A method includes applying a final etch-resistant material to an in-process substrate so that the final etch-resistant material at least partially covers first microcontact portions integral with the substrate and projecting upwardly from a surface of the substrate, and etching the surface of the substrate so as to leave second microcontact portions below the first microcontact portions and integral therewith, the final etch-resistant material at least partially protecting the first microcontact portions from etching during the further etching step. A microelectronic unit includes a substrate, and a plurality of microcontacts projecting in a vertical direction from the substrate, each microcontact including a base region adjacent the substrate and a tip region remote from the substrate, each microcontact having a horizontal dimension which is a first function of vertical location in the base region and which is a second function of vertical location in the tip region.
|
8. A method of forming an element having microcontacts, comprising:
(a) providing a first etch-resistant material at selected locations on a top surface of a substrate, a first metal being exposed at the top surface;
(b) etching the first metal at the top surface of the substrate at locations not covered by the first etch-resistant material and thereby form first microcontact portions projecting upwardly at the selected locations;
(c) providing a second etch-resistant material on the first microcontact portions;
(d) further etching the first metal of the substrate to form second microcontact portions below the first microcontact portions, the second etch-resistant material at least partially protecting the first microcontact portions from etching during the further etching step; and
(e) providing a third etch-resistant material on the second microcontact portions;
(f) further etching the first metal of the substrate to form third microcontact portions below the second microcontact portions, the third etch-resistant material at least partially protecting the first and second microcontact portions from further etching; and
(g) patterning the substrate to form electrically conductive traces extending in lateral directions defining a plane,
wherein the third microcontact portions extend away from the traces in a vertical direction transverse to the plane, and
wherein the microcontacts are configured to be bonded by at least one of solder, eutectic, or diffusion bonding to corresponding contacts on a face of a microelectronic element, the microcontacts are arranged in an array having a plurality of rows of microcontacts and a plurality of columns of microcontacts, and each microcontact is generally in the form of a body of revolution about a central axis.
11. A method of forming an element having microcontacts, comprising:
(a) applying a final etch-resistant material to an in-process substrate so that the final etch-resistant material at least partially covers first microcontact portions integral with the substrate and projecting upwardly from a surface of the substrate, wherein the substrate includes a first metal layer including a first metal exposed at the surface of the substrate, a second metal layer exposed at a bottom surface of the substrate, and a third metal layer between the first and second metal layers, the third metal layer including a metal different from a metal of the first and second metal layers;
(b) etching the first metal at the surface of the substrate by applying processing to the substrate from a location above the surface so as to leave second microcontact portions below the first microcontact portions and integral therewith, the final etch-resistant material at least partially protecting the first microcontact portions from etching during the etching step, thereby patterning the first metal layer selectively with respect to the third metal layer;
(c) patterning the second metal layer by applying processing to the substrate from a location below the bottom surface of the substrate to form the second metal layer into electrically conductive traces extending in lateral directions defining a plane; and
(d) removing portions of the third metal layer to leave the microcontacts and the traces, such that the second microcontact portions extend away from the traces in a vertical direction transverse to the plane,
wherein the microcontacts are configured to be bonded by at least one of solder, eutectic, or diffusion bonding to corresponding contacts on a face of a microelectronic element, the microcontacts are arranged in an array having a plurality of rows of microcontacts and a plurality of columns of microcontacts, and each microcontact is generally in the form of a body of revolution about a central axis.
1. A method of forming an element having microcontacts, comprising:
(a) providing a first etch-resistant material at selected locations on a top surface of a substrate, a first metal being exposed at the top surface, wherein the substrate includes a first metal layer including the first metal, a second metal layer exposed at a bottom surface of the substrate, and a third metal layer between the first and second metal layers, the third metal layer including a metal different from a metal of the first and second metal layers;
(b) etching the first metal at the top surface of the substrate by applying processing to the substrate from a location above the top surface at locations not covered by the first etch-resistant material and thereby forming first microcontact portions projecting upwardly at the selected locations;
(c) providing a second etch-resistant material on the first microcontact portions;
(d) further etching the first metal of the substrate to form second microcontact portions below the first microcontact portions, the second etch-resistant material at least partially protecting the first microcontact portions from etching during the further etching step, thereby patterning the first metal layer selectively with respect to the third metal layer;
(e) patterning the second metal layer by applying processing to the substrate from a location below the bottom surface of the substrate to form the second metal layer into electrically conductive traces extending in lateral directions defining a plane; and
(f) removing portions of the third metal layer to leave the microcontacts and the traces, such that the second microcontact portions extend away from the traces in a vertical direction transverse to the plane,
wherein the microcontacts are configured to be bonded by at least one of solder, eutectic, or diffusion bonding to corresponding contacts on a face of a microelectronic element, the microcontacts are arranged in an array having a plurality of rows of microcontacts and a plurality of columns of microcontacts, and each microcontact is generally in the form of a body of revolution about a central axis.
2. The method of
3. The method of
4. The method of
5. The method of
6. The method of
7. The method of
12. The method of
(e) providing a preliminary etch-resistant material at selected locations on a top surface of the substrate; and
(f) etching the top surface of the substrate so as to remove portions of the substrate not covered by the preliminary etch-resistant material and thereby leave the first microcontact portions projecting upwardly from the etched surface.
13. The method of
14. The method of
15. The method of
16. The method of
17. The method of
(g) forming a dielectric layer, wherein said traces contact at least portions of said dielectric layer.
18. The method of
19. The method of
(g) forming a dielectric layer, wherein said traces contact at least portions of said dielectric layer.
20. The method of
21. The method of
22. The method of
23. The method of
24. The method of
25. The method of
|
This application is a continuation-in-part of U.S. patent application Ser. No. 11/166,982, filed Jun. 24, 2005, now U.S. Pat. No. 7,495,179 which claims the benefit of the filing date of U.S. Provisional Patent Application No. 60/583,109, filed Jun. 25, 2004. application Ser. No. 11/166,982 is also a continuation-in-part of U.S. patent application Ser. No. 10/959,465, filed Oct. 6, 2004, now U.S. Pat. No. 7,462,936. application Ser. No. 10/959,465 also claims the benefit of the filing dates of U.S. Provisional Patent Application No. 60/508,970, filed Oct. 6, 2003; 60/533,210, filed Dec. 30, 2003; 60/533,393, filed Dec. 30, 2003; and 60/533,437, filed Dec. 30, 2003. The disclosures of all of the aforementioned applications are hereby incorporated by reference herein.
The present invention relates to microelectronic packages, to components for use in fabrication of microelectronic packages, and to methods of making the packages and component.
Microcontact elements in the form of elongated posts or pins may be used to connect microelectronic packages to circuit boards and for other connections in microelectronic packaging. In some instances, microcontacts have been formed by etching a metallic structure including one or more metallic layers to form the microcontacts. The etching process limits the size of the microcontacts. Conventional etching processes typically cannot form microcontacts with a large ratio of height to maximum width, referred to herein as “aspect ratio”. It has been difficult or impossible to form arrays of microcontacts with appreciable height and very small pitch or spacing between adjacent microcontacts. Moreover, the configurations of the microcontacts formed by conventional etching processes are limited.
For these and other reasons, further improvement would be desirable.
In one embodiment, a method of forming microcontacts, includes, (a) providing a first etch-resistant material at selected locations on a top surface of a substrate, (b) etching a top surface of the substrate at locations not covered by the first etch-resistant material and thereby form first microcontact portions projecting upwardly from the substrate at the selected locations, (c) providing a second etch-resistant material on the first microcontact portions, and (d) further etching the substrate to form second microcontact portions below the first microcontact portions, the second etch-resistant material at least partially protecting the first microcontact portions from etching during the further etching step.
In another embodiment, a method of forming microcontacts, includes (a) applying a final etch-resistant material to an in-process substrate so that the final etch-resistant material at least partially covers first microcontact portions integral with the substrate and projecting upwardly from a surface of the substrate, and (b) etching the surface of the substrate so as to leave second microcontact portions below the first microcontact portions and integral therewith, the final etch-resistant material at least partially protecting the first microcontact portions from etching during the further etching step.
In still another embodiment, a microelectronic unit includes (a) a substrate, and (b) a plurality of microcontacts projecting in a vertical direction from the substrate, each microcontact including a base region adjacent the substrate and a tip region, remote from the substrate, each microcontact having a horizontal dimension which is a first function of vertical location in the base region and which is a second function of vertical location in the tip region.
In yet another embodiment, a microelectronic unit includes a substrate, a plurality of microcontacts projecting in a vertical direction from the substrate wherein a pitch between two adjacent microcontacts is less than 150 microns.
In still another embodiment, a microelectronic unit includes (a) a substrate, and (b) a plurality of elongated microcontacts projecting in a vertical direction from the substrate, each microcontact including a base region adjacent the substrate and a tip region, remote from the substrate, each microcontact having an axis and a circumferential surface which slopes toward or away from the axis in the vertical direction along the axis, such that the slope of the circumferential wall changes abruptly at a boundary between the tip region and the base region.
In another embodiment, a microelectronic unit includes (a) a substrate, and (b) a plurality of microcontacts projecting in a vertical direction from the substrate, each microcontact having a proximal portion adjacent the substrate and an elongated distal portion extending from the proximal portion in the vertical direction away from the substrate, the width of the post increasing in stepwise fashion at the juncture between the proximal and distal portions.
A first method or embodiment is described.
Once the mask 22 is placed atop the first photoresist 20, radiation is provided. Most often the radiation is in the form of ultraviolet light. This radiation exposes the first photoresist 20 at the uncovered areas 28 resulting in making the uncovered areas 28 insoluble. The opposite is true when a negative photoresist is used: the covered areas 26 become insoluble. After exposing the first photoresist 20, the mask 22 is removed. The first photoresist 20 is then developed by washing with a solution which removes the first photoresist 20 in the locations where the first photoresist 20 has not become insoluble. Thus, the photoresist exposure and development leaves a pattern of insoluble material on the top of surface 18 of the substrate 10. This pattern of insoluble material mirrors the pattern 24 of the mask 22.
After exposure and development of the photoresist, the substrate is etched as shown in
Once the thick layer 16 has been etched to a desired depth, a second layer of photoresist 34 (
At the next step, the substrate with the first and second photoresists, 20 and 34 is exposed to radiation and then the second photoresist is developed. As shown in
Once portions of the second photoresist 34 have been exposed and developed, a second etching process is performed, removing additional portions of the thick layer 16 of the tri-metal substrate 10, thereby forming second microcontact portions 36 below the first microcontact portions 32 as shown in
These steps may be repeated as many times as desired to create the preferred aspect ratio and pitch forming third, fourth or nth microcontact portions. The process may be stopped when the etch-stop layer 14 is reached. As a final step, the first and second photoresists 20 and 34, respectively, may be stripped entirely.
These processes result in microcontacts 38 shown in
may change abruptly at the boundary 52 between the first and second portions. The particular functions and hence the shape of the microcontacts are determined by the etching conditions used in the first and second etching steps. For example, the composition of the etchant and etching temperature can be varied to vary the rate at which the etchant attacks the metal layer. Also, the mechanics of contacting the etchant with the metal layer can be varied. The etchant can be sprayed forcibly toward the substrate, or the substrate can be dipped into the etchant. The etching conditions may be the same or different during etching of the first and second portions.
In the microcontacts shown in
increases in the downward direction. The second portion 36 also has a circumferential surface 46 flares outwardly; the magnitude of the slope or
of the second is at a minimum at boundary 52, and progressively increases in the direction toward the base of the post. There is a substantially change in slope at boundary 52. The maximum width or diameter X of the second portion, at the base of the microcontact where the microcontact joins layer 14, is substantial greater than the maximum width or diameter of the first portion. In
changes sign at the boundary 52 between the portions. In
Lastly,
Although arrays including only two microcontacts or posts are depicted in each of
In an alternate embodiment, rather than remove the first photoresist 20 only at selected locations after the first etching step, the entire first photoresist 20 may be removed. In this instance, the second photoresist 34 may be deposited over the entire surface of the substrate 10. Then the mask 22 is placed onto the second photoresist 34. The mask 22 must be properly aligned so as to expose only at the locations previously exposed, on the first microcontact portions 32. The second photoresist 34 is then developed and further etching may be performed on the substrate 10.
Next, another photoresist is deposited, known as n+1 at step 112. Then, at step 114, this n+1 photoresist is exposed to radiation. Subsequently, at step 116, the photoresist n+1 is removed at select locations and the substrate is etched again. Then, it is evaluated whether the desired microcontact height has been achieved at step 118. If the desired microcontact height has not been achieved, at step 120, the process returns to step 112 and another photoresist is deposited onto the substrate. If the desired height has been achieved at step 122, then the remaining photoresists are removed at step 124 and the process ends.
Next, at step 220, photoresist n+1 is selectively removed and the substrate is etched again. This process may also be repeated until the desired microcontact height is achieved. Thus, at step 222, it is evaluated whether the desired microcontact height has been achieved. If the preferred height has not been achieved at step 224, then the process returns to step 212 where the photoresist is removed entirely and another photoresist n+1 is deposited and the steps continue thereon. However, if the desired height has been achieved at step 224, the remaining photoresist is removed at step 228 and the process ends.
The etch-stop layer 14 and the thin layer 12 may be united with a dielectric layer and then thin layer 12 may be etched to form traces so as to provide a component with the microcontacts connected to the traces and with the microcontacts projecting from the dielectric layer. Such a structure can be used, for example, as an element of a semiconductor chip package. For example, U.S. patent application Ser. No. 11/318,822, filed Dec. 27, 2005, now U.S. Pat. No. 7,632,708 the disclosure of which is hereby incorporated by reference herein, may be used.
The structure described herein may be an integral part of a multilayer substrate 10, for instance, the top layer of a multilayer substrate 10, as shown in
Certain packages include microelectronic chips that are stacked. This allows the package to occupy a surface area on a substrate that is less than the total surface area of the chips in the stack. Packages which include microcontacts fabricated using the processes recited herein may be stacked. Reference is made to co-pending U.S. patent application Ser. No. 11/140,312, filed May 27, 2005; now U.S. Pat. No. 7,453,157 and U.S. Pat. No. 6,782,610, the disclosures of which are hereby incorporated by reference. The microcontact etching steps taught in these disclosures may be replaced by the processes discussed herein.
Although a tri-metal substrate is discussed above, a suitable substrate having any number of layers may be utilized, such as for example a single metal. Additionally, rather than use a photoresist, an etch-resistant metal such as gold or other metal substantially resistant to the etchant used to etch the thick metallic layer, may be used. For example, the etch-resistant metal can be used in place of the first photoresist 20 discussed above. Spots of etch-resistant metal may be plated onto the top of the thick layer 16 after applying a mask such as a photoresist with holes at the desired locations for the spots. After plating the etch-resistant metal onto the top of the thick layer, the thick layer is etched to form the microcontacts as discussed above. The etch-resistant metal may be left in place on the tip of the microcontact. In the event an etch-resistant metal is used, as a second etch-resistant material (in place of second photoresist 34 discussed above), a mask may be used to limit deposition of the second etch-resistant metal to only the first portions 32 of the microcontacts, so that the areas between the microcontacts remain free of the etch-resistant metal. Alternately, the entire first layer of etch-resistant metal may be removed upon etching first microcontact portions 32, then a second layer of etch-resistant metal may be deposited to protect the first microcontact portions 32.
With reference to
The microcontacts formed from these processes may have a typical height ranging from about 40 microns to about 200 microns. Further, the typical pitch between microcontacts may be less than about 200 microns, preferably less than 150 microns. In particular, in reference to
In many applications, particularly where microcontacts are used connected to contacts of a semiconductor chip as, for example, in a structure as discussed below with reference to
However, the pitch between microcontacts using the process recited herein can be less than Po, (P<Po), for example, P=(0.9)P0 or less. For instance, if the diameter d of the tip is 30 microns and the height h is 60 microns, a conventional process would achieve a pitch Po of 90 microns. However, the process described herein, with at least two etches, can achieve a pitch P of about 80 microns or less. Stated another way, the multi-step etching process allows formation of unitary metallic microcontacts or posts from a single metallic layer with combinations of pitch, tip diameter and height not attainable in conventional etching processes. As the number of etching steps increases, the minimum attainable pitch for a given tip diameter and height decreases.
Referring now to
The tips of microcontacts 38 are bonded to contacts 55 of a microelectronic element such as a semiconductor chip or die 54. For example, the tips of the microcontacts may be solder-bonded to the contacts 55 of the microelectronic element. Other bonding processes, such as eutectic bonding or diffusion bonding, may be employed. The resulting packaged microelectronic element has some or all of contacts 55 on the microelectronic element connected to terminals 61 by the microcontacts and traces. The packaged microelectronic element may be mounted to a circuit panel 92, such as a printed circuit board by bonding terminals 61 to pads 94 on the circuit board. For instance, pads 94 on the circuit panel 92 may be soldered to the terminals 61, at openings 82, using solder balls 96.
The connection between the microcontacts 38 and the contacts 55 of the microelectronic element can provide a reliable connection even where the contacts 55 are closely spaced. As discussed above, the microcontacts 38 can be formed with reasonable tip diameters and height. The appreciable tip diameter can provide substantial bond area between the tip of each microcontact and the contact of the microelectronic element. In service, differential thermal expansion and contraction of the chip 54 relative to the circuit panel 92 can be accommodated by bending and tilting of microcontacts 38. This action is enhanced by the height of the microcontacts. Moreover, because the microcontacts are formed from a common metal layer, the heights of the microcontacts are uniform to within a very close tolerance. This facilitates engagement and formation of robust bonds between the microcontact tips with the contacts of the chip or other microelectronic element.
The structure of the chip carrier can be varied. For example, the chip carrier may include only one dielectric layer. The traces may be disposed on either side of the dielectric layer. Alternatively, the chip carrier may include a multi-layer dielectric, and may include multiple layers of traces, as well as other features such as electrically conductive ground planes.
A process for further embodiment of the invention uses a structure having post portions 550 (
The process of building up successive post portions may be repeated so as to form additional portions on portions 504, so that microcontacts of essentially any length can be formed. The long microcontacts provide increased flexibility and movement of the post tips. Where one or more dielectric encapsulant layers are left in place around the already-formed post portions, such as layer 508 in
As shown in
Reference is also made to the following, which are hereby incorporated by reference: U.S. patent application Ser. Nos. 10/985,126, filed Nov. 10, 2004, now U.S. Pat. No. 8,207,604; 11/318,822, filed Dec. 27, 2005, now U.S. Pat. No. 7,632,708; 11/318,164, filed Dec. 23, 2005, now U.S. Pat. No. 8,067,267; 11/166,982, filed Jun. 24, 2005, now U.S. Pat. No. 7,495,179; 11/140,312, filed May 27, 2005, now U.S. Pat. No. 7,453,157; and U.S. Pat. No. 7,176,043.
Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.
Haba, Belgacem, Kubota, Yoichi, Kang, Teck-Gyu, Park, Jae M.
Patent | Priority | Assignee | Title |
10032646, | Oct 10 2007 | Tessera, Inc. | Robust multi-layer wiring elements and assemblies with embedded microelectronic elements |
10396114, | Mar 14 2013 | Invensas Corporation | Method of fabricating low CTE interposer without TSV structure |
11031362, | Apr 21 2017 | ADEIA SEMICONDUCTOR TECHNOLOGIES LLC | 3D-interconnect |
11929337, | Apr 21 2017 | ADEIA SEMICONDUCTOR TECHNOLOGIES LLC | 3D-interconnect |
8883563, | Jul 15 2013 | Invensas Corporation | Fabrication of microelectronic assemblies having stack terminals coupled by connectors extending through encapsulation |
9023691, | Jul 15 2013 | Invensas Corporation | Microelectronic assemblies with stack terminals coupled by connectors extending through encapsulation |
9034696, | Jul 15 2013 | Invensas Corporation | Microelectronic assemblies having reinforcing collars on connectors extending through encapsulation |
9214454, | Mar 31 2014 | Invensas Corporation | Batch process fabrication of package-on-package microelectronic assemblies |
9356006, | Mar 31 2014 | Invensas Corporation | Batch process fabrication of package-on-package microelectronic assemblies |
9558964, | Mar 14 2013 | Invensas Corporation | Method of fabricating low CTE interposer without TSV structure |
9578745, | Oct 02 2013 | IBIDEN CO , LTD | Printed wiring board, method for manufacturing printed wiring board and package-on-package |
9633979, | Jul 15 2013 | Invensas Corporation | Microelectronic assemblies having stack terminals coupled by connectors extending through encapsulation |
9812433, | Mar 31 2014 | Invensas Corporation | Batch process fabrication of package-on-package microelectronic assemblies |
ER8804, |
Patent | Priority | Assignee | Title |
3214827, | |||
3766439, | |||
3775844, | |||
3873889, | |||
4225900, | Oct 25 1978 | Micron Technology, Inc | Integrated circuit device package interconnect means |
4567543, | Feb 15 1983 | Motorola, Inc. | Double-sided flexible electronic circuit module |
4576543, | Nov 07 1983 | KMW Products Limited | Knock-down construction for front end loader |
4695870, | Mar 27 1986 | Texas Instruments Incorporated | Inverted chip carrier |
4716049, | Dec 20 1985 | Hughes Aircraft Company | Compressive pedestal for microminiature connections |
4781601, | Jul 06 1987 | Motorola, Inc | Header for an electronic circuit |
4804132, | Aug 28 1987 | NANOPIERCE TECHNOLOGIES, INC | Method for cold bonding |
4902600, | Oct 14 1986 | FUJIFILM Corporation | Light-sensitive material comprising light-sensitive layer provided on support wherein the light-sensitive layer and support have specified pH values |
4924353, | Dec 20 1985 | Hughes Aircraft Company | Connector system for coupling to an integrated circuit chip |
4941033, | Dec 27 1988 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor integrated circuit device |
4975079, | Feb 23 1990 | International Business Machines Corp. | Connector assembly for chip testing |
4982265, | Jun 24 1987 | Hitachi, Ltd.; Hitachi Tobu Semiconductor, Ltd.; Akita Electronics Co., Ltd. | Semiconductor integrated circuit device and method of manufacturing the same |
4991290, | Jul 21 1988 | Stovokor Technology LLC | Flexible electrical interconnect and method of making |
5046238, | Mar 15 1990 | WORLD PROPERTIES, INC | Method of manufacturing a multilayer circuit board |
5083697, | Feb 14 1990 | NANOPIERCE TECHNOLOGIES, INC | Particle-enhanced joining of metal surfaces |
5116459, | Mar 06 1991 | International Business Machines Corporation | Processes for electrically conductive decals filled with organic insulator material |
5117282, | Oct 29 1990 | Intersil Corporation | Stacked configuration for integrated circuit devices |
5138438, | Jun 24 1987 | Akita Electronics Co. Ltd.; Hitachi Ltd.; Hitachi Semiconductor Ltd. | Lead connections means for stacked tab packaged IC chips |
5148265, | Sep 24 1990 | Tessera, Inc | Semiconductor chip assemblies with fan-in leads |
5148266, | Sep 24 1990 | Tessera, Inc | Semiconductor chip assemblies having interposer and flexible lead |
5172303, | Nov 23 1990 | Motorola, Inc. | Electronic component assembly |
5189505, | Nov 08 1989 | Hewlett-Packard Company | Flexible attachment flip-chip assembly |
5196726, | Jan 23 1990 | Sumitomo Electric Industries, Ltd. | Substrate for packaging a semiconductor device having particular terminal and bump structure |
5198888, | Dec 28 1987 | Hitachi, Ltd.; Hitachi Tobu Semiconductor, Ltd. | Semiconductor stacked device |
5214308, | Jan 23 1990 | Sumitomo Electric Industries, Ltd. | Substrate for packaging a semiconductor device |
5220448, | Apr 09 1990 | Ascom Tech AG | Bit and frame synchronization unit for an access node of optical transmission equipment |
5220488, | Sep 04 1985 | UFE Incorporated | Injection molded printed circuits |
5222014, | Mar 02 1992 | Freescale Semiconductor, Inc | Three-dimensional multi-chip pad array carrier |
5224023, | Feb 10 1992 | Foldable electronic assembly module | |
5247423, | May 26 1992 | Freescale Semiconductor, Inc | Stacking three dimensional leadless multi-chip module and method for making the same |
5281852, | Dec 10 1991 | Semiconductor device including stacked die | |
5313416, | Jul 03 1991 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor memory control device and method of mounting same in high density |
5324892, | Aug 07 1992 | International Business Machines Corporation | Method of fabricating an electronic interconnection |
5334875, | Dec 28 1987 | Hitachi, Ltd.; Hitachi Tobu Semiconductor, Ltd. | Stacked semiconductor memory device and semiconductor memory module containing the same |
5345205, | Apr 05 1990 | Lockheed Martin Corporation | Compact high density interconnected microwave system |
5347159, | Sep 24 1990 | Tessera, Inc | Semiconductor chip assemblies with face-up mounting and rear-surface connection to substrate |
5390844, | Jul 23 1993 | Tessera, Inc | Semiconductor inner lead bonding tool |
5394303, | Sep 11 1992 | Kabushiki Kaisha Toshiba | Semiconductor device |
5397916, | Dec 10 1991 | Semiconductor device including stacked die | |
5397997, | Aug 23 1991 | nChip, Inc. | Burn-in technologies for unpackaged integrated circuits |
5398863, | Jul 23 1993 | Tessera, Inc | Shaped lead structure and method |
5409865, | Oct 03 1993 | UTAC Hong Kong Limited | Process for assembling a TAB grid array package for an integrated circuit |
5422435, | May 22 1992 | National Semiconductor Corporation | Stacked multi-chip modules and method of manufacturing |
5426563, | Aug 05 1992 | Fujitsu Limited | Three-dimensional multichip module |
5440171, | Mar 09 1992 | Renesas Electronics Corporation | Semiconductor device with reinforcement |
5448511, | Jun 01 1994 | Storage Technology Corporation | Memory stack with an integrated interconnect and mounting structure |
5454160, | Dec 03 1993 | TERADATA US, INC | Apparatus and method for stacking integrated circuit devices |
5455390, | Feb 01 1994 | Tessera, Inc. | Microelectronics unit mounting with multiple lead bonding |
5455740, | Mar 07 1994 | OVID DATA CO LLC | Bus communication system for stacked high density integrated circuit packages |
5479318, | Mar 07 1994 | OVID DATA CO LLC | Bus communication system for stacked high density integrated circuit packages with trifurcated distal lead ends |
5489749, | Jul 24 1992 | Tessera, Inc. | Semiconductor connection components and method with releasable lead support |
5491302, | Sep 19 1994 | Tessera, Inc | Microelectronic bonding with lead motion |
5518964, | Jul 07 1994 | Tessera, Inc | Microelectronic mounting with multiple lead deformation and bonding |
5536909, | Jul 24 1992 | Tessera, Inc. | Semiconductor connection components and methods with releasable lead support |
5552963, | Mar 07 1994 | STAKTEK GROUP L P | Bus communication system for stacked high density integrated circuit packages |
5587342, | Apr 03 1995 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Method of forming an electrical interconnect |
5615824, | Sep 14 1994 | Tessera, Inc | Soldering with resilient contacts |
5646446, | Dec 22 1995 | Fairchild Space and Defense Corporation | Three-dimensional flexible assembly of integrated circuits |
5656550, | Aug 24 1994 | Fujitsu Semiconductor Limited | Method of producing a semicondutor device having a lead portion with outer connecting terminal |
5659952, | Sep 20 1994 | Tessera, Inc | Method of fabricating compliant interface for semiconductor chip |
5679977, | Sep 24 1990 | Tessera, Inc. | Semiconductor chip assemblies, methods of making same and components for same |
5689091, | Sep 19 1996 | VLSI Technology, Inc. | Multi-layer substrate structure |
5717556, | Apr 26 1995 | NEC Corporation | Printed-wiring board having plural parallel-connected interconnections |
5731709, | Jan 26 1996 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Method for testing a ball grid array semiconductor device and a device for such testing |
5739585, | Nov 27 1995 | Round Rock Research, LLC | Single piece package for semiconductor die |
5762845, | Nov 19 1996 | Delphi Technologies, Inc | Method of making circuit with conductive and non-conductive raised features |
5776797, | Dec 22 1995 | Fairchild Space and Defense Corporation | Three-dimensional flexible assembly of integrated circuits |
5777386, | Aug 23 1995 | Shinko Electric Industries Co., Ltd. | Semiconductor device and mount structure thereof |
5789815, | Apr 23 1996 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Three dimensional semiconductor package having flexible appendages |
5798286, | Sep 22 1995 | TESSERA, INC , A CORP OF DE | Connecting multiple microelectronic elements with lead deformation |
5802699, | Jun 07 1994 | Tessera, Inc. | Methods of assembling microelectronic assembly with socket for engaging bump leads |
5805422, | Sep 21 1994 | NEC Corporation | Semiconductor package with flexible board and method of fabricating the same |
5811982, | Nov 27 1995 | Tokyo Electron Limited | High density cantilevered probe for electronic devices |
5854507, | Jul 21 1998 | Agilent Technologies Inc | Multiple chip assembly |
5861666, | Aug 29 1996 | Tessera, Inc | Stacked chip assembly |
5956234, | Jan 20 1998 | Integrated Device Technology, Inc. | Method and structure for a surface mountable rigid-flex printed circuit board |
5973391, | Dec 11 1997 | Western Digital Technologies, INC | Interposer with embedded circuitry and method for using the same to package microelectronic units |
5980270, | Jun 07 1994 | Tessera, Inc. | Soldering with resilient contacts |
5985692, | Jun 07 1995 | Microunity Systems Engineering, Inc | Process for flip-chip bonding a semiconductor die having gold bump electrodes |
6001671, | Apr 18 1996 | Tessera, Inc | Methods for manufacturing a semiconductor package having a sacrificial layer |
6032359, | Aug 21 1997 | CRAIG WILSON AND COMPANY; 700674 ONTARIO LIMITED | Method of manufacturing a female electrical connector in a single layer flexible polymeric dielectric film substrate |
6052287, | Dec 09 1997 | National Technology & Engineering Solutions of Sandia, LLC | Silicon ball grid array chip carrier |
6054756, | Mar 15 1999 | Tessera, Inc. | Connection components with frangible leads and bus |
6059984, | Jul 21 1992 | URI COHEN | Process for fabricating thin film magnetic head including crater for recessed structure |
6061245, | Jan 22 1998 | International Business Machines Corporation | Free standing, three dimensional, multi-chip, carrier package with air flow baffle |
6157075, | Aug 18 1995 | Tessera, Inc. | Semiconductor assemblies with reinforced peripheral regions |
6175159, | Jul 16 1997 | HPLP TECHNOLOGIES INC | Semiconductor package |
6177636, | Dec 29 1994 | Tessera, Inc. | Connection components with posts |
6202297, | Aug 28 1995 | Tessera, Inc. | Socket for engaging bump leads on a microelectronic device and methods therefor |
6216941, | Jan 06 2000 | Northrop Grumman Corporation | Method for forming high frequency connections to high temperature superconductor circuits and other fragile materials |
6217972, | Oct 17 1997 | Tessera, Inc | Enhancements in framed sheet processing |
6229220, | Jun 27 1995 | International Business Machines Corporation | Bump structure, bump forming method and package connecting body |
6235996, | Jan 28 1998 | ULTRATECH, INC | Interconnection structure and process module assembly and rework |
6258625, | May 18 1999 | International Business Machines Corporation | Method of interconnecting electronic components using a plurality of conductive studs |
6300679, | Jun 01 1998 | DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT | Flexible substrate for packaging a semiconductor component |
6307260, | Jul 07 1994 | Tessera, Inc. | Microelectronic assembly fabrication with terminal formation from a conductive layer |
6322903, | Dec 06 1999 | Invensas Corporation | Package of integrated circuits and vertical integration |
6329594, | Jan 16 1998 | Bae Systems Information and Electronic Systems Integration, Inc | Integrated circuit package |
6332270, | Nov 23 1998 | GLOBALFOUNDRIES Inc | Method of making high density integral test probe |
6335571, | Jul 21 1997 | Invensas Corporation | Semiconductor flip-chip package and method for the fabrication thereof |
6358627, | Apr 03 1999 | GLOBALFOUNDRIES Inc | Rolling ball connector |
6362525, | Nov 09 1999 | DECA TECHNOLOGIES, INC | Circuit structure including a passive element formed within a grid array substrate and method for making the same |
6458411, | Jan 17 2001 | M-RED INC | Method of making a mechanically compliant bump |
6495914, | Aug 19 1997 | Hitachi, Ltd. | Multi-chip module structure having conductive blocks to provide electrical connection between conductors on first and second sides of a conductive base substrate |
6514847, | Nov 28 1997 | Sony Corporation | Method for making a semiconductor device |
6515355, | Sep 02 1998 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Passivation layer for packaged integrated circuits |
6522018, | May 16 2000 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Ball grid array chip packages having improved testing and stacking characteristics |
6545228, | Sep 05 2000 | ADVANCED INTERCONNECT SYSTEMS LIMITED | Semiconductor device with a plurality of stacked boards and method of making |
6550666, | Aug 21 2001 | QUESTECH SOLUTIONS PTE LTD | Method for forming a flip chip on leadframe semiconductor package |
6555918, | Sep 29 1997 | Longitude Licensing Limited | Stacked semiconductor device including improved lead frame arrangement |
6560117, | Jun 28 2000 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Packaged microelectronic die assemblies and methods of manufacture |
6578754, | Apr 27 2000 | ADVANPACK SOLUTIONS PTE LTD | Pillar connections for semiconductor chips and method of manufacture |
6589870, | Feb 05 1999 | International Business Machines Corporation | Inter-layer connection structure, multilayer printed circuit board and production processes therefor |
6624653, | Aug 28 2000 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method and system for wafer level testing and burning-in semiconductor components |
6647310, | May 30 2000 | GLOBALFOUNDRIES Inc | Temperature control of an integrated circuit |
6648213, | Mar 05 2001 | SATURN ELECTRONICS & ENGINEERING TUSTIN , INC ; IMI USA, INC | Manufacturing method for attaching components to a substrate |
6681982, | Apr 27 2000 | Advanpak Solutions Pte. Ltd. | Pillar connections for semiconductor chips and method of manufacture |
6734539, | Dec 27 2000 | Lucent Technologies Inc.; Lucent Technologies Inc | Stacked module package |
6734556, | Jul 17 2000 | Taiwan Semiconductor Manufacturing Company, Ltd | Semiconductor device with chip-on-chip construction joined via a low-melting point metal layer |
6767819, | Sep 12 2001 | Dow Corning Corporation | Apparatus with compliant electrical terminals, and methods for forming same |
6782610, | May 21 1999 | Invensas Corporation | Method for fabricating a wiring substrate by electroplating a wiring film on a metal base |
6815252, | Mar 10 2000 | STATS CHIPPAC, INC | Method of forming flip chip interconnection structure |
6852564, | Apr 06 1999 | OKI SEMICONDUCTOR CO , LTD | Semiconductor device and method of fabricating the same |
6869750, | Oct 28 1999 | Fujitsu Limited | Structure and method for forming a multilayered structure |
6870274, | May 13 2003 | Siliconware Precision Industries Co., Ltd. | Flash-preventing window ball grid array semiconductor package, method for fabricating the same, and chip carrier used in the semiconductor package |
6875638, | Oct 31 2001 | SOCIONEXT INC | Manufacturing method of a semiconductor device incorporating a passive element and a redistribution board |
6888255, | May 30 2003 | Texas Instruments Incorporated | Built-up bump pad structure and method for same |
6902869, | Nov 12 1997 | GLOBALFOUNDRIES Inc | Manufacturing methods for printed circuit boards |
6906418, | Jul 11 2002 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Semiconductor component having encapsulated, bonded, interconnect contacts |
6956165, | Jun 28 2004 | Altera Corporation | Underfill for maximum flip chip package reliability |
6965166, | Feb 24 1999 | Rohm Co., Ltd. | Semiconductor device of chip-on-chip structure |
6995044, | Oct 31 2001 | SOCIONEXT INC | Manufacturing method of a semiconductor device incorporating a passive element and a redistribution board |
6995469, | May 21 2003 | Olympus Corporation | Semiconductor apparatus and fabricating method for the same |
7043831, | Mar 10 1999 | Micron Technology, Inc. | Method for fabricating a test interconnect for bumped semiconductor components by forming recesses and cantilevered leads on a substrate |
7115495, | Mar 26 1997 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods of making projected contact structures for engaging bumped semiconductor devices |
7125789, | Dec 31 2002 | Texas Instruments Incorporated | Composite metal column for mounting semiconductor device |
7183190, | Apr 19 2000 | TOYO KOHAN CO , LTD ; Tadatomo Suga | Semiconductor device and fabrication method therefor |
7214887, | May 19 2003 | Matsushita Electric Industrial Co., Ltd. | Electronic circuit connecting structure, and its connecting method |
7361285, | Apr 30 2004 | LG DISPLAY CO , LTD | Method for fabricating cliche and method for forming pattern using the same |
7382049, | Aug 30 2005 | VIA Technologies, Inc. | Chip package and bump connecting structure thereof |
7569935, | Nov 12 2008 | Powertech Technology Inc. | Pillar-to-pillar flip-chip assembly |
7598613, | Nov 25 2004 | ROHM CO , LTD | Flip chip bonding structure |
7745943, | Jun 25 2004 | Tessera, Inc. | Microelectonic packages and methods therefor |
7829265, | May 25 2006 | Fujikura Ltd. | Printed wiring board, method for forming the printed wiring board, and board interconnection structure |
8115310, | Jun 11 2009 | Texas Instruments Incorporated | Copper pillar bonding for fine pitch flip chip devices |
20010008309, | |||
20020056906, | |||
20020074641, | |||
20020090756, | |||
20020125571, | |||
20020153602, | |||
20020155661, | |||
20020185735, | |||
20030001286, | |||
20030019568, | |||
20030094700, | |||
20030107118, | |||
20030127734, | |||
20030132518, | |||
20030164540, | |||
20030189260, | |||
20030234453, | |||
20040031972, | |||
20040087057, | |||
20040201096, | |||
20040245213, | |||
20050097727, | |||
20050101136, | |||
20050116326, | |||
20050124091, | |||
20050194695, | |||
20050285246, | |||
20060220259, | |||
20070017090, | |||
20070045869, | |||
20070164447, | |||
20070230153, | |||
20080003402, | |||
20090002964, | |||
20090115047, | |||
20090146303, | |||
20090188706, | |||
20100044860, | |||
EP615283, | |||
EP1091406, | |||
EP1602749, | |||
JP11097576, | |||
JP2000277649, | |||
JP2001244365, | |||
JP2002124548, | |||
JP2002313996, | |||
JP2003007768, | |||
JP2004221450, | |||
JP2005026645, | |||
JP2005032964, | |||
JP2005216696, | |||
JP2007023338, | |||
JP62117346, | |||
JP6268015, | |||
JP7211722, | |||
WO141207, | |||
WO2006004672, | |||
WO2006057097, | |||
WO2009023283, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 13 2007 | Tessera, Inc. | (assignment on the face of the patent) | / | |||
Aug 15 2007 | KUBOTA, YOICHI | Tessera, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019820 | /0482 | |
Aug 15 2007 | HABA, BELGACEM | Tessera, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019820 | /0482 | |
Aug 17 2007 | KANG, TECK-GYU | Tessera, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019820 | /0482 | |
Aug 29 2007 | PARK, JAE M | Tessera, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019820 | /0482 | |
Dec 01 2016 | TESSERA ADVANCED TECHNOLOGIES, INC | ROYAL BANK OF CANADA, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 040797 | /0001 | |
Dec 01 2016 | ZIPTRONIX, INC | ROYAL BANK OF CANADA, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 040797 | /0001 | |
Dec 01 2016 | DigitalOptics Corporation | ROYAL BANK OF CANADA, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 040797 | /0001 | |
Dec 01 2016 | DigitalOptics Corporation MEMS | ROYAL BANK OF CANADA, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 040797 | /0001 | |
Dec 01 2016 | DTS, LLC | ROYAL BANK OF CANADA, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 040797 | /0001 | |
Dec 01 2016 | PHORUS, INC | ROYAL BANK OF CANADA, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 040797 | /0001 | |
Dec 01 2016 | iBiquity Digital Corporation | ROYAL BANK OF CANADA, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 040797 | /0001 | |
Dec 01 2016 | Tessera, Inc | ROYAL BANK OF CANADA, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 040797 | /0001 | |
Dec 01 2016 | Invensas Corporation | ROYAL BANK OF CANADA, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 040797 | /0001 | |
Jun 01 2020 | iBiquity Digital Corporation | BANK OF AMERICA, N A | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 053468 | /0001 | |
Jun 01 2020 | Rovi Solutions Corporation | BANK OF AMERICA, N A | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 053468 | /0001 | |
Jun 01 2020 | ROYAL BANK OF CANADA | Tessera, Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 052920 | /0001 | |
Jun 01 2020 | ROYAL BANK OF CANADA | INVENSAS BONDING TECHNOLOGIES, INC F K A ZIPTRONIX, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 052920 | /0001 | |
Jun 01 2020 | ROYAL BANK OF CANADA | FOTONATION CORPORATION F K A DIGITALOPTICS CORPORATION AND F K A DIGITALOPTICS CORPORATION MEMS | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 052920 | /0001 | |
Jun 01 2020 | ROYAL BANK OF CANADA | Invensas Corporation | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 052920 | /0001 | |
Jun 01 2020 | ROYAL BANK OF CANADA | TESSERA ADVANCED TECHNOLOGIES, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 052920 | /0001 | |
Jun 01 2020 | ROYAL BANK OF CANADA | DTS, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 052920 | /0001 | |
Jun 01 2020 | ROYAL BANK OF CANADA | PHORUS, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 052920 | /0001 | |
Jun 01 2020 | Rovi Technologies Corporation | BANK OF AMERICA, N A | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 053468 | /0001 | |
Jun 01 2020 | Rovi Guides, Inc | BANK OF AMERICA, N A | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 053468 | /0001 | |
Jun 01 2020 | PHORUS, INC | BANK OF AMERICA, N A | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 053468 | /0001 | |
Jun 01 2020 | DTS, INC | BANK OF AMERICA, N A | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 053468 | /0001 | |
Jun 01 2020 | TESSERA ADVANCED TECHNOLOGIES, INC | BANK OF AMERICA, N A | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 053468 | /0001 | |
Jun 01 2020 | Tessera, Inc | BANK OF AMERICA, N A | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 053468 | /0001 | |
Jun 01 2020 | INVENSAS BONDING TECHNOLOGIES, INC | BANK OF AMERICA, N A | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 053468 | /0001 | |
Jun 01 2020 | Invensas Corporation | BANK OF AMERICA, N A | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 053468 | /0001 | |
Jun 01 2020 | Veveo, Inc | BANK OF AMERICA, N A | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 053468 | /0001 | |
Jun 01 2020 | TIVO SOLUTIONS INC | BANK OF AMERICA, N A | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 053468 | /0001 | |
Jun 01 2020 | ROYAL BANK OF CANADA | iBiquity Digital Corporation | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 052920 | /0001 |
Date | Maintenance Fee Events |
Aug 04 2017 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jul 27 2021 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Feb 04 2017 | 4 years fee payment window open |
Aug 04 2017 | 6 months grace period start (w surcharge) |
Feb 04 2018 | patent expiry (for year 4) |
Feb 04 2020 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 04 2021 | 8 years fee payment window open |
Aug 04 2021 | 6 months grace period start (w surcharge) |
Feb 04 2022 | patent expiry (for year 8) |
Feb 04 2024 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 04 2025 | 12 years fee payment window open |
Aug 04 2025 | 6 months grace period start (w surcharge) |
Feb 04 2026 | patent expiry (for year 12) |
Feb 04 2028 | 2 years to revive unintentionally abandoned end. (for year 12) |