dielectric constant κ tuned to the range of about 4.5 to 7, and a band gap engineered tunneling dielectric layer. The integrated circuit 810 includes a memory array 812 implemented using blocking dielectric engineered BE-SONOS memory cells as described herein on a semiconductor substrate. A word line (or row) and block select decoder 814 is coupled to, and in electrical communication with, a plurality 816 of word lines and block select lines, and arranged along rows in the memory array 812. A bit line (column) decoder and drivers 818 are coupled to and in electrical communication with a plurality of bit lines 820 arranged along columns in the memory array 812 for reading data from, and writing data to, the memory cells in the memory array 812. Addresses are supplied on bus 822 to the word line decoder and drivers 814 and to the bit line decoder 818. Sense amplifiers and data-in structures in block 824, including current sources for the read, program and erase modes, are coupled to the bit line decoder 818 via data the bus 826. Data is supplied via the data-in line 828 from input/output ports on the integrated circuit 810 or from other data sources internal or external to the integrated circuit 810, to the data-in structures in block 824. In the illustrated embodiment, other circuitry 830 is included on the integrated circuit 810, such as a general purpose processor or special purpose application circuitry, or a combination of modules providing system-on-a-chip functionality supported by the memory cell array. Data is supplied via the data-out line 832 from the sense amplifiers in block 824 to input/output ports on the integrated circuit 810, or to other data destinations internal or external to the integrated circuit 810.

The array 812 can be a NAND array, an AND array or a NOR array, depending on the particular application. The very large memory window available supports storing multiple bits per cell, and thus multiple bit sense amplifiers can be included on the device.

A controller implemented in this example, using bias arrangement state machine 834, controls the application of bias arrangement supply voltages and current sources 836, such as read, program, erase, erase verify, program verify voltages or currents for the word lines and bit lines, and controls the word line/source line operation using an access control process. The controller 834 can be implemented using special purpose logic circuitry as known in the art. In alternative embodiments, the controller 834 comprises a general purpose processor, which may be implemented on the same integrated circuit, which executes a computer program to control the operations of the device. In yet other embodiments, a combination of special-purpose logic circuitry and a general-purpose processor may be utilized for implementation of the controller 834.

FIG. 10 is a graph of flat band voltage (which correlates with threshold voltage for a memory cell) versus erase bias time showing simulated erase curves for various erase bias voltages for an embodiment of a memory cell having a tunneling dielectric layer comprising a tunneling layer (O1) of 13 Å of silicon dioxide on the channel surface, an offset layer (N1) of 20 Å silicon nitride and an isolation layer (O2) of 25 Å silicon dioxide, a charge trapping layer (N2) comprising 70 Å of silicon nitride, a blocking dielectric (O3) consisting of aluminum-doped silicon oxide 90 Å thick, tuned to the dielectric constants shown, and a P+ polysilicon gate. The channel is grounded in these examples, so that the gate voltage VG represents the bias voltage across the stack. The electron barrier height at the gate interface is about 3.6 eV for the purpose of the simulations. The plot shows the erase speed for VG of −18 V, with the dielectric constant ranging from 3.9 to 8, where 8 is the dielectric constant of pure aluminum oxide. Very high erase speeds are obtained using the structure, with erase saturation levels suppressed and good data retention.

FIG. 11 is a graph of simulated flat band voltage versus erase bias time for a cell like that described with respect to FIG. 10, assuming a dielectric constant of 5, but with various electron barrier heights ranging from 3 eV to 4 eV. Under the same bias voltage of negative 18 V, cells having a higher barrier height provide better suppression of erase saturation. The electron barrier height for P+ polysilicon and pure silicon dioxide is about 3.6 eV. The simulation shown in FIG. 10 teaches that erase saturation can be suppressed to VFB<−2V when the barrier height is >3.2 eV and the dielectric constant of medium-k top dielectric is >5. Therefore, there are two factors (barrier height and dielectric constant) shown herein that affect the erase saturation. It is noted here that barrier height is a function of conduction and valence band energy levels in the blocking dielectric and work function of the gate material. These parameters are matched with the electric field intensity required for erase through the tunneling dielectric stack, to establish an erase saturation level. As described herein, negative erase thresholds are readily achieved without reaching erase saturation levels.

The examples described above are implemented using n-channel devices, in which the source and drain terminals are doped with n-type impurities. The technology can be implemented using p-channel devices as well, in which the source and drain terminals are doped with p-type impurities.

The examples described above are implemented using devices with flat or planar channel surfaces. The technology can be implemented using non-planar structures, including cylindrical channel surfaces, fin shaped channels, recessed channels and so on.

The examples described above the charge storage stack is implemented so that the tunneling layer is on the channel surface and the blocking dielectric layer is adjacent the gate. In alternatives, the charge storage stack may be reversed, so that the tunneling layer is adjacent the gate terminal and the blocking dielectric is on the channel surface.

While the present invention is disclosed by reference to the preferred embodiments and examples detailed above, it is to be understood that these examples are intended in an illustrative rather than in a limiting sense. It is contemplated that modifications and combinations will readily occur to those skilled in the art, which modifications and combinations will be within the spirit of the invention and the scope of the following claims.

Lue, Hang-Ting, Lai, Sheng Chih, Liao, Chien Wei

Patent Priority Assignee Title
10090416, May 25 2007 LONGITUDE FLASH MEMORY SOLUTIONS LTD Radical oxidation process for fabricating a nonvolatile charge trap memory device
10269985, May 25 2007 MORGAN STANLEY SENIOR FUNDING Radical oxidation process for fabricating a nonvolatile charge trap memory device
10304968, May 25 2007 LONGITUDE FLASH MEMORY SOLUTIONS LTD Radical oxidation process for fabricating a nonvolatile charge trap memory device
10312336, May 25 2007 LONGITUDE FLASH MEMORY SOLUTIONS LTD Memory transistor with multiple charge storing layers and a high work function gate electrode
10374067, May 25 2007 LONGITUDE FLASH MEMORY SOLUTIONS LTD Oxide-nitride-oxide stack having multiple oxynitride layers
10411103, May 25 2007 LONGITUDE FLASH MEMORY SOLUTIONS LTD Memory transistor with multiple charge storing layers and a high work function gate electrode
10446656, May 25 2007 LONGITUDE FLASH MEMORY SOLUTIONS LTD Memory transistor with multiple charge storing layers and a high work function gate electrode
10593812, May 25 2007 LONGITUDE FLASH MEMORY SOLUTIONS LTD Radical oxidation process for fabricating a nonvolatile charge trap memory device
10720444, Aug 20 2018 SanDisk Technologies LLC Three-dimensional flat memory device including a dual dipole blocking dielectric layer and methods of making the same
10896973, May 25 2007 LONGITUDE FLASH MEMORY SOLUTIONS LTD Oxide-nitride-oxide stack having multiple oxynitride layers
10903068, May 25 2007 LONGITUDE FLASH MEMORY SOLUTIONS LTD Oxide-nitride-oxide stack having multiple oxynitride layers
10903342, May 25 2007 LONGITUDE FLASH MEMORY SOLUTIONS LTD Oxide-nitride-oxide stack having multiple oxynitride layers
11056565, May 25 2007 LONGITUDE FLASH MEMORY SOLUTIONS LTD. Flash memory device and method
11222965, May 25 2007 LONGITUDE FLASH MEMORY SOLUTIONS LTD Oxide-nitride-oxide stack having multiple oxynitride layers
11456365, May 25 2007 LONGITUDE FLASH MEMORY SOLUTIONS LTD. Memory transistor with multiple charge storing layers and a high work function gate electrode
11631691, Aug 20 2018 SanDisk Technologies LLC Three-dimensional flat memory device including a dual dipole blocking dielectric layer and methods of making the same
11721733, May 25 2007 LONGITUDE FLASH MEMORY SOLUTIONS LTD. Memory transistor with multiple charge storing layers and a high work function gate electrode
11784243, May 25 2007 LONGITUDE FLASH MEMORY SOLUTIONS LTD Oxide-nitride-oxide stack having multiple oxynitride layers
7910446, Jul 16 2007 Applied Materials, Inc.; Applied Materials, Inc Integrated scheme for forming inter-poly dielectrics for non-volatile memory devices
8030701, Sep 22 2008 Kabushiki Kaisha Toshiba Memory cell of nonvolatile semiconductor memory device
8063434, May 25 2007 LONGITUDE FLASH MEMORY SOLUTIONS LTD Memory transistor with multiple charge storing layers and a high work function gate electrode
8314457, Dec 20 2007 Samsung Electronics Co., Ltd. Non-volatile memory devices
8343840, Aug 09 2007 Macronix International Co., Ltd. Blocking dielectric engineered charge trapping memory cell with high speed erase
8466022, Jun 25 2010 Kabushiki Kaisha Toshiba Semiconductor memory device and method for manufacturing the same
8633537, May 25 2007 LONGITUDE FLASH MEMORY SOLUTIONS LTD Memory transistor with multiple charge storing layers and a high work function gate electrode
8685813, Feb 15 2012 LONGITUDE FLASH MEMORY SOLUTIONS LTD Method of integrating a charge-trapping gate stack into a CMOS flow
8859374, May 25 2007 LONGITUDE FLASH MEMORY SOLUTIONS LTD Memory transistor with multiple charge storing layers and a high work function gate electrode
8940645, May 25 2007 LONGITUDE FLASH MEMORY SOLUTIONS LTD Radical oxidation process for fabricating a nonvolatile charge trap memory device
9099394, Dec 15 2011 GLOBALFOUNDRIES Inc Non-volatile memory structure employing high-k gate dielectric and metal gate
9306025, May 25 2007 LONGITUDE FLASH MEMORY SOLUTIONS LTD Memory transistor with multiple charge storing layers and a high work function gate electrode
9318336, Oct 27 2011 GLOBALFOUNDRIES U S INC Non-volatile memory structure employing high-k gate dielectric and metal gate
9502521, Nov 02 2009 Applied Materials, Inc. Multi-layer charge trap silicon nitride/oxynitride layer engineering with interface region control
9502543, May 25 2007 LONGITUDE FLASH MEMORY SOLUTIONS LTD Method of manufacturing for memory transistor with multiple charge storing layers and a high work function gate electrode
9580611, Sep 04 2006 LEIBNIZ-INSTITUT FUER NEUE MATERIALIEN GEMEINNUETZIGE GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG Coating composition for electrical conductors and method of producing such a composition
9899486, May 25 2007 Cypress Semiconductor Corporation Memory transistor with multiple charge storing layers and a high work function gate electrode
9929240, May 25 2007 LONGITUDE FLASH MEMORY SOLUTIONS LTD Memory transistor with multiple charge storing layers and a high work function gate electrode
ER5809,
Patent Priority Assignee Title
4630086, Sep 24 1982 Hitachi, Ltd.; Hitachi Microcomputer Engineering Ltd. Nonvolatile MNOS memory
4959812, Dec 28 1987 Kabushiki Kaisha Toshiba Electrically erasable programmable read-only memory with NAND cell structure
5270969, Jun 29 1987 Kabushiki Kaisha Toshiba Electrically programmable nonvolatile semiconductor memory device with nand cell structure
5278439, Aug 29 1991 Winbond Electronics Corporation Self-aligned dual-bit split gate (DSG) flash EEPROM cell
5286994, Aug 22 1991 Rohm Co., Ltd. Semiconductor memory trap film assembly having plural laminated gate insulating films
5319229, Aug 22 1991 ROHM CO , LTD Semiconductor nonvolatile memory with wide memory window and long data retention time
5355464, Feb 11 1991 INTEL CORPORATION, A CORPORTAION OF DE Circuitry and method for suspending the automated erasure of a non-volatile semiconductor memory
5408115, Apr 04 1994 Motorola Inc. Self-aligned, split-gate EEPROM device
5412603, May 06 1994 Texas Instruments Incorporated Method and circuitry for programming floating-gate memory cell using a single low-voltage supply
5424569, May 05 1994 Micron Technology, Inc. Array of non-volatile sonos memory cells
5448517, Jun 29 1987 Kabushiki Kaisha Toshiba Electrically programmable nonvolatile semiconductor memory device with NAND cell structure
5483486, Oct 19 1994 Intel Corporation Charge pump circuit for providing multiple output voltages for flash memory
5485422, Jun 02 1994 Micron Technology, Inc Drain bias multiplexing for multiple bit flash cell
5509134, Jun 30 1993 Intel Corporation Method and apparatus for execution of operations in a flash memory array
5515324, Sep 17 1993 Kabushiki Kaisha Toshiba EEPROM having NAND type memory cell array
5602775, Mar 15 1995 Fairchild Semiconductor Corporation Flash EEPROM Memory system for low voltage operation and method
5644533, Nov 02 1992 RPX Corporation Flash memory system, and methods of constructing and utilizing same
5668029, May 06 1996 United Microelectronics Corporation Process for fabricating multi-level read-only memory device
5694356, Nov 02 1994 SanDisk Technologies LLC High resolution analog storage EPROM and flash EPROM
5745410, Nov 17 1995 Macronix International Co., Ltd. Method and system for soft programming algorithm
5753950, May 19 1995 Motorola, Inc. Non-volatile memory having a cell applying to multi-bit data by double layered floating gate architecture and programming/erasing/reading method for the same
5768192, Jul 23 1996 MORGAN STANLEY SENIOR FUNDING Non-volatile semiconductor memory cell utilizing asymmetrical charge trapping
5835396, Oct 17 1996 Three-dimensional read-only memory
5877054, Jun 29 1995 Sharp Kabushiki Kaisha Method of making nonvolatile semiconductor memory
5883409, Jan 14 1992 SanDisk Technologies LLC EEPROM with split gate source side injection
5895949, Jun 29 1993 Kabushiki Kaisha Toshiba Semiconductor device having inversion inducing gate
5952692, Nov 15 1996 Hitachi, Ltd. Memory device with improved charge storage barrier structure
5966603, Jun 11 1997 MORGAN STANLEY SENIOR FUNDING NROM fabrication method with a periphery portion
6011725, Aug 01 1997 MORGAN STANLEY SENIOR FUNDING Two bit non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping
6026026, Dec 05 1997 HYUNDAI ELECTRONICS AMERICA, INC Self-convergence of post-erase threshold voltages in a flash memory cell using transient response
6034896, Jul 03 1995 The University of Toronto, Innovations Foundation Method of fabricating a fast programmable flash E2 PROM cell
6074917, Jun 16 1998 MONTEREY RESEARCH, LLC LPCVD oxide and RTA for top oxide of ONO film to improve reliability for flash memory devices
6096603, Feb 16 1998 TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD Method of fabricating a split gate structure of a flash memory
6151248, Jun 30 1999 SanDisk Technologies LLC Dual floating gate EEPROM cell array with steering gates shared by adjacent cells
6169693, Dec 05 1997 Hyundai Electronics America, Inc. Self-convergence of post-erase threshold voltages in a flash memory cell using transient response
6172907, Oct 22 1999 MONTEREY RESEARCH, LLC Silicon-oxide-nitride-oxide-semiconductor (SONOS) type memory cell and method for retaining data in the same
6194272, May 19 1998 Promos Technologies Inc Split gate flash cell with extremely small cell size
6215148, May 20 1998 MORGAN STANLEY SENIOR FUNDING NROM cell with improved programming, erasing and cycling
6218700, Oct 29 1997 STMicroelectronics SA Remanent memory device
6219276, Feb 25 2000 VALLEY DEVICE MANAGEMENT Multilevel cell programming
6297096, Jun 11 1997 MORGAN STANLEY SENIOR FUNDING NROM fabrication method
6320786, Dec 22 2000 Macronix International Co., Ltd. Method of controlling multi-state NROM
6322903, Dec 06 1999 Invensas Corporation Package of integrated circuits and vertical integration
6356478, Dec 21 2000 MICROSEMI SOC CORP Flash based control for field programmable gate array
6363013, Aug 29 2000 Macronix International Co., Ltd. Auto-stopped page soft-programming method with voltage limited component
6396741, May 04 2000 MORGAN STANLEY SENIOR FUNDING Programming of nonvolatile memory cells
6436768, Jun 27 2001 LONGITUDE FLASH MEMORY SOLUTIONS LTD Source drain implant during ONO formation for improved isolation of SONOS devices
6458642, Oct 29 2001 Macronix International Co., Ltd. Method of fabricating a sonos device
6487114, Feb 28 2001 Macronix International Co., Ltd. Method of reading two-bit memories of NROM cell
6512696, Nov 13 2001 Macronix International Co., Ltd. Method of programming and erasing a SNNNS type non-volatile memory cell
6522585, May 25 2001 SanDisk Technologies LLC Dual-cell soft programming for virtual-ground memory arrays
6538923, Feb 26 2001 MONTEREY RESEARCH, LLC Staircase program verify for multi-level cell flash memory designs
6552386, Sep 30 2002 Silicon-Based Technology Corp. Scalable split-gate flash memory cell structure and its contactless flash memory arrays
6566699, Jul 30 1997 MORGAN STANLEY SENIOR FUNDING Non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping
6587903, Feb 27 1998 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Soft programming for recovery of overerasure
6614070, Apr 16 1998 MONTEREY RESEARCH, LLC Semiconductor non-volatile memory device having a NAND cell structure
6614694, Apr 02 2002 Macronix International Co., Ltd. Erase scheme for non-volatile memory
6617639, Jun 21 2002 MONTEREY RESEARCH, LLC Use of high-K dielectric material for ONO and tunnel oxide to improve floating gate flash memory coupling
6643181, Oct 24 2001 MORGAN STANLEY SENIOR FUNDING Method for erasing a memory cell
6643185, Aug 07 2002 MONTEREY RESEARCH, LLC Method for repairing over-erasure of fast bits on floating gate memory devices
6645813, Jan 16 2002 Taiwan Semiconductor Manufacturing Company Flash EEPROM with function bit by bit erasing
6646924, Aug 02 2002 Macronix International Co, Ltd. Non-volatile memory and operating method thereof
6653733, Feb 23 1996 Micron Technology, Inc. Conductors in semiconductor devices
6657252, Mar 19 2002 GLOBALFOUNDRIES U S INC FinFET CMOS with NVRAM capability
6657894, Mar 29 2002 Macronix International Co., Ltd, Apparatus and method for programming virtual ground nonvolatile memory cell array without disturbing adjacent cells
6670240, Aug 13 2001 Halo LSI, Inc. Twin NAND device structure, array operations and fabrication method
6670671, Jun 13 2001 NEC Electronics Corporation; Renesas Electronics Corporation Nonvolatile semiconductor memory device and manufacturing method thereof
6674138, Dec 31 2001 MONTEREY RESEARCH, LLC Use of high-k dielectric materials in modified ONO structure for semiconductor devices
6677200, Aug 09 2001 Samsung Electronics Co., Ltd. Method of forming non-volatile memory having floating trap type device
6690601, Mar 29 2002 Macronix International Co., Ltd. Nonvolatile semiconductor memory cell with electron-trapping erase state and methods for operating the same
6709928, Jul 31 2001 MONTEREY RESEARCH, LLC Semiconductor device having silicon-rich layer and method of manufacturing such a device
6714457, Sep 19 2001 CALLAHAN CELLULAR L L C Parallel channel programming scheme for MLC flash memory
6720630, May 30 2001 International Business Machines Corporation Structure and method for MOSFET with metallic gate electrode
6744105, Mar 05 2003 Infineon Technologies LLC Memory array having shallow bit line with silicide contact portion and method of formation
6784480, Feb 12 2002 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Asymmetric band-gap engineered nonvolatile memory device
6795357, Oct 30 2002 Cypress Semiconductor Corporation Method for reading a non-volatile memory cell
6798012, Dec 10 1999 Dual-bit double-polysilicon source-side injection flash EEPROM cell
6815805, Apr 06 2000 Micron Technology, Inc. Method of fabricating an integrated circuit with a dielectric layer exposed to a hydrogen-bearing nitrogen source
6818558, Jul 31 2001 MONTEREY RESEARCH, LLC Method of manufacturing a dielectric layer for a silicon-oxide-nitride-oxide-silicon (SONOS) type devices
6829175, Sep 09 2002 Macronix International Co., Ltd. Erasing method for non-volatile memory
6841813, Aug 13 2001 WODEN TECHNOLOGIES INC TFT mask ROM and method for making same
6856551, Feb 06 2003 SanDisk Technologies LLC System and method for programming cells in non-volatile integrated memory devices
6858899, Oct 15 2002 SanDisk Technologies LLC Thin film transistor with metal oxide layer and method of making same
6858906, Jun 28 2001 Samsung Electronics Co., Ltd. Floating trap non-volatile semiconductor memory devices including high dielectric constant blocking insulating layers
6885044, Jul 30 2003 Promos Technologies Inc Arrays of nonvolatile memory cells wherein each cell has two conductive floating gates
6888750, Apr 28 2000 SanDisk Technologies LLC Nonvolatile memory on SOI and compound semiconductor substrates and method of fabrication
6897533, Sep 18 2002 MONTEREY RESEARCH, LLC Multi-bit silicon nitride charge-trapping non-volatile memory cell
6912163, Jan 14 2003 LONGITUDE FLASH MEMORY SOLUTIONS LTD Memory device having high work function gate and method of erasing same
6925007, Oct 31 2001 SanDisk Technologies LLC Multi-state non-volatile integrated circuit memory systems that employ dielectric storage elements
6933555, Jan 16 2002 Taiwan Semiconductor Manufacturing Co., Ltd. Flash EEPROM with function bit by bit erasing
6937511, Jan 27 2004 Macronix International Co., Ltd. Circuit and method for programming charge storage memory cells
6970383, Jun 10 2003 MICROSEMI SOC CORP Methods of redundancy in a floating trap memory element based field programmable gate array
6977201, Oct 06 2003 CAVIUM INTERNATIONAL; Marvell Asia Pte Ltd Method for fabricating flash memory device
6995424, Jan 10 2003 Samsung Electronics Co., Ltd. Non-volatile memory devices with charge storage insulators
6996011, May 26 2004 Macronix International Co., Ltd. NAND-type non-volatile memory cell and method for operating same
7005366, Aug 23 2002 Intel Corporation Tri-gate devices and methods of fabrication
7012297, Aug 30 2001 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Scalable flash/NV structures and devices with extended endurance
7018895, Jul 30 2003 ProMos Technologies Inc. Nonvolatile memory cell with multiple floating gates formed after the select gate
7026682, May 13 2002 Macronix International Co., Ltd. Non-volatile memory device with enlarged trapping layer
7057234, Dec 06 2002 Cornell Research Foundation, Inc Scalable nano-transistor and memory using back-side trapping
7071061, Jan 11 2005 Powerchip Semiconductor Manufacturing Corporation Method for fabricating non-volatile memory
7075828, Apr 26 2004 MACRONIX INTERNATIONAL CO , LTD Operation scheme with charge balancing erase for charge trapping non-volatile memory
7106625, Jul 06 2004 Macronix International Co, td Charge trapping non-volatile memory with two trapping locations per gate, and method for operating same
7115469, Dec 17 2001 LONGITUDE FLASH MEMORY SOLUTIONS LTD Integrated ONO processing for semiconductor devices using in-situ steam generation (ISSG) process
7115942, Jul 24 2004 CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD Method and apparatus for nonvolatile memory
7120059, Jul 06 2004 Macronix International Co., Ltd. Memory array including multiple-gate charge trapping non-volatile cells
7129538, Aug 14 2000 WODEN TECHNOLOGIES INC Dense arrays and charge storage devices
7133313, Apr 26 2004 MACRONIX INTERNATIONAL CO , LTD Operation scheme with charge balancing for charge trapping non-volatile memory
7135734, Aug 30 2001 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Graded composition metal oxide tunnel barrier interpoly insulators
7151692, Jan 27 2004 Macronix International Co., Ltd.; MACRONIX INTERNATIONAL CO , LTD Operation scheme for programming charge trapping non-volatile memory
7154143, Nov 05 2003 CAVIUM INTERNATIONAL; Marvell Asia Pte Ltd Non-volatile memory devices and methods of fabricating the same
7154779, Jan 21 2004 SanDisk Technologies LLC Non-volatile memory cell using high-k material inter-gate programming
7157769, Dec 18 2003 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Flash memory having a high-permittivity tunnel dielectric
7158420, Apr 29 2005 Macronix International Co., Ltd. Inversion bit line, charge trapping non-volatile memory and method of operating same
7164603, Apr 26 2004 MACRONIX INTERNATIONAL CO , LTD Operation scheme with high work function gate and charge balancing for charge trapping non-volatile memory
7166513, Aug 19 2003 Powerchip Semiconductor Manufacturing Corporation Manufacturing method a flash memory cell array
7187590, Apr 26 2004 MACRONIX INTERNATIONAL CO , LTD Method and system for self-convergent erase in charge trapping memory cells
7190614, Jun 17 2004 Macronix International Co., Ltd.; MACRONIX INTERNATIONAL CO , LTD Operation scheme for programming charge trapping non-volatile memory
7209386, Jul 06 2004 Macronix International Co., Ltd. Charge trapping non-volatile memory and method for gate-by-gate erase for same
7209390, Apr 26 2004 MACARONIX INTRNATIONAL CO LTD Operation scheme for spectrum shift in charge trapping non-volatile memory
7250646, Aug 13 2001 WODEN TECHNOLOGIES INC TFT mask ROM and method for making same
7279740, May 12 2005 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Band-engineered multi-gated non-volatile memory device with enhanced attributes
20010012663,
20010055838,
20020167844,
20020179958,
20030025147,
20030030100,
20030032242,
20030036250,
20030042534,
20030047755,
20030067032,
20030146465,
20030185055,
20030224564,
20040079983,
20040084714,
20040125629,
20040145024,
20040183126,
20040251489,
20040256679,
20050001258,
20050006696,
20050023603,
20050062091,
20050074937,
20050093054,
20050218522,
20050219906,
20050237801,
20050237809,
20050237813,
20050237815,
20050237816,
20050255652,
20050270849,
20050281085,
20060007732,
20060044872,
20060118858,
20060197145,
20060198189,
20060198190,
20060202252,
20060202256,
20060202261,
20060234446,
20060258090,
20060261401,
20060275986,
20060281260,
20070012988,
20070029625,
20070031999,
20070032018,
20070045718,
20070069283,
20070076477,
20070120179,
20070138539,
20090039417,
EP1411555,
EP1689002,
JP11040682,
JP2004363329,
RE35838, Dec 28 1987 Kabushiki Kaisha Toshiba Electrically erasable programmable read-only memory with NAND cell structure
WO137347,
WO9428551,
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Aug 27 2007Macronix International Co., Ltd.(assignment on the face of the patent)
Sep 06 2007LAI, SHENG-CHIHMACRONIX INTERNATIONAL CO , LTD ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0200740716 pdf
Sep 06 2007LUE, HANG-TINGMACRONIX INTERNATIONAL CO , LTD ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0200740716 pdf
Sep 06 2007LIAO, CHIEN WEIMACRONIX INTERNATIONAL CO , LTD ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0200740716 pdf
Date Maintenance Fee Events
Nov 13 2013M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Sep 06 2017M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Sep 15 2021M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Jun 15 20134 years fee payment window open
Dec 15 20136 months grace period start (w surcharge)
Jun 15 2014patent expiry (for year 4)
Jun 15 20162 years to revive unintentionally abandoned end. (for year 4)
Jun 15 20178 years fee payment window open
Dec 15 20176 months grace period start (w surcharge)
Jun 15 2018patent expiry (for year 8)
Jun 15 20202 years to revive unintentionally abandoned end. (for year 8)
Jun 15 202112 years fee payment window open
Dec 15 20216 months grace period start (w surcharge)
Jun 15 2022patent expiry (for year 12)
Jun 15 20242 years to revive unintentionally abandoned end. (for year 12)