Techniques and devices for depolarizing light and producing a variable differential group delays in optical signals. In one implementation, an input optical beam is split into first and second beams with orthogonal polarizations. One or two optical reflectors are then used to cause the first and second optical beams to undergo different optical path lengths before they are recombined into a single output beam. An adjustment mechanism may used implemented to adjust the difference in the optical path lengths of the first and second beams to produce a variable DGD. When the depolarization of light is desired, the difference in the optical path lengths of the first and second beams is set to be greater than the coherence length of the input optical beam.
|
15. A device, comprising:
a polarization beam splitter (PBS) to receive an input optical beam with a coherent length and to split the input optical beam into a first beam and a second beam polarized orthogonal to said first beam;
a first reflector positioned relative to said PBS to reflect said first beam back to said PBS;
a first polarization element located between said first reflector and said PBS to rotate a polarization of a reflection of said first beam at said PBS to be perpendicular to said first beam when initially exiting said PBS;
a second reflector positioned relative to said PBS to reflect said second beam back to said PBS;
a second polarization element located between said second reflector and said PBS to rotate a polarization of a reflection of said second beam at said PBS to be perpendicular to said second beam when initially exiting said PBS, wherein said first and said second reflectors are positioned to produce a difference in optical paths of said first and said second beams upon being reflected back to said PBS that is greater than said coherent length;
two fibers to carry two input beams with orthogonal polarizations; and
a polarization beam combiner to combine said two input beams into a single beam as said input optical beam to said PBS.
1. A device, comprising:
a polarization beam splitter (PBS) to receive an input optical beam with a coherent length and to split the input optical beam into a first beam and a second beam polarized orthogonal to said first beam;
a first reflector positioned relative to said PBS to reflect said first beam back to said PBS;
a first polarization element located between said first reflector and said PBS to rotate a polarization of a reflection of said first beam at said PBS to be perpendicular to said first beam when initially exiting said PBS;
a second reflector positioned relative to said PBS to reflect said second beam back to said PBS; and
a second polarization element located between said second reflector and said PBS to rotate a polarization of a reflection of said second beam at said PBS to be perpendicular to said second beam when initially exiting said PBS, wherein said first and said second reflectors are positioned to produce a difference in optical paths of said first and said second beams upon being reflected back to said PBS that is greater than said coherent length and that light of said first beam and light of said second beam upon being reflected back to said PBS are not coherent to each other and combined light produced by said PBS from the light of said first beam and the light of said second beam upon being reflected back to said PBS is depolarized.
7. A device, comprising:
a polarization beam splitter (PBS) to receive an input optical beam with a coherent length and to split the input optical beam into a first beam and a second beam polarized orthogonal to said first beam;
a first reflector positioned relative to said PBS to reflect said first beam back to said PBS;
a first polarization element located between said first reflector and said PBS to rotate a polarization of a reflection of said first beam at said PBS to be perpendicular to said first beam when initially exiting said PBS;
a second reflector positioned relative to said PBS to reflect said second beam back to said PBS;
a second polarization element located between said second reflector and said PBS to rotate a polarization of a reflection of said second beam at said PBS to be perpendicular to said second beam when initially exiting said PBS, wherein said first and said second reflectors are positioned to produce a difference in optical paths of said first and said second beams upon being reflected back to said PBS that is greater than said coherent length;
two fibers to carry two input beams with orthogonal polarizations;
a dual fiber collimator coupled to said two fibers to collimate said two input beams from said two fibers; and
a polarization beam combiner to combine said two input beams into a single beam as said input optical beam to said PBS.
3. The device as in
4. The device as in
5. The device as in
11. The device as in
12. The device as in
13. The device as in
17. The device as in
18. The device as in
19. The device as in
|
This application is a divisional application of and claims priority to U.S. application Ser. No. 11/616,264, filed Dec. 26, 2006, U.S. Pat. No. 7,535,639, which is a divisional of U.S. application Ser. No. 10/418,712, filed on Apr. 17, 2003, now U.S. Pat. No. 7,154,659, which claims benefit of U.S. Provisional Application Ser. No. 60/413,806, filed Sep. 25, 2002, and U.S. Provisional Application Ser. No. 60/373,767, filed Apr. 18, 2002.
The disclosures of the above-referenced applications are incorporated by reference as part of the disclosure of this application.
This application relates to optical devices, and in particular, to optical depolarizers and devices for generating differential group delays (DGDs) and their applications.
Optical depolarizers are optical devices for reducing the degree of optical polarization of an input optical beam or randomizing the input polarization. Applications for such depolarizers include but are not limited to optical networks, test & measurement, and sensor applications. In an optical network application, for example, a depolarizer may be used to eliminate polarization sensitivity of Raman amplifiers. In test and measurement systems, depolarizing the output beam from a source laser may be used to eliminate polarization sensitivity of many test instruments.
Generation of variable DGDs has applications in optical communication systems and devices where polarization-mode dispersion (PMD) is present.
This application includes techniques and devices to depolarize light and to produce a desired differential group delay in optical signals. In general, an input optical beam is split into first and second beams with orthogonal polarizations. One or two optical reflectors are then used to cause the first and second optical beams to undergo different optical path lengths before they are recombined into a single output beam. An adjustment mechanism may be implemented to adjust the difference in the optical path lengths of the first and second beams to produce a variable DGD. When the depolarization of light is desired, the difference in the optical path lengths of the first and second beams is set to be greater than the coherence length of the input optical beam.
In one exemplary implementation, a device of this application may include a first polarization beam splitter (PBS), a second PBS, and a reflector arranged to form an optical system. The first PBS is positioned to receive an input optical beam with a coherent length and to split the input optical beam into a first beam and a second beam polarized orthogonal to the first beam. The reflector is positioned to reflect the first beam to the second PBS to cause an optical path difference between the first and the second beams at the second PBS to be greater than the coherent length. The second PBS is positioned to receive and combine the first and the second beams to produce an output beam.
In another exemplary implementation, a device of this application may include a polarization beam splitter (PBS) to receive an input optical beam with a coherent length and to split the input optical beam into a first beam and a second beam polarized orthogonal to the first beam. The device also includes first and second reflectors, first and second polarization elements. The first reflector is positioned relative to the PBS to reflect the first beam back to the PBS. The first polarization element is located between the first reflector and the PBS to rotate a polarization of a reflection of the first beam at the PBS to be perpendicular to the first beam when initially exiting the PBS. The second reflector is positioned relative to the PBS to reflect the second beam back to the PBS. The second polarization element is located between the second reflector and the PBS to rotate a polarization of a reflection of the second beam at the PBS to be perpendicular to the second beam when initially exiting the PBS. The first and the second reflectors are positioned to produce a difference in optical paths of the first and the second beams upon being reflected back to the PBS that is greater than the coherent length of the input optical beam.
The above and other devices of this application may operate as depolarizers. In addition, such devices may also be applied to produce a fixed pure first-order differential group delay (DGD). Pure first order DGD can have important applications in compensating for polarization mode dispersion. The DGD devices may be designed with low fabrication cost and compact size in order to compete with PM fibers. The polarization insensitive version of such a device may also be used as a passive bandwidth limiter.
These and other implementations, features, and associated advantages are now described in detail with reference to the drawings, the detailed description, and the claims.
The techniques and devices of this application split an input optical beam at an input location into first and second beams with orthogonal polarizations. At least one reflector is used to reflect the first input beam along a path different from the second beam to produce a difference in optical path lengths of the two beams at a common location where they are recombined into a single output beam.
Notably, the distance between the prism reflector 130 and the two PBSs 110 and 120 may be sufficiently long to be greater than the coherent length of the input optical beam 101 so that the S and P polarized beams 112 and 111 received by the second PBS 120 are no longer coherent with each other. This condition allows the output light 121 from the second PBS 120 to be effectively depolarized. For a linear input beam 101, the input polarization should be at 45 degrees with respect to the passing polarization axis of the first PBS 110 to evenly split the input power between two output beams 111 and 112 of the first PBS 110.
In one implementation, an input fiber may be used to direct the input beam 101 to the first PBS 110. Accordingly, an output fiber may be used to receive the output beam 121 from the second PBS 120. The input fiber may be polarization maintaining (PM) and the input light 101 is oriented 45° from the passing axis of the first PBS 110. Under this condition, the linearly polarized input light 101 is split into “s” and “p” components 112 and 111 with equal power levels. Assuming the PBS 110 reflects the “s” component 112 and transmits the “p” component 111, the “p” component 111 undergoes a longer optical path than the “s” component when they reach the second PBS 120. In order to achieve effectively depolarization, the optical path difference between the two components 111 and 112 should be larger than the coherence length of the light source for producing the input light 101. In comparison with a typical birefringent-crystal-based Lyot depolarizer, this device 100 has the advantage of smaller size because of the double pass free-space design. In addition, the cost of the device 100 can be low because no birefringent crystal is required. Table I shows the minimum device length for light source with different linewidth. The length of this depolarizer may be significantly shorter than a typical Lyot depolarizer, e.g., as much as 10 times less that that of a single section Lyot depolarizer.
TABLE I
Length of Lyot
depolarizer
Linewidth
Coherent length
Length of GP depolarizer
(Δn = 0.2)
1
nm
2.4
mm
1.2
mm
12
mm
0.1
nm
24
mm
12
mm
120
mm
0.01
nm
240
mm
120
mm
1200
mm
When the input fiber that feeds the input light 101 to the PBS 110 is implemented with a single mode fiber, the device 100 may be operated as a differential group delay line (DGD) for PMD compensation because different polarization components undergo different optical path delays. As a variable DGD generator, it is not necessary that the difference in the optical path lengths in the device 100 be greater than the coherence length of the input light. The relationship between the minimum device length (excluding lengths of PBS and reflection prism) and DGD is listed in Table II.
TABLE II
Equivalent optical
DGD
path length
Device length
10
ps
3
mm
1.5
mm
25
ps
7.5
mm
3.75
mm
50
ps
15
mm
7.5
mm
100
ps
30
mm
15
mm
200
ps
60
mm
30
mm
The design 100 shown in
The depolarizer 100 described in
The PBDs 210 and 220 may be implemented in various configurations. For example, a properly-cut birefringent crystal, such as calcite, may be used to separate the ordinary and extraordinary beams with orthogonal polarizations as parallel output beams. The ordinary polarization transmits straight through while the extraordinary transmits through the crystal at an angle with respect to the ordinary beam and emerges parallel to the ordinary beam.
In a different configuration 300 shown in
A pure first order DGD may be used in the polarization mode dispersion compensation. However, the DGD device should be compact and can be manufactured at a low cost in order to compete with a PM fiber DGD device. The above depolarizers may be used to produce such pure first order DGDs for various applications.
Notably, an adjustment mechanism may be implemented in the above and other exemplary devices of this application to adjust the spacing between the prism reflector 130 and the PBSs 110 and 120 to produce different or variable first order DGDs. This adjustment mechanism may be implemented by, e.g., engaging the reflector 130 to a movable element 205 that moves its position to change the position of the reflector 130 in response to a control signal. Alternatively, the two PBSs 110 and 120 may be engaged to the movable element 205 to move relative to the reflector 130.
The following sections of this application describe additional exemplary designs of optical depolarizers, including, among others, designs with a long coherence length. Notably,
This type of design uses a polarization beam splitter (PBS) 410 to receive an input optical beam with a coherent length and to split the input optical beam into a first beam and a second beam polarized orthogonal to the first beam. First and second reflectors 420 and 430, first and second polarization elements 441 and 442 are used to form two different optical reflection arms. The first reflector 430 is positioned relative to the PBS 410 to reflect the first beam back to the PBS 410. The first polarization element 441 is located between the first reflector 430 and the PBS 410 to rotate a polarization of a reflection of the first beam at the PBS 410 to be perpendicular to the first beam when initially exiting the PBS 410. The second reflector 420 is positioned relative to the PBS 410 to reflect the second beam back to the PBS 410. The second polarization element 442 is located between the second reflector 420 and the PBS 410 to rotate a polarization of a reflection of the second beam at the PBS 410 to be perpendicular to the second beam when initially exiting the PBS 410. The first and the second reflectors 430 and 420 are positioned to produce a difference in optical paths of the first and the second beams upon being reflected back to the PBS 410. When operated as an optical depolarizer, this difference is set to be greater than the coherent length of the input optical beam.
Under this input condition, the linearly polarized input light 401 is split by the PBS 410 into two orthogonally polarized beams 412 and 411: the “s” and “p” components. Assuming the PBS 410 reflects the “s” component 412 and passes the “p” component 411, the “p” component 411 goes through a longer optical path than the “s” component 412. After reflection from the mirrors 420 and 430, the “s” component 412 becomes “p” and the “p” components 411 becomes “s” so that both components are directed towards the prism reflector 450 by the PBS 410. In order to achieve effective depolarization, it is desirable that the optical path difference between the two components be larger than the coherence length of the light source that produces the input light 401. In comparison with a typical Lyot depolarizer, this device 400 has the advantage of smaller size because of the double pass free-space design. In addition, the cost of the device 400 is also lowered because no birefringent crystal is required. Table III shows the minimum device length for light source with different linewidth. As indicated, the length of GP's depolarizer is 10 times less that that of a single section Lyot depolarizer.
In this implementation, the powers of the “s” and “p” components 412 and 411 should also be equal at the output in order to be an effective depolarizer. Assuming the transmission coefficients of the “s” and “p” components are Ts and Tp respectively, the orientation angle α of the input SOP should be:
α=tan−1(Ts/Tp).
Note that if quarter waveplates are used as the polarization rotator 441 or 442, the relative orientation angle of the waveplates should be 45° from the passing axes of the polarization beamsplitter 410. This alternative design is shown in
TABLE III
Length of Lyot
depolarizer
Linewidth
Coherent length
Length of GP depolarizer
(□n = 0.2)
1
nm
2.4
mm
1.2
mm
12
mm
0.1
nm
24
mm
12
mm
120
mm
0.01
nm
240
mm
120
mm
1200
mm
If the input fiber coupled to the PBS 410 is implemented with a single mode fiber, the device in
TABLE IV
Equivalent optical
DGD
path length
Device length
10
ps
3
mm
1.5
mm
25
ps
7.5
mm
3.75
mm
50
ps
15
mm
7.5
mm
100
ps
30
mm
15
mm
200
ps
60
mm
30
mm
Assuming the transmission coefficients of the two paths are T1 and T2 respectively, the orientation angle α of the input SOP should be α=tan−1(T1/T2) in order to have an equal power or the least DOP at the output.
In principle, a polarization combiner may operate as a polarization depolarizer by combining two independent lasers of orthogonal SOP into a single beam. However, the optical powers of the two lasers should be equalized in order to obtain small enough DOP. Equalization of the two lasers may require actively monitoring the laser powers and feedback control the power of one of the lasers, resulting in an increased system cost.
An alternative configuration is shown in
A fiber pigtailed polarization beam combiner (PBC) 910 may be cascaded with the depolarizer depicted in
Based on the above designs, fiber-coupled devices may be made to have specifications listed in TABLES V and VI.
TABLE V
Specification of an exemplary depolarizer
Insertion loss
<0.75 dB
Operation linewidth
<0.1 nm
Return loss
50 dB min.
Center wavelength
1550 nm, 1310 nm
Wavelength range
+/−100 nm
DOP
<5%
Input fiber
PM for polarization sensitive version
SM for polarization insensitive version
Output fiber
SM
Operation temperature
0 to 60 degree C.
Storage temperature
−40 to + 80 degree C.
Power handling
>300 mW
TABLE VI
Specification for an exemplary first order DGD device
Insertion loss
<0.75 dB
1st order DGD
12 ps, 25 ps, 50 ps, 86 ps
Return loss
50 dB min.
Center wavelength
1550 nm, 1310 nm
Wavelength range
+/−100 nm
Higher order PMD
<10 ps2
Input fiber
SM
Output fiber
SM
Operation temperature
0 to 60 degree C.
Storage temperature
−40 to + 80 degree C.
Power handling
>300 mW
In the devices shown in
The device 1000 may be used as a variable DGD generator where a mechanism is implemented to adjust the difference in the optical path lengths of two fibers 1040 and 1070. A fiber stretcher, for example, may be engaged to one fiber to change the difference. When used as a depolarizer, the difference is set to be greater than the coherence length of the input signal.
Only a few implementations are disclosed. However, it is understood that variations and enhancements may be made without departing from the spirit of and are intended to be encompassed by the following claims.
Chen, Jane, Shi, Yongqiang, Yao, X. Steve
Patent | Priority | Assignee | Title |
10324002, | Jun 10 2013 | Luna Innovations Incorporated | Devices and methods for characterization of distributed fiber bend and stress |
10451420, | Jan 10 2013 | Xiaotian Steve, Yao | Non-interferometric optical gyroscope based on polarization sensing |
10809460, | Sep 08 2017 | Exalos AG | Depolarizers |
11268811, | Jul 09 2015 | NUVISION PHOTONICS, INC | Non-interferometric optical gyroscope based on polarization sensing |
9632006, | Jun 10 2013 | Luna Innovations Incorporated | Distributed fiber bend and stress measurement for determining optical fiber reliability by multi-wavelength optical reflectometry |
9719883, | Jun 10 2013 | Luna Innovations Incorporated | Devices and methods for characterization of distributed fiber bend and stress |
9823075, | Jan 10 2013 | Non-interferometric optical gyroscope based on polarization sensing | |
9829410, | Jun 10 2013 | Luna Innovations Incorporated | Distributed fiber bend and stress measurement for determining optical fiber reliability by multi-wavelength optical reflectometry |
Patent | Priority | Assignee | Title |
3302028, | |||
3658405, | |||
3684350, | |||
3719414, | |||
3881823, | |||
4094581, | Jan 31 1977 | Westinghouse Electric Corp. | Electro-optic modulator with compensation of thermally induced birefringence |
4461543, | Mar 26 1982 | Sperry Corporation | Electro optic switch |
4685773, | Sep 13 1984 | GTE Laboratories Incorporated | Birefringent optical multiplexer with flattened bandpass |
4735507, | Jul 11 1986 | B F GOODRICH COMPANY, THE | Imaging coherent radiometer |
4798436, | Jul 30 1985 | British Telecommunications, plc | Optical fused couplers |
4969720, | Sep 05 1989 | Lockheed Martin Corp | Magneto-optic bypass switch |
5206924, | Jan 31 1992 | The United States of America as represented by the Secretary of the Navy | Fiber optic Michelson sensor and arrays with passive elimination of polarization fading and source feedback isolation |
5251057, | Oct 13 1989 | Xerox Corporation | Multiple beam optical modulation system |
5270789, | Oct 16 1990 | Centre Suisse d'Electronique et de Microtechnique S.A. | White light interferometric device adapted to define an absolute reference position |
5301010, | Feb 18 1989 | Cambridge Consultants Limited | Interferometer having a short coherence length light source and means for identifying interference fringes |
5305136, | Mar 31 1992 | GEO-CENTERS, INC , A MA CORP | Optically bidirectional fast optical switch having reduced light loss |
5317445, | Dec 16 1992 | General Electric Company | Optical device with spatial light modulators for switching polarized light |
5323229, | Aug 31 1992 | George Washington University | Measurement system using optical coherence shifting interferometry |
5373393, | Jun 01 1993 | General Electric Company | Opical interferometric device with spatial light modulators for switching substantially coherent light |
5381250, | Nov 06 1992 | Displaytech, Inc. | Electro-optical switch with 4 port modules with electro-optic polarization rotators |
5475525, | Mar 29 1991 | Thales | Transverse electrical filter operating optically |
5561726, | Sep 05 1995 | General Photonics Corporation | Apparatus and method for connecting polarization sensitive devices |
5723856, | Aug 01 1995 | California Institute of Technology | Opto-electronic oscillator having a positive feedback with an open loop gain greater than one |
5751747, | Dec 20 1995 | California Institute of Technology | Linear swept frequency generator |
5777778, | Aug 01 1996 | California Institute of Technology | Multi-Loop opto-electronic microwave oscillator with a wide tuning range |
5796510, | Nov 30 1995 | General Photonics Corporation | Ladder-structured photonic variable delay device |
5818626, | Aug 29 1994 | Agfa Corporation | Method and apparatus for optical isolation |
5867291, | Oct 29 1996 | EZCONN Corporation | Programmable wavelength router |
5917179, | May 12 1997 | California Institute of Technology | Brillouin opto-electronic oscillators |
5929430, | Jan 14 1997 | California Institute of Technology | Coupled opto-electronic oscillator |
5978125, | Nov 30 1995 | General Photonics Corporation | Compact programmable photonic variable delay devices |
6049415, | Dec 08 1997 | Lumentum Operations LLC | Polarization maintaining fiber lasers and amplifiers |
6055081, | Mar 15 1995 | Sumitomo Electric Industries, Ltd. | Chromatic dispersion compensator and chromatic dispersion compensating optical communication system |
6069686, | Jul 31 1997 | Virginia Tech Intellectual Properties, Inc. | Self-calibrating optical fiber pressure, strain and temperature sensors |
6075647, | Jan 30 1998 | Agilent Technologies Inc | Optical spectrum analyzer having tunable interference filter |
6137574, | Mar 15 1999 | Zygo Corporation | Systems and methods for characterizing and correcting cyclic errors in distance measuring and dispersion interferometry |
6154581, | Oct 27 1998 | CommScope Technologies LLC | Multiple port, fiber optic circulator |
6175444, | Dec 02 1997 | NEC Corporation | Bi-directional optical amplifier |
6178036, | Jan 14 1997 | YAO, X STEVE | Opto-electronic devices and systems based on brillouin selective sideband amplification |
6243200, | Mar 02 2000 | EZCONN Corporation | Optical wavelength router based on polarization interferometer |
6301046, | Dec 31 1999 | Lumentum Operations LLC | Interleaver/deinterleavers causing little or no dispersion of optical signals |
6337770, | Dec 31 1999 | Lumentum Operations LLC | Single-pass folded interleaver/deinterleavers |
6389197, | Feb 10 1999 | California Institute of Technology | Coupling system to a microsphere cavity |
6407861, | Apr 06 1999 | CommScope Technologies LLC | Adjustable optical circulator |
6417948, | Dec 24 1999 | Corning Incorporated | Variable delay device for an optical component such as a polarization mode dispersion compensator |
6417957, | Oct 27 1999 | Institute of Technology, California | Opto-electronic devices for processing and transmitting RF signals based on brillouin selective sideband amplification |
6473218, | Jun 11 1999 | California Institute of Technology | Light modulation in whispering-gallery-mode resonators |
6476959, | Jan 10 2000 | California Institute of Technology | Optical pulse synthesis using brillouin selective sideband amplification |
6480637, | Sep 30 2000 | Luna Innovations Incorporated | Fiber squeezer polarization controller with low activation loss |
6487014, | Aug 12 1996 | National Research Council of Canada | High isolation optical switch, isolator or circulator having thin film polarizing beam-splitters |
6487233, | Feb 23 2000 | California Institute of Technology | Fiber-coupled microsphere laser |
6487336, | Oct 11 2000 | Luna Innovations Incorporated | WDM channel equalization and control |
6488861, | Feb 10 1999 | California Institute of Technology | Coupling system to a microsphere cavity |
6493474, | Sep 30 2000 | Luna Innovations Incorporated | Fiber devices based on fiber squeezer polarization controllers |
6498869, | Jun 14 1999 | Devices for depolarizing polarized light | |
6535328, | Jan 14 1997 | YAO, X STEVE | Methods and devices based on brillouin selective sideband amplification |
6567436, | Jan 26 1999 | California Institute of Technology | Opto-electronic oscillators having optical resonators |
6570711, | Aug 01 2000 | JDS Uniphase Inc. | Virtual waveplate and optical channel interleaver formed therewith |
6574015, | May 19 1998 | Seagate Technology LLC | Optical depolarizer |
6576886, | Feb 20 2001 | Luna Innovations Incorporated | Dynamic control of polarization of an optical signal |
6580532, | Jan 28 1999 | California Institute of Technology | Opto-electronic techniques for reducing phase noise in a carrier signal by carrier supression |
6594061, | Jun 09 2000 | California Institute of Technology | Acceleration-insensitive opto-electronic oscillators |
6628850, | Feb 15 2001 | Luna Innovations Incorporated | Dynamic wavelength-selective grating modulator |
6628861, | Jan 06 1999 | General Photonics Corporation | Control of guided light in waveguide using external adjustable grating |
6628862, | Feb 15 2001 | Luna Innovations Incorporated | Thermal-induced waveguide gratings |
6643063, | Nov 14 2001 | Oplink Communications, LLC | Deinterleaver with high isolation and dispersion compensation and 50/200GHz interleaver and deinterleaver |
6661941, | Jan 23 2001 | Frequency locking of tunable lasers by using a birefringent optical cavity | |
6687423, | Oct 24 2000 | Optical frequency-division multiplexer and demultiplexer | |
6693743, | Jun 07 2000 | Cirvine Corporation | Birefringent devices |
6754404, | Sep 30 2000 | Luna Innovations Incorporated | Transverse-pressure-controlled fiber devices |
6795481, | Mar 22 2000 | California Institute of Technology | Non-spherical whispering-gallery-mode microcavity |
6795616, | Jan 06 1999 | General Photonics Corporation | Control of guided light in a waveguide |
6813029, | Oct 09 1999 | Robert Bosch GmbH | Interferometric measuring device for form measurement |
6836327, | Mar 16 2001 | Luna Innovations Incorporated | In-line optical polarimeter based on integration of free-space optical elements |
6873631, | Jan 26 1999 | California Institute of Technology | Integrated opto-electronic oscillators having optical resonators |
6873783, | Sep 30 2000 | Luna Innovations Incorporated | Fiber devices with transverse-pressure-controlled squeezers |
6934035, | Dec 18 2001 | Massachusetts Institutes of Technology; Massachusetts Institute of Technology | System and method for measuring optical distance |
6937798, | Jan 17 2003 | Luna Innovations Incorporated | Optical spectrum monitor |
6975454, | Jul 31 2001 | Luna Innovations Incorporated | Variable polarization-dependent-loss source |
7027198, | Aug 08 2003 | Luna Innovations Incorporated | Generation and analysis of state of polarization using tunable optical polarization rotators |
7067795, | Oct 03 2002 | Luna Innovations Incorporated | Methods and systems for dynamic control of polarization of an optical signal |
7139079, | Apr 09 2001 | Robert Bosch GmbH | Interferometric measuring device |
7154659, | Apr 18 2002 | Luna Innovations Incorporated | Optical depolarizers and DGD generators based on optical delay |
7157687, | Oct 07 2002 | Luna Innovations Incorporated | Optical devices with folded optical path designs |
7187870, | Oct 15 2003 | OEWAVES, INC | Tunable balanced opto-electronic filters and applications in opto-electronic oscillators |
7218436, | Aug 08 2003 | Luna Innovations Incorporated | Optical instrument and measurements using multiple tunable optical polarization rotators |
7227686, | Jan 22 2002 | Luna Innovations Incorporated | Tunable PMD emulators and compensators |
7233720, | Jan 06 1999 | Luna Innovations Incorporated | Devices based on optical waveguides with adjustable Bragg gratings |
7265836, | Mar 16 2001 | Luna Innovations Incorporated | In-line optical polarimeter using free-space polarization sampling elements |
7265837, | Jan 13 2003 | Luna Innovations Incorporated | Sensitive polarization monitoring and controlling |
7324256, | Dec 27 2004 | HRL Laboratories, LLC | Photonic oscillator |
7343100, | May 28 2004 | Luna Innovations Incorporated | Optical communications based on optical polarization multiplexing and demultiplexing |
7372568, | Jun 22 2005 | Luna Innovations Incorporated | Low cost polametric detector |
7382962, | Sep 06 2007 | Luna Innovations Incorporated | Fiber stretcher apparatus |
7391977, | Mar 12 2003 | General Photonics Corporation | Monitoring mechanisms for optical systems |
7436569, | Mar 12 2003 | Luna Innovations Incorporated | Polarization measurement and self-calibration based on multiple tunable optical polarization rotators |
7466471, | Mar 12 2003 | Luna Innovations Incorporated | Optical instrument and measurements using multiple tunable optical polarization rotators |
7522785, | Dec 01 2004 | Luna Innovations Incorporated | Measurements of polarization-dependent loss (PDL) and degree of polarization (DOP) using optical polarization controllers |
7534990, | Sep 05 2006 | Luna Innovations Incorporated | Compact optical delay devices |
7535639, | Apr 18 2002 | Luna Innovations Incorporated | Optical depolarizers and DGD generators based on optical delay |
7723670, | Mar 26 2007 | Luna Innovations Incorporated | Optical differential group delay module with folded optical path |
20010055154, | |||
20020163691, | |||
20030026583, | |||
20030076588, | |||
20030081874, | |||
20040037495, | |||
20050041922, | |||
20050168659, | |||
20050200941, | |||
20050201751, | |||
20050265728, | |||
20060023987, | |||
20060115199, | |||
20070223078, | |||
20070297054, | |||
20080030839, | |||
20080054160, | |||
20080138070, | |||
20080159692, | |||
RE38735, | Nov 30 1995 | General Photonics Corporation | Compact programmable photonic variable delay devices |
RE38809, | Nov 30 1995 | General Photonics Corporation | Photonic variable delay devices based on optical birefringence |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 17 2003 | YAO, X STEVE | General Photonics Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022775 | /0588 | |
Apr 17 2003 | CHEN, JANE | General Photonics Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022775 | /0588 | |
Apr 17 2003 | SHI, YONGQIANG | General Photonics Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022775 | /0588 | |
May 19 2009 | General Photonics Corporation | (assignment on the face of the patent) | / | |||
Dec 01 2020 | GENERAL PHOTONICS CORP | PNC Bank, National Association | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 056455 | /0331 | |
Dec 01 2020 | FORMER LUNA SUBSIDIARY, INC | PNC Bank, National Association | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 056455 | /0331 | |
Dec 01 2020 | Luna Innovations Incorporated | PNC Bank, National Association | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 056455 | /0331 | |
Jan 20 2021 | General Photonics Corporation | Luna Innovations Incorporated | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 055057 | /0104 | |
Mar 08 2022 | Luna Innovations Incorporated | PNC Bank, National Association | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 059525 | /0575 | |
Jul 19 2024 | Luna Innovations Incorporated | WHITE HAT LIGHTNING OPPORTUNITY LP THE “AGENT” | RIDER TO SECURITY AGREEMENT – PATENTS | 068465 | /0055 | |
Jul 19 2024 | Luna Technologies, Inc | WHITE HAT LIGHTNING OPPORTUNITY LP THE “AGENT” | RIDER TO SECURITY AGREEMENT – PATENTS | 068465 | /0055 | |
Jul 19 2024 | GENERAL PHOTONICS CORP | WHITE HAT LIGHTNING OPPORTUNITY LP THE “AGENT” | RIDER TO SECURITY AGREEMENT – PATENTS | 068465 | /0055 |
Date | Maintenance Fee Events |
Oct 21 2015 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Oct 23 2019 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Oct 05 2023 | M2553: Payment of Maintenance Fee, 12th Yr, Small Entity. |
Date | Maintenance Schedule |
Apr 24 2015 | 4 years fee payment window open |
Oct 24 2015 | 6 months grace period start (w surcharge) |
Apr 24 2016 | patent expiry (for year 4) |
Apr 24 2018 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 24 2019 | 8 years fee payment window open |
Oct 24 2019 | 6 months grace period start (w surcharge) |
Apr 24 2020 | patent expiry (for year 8) |
Apr 24 2022 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 24 2023 | 12 years fee payment window open |
Oct 24 2023 | 6 months grace period start (w surcharge) |
Apr 24 2024 | patent expiry (for year 12) |
Apr 24 2026 | 2 years to revive unintentionally abandoned end. (for year 12) |