Techniques and devices for depolarizing light and producing a variable differential group delays in optical signals. In one implementation, an input optical beam is split into first and second beams with orthogonal polarizations. One or two optical reflectors are then used to cause the first and second optical beams to undergo different optical path lengths before they are recombined into a single output beam. An adjustment mechanism may used implemented to adjust the difference in the optical path lengths of the first and second beams to produce a variable DGD. When the depolarization of light is desired, the difference in the optical path lengths of the first and second beams is set to be greater than the coherence length of the input optical beam.

Patent
   8164831
Priority
Apr 18 2002
Filed
May 19 2009
Issued
Apr 24 2012
Expiry
Apr 17 2023
Assg.orig
Entity
Small
8
122
all paid
15. A device, comprising:
a polarization beam splitter (PBS) to receive an input optical beam with a coherent length and to split the input optical beam into a first beam and a second beam polarized orthogonal to said first beam;
a first reflector positioned relative to said PBS to reflect said first beam back to said PBS;
a first polarization element located between said first reflector and said PBS to rotate a polarization of a reflection of said first beam at said PBS to be perpendicular to said first beam when initially exiting said PBS;
a second reflector positioned relative to said PBS to reflect said second beam back to said PBS;
a second polarization element located between said second reflector and said PBS to rotate a polarization of a reflection of said second beam at said PBS to be perpendicular to said second beam when initially exiting said PBS, wherein said first and said second reflectors are positioned to produce a difference in optical paths of said first and said second beams upon being reflected back to said PBS that is greater than said coherent length;
two fibers to carry two input beams with orthogonal polarizations; and
a polarization beam combiner to combine said two input beams into a single beam as said input optical beam to said PBS.
1. A device, comprising:
a polarization beam splitter (PBS) to receive an input optical beam with a coherent length and to split the input optical beam into a first beam and a second beam polarized orthogonal to said first beam;
a first reflector positioned relative to said PBS to reflect said first beam back to said PBS;
a first polarization element located between said first reflector and said PBS to rotate a polarization of a reflection of said first beam at said PBS to be perpendicular to said first beam when initially exiting said PBS;
a second reflector positioned relative to said PBS to reflect said second beam back to said PBS; and
a second polarization element located between said second reflector and said PBS to rotate a polarization of a reflection of said second beam at said PBS to be perpendicular to said second beam when initially exiting said PBS, wherein said first and said second reflectors are positioned to produce a difference in optical paths of said first and said second beams upon being reflected back to said PBS that is greater than said coherent length and that light of said first beam and light of said second beam upon being reflected back to said PBS are not coherent to each other and combined light produced by said PBS from the light of said first beam and the light of said second beam upon being reflected back to said PBS is depolarized.
7. A device, comprising:
a polarization beam splitter (PBS) to receive an input optical beam with a coherent length and to split the input optical beam into a first beam and a second beam polarized orthogonal to said first beam;
a first reflector positioned relative to said PBS to reflect said first beam back to said PBS;
a first polarization element located between said first reflector and said PBS to rotate a polarization of a reflection of said first beam at said PBS to be perpendicular to said first beam when initially exiting said PBS;
a second reflector positioned relative to said PBS to reflect said second beam back to said PBS;
a second polarization element located between said second reflector and said PBS to rotate a polarization of a reflection of said second beam at said PBS to be perpendicular to said second beam when initially exiting said PBS, wherein said first and said second reflectors are positioned to produce a difference in optical paths of said first and said second beams upon being reflected back to said PBS that is greater than said coherent length;
two fibers to carry two input beams with orthogonal polarizations;
a dual fiber collimator coupled to said two fibers to collimate said two input beams from said two fibers; and
a polarization beam combiner to combine said two input beams into a single beam as said input optical beam to said PBS.
2. The device as in claim 1, wherein said first polarization element is a quarter wave plate.
3. The device as in claim 1, wherein said first polarization element is a 45-degree Faraday rotator.
4. The device as in claim 3, wherein said 45-degree Faraday rotator is located in front of said first reflector to form a Faraday reflector.
5. The device as in claim 4, further comprising a fiber coupled between said PBS and said 45-degree Faraday rotator.
6. The device as in claim 5, wherein said fiber is a single-mode fiber.
8. The device as in claim 7, wherein said two fibers are polarization maintaining fibers.
9. The device as in claim 7, wherein said polarization beam combiner is a Wollaston prism.
10. The device as in claim 7, wherein said first polarization element is a quarter wave plate.
11. The device as in claim 7, wherein said first polarization element is a 45-degree Faraday rotator.
12. The device as in claim 11, wherein said 45-degree Faraday rotator is located in front of said first reflector to form a Faraday reflector.
13. The device as in claim 12, further comprising a fiber coupled between said PBS and said 45-degree Faraday rotator.
14. The device as in claim 13, wherein said fiber is a single-mode fiber.
16. The device as in claim 15, wherein said first polarization element is a quarter wave plate.
17. The device as in claim 15, wherein said first polarization element is a 45-degree Faraday rotator.
18. The device as in claim 17, wherein said 45-degree Faraday rotator is located in front of said first reflector to form a Faraday reflector.
19. The device as in claim 18, further comprising a fiber coupled between said PBS and said 45-degree Faraday rotator.
20. The device as in claim 19, wherein said fiber is a single-mode fiber.

This application is a divisional application of and claims priority to U.S. application Ser. No. 11/616,264, filed Dec. 26, 2006, U.S. Pat. No. 7,535,639, which is a divisional of U.S. application Ser. No. 10/418,712, filed on Apr. 17, 2003, now U.S. Pat. No. 7,154,659, which claims benefit of U.S. Provisional Application Ser. No. 60/413,806, filed Sep. 25, 2002, and U.S. Provisional Application Ser. No. 60/373,767, filed Apr. 18, 2002.

The disclosures of the above-referenced applications are incorporated by reference as part of the disclosure of this application.

This application relates to optical devices, and in particular, to optical depolarizers and devices for generating differential group delays (DGDs) and their applications.

Optical depolarizers are optical devices for reducing the degree of optical polarization of an input optical beam or randomizing the input polarization. Applications for such depolarizers include but are not limited to optical networks, test & measurement, and sensor applications. In an optical network application, for example, a depolarizer may be used to eliminate polarization sensitivity of Raman amplifiers. In test and measurement systems, depolarizing the output beam from a source laser may be used to eliminate polarization sensitivity of many test instruments.

Generation of variable DGDs has applications in optical communication systems and devices where polarization-mode dispersion (PMD) is present.

This application includes techniques and devices to depolarize light and to produce a desired differential group delay in optical signals. In general, an input optical beam is split into first and second beams with orthogonal polarizations. One or two optical reflectors are then used to cause the first and second optical beams to undergo different optical path lengths before they are recombined into a single output beam. An adjustment mechanism may be implemented to adjust the difference in the optical path lengths of the first and second beams to produce a variable DGD. When the depolarization of light is desired, the difference in the optical path lengths of the first and second beams is set to be greater than the coherence length of the input optical beam.

In one exemplary implementation, a device of this application may include a first polarization beam splitter (PBS), a second PBS, and a reflector arranged to form an optical system. The first PBS is positioned to receive an input optical beam with a coherent length and to split the input optical beam into a first beam and a second beam polarized orthogonal to the first beam. The reflector is positioned to reflect the first beam to the second PBS to cause an optical path difference between the first and the second beams at the second PBS to be greater than the coherent length. The second PBS is positioned to receive and combine the first and the second beams to produce an output beam.

In another exemplary implementation, a device of this application may include a polarization beam splitter (PBS) to receive an input optical beam with a coherent length and to split the input optical beam into a first beam and a second beam polarized orthogonal to the first beam. The device also includes first and second reflectors, first and second polarization elements. The first reflector is positioned relative to the PBS to reflect the first beam back to the PBS. The first polarization element is located between the first reflector and the PBS to rotate a polarization of a reflection of the first beam at the PBS to be perpendicular to the first beam when initially exiting the PBS. The second reflector is positioned relative to the PBS to reflect the second beam back to the PBS. The second polarization element is located between the second reflector and the PBS to rotate a polarization of a reflection of the second beam at the PBS to be perpendicular to the second beam when initially exiting the PBS. The first and the second reflectors are positioned to produce a difference in optical paths of the first and the second beams upon being reflected back to the PBS that is greater than the coherent length of the input optical beam.

The above and other devices of this application may operate as depolarizers. In addition, such devices may also be applied to produce a fixed pure first-order differential group delay (DGD). Pure first order DGD can have important applications in compensating for polarization mode dispersion. The DGD devices may be designed with low fabrication cost and compact size in order to compete with PM fibers. The polarization insensitive version of such a device may also be used as a passive bandwidth limiter.

These and other implementations, features, and associated advantages are now described in detail with reference to the drawings, the detailed description, and the claims.

FIG. 1 shows an exemplary device for depolarization or generating a variable DGD, which includes two polarization beam splitters (PBS) and an optical reflector such as a prism reflector.

FIG. 2A shows an exemplary polarization-insensitive device of this application.

FIG. 2B illustrates orientations of polarizations in the device in FIG. 2A.

FIGS. 3A and 3B show another exemplary polarization-insensitive device and the orientation of an input polarization beam displacer with respect to the input state of polarization.

FIG. 4 shows one implementation of a device having a polarization beam splitter and two optical reflectors.

FIG. 5 shows the orientation of quarter waveplates used in the device in FIG. 4 for rotating optical polarization of each reflected beam.

FIG. 6 shows a modified device based on the designs in FIGS. 4 and 5 by using a Faraday reflector in one reflection optical path and a fiber to provide a long optical delay relative to another reflection optical path.

FIG. 7A shows a device based on the designs in FIGS. 4 and 5 with a dual fiber collimator and a prism polarization beam combiner in the input path.

FIG. 7B shows relevant states of polarization in the device in FIG. 7A.

FIGS. 8 and 9 show two additional exemplary devices based on the design in FIG. 4.

FIG. 10 shows yet another design for implementing depolarizers or DGD generators.

The techniques and devices of this application split an input optical beam at an input location into first and second beams with orthogonal polarizations. At least one reflector is used to reflect the first input beam along a path different from the second beam to produce a difference in optical path lengths of the two beams at a common location where they are recombined into a single output beam.

FIG. 1 shows one implementation of a depolarizer 100 which includes two polarization beam splitters (PBSs) 110 and 120 and an optical reflector 130 such as a prism reflector. The first PBS 110 is used as an input port to receive input light 101 and to split input light into two orthogonal linear polarizations 111 and 112. The transmitted polarization 111, e.g., the P polarized light, is directed to the prism reflector 130. The reflected polarization 112, e.g., the S polarized light, is directed to the second PBS 120. The transmitted P polarized light 111, after reflected by the prism reflector 130, is directed to the second PBS 120. The second PBS 120 combines the S and P polarized beams 112 and 111 to produce the output beam 121. When operated under proper conditions, this output beam 121 is depolarized.

Notably, the distance between the prism reflector 130 and the two PBSs 110 and 120 may be sufficiently long to be greater than the coherent length of the input optical beam 101 so that the S and P polarized beams 112 and 111 received by the second PBS 120 are no longer coherent with each other. This condition allows the output light 121 from the second PBS 120 to be effectively depolarized. For a linear input beam 101, the input polarization should be at 45 degrees with respect to the passing polarization axis of the first PBS 110 to evenly split the input power between two output beams 111 and 112 of the first PBS 110.

In one implementation, an input fiber may be used to direct the input beam 101 to the first PBS 110. Accordingly, an output fiber may be used to receive the output beam 121 from the second PBS 120. The input fiber may be polarization maintaining (PM) and the input light 101 is oriented 45° from the passing axis of the first PBS 110. Under this condition, the linearly polarized input light 101 is split into “s” and “p” components 112 and 111 with equal power levels. Assuming the PBS 110 reflects the “s” component 112 and transmits the “p” component 111, the “p” component 111 undergoes a longer optical path than the “s” component when they reach the second PBS 120. In order to achieve effectively depolarization, the optical path difference between the two components 111 and 112 should be larger than the coherence length of the light source for producing the input light 101. In comparison with a typical birefringent-crystal-based Lyot depolarizer, this device 100 has the advantage of smaller size because of the double pass free-space design. In addition, the cost of the device 100 can be low because no birefringent crystal is required. Table I shows the minimum device length for light source with different linewidth. The length of this depolarizer may be significantly shorter than a typical Lyot depolarizer, e.g., as much as 10 times less that that of a single section Lyot depolarizer.

TABLE I
Length of Lyot
depolarizer
Linewidth Coherent length Length of GP depolarizer (Δn = 0.2)
1 nm 2.4 mm 1.2 mm 12 mm
0.1 nm 24 mm 12 mm 120 mm
0.01 nm 240 mm 120 mm 1200 mm

When the input fiber that feeds the input light 101 to the PBS 110 is implemented with a single mode fiber, the device 100 may be operated as a differential group delay line (DGD) for PMD compensation because different polarization components undergo different optical path delays. As a variable DGD generator, it is not necessary that the difference in the optical path lengths in the device 100 be greater than the coherence length of the input light. The relationship between the minimum device length (excluding lengths of PBS and reflection prism) and DGD is listed in Table II.

TABLE II
Equivalent optical
DGD path length Device length
10 ps 3 mm 1.5 mm
25 ps 7.5 mm 3.75 mm
50 ps 15 mm 7.5 mm
100 ps 30 mm 15 mm
200 ps 60 mm 30 mm

The design 100 shown in FIG. 1 may be used to construct compact DGD components. In addition, because the light beams propagate in the air between the PBSs 110 and 120 and the prism reflector 130 within the depolarizer 100 and the air has negligible dispersion, the device 100 may operate to produce a pure first order DGD.

The depolarizer 100 described in FIG. 1 is sensitive to the input polarization. In many applications, polarization insensitivity may be desirable. FIGS. 2A, 2B, 3A, and 3B illustrate two configurations that can eliminate the polarization sensitivity of the device in FIG. 1.

FIG. 2A shows the first polarization-insensitive depolarizer 200 according to one implementation. An input polarization beam displacer (PBD) 210 is placed in the input of the first PBS 110 to separate two polarization components into two parallel paths 211 and 212 into the first PBS 110. A polarization rotator 218 such as a half wave plate is placed in one of the parallel paths to rotate the polarization in that path by 90°. Consequently, the two parallel input beams 211 and 212 have the same linear polarization when entering the first PBS 110. The input PBD 210 is oriented in such a way that the linear polarization of the two input beams 211 and 212 is 45° from the passing axis of the first PBS 110, as shown in FIG. 2B. As a result, each beam is split into two beams by the first PBS 110. The “p” component transmitting through the PBS 110 goes through a longer optical path through the reflector 130 before combining with the “s” component at the second PBS 120. Finally, the two beams are combined by a second, output PBD 220 to produce a depolarized output beam 221. A second half wave plate 228 is placed in one of the parallel paths between the PBS 120 and the PBD 220 to rotate the polarization in that path by 90°. The PBD 220 is oriented complementarily from the first input PBD 210 to allow two parallel input beams with orthogonal polarizations to be combined into the single output beam 221. This output beam 221 may then be directed into the output fiber in a fiber system.

The PBDs 210 and 220 may be implemented in various configurations. For example, a properly-cut birefringent crystal, such as calcite, may be used to separate the ordinary and extraordinary beams with orthogonal polarizations as parallel output beams. The ordinary polarization transmits straight through while the extraordinary transmits through the crystal at an angle with respect to the ordinary beam and emerges parallel to the ordinary beam.

In a different configuration 300 shown in FIG. 3A, a first PBD 210 is used to receive an input beam 101 and separates the beam 101 upon transmission into two parallel beams 211 and 212 with orthogonal polarizations. The PBD 210 is so oriented that the two orthogonal polarizations are +/−45° from the passing axis of the PBS as shown in FIG. 3B. Consequently, each beam is split into “s” and “p” components. Similarly, the “p” component travels along a longer optical path through the reflector 130 before being combined with the “s” component at the second PBS 120. Finally, the two beams are combined by a second PBD 220 oriented complementarily from the first PBD 210 to produce the depolarized output beam 221. In this configuration, the half wave plates 218 and 228 used in FIG. 2A are eliminated to reduce the cost of the device and to reduce its wavelength sensitivity introduced by the half wave plates.

A pure first order DGD may be used in the polarization mode dispersion compensation. However, the DGD device should be compact and can be manufactured at a low cost in order to compete with a PM fiber DGD device. The above depolarizers may be used to produce such pure first order DGDs for various applications.

Notably, an adjustment mechanism may be implemented in the above and other exemplary devices of this application to adjust the spacing between the prism reflector 130 and the PBSs 110 and 120 to produce different or variable first order DGDs. This adjustment mechanism may be implemented by, e.g., engaging the reflector 130 to a movable element 205 that moves its position to change the position of the reflector 130 in response to a control signal. Alternatively, the two PBSs 110 and 120 may be engaged to the movable element 205 to move relative to the reflector 130.

The following sections of this application describe additional exemplary designs of optical depolarizers, including, among others, designs with a long coherence length. Notably, FIGS. 4. 6, 7A, 8 and 9 show exemplary implementations of a different device configurations for either optical depolarization or generation of variable DGDs by using two separate reflectors to form two separate reflection optical paths.

This type of design uses a polarization beam splitter (PBS) 410 to receive an input optical beam with a coherent length and to split the input optical beam into a first beam and a second beam polarized orthogonal to the first beam. First and second reflectors 420 and 430, first and second polarization elements 441 and 442 are used to form two different optical reflection arms. The first reflector 430 is positioned relative to the PBS 410 to reflect the first beam back to the PBS 410. The first polarization element 441 is located between the first reflector 430 and the PBS 410 to rotate a polarization of a reflection of the first beam at the PBS 410 to be perpendicular to the first beam when initially exiting the PBS 410. The second reflector 420 is positioned relative to the PBS 410 to reflect the second beam back to the PBS 410. The second polarization element 442 is located between the second reflector 420 and the PBS 410 to rotate a polarization of a reflection of the second beam at the PBS 410 to be perpendicular to the second beam when initially exiting the PBS 410. The first and the second reflectors 430 and 420 are positioned to produce a difference in optical paths of the first and the second beams upon being reflected back to the PBS 410. When operated as an optical depolarizer, this difference is set to be greater than the coherent length of the input optical beam.

FIG. 4 shows one implementation of a depolarizer 400 having a polarization beam splitter 410 and two optical reflectors 420 and 430. The polarization beam splitter (PBS) 410, two polarization rotators 441 and 442, two mirrors (reflectors) 420 and 430 and a prism reflector 450 are arranged as illustrated. The input light 101 may be delivered to the input facet of the PBS 410 with the input SOP oriented a degrees from the passing axis of the PBS. An input fiber, made of a polarization maintaining (PM) fiber having one polarization axis aligned at a degrees from the passing axis of the PBS, may be used to deliver the input light to the PBS 410. Each of the polarization rotators 441 and 442 may be either a 45-degree Faraday rotator or a quarter-wave plate.

Under this input condition, the linearly polarized input light 401 is split by the PBS 410 into two orthogonally polarized beams 412 and 411: the “s” and “p” components. Assuming the PBS 410 reflects the “s” component 412 and passes the “p” component 411, the “p” component 411 goes through a longer optical path than the “s” component 412. After reflection from the mirrors 420 and 430, the “s” component 412 becomes “p” and the “p” components 411 becomes “s” so that both components are directed towards the prism reflector 450 by the PBS 410. In order to achieve effective depolarization, it is desirable that the optical path difference between the two components be larger than the coherence length of the light source that produces the input light 401. In comparison with a typical Lyot depolarizer, this device 400 has the advantage of smaller size because of the double pass free-space design. In addition, the cost of the device 400 is also lowered because no birefringent crystal is required. Table III shows the minimum device length for light source with different linewidth. As indicated, the length of GP's depolarizer is 10 times less that that of a single section Lyot depolarizer.

In this implementation, the powers of the “s” and “p” components 412 and 411 should also be equal at the output in order to be an effective depolarizer. Assuming the transmission coefficients of the “s” and “p” components are Ts and Tp respectively, the orientation angle α of the input SOP should be:
α=tan−1(Ts/Tp).
Note that if quarter waveplates are used as the polarization rotator 441 or 442, the relative orientation angle of the waveplates should be 45° from the passing axes of the polarization beamsplitter 410. This alternative design is shown in FIG. 5.

TABLE III
Length of Lyot
depolarizer
Linewidth Coherent length Length of GP depolarizer (□n = 0.2)
1 nm 2.4 mm 1.2 mm 12 mm
0.1 nm 24 mm 12 mm 120 mm
0.01 nm 240 mm 120 mm 1200 mm

If the input fiber coupled to the PBS 410 is implemented with a single mode fiber, the device in FIG. 4 or FIG. 5 can be used as a differential group delay (DGD) line for PMD compensation because different polarization components undergo different optical path delays. The relationship between the minimum device length (excluding lengths of PBS and reflection prism) and DGD is listed in Table IV. Highly compact DGD component can be made with this approach. In addition, because the light beams are propagating in the air and the air has negligible dispersion, the device can be used to produce a pure first order DGD.

TABLE IV
Equivalent optical
DGD path length Device length
10 ps 3 mm 1.5 mm
25 ps 7.5 mm 3.75 mm
50 ps 15 mm 7.5 mm
100 ps 30 mm 15 mm
200 ps 60 mm 30 mm

FIG. 6 shows a configuration 600 that is capable of depolarizing light of a long coherence length. In this configuration, a fiber collimator 610 is used to focus the light of “p” polarization into a single mode fiber 620 as an optical path between the PBS 410 and the reflector 430. A 90-degree Faraday mirror is formed by the reflector 430 and a 45-degree Faraday rotator 441 at the other end of the fiber 620 to reflect the light back onto the polarization beamsplitter 410. Due to the unique ortho-conjugate property of the Faraday mirror, the reflected light is orthogonally polarized with respect to the forward propagating light everywhere along the fiber 620, despite of the birefringence in the single mode fiber 620. Consequently, the reflected light becomes a “s” polarized light at the PBS 410 and is reflected towards the output to combine with light that travels in the short path formed by the reflector 420. Different from the polarization rotator 441 which must be a 45-degree Faraday rotator right in front of the reflector 430, the polarization rotator 442 may be located at the PBS 410 and may be either a 45-degree Faraday rotator or a quarter-wave plate. The single mode fiber 620 can be easily and inexpensively used as a long optical path with a length up to many kilometers. Therefore, with this configuration, the device 600 can depolarize light with a extremely long coherence length.

Assuming the transmission coefficients of the two paths are T1 and T2 respectively, the orientation angle α of the input SOP should be α=tan−1(T1/T2) in order to have an equal power or the least DOP at the output.

In principle, a polarization combiner may operate as a polarization depolarizer by combining two independent lasers of orthogonal SOP into a single beam. However, the optical powers of the two lasers should be equalized in order to obtain small enough DOP. Equalization of the two lasers may require actively monitoring the laser powers and feedback control the power of one of the lasers, resulting in an increased system cost.

FIG. 7A shows a device 700 that combines a polarization beam combiner with a depolarizer. Using this device 700, two laser beams 1 and 2 may be easily combined with a minimum DOP, without the need to equalize the powers of the lasers that generate the laser beams 1 and 2, respectively. A PM dual fiber collimator 710 is used to collimate the laser beams 1 and 2 carried by two input PM fibers with orthogonal polarizations. A polarization beam combiner 720, such as a Wollaston prism, is used to combine the orthogonally polarized beams 1 and 2 from the two input PM fibers respectively carrying the beams 1 and 2 into a single input beam. A fiber collimator 730 may be used to receive and collimate the depolarized output beam from the prism reflector 450. As illustrated, the Wollaston prism 720 includes two birefringent prisms that are either spaced or cemented to combine two beams with mutually orthogonal polarizations into one beam. One used in the reverse direction, a single unpolarized beam can be separated into two diverging beams with mutually orthogonal polarizations.

FIG. 7B shows relevant states of polarization in the device 700, where the collimator 710 and prism 720 are so oriented that both polarizations are 45° from the passing axis of the PBS 410. In order for the optical powers at the output fiber from the short path and long path to be the same, the mirror 420 in the short path may be slightly mis-aligned to accommodate for the slightly higher loss in the long path.

An alternative configuration is shown in FIG. 8. In this configuration, a cube polarization combiner 830 is used to replace the Wollaston prism 720 in FIG. 7A to combine two input beams into one input beam to the PBS 410. As illustrated, an optional half wave plate 840 may be used to rotate the two input polarization states so that they are 45° from the passing axis of the polarization beam splitter 410. The rest of the arrangement is identical to that in FIG. 7A.

A fiber pigtailed polarization beam combiner (PBC) 910 may be cascaded with the depolarizer depicted in FIG. 4 or FIG. 5 to form a PBC/depolarizer, as shown in FIG. 9. In this configuration, the fiber pigtails of the PBC should be of PM fiber and the PM fiber collimator should be rotated such that the slow axis is 45° from the passing axis of the PBS.

Based on the above designs, fiber-coupled devices may be made to have specifications listed in TABLES V and VI.

TABLE V
Specification of an exemplary depolarizer
Insertion loss <0.75 dB
Operation linewidth <0.1 nm
Return loss 50 dB min.
Center wavelength 1550 nm, 1310 nm
Wavelength range +/−100 nm
DOP <5%
Input fiber PM for polarization sensitive version
SM for polarization insensitive version
Output fiber SM
Operation temperature 0 to 60 degree C.
Storage temperature −40 to + 80 degree C.
Power handling >300 mW

TABLE VI
Specification for an exemplary first order DGD device
Insertion loss <0.75 dB
1st order DGD 12 ps, 25 ps, 50 ps, 86 ps
Return loss 50 dB min.
Center wavelength 1550 nm, 1310 nm
Wavelength range +/−100 nm
Higher order PMD <10 ps2
Input fiber SM
Output fiber SM
Operation temperature 0 to 60 degree C.
Storage temperature −40 to + 80 degree C.
Power handling >300 mW

In the devices shown in FIGS. 4, 6, 7A, 8, and 9, the position of one of the reflectors 420 and 430 may be adjusted to vary the relative optical delay between the two reflected optical signals from the reflectors 420 and 430 to produce a variable DGD. In the device in FIGS. 6, 7A, and 8, the fiber 620 may be engaged to a fiber stretcher or other device to vary the fiber length to produce the desired variable DGD.

FIG. 10 shows yet another design 1000 for implementing depolarizers or DGD generators based on optical delay in two different optical paths. The design 1000 includes two optical paths formed by two Faraday reflectors 1050 and 1060 with two single-mode fibers 1040 and 1070, respectively. An input PM fiber 1010 is used to carry the input optical signal. The input PM fiber 1010 is oriented such that the incoming light is split 50% each into the two single mode fibers 1040 and 1070 of different lengths. As illustrated, a polarization beam splitter 1030 is engaged to the input PM fiber 1010 to perform this power splitting to produce two orthogonally-polarized beams that are respectively coupled into the fibers 1040 and 1070. At the opposite ends of the fibers 1040 and 1070 are coupled with the Faraday reflectors 1050 and 1060, respectively. Each Faraday reflector may be formed by a 45-degree Faraday rotator and a reflector. The reflected signals are directed back to the polarization beam splitter which now operates as a polarization beam combiner in this reversed input condition. The two reflected signals are combined into a single output beam. On the other side of the splitter 1030, a single-mode output fiber 1020 is coupled to receive the output beam.

The device 1000 may be used as a variable DGD generator where a mechanism is implemented to adjust the difference in the optical path lengths of two fibers 1040 and 1070. A fiber stretcher, for example, may be engaged to one fiber to change the difference. When used as a depolarizer, the difference is set to be greater than the coherence length of the input signal.

Only a few implementations are disclosed. However, it is understood that variations and enhancements may be made without departing from the spirit of and are intended to be encompassed by the following claims.

Chen, Jane, Shi, Yongqiang, Yao, X. Steve

Patent Priority Assignee Title
10324002, Jun 10 2013 Luna Innovations Incorporated Devices and methods for characterization of distributed fiber bend and stress
10451420, Jan 10 2013 Xiaotian Steve, Yao Non-interferometric optical gyroscope based on polarization sensing
10809460, Sep 08 2017 Exalos AG Depolarizers
11268811, Jul 09 2015 NUVISION PHOTONICS, INC Non-interferometric optical gyroscope based on polarization sensing
9632006, Jun 10 2013 Luna Innovations Incorporated Distributed fiber bend and stress measurement for determining optical fiber reliability by multi-wavelength optical reflectometry
9719883, Jun 10 2013 Luna Innovations Incorporated Devices and methods for characterization of distributed fiber bend and stress
9823075, Jan 10 2013 Non-interferometric optical gyroscope based on polarization sensing
9829410, Jun 10 2013 Luna Innovations Incorporated Distributed fiber bend and stress measurement for determining optical fiber reliability by multi-wavelength optical reflectometry
Patent Priority Assignee Title
3302028,
3658405,
3684350,
3719414,
3881823,
4094581, Jan 31 1977 Westinghouse Electric Corp. Electro-optic modulator with compensation of thermally induced birefringence
4461543, Mar 26 1982 Sperry Corporation Electro optic switch
4685773, Sep 13 1984 GTE Laboratories Incorporated Birefringent optical multiplexer with flattened bandpass
4735507, Jul 11 1986 B F GOODRICH COMPANY, THE Imaging coherent radiometer
4798436, Jul 30 1985 British Telecommunications, plc Optical fused couplers
4969720, Sep 05 1989 Lockheed Martin Corp Magneto-optic bypass switch
5206924, Jan 31 1992 The United States of America as represented by the Secretary of the Navy Fiber optic Michelson sensor and arrays with passive elimination of polarization fading and source feedback isolation
5251057, Oct 13 1989 Xerox Corporation Multiple beam optical modulation system
5270789, Oct 16 1990 Centre Suisse d'Electronique et de Microtechnique S.A. White light interferometric device adapted to define an absolute reference position
5301010, Feb 18 1989 Cambridge Consultants Limited Interferometer having a short coherence length light source and means for identifying interference fringes
5305136, Mar 31 1992 GEO-CENTERS, INC , A MA CORP Optically bidirectional fast optical switch having reduced light loss
5317445, Dec 16 1992 General Electric Company Optical device with spatial light modulators for switching polarized light
5323229, Aug 31 1992 George Washington University Measurement system using optical coherence shifting interferometry
5373393, Jun 01 1993 General Electric Company Opical interferometric device with spatial light modulators for switching substantially coherent light
5381250, Nov 06 1992 Displaytech, Inc. Electro-optical switch with 4 port modules with electro-optic polarization rotators
5475525, Mar 29 1991 Thales Transverse electrical filter operating optically
5561726, Sep 05 1995 General Photonics Corporation Apparatus and method for connecting polarization sensitive devices
5723856, Aug 01 1995 California Institute of Technology Opto-electronic oscillator having a positive feedback with an open loop gain greater than one
5751747, Dec 20 1995 California Institute of Technology Linear swept frequency generator
5777778, Aug 01 1996 California Institute of Technology Multi-Loop opto-electronic microwave oscillator with a wide tuning range
5796510, Nov 30 1995 General Photonics Corporation Ladder-structured photonic variable delay device
5818626, Aug 29 1994 Agfa Corporation Method and apparatus for optical isolation
5867291, Oct 29 1996 EZCONN Corporation Programmable wavelength router
5917179, May 12 1997 California Institute of Technology Brillouin opto-electronic oscillators
5929430, Jan 14 1997 California Institute of Technology Coupled opto-electronic oscillator
5978125, Nov 30 1995 General Photonics Corporation Compact programmable photonic variable delay devices
6049415, Dec 08 1997 Lumentum Operations LLC Polarization maintaining fiber lasers and amplifiers
6055081, Mar 15 1995 Sumitomo Electric Industries, Ltd. Chromatic dispersion compensator and chromatic dispersion compensating optical communication system
6069686, Jul 31 1997 Virginia Tech Intellectual Properties, Inc. Self-calibrating optical fiber pressure, strain and temperature sensors
6075647, Jan 30 1998 Agilent Technologies Inc Optical spectrum analyzer having tunable interference filter
6137574, Mar 15 1999 Zygo Corporation Systems and methods for characterizing and correcting cyclic errors in distance measuring and dispersion interferometry
6154581, Oct 27 1998 CommScope Technologies LLC Multiple port, fiber optic circulator
6175444, Dec 02 1997 NEC Corporation Bi-directional optical amplifier
6178036, Jan 14 1997 YAO, X STEVE Opto-electronic devices and systems based on brillouin selective sideband amplification
6243200, Mar 02 2000 EZCONN Corporation Optical wavelength router based on polarization interferometer
6301046, Dec 31 1999 Lumentum Operations LLC Interleaver/deinterleavers causing little or no dispersion of optical signals
6337770, Dec 31 1999 Lumentum Operations LLC Single-pass folded interleaver/deinterleavers
6389197, Feb 10 1999 California Institute of Technology Coupling system to a microsphere cavity
6407861, Apr 06 1999 CommScope Technologies LLC Adjustable optical circulator
6417948, Dec 24 1999 Corning Incorporated Variable delay device for an optical component such as a polarization mode dispersion compensator
6417957, Oct 27 1999 Institute of Technology, California Opto-electronic devices for processing and transmitting RF signals based on brillouin selective sideband amplification
6473218, Jun 11 1999 California Institute of Technology Light modulation in whispering-gallery-mode resonators
6476959, Jan 10 2000 California Institute of Technology Optical pulse synthesis using brillouin selective sideband amplification
6480637, Sep 30 2000 Luna Innovations Incorporated Fiber squeezer polarization controller with low activation loss
6487014, Aug 12 1996 National Research Council of Canada High isolation optical switch, isolator or circulator having thin film polarizing beam-splitters
6487233, Feb 23 2000 California Institute of Technology Fiber-coupled microsphere laser
6487336, Oct 11 2000 Luna Innovations Incorporated WDM channel equalization and control
6488861, Feb 10 1999 California Institute of Technology Coupling system to a microsphere cavity
6493474, Sep 30 2000 Luna Innovations Incorporated Fiber devices based on fiber squeezer polarization controllers
6498869, Jun 14 1999 Devices for depolarizing polarized light
6535328, Jan 14 1997 YAO, X STEVE Methods and devices based on brillouin selective sideband amplification
6567436, Jan 26 1999 California Institute of Technology Opto-electronic oscillators having optical resonators
6570711, Aug 01 2000 JDS Uniphase Inc. Virtual waveplate and optical channel interleaver formed therewith
6574015, May 19 1998 Seagate Technology LLC Optical depolarizer
6576886, Feb 20 2001 Luna Innovations Incorporated Dynamic control of polarization of an optical signal
6580532, Jan 28 1999 California Institute of Technology Opto-electronic techniques for reducing phase noise in a carrier signal by carrier supression
6594061, Jun 09 2000 California Institute of Technology Acceleration-insensitive opto-electronic oscillators
6628850, Feb 15 2001 Luna Innovations Incorporated Dynamic wavelength-selective grating modulator
6628861, Jan 06 1999 General Photonics Corporation Control of guided light in waveguide using external adjustable grating
6628862, Feb 15 2001 Luna Innovations Incorporated Thermal-induced waveguide gratings
6643063, Nov 14 2001 Oplink Communications, LLC Deinterleaver with high isolation and dispersion compensation and 50/200GHz interleaver and deinterleaver
6661941, Jan 23 2001 Frequency locking of tunable lasers by using a birefringent optical cavity
6687423, Oct 24 2000 Optical frequency-division multiplexer and demultiplexer
6693743, Jun 07 2000 Cirvine Corporation Birefringent devices
6754404, Sep 30 2000 Luna Innovations Incorporated Transverse-pressure-controlled fiber devices
6795481, Mar 22 2000 California Institute of Technology Non-spherical whispering-gallery-mode microcavity
6795616, Jan 06 1999 General Photonics Corporation Control of guided light in a waveguide
6813029, Oct 09 1999 Robert Bosch GmbH Interferometric measuring device for form measurement
6836327, Mar 16 2001 Luna Innovations Incorporated In-line optical polarimeter based on integration of free-space optical elements
6873631, Jan 26 1999 California Institute of Technology Integrated opto-electronic oscillators having optical resonators
6873783, Sep 30 2000 Luna Innovations Incorporated Fiber devices with transverse-pressure-controlled squeezers
6934035, Dec 18 2001 Massachusetts Institutes of Technology; Massachusetts Institute of Technology System and method for measuring optical distance
6937798, Jan 17 2003 Luna Innovations Incorporated Optical spectrum monitor
6975454, Jul 31 2001 Luna Innovations Incorporated Variable polarization-dependent-loss source
7027198, Aug 08 2003 Luna Innovations Incorporated Generation and analysis of state of polarization using tunable optical polarization rotators
7067795, Oct 03 2002 Luna Innovations Incorporated Methods and systems for dynamic control of polarization of an optical signal
7139079, Apr 09 2001 Robert Bosch GmbH Interferometric measuring device
7154659, Apr 18 2002 Luna Innovations Incorporated Optical depolarizers and DGD generators based on optical delay
7157687, Oct 07 2002 Luna Innovations Incorporated Optical devices with folded optical path designs
7187870, Oct 15 2003 OEWAVES, INC Tunable balanced opto-electronic filters and applications in opto-electronic oscillators
7218436, Aug 08 2003 Luna Innovations Incorporated Optical instrument and measurements using multiple tunable optical polarization rotators
7227686, Jan 22 2002 Luna Innovations Incorporated Tunable PMD emulators and compensators
7233720, Jan 06 1999 Luna Innovations Incorporated Devices based on optical waveguides with adjustable Bragg gratings
7265836, Mar 16 2001 Luna Innovations Incorporated In-line optical polarimeter using free-space polarization sampling elements
7265837, Jan 13 2003 Luna Innovations Incorporated Sensitive polarization monitoring and controlling
7324256, Dec 27 2004 HRL Laboratories, LLC Photonic oscillator
7343100, May 28 2004 Luna Innovations Incorporated Optical communications based on optical polarization multiplexing and demultiplexing
7372568, Jun 22 2005 Luna Innovations Incorporated Low cost polametric detector
7382962, Sep 06 2007 Luna Innovations Incorporated Fiber stretcher apparatus
7391977, Mar 12 2003 General Photonics Corporation Monitoring mechanisms for optical systems
7436569, Mar 12 2003 Luna Innovations Incorporated Polarization measurement and self-calibration based on multiple tunable optical polarization rotators
7466471, Mar 12 2003 Luna Innovations Incorporated Optical instrument and measurements using multiple tunable optical polarization rotators
7522785, Dec 01 2004 Luna Innovations Incorporated Measurements of polarization-dependent loss (PDL) and degree of polarization (DOP) using optical polarization controllers
7534990, Sep 05 2006 Luna Innovations Incorporated Compact optical delay devices
7535639, Apr 18 2002 Luna Innovations Incorporated Optical depolarizers and DGD generators based on optical delay
7723670, Mar 26 2007 Luna Innovations Incorporated Optical differential group delay module with folded optical path
20010055154,
20020163691,
20030026583,
20030076588,
20030081874,
20040037495,
20050041922,
20050168659,
20050200941,
20050201751,
20050265728,
20060023987,
20060115199,
20070223078,
20070297054,
20080030839,
20080054160,
20080138070,
20080159692,
RE38735, Nov 30 1995 General Photonics Corporation Compact programmable photonic variable delay devices
RE38809, Nov 30 1995 General Photonics Corporation Photonic variable delay devices based on optical birefringence
////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Apr 17 2003YAO, X STEVEGeneral Photonics CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0227750588 pdf
Apr 17 2003CHEN, JANEGeneral Photonics CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0227750588 pdf
Apr 17 2003SHI, YONGQIANGGeneral Photonics CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0227750588 pdf
May 19 2009General Photonics Corporation(assignment on the face of the patent)
Dec 01 2020GENERAL PHOTONICS CORP PNC Bank, National AssociationSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0564550331 pdf
Dec 01 2020FORMER LUNA SUBSIDIARY, INC PNC Bank, National AssociationSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0564550331 pdf
Dec 01 2020Luna Innovations IncorporatedPNC Bank, National AssociationSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0564550331 pdf
Jan 20 2021General Photonics CorporationLuna Innovations IncorporatedASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0550570104 pdf
Mar 08 2022Luna Innovations IncorporatedPNC Bank, National AssociationSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0595250575 pdf
Jul 19 2024Luna Innovations IncorporatedWHITE HAT LIGHTNING OPPORTUNITY LP THE “AGENT” RIDER TO SECURITY AGREEMENT – PATENTS0684650055 pdf
Jul 19 2024Luna Technologies, IncWHITE HAT LIGHTNING OPPORTUNITY LP THE “AGENT” RIDER TO SECURITY AGREEMENT – PATENTS0684650055 pdf
Jul 19 2024GENERAL PHOTONICS CORP WHITE HAT LIGHTNING OPPORTUNITY LP THE “AGENT” RIDER TO SECURITY AGREEMENT – PATENTS0684650055 pdf
Date Maintenance Fee Events
Oct 21 2015M2551: Payment of Maintenance Fee, 4th Yr, Small Entity.
Oct 23 2019M2552: Payment of Maintenance Fee, 8th Yr, Small Entity.
Oct 05 2023M2553: Payment of Maintenance Fee, 12th Yr, Small Entity.


Date Maintenance Schedule
Apr 24 20154 years fee payment window open
Oct 24 20156 months grace period start (w surcharge)
Apr 24 2016patent expiry (for year 4)
Apr 24 20182 years to revive unintentionally abandoned end. (for year 4)
Apr 24 20198 years fee payment window open
Oct 24 20196 months grace period start (w surcharge)
Apr 24 2020patent expiry (for year 8)
Apr 24 20222 years to revive unintentionally abandoned end. (for year 8)
Apr 24 202312 years fee payment window open
Oct 24 20236 months grace period start (w surcharge)
Apr 24 2024patent expiry (for year 12)
Apr 24 20262 years to revive unintentionally abandoned end. (for year 12)