Disclosed embodiments include thermoelectric-based thermal management systems and methods configured to heat and/or cool an electrical device. thermal management systems can include at least one electrical conductor in electrical and thermal communication with a temperature-sensitive region of the electrical device and at least one thermoelectric device in thermal communication with the at least one electrical conductor. Electric power can be directed to the thermoelectric device by the same electrical conductor or an external power supply, causing the thermoelectric device to provide controlled heating and/or cooling to the electrical device via the at least one electrical conductor.
|
25. A thermal management system configured to manage temperature in a temperature-sensitive region of an electrical device, the system comprising:
a thermoelectric device configured to transfer thermal energy between a main surface and a waste surface upon application of electric power to the thermoelectric device, wherein the main surface of the thermoelectric device is in substantial thermal communication with an electrical conductor, wherein the electrical conductor is configured to deliver electric power to or from an electrical device such that the electrical conductor serves as a conduit for conducting thermal energy between a temperature-sensitive region of the electrical device and the thermoelectric device, and wherein the electrical device comprises a battery pack.
1. A thermal management system configured to manage temperature in a temperature-sensitive region of an electrical device, the system comprising:
a thermoelectric device configured to transfer thermal energy between a main surface and a waste surface upon application of electric power to the thermoelectric device, wherein the main surface of the thermoelectric device is in substantial thermal communication with an electrical conductor, wherein the electrical conductor is configured to deliver electric power to or from an electrical device such that the electrical conductor serves as a conduit for conducting thermal energy between a temperature-sensitive region of the electrical device and the thermoelectric device, and wherein the electrical device comprises a battery cell.
26. A thermal management system configured to manage temperature in a temperature-sensitive region of an electrical device, the system comprising:
a thermoelectric device configured to transfer thermal energy between a main surface and a waste surface upon application of electric power to the thermoelectric device, wherein the main surface of the thermoelectric device is in substantial thermal communication with an electrical conductor, wherein the electrical conductor is configured to deliver electric power to or from an electrical device such that the electrical conductor serves as a conduit for conducting thermal energy between a temperature-sensitive region of the electrical device and the thermoelectric device, and wherein the electrical device comprises a plurality of electrical components, and wherein at least some of the plurality of electrical components comprise battery cells.
18. A thermal management system configured to manage temperature in a temperature-sensitive region of an electrical device, the system comprising:
a thermoelectric device configured to transfer thermal energy between a main surface and a waste surface upon application of electric power to the thermoelectric device, wherein the main surface of the thermoelectric device is in substantial thermal communication with an electrical conductor, and wherein the electrical conductor is configured to deliver electric power to or from an electrical device such that the electrical conductor serves as a conduit for conducting thermal energy between a temperature-sensitive region of the electrical device and the thermoelectric device; and
a thermal insulator in electrical communication with the electrical conductor and configured to substantially thermally isolate the thermoelectric device from a second electrical device that is in electrical communication with the electrical conductor.
2. The thermal management system of
3. The thermal management system of
4. The thermal management system of
5. The thermal management system of
6. The thermal management system of
a plurality of electrical components;
a first electrical conductor in electrical and thermal communication with a first electrical component and a second electrical conductor in electrical and thermal communication with a second electrical component;
a first thermoelectric device in substantial thermal communication with the first electrical conductor and a second thermoelectric device in substantial thermal communication with the second electrical conductor; and
a first thermal management system configured to apply thermal management to the first electrical component and a second thermal management system configured to apply thermal management to the second electrical component, the first and second thermal management systems configured to apply thermal management independent of each other, wherein electric power supplied to the first thermal management system is adjusted independent of electric power supplied to the second thermal management system.
7. The thermal management system of
a plurality of electrical components;
a first electrical conductor in electrical and thermal communication with a first electrical component and a second electrical component of the plurality of electrical components such that the first electrical component and the second electrical component are in electrical communication; and
a first thermoelectric device in substantial thermal communication with the first electrical conductor.
8. The thermal management system of
9. The thermal management system of
10. The thermal management system of
11. The thermal management system of
12. The thermal management system of
13. The thermal management system of
14. The thermal management system of
19. The thermal management system of
20. The thermal management system of
21. The thermal management system of
22. The thermal management system of
23. The thermal management system of
24. The thermal management system of
|
This application claims the benefit of U.S. Provisional Application No. 61/545,017, filed Oct. 7, 2011, U.S. Provisional Application No. 61/506,577, filed Jul. 11, 2011, U.S. Provisional Application No. 61/559,568, filed Nov. 14, 2011, and U.S. Provisional Application No. 61/617,002, filed Mar. 28, 2012. The entire contents of each of the applications identified above are incorporated by reference herein and made a part of this specification.
1. Field
This disclosure relates generally to thermoelectric (TE) cooling and heating of electrical devices.
2. Description of Related Art
Power electronics and other electrical devices, such as batteries, can be sensitive to overheating, cold temperatures, extreme temperatures, and operating temperature limits. The performance of such devices may be diminished, sometimes severely, when the devices are operated outside of recommended temperature ranges. In semiconductor devices, integrated circuit dies can overheat and malfunction. In batteries, including, for example, batteries used for automotive applications in electrified vehicles, battery cells and their components can degrade when overheated or overcooled. Such degradation can manifest itself in reduced battery storage capacity and/or reduced ability for the battery to be recharged over multiple duty cycles.
It can be advantageous to manage the thermal conditions of power electronics and other electrical devices. Thermal management can reduce incidences of overheating, overcooling, and electrical device degradation. Certain embodiments described herein provide thermal management of devices that carry significant electric power and/or require high current and efficiency (e.g., power amplifiers, transistors, transformers, power inverters, insulated-gate bipolar transistors (IGBTs), electric motors, high power lasers and light-emitting diodes, batteries, and others). A wide range of solutions can be used to thermally manage such devices, including convective air and liquid cooling, conductive cooling, spray cooling with liquid jets, thermoelectric cooling of boards and chip cases, and other solutions. At least some embodiments disclosed herein provide at least one of the following advantages compared to existing techniques for heating or cooling electrical devices: higher power efficiency, lower or eliminated maintenance costs, greater reliability, longer service life, fewer components, fewer or eliminated moving parts, heating and cooling modes of operation, other advantages, or a combination of advantages.
In electrical devices, typically electrically active portions and/or temperature sensitive regions of the device are connected to the outside world, such as, for example, external circuits or devices, via electrical conductors. For example, electrodes of a battery cell can be designed to carry high electric power without significant losses (e.g., heat losses that are proportional to the square of the current, per Joule's Law). The wire gauge of the electrical conductors used for such electrodes is commensurate with the high current that typically flows in such devices. The larger the size of the battery is, the bigger are the electrode posts for connection with outside circuits.
The high electrical conductance of electrodes and many other types of electrical conductors also means that such conductors typically have high thermal conductivity. The high thermal conductivity can be used to solve various thermal management problems, where one can deliver desired thermal power (e.g., cooling, heating, etc.) directly to the sensitive elements of the device by heating and/or cooling the electrodes, bypassing thermally-insensitive elements of the device. Similar to using thermally conditioned blood during blood transfusions for delivering heat deep to the core of human bodies, heat pumping through the electrodes can be used to efficiently deliver desired thermal conditions deep inside an electrical device. As an example, it has been determined that electrode cooling of advanced automotive batteries is one of the most advantageous techniques for battery thermal management. For example, the electrodes can be cooled using solid, liquid, or air cooling techniques. In a sense, electrodes act as cold fingers in such a thermal management arrangement.
Embodiments disclosed herein include systems and methods capable of thermally managing an electrical device by applying direct or indirect thermoelectric (TE) cooling and/or heating to current carrying electrical conductors (e.g., electrodes) of power components, electronics, and other electrical devices. Such devices can often benefit from thermal management. Some embodiments will be described with reference to particular electrical devices, such as, for example, batteries. However, at least some embodiments disclosed herein are capable of providing thermal management to other electrical devices, such as, for example, insulated-gate bipolar transistors (IGBTs), other electrical devices, or a combination of devices. At least some such devices can have high current carrying capacity and can suffer from operation outside of a preferred temperature range. The operation of some embodiments is described with reference to a cooling mode of operation. However, some or all of the embodiments disclosed herein can have a heating mode of operation, as well. In some situations a heating mode of operation can be employed to maintain the temperature of an electrical device above a threshold temperature, under which the electrical device may degrade or exhibit impaired operation. TE devices are uniquely suited to provide both heating and cooling functions with minimum complications for system architecture.
Embodiments disclosed herein include thermoelectric-based thermal management systems and methods. In some embodiments, a thermal management system is configured to manage temperature in a temperature-sensitive region of an electrical device. The thermal management system can include a thermoelectric device configured to transfer thermal energy between a main surface and a waste surface upon application of electric power to the thermoelectric device. In some embodiments, the main surface of the thermoelectric device is in substantial thermal communication with a heat exchange surface of an electrical conductor. The electrical conductor is configured to deliver electric power to or from an electrical device such that the electrical conductor serves as a conduit for conducting thermal energy between a temperature-sensitive region of the electrical device and the thermoelectric device.
In certain embodiments, a method for thermally managing an electrical device includes connecting a heat transfer device that comprises an electrically conductive portion and an electrically insulating portion to a plurality of electrical conductors of an electrical device. The method can include directing substantial thermal energy exchange between the heat transfer device and a main surface of a thermoelectric device.
In some embodiments, a method for thermally managing an electrical device includes establishing substantial thermal communication between a thermoelectric device and a heat exchange surface of an electrical conductor that is in thermal and electrical communication with the electrical device. The method can include heating or cooling the electrical device by adjusting the current directed in or out of the thermoelectric device.
Various embodiments are depicted in the accompanying drawings for illustrative purposes, and should in no way be interpreted as limiting the scope of the thermoelectric assemblies or systems described herein. In addition, various features of different disclosed embodiments can be combined with one another to form additional embodiments, which are part of this disclosure. Any feature or structure can be removed, altered, or omitted. Throughout the drawings, reference numbers may be reused to indicate correspondence between reference elements.
Although certain embodiments and examples are disclosed herein, the subject matter extends beyond the examples in the specifically disclosed embodiments to other alternative embodiments and/or uses, and to modifications and equivalents thereof. Thus, the scope of the claims appended hereto is not limited by any of the particular embodiments described below. For example, in any method or process disclosed herein, the acts or operations of the method or process may be performed in any suitable sequence and are not necessarily limited to any particular disclosed sequence. Various operations may be described as multiple discrete operations in turn, in a manner that may be helpful in understanding certain embodiments; however, the order of description should not be construed to imply that these operations are order dependent. Additionally, the structures, systems, and/or devices described herein may be embodied as integrated components or as separate components. For purposes of comparing various embodiments, certain aspects and advantages of these embodiments are described. Not necessarily all such aspects or advantages are achieved by any particular embodiment. Thus, for example, various embodiments may be carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other aspects or advantages as may also be taught or suggested herein.
It can be advantageous to manage the thermal conditions of electronics and electrical devices. Such thermal management can reduce incidences of overheating, overcooling, and electrical device degradation. Certain embodiments described herein provide thermal management of devices that carry significant electric power and/or require high current and efficiency (e.g., power amplifiers, transistors, transformers, power inverters, insulated-gate bipolar transistors (IGBTs), electric motors, high power lasers and light-emitting diodes, batteries, and others). A wide range of solutions can be used to thermally manage such devices, including convective air and liquid cooling, conductive cooling, spray cooling with liquid jets, thermoelectric cooling of boards and chip cases, and other solutions. At least some embodiments disclosed herein provide at least one of the following advantages compared to existing techniques for heating or cooling electrical devices: higher power efficiency, lower or eliminated maintenance costs, greater reliability, longer service life, fewer components, fewer or eliminated moving parts, heating and cooling modes of operation, other advantages, or a combination of advantages.
In electrical devices, typically electrically active portions and/or temperature sensitive regions of the device are connected to the outside world, such as, for example, external circuits or devices, via electrical conductors. For example, electrodes of a battery cell can be designed to carry high electric power without significant losses (e.g., heat losses that are proportional to the square of the current, per Joule's Law). The wire gauge of the electrical conductors used for such electrodes is commensurate with the high current that typically flows in such devices. The larger the size of the battery is, the bigger are the electrode posts for connection with the outside circuits.
The high electrical conductance of electrodes and many other types of electrical conductors also means that such conductors typically have high thermal conductivity. The high thermal conductivity can be used to solve various thermal management problems, where one can deliver desired thermal power (e.g., cooling, heating, etc.) directly to the sensitive elements of the device by heating and/or cooling the electrodes, bypassing thermally-insensitive elements of the device. Similar to using thermally conditioned blood during blood transfusions for delivering heat deep to the core of human bodies, heat pumping through the electrodes can be used to efficiently deliver desired thermal conditions deep inside an electrical device. As an example, it has been determined that electrode cooling of advanced automotive batteries is one of the most advantageous techniques for battery thermal management. For example, the electrodes can be cooled using solid, liquid, or air cooling techniques. In a sense, electrodes act as cold fingers in such a thermal management arrangement.
Embodiments disclosed herein include systems and methods capable of thermally managing an electrical device by applying direct or indirect thermoelectric (TE) cooling and/or heating to current carrying electrical conductors (e.g., electrodes) of power components, electronics, and other electrical devices. Such devices can often benefit from thermal management. Some embodiments will be described with reference to particular electrical devices, such as, for example, batteries. However, at least some embodiments disclosed herein are capable of providing thermal management to other electrical devices, such as, for example, insulated-gate bipolar transistors (IGBTs), other electrical devices, or a combination of devices. At least some such devices can have high current carrying capacity and can suffer from operation outside of a preferred temperature range. The operation of some embodiments is described with reference to a cooling mode of operation. However, some or all of the embodiments disclosed herein can have a heating mode of operation, as well. In some situations a heating mode of operation can be employed to maintain the temperature of an electrical device above a threshold temperature, under which the electrical device may degrade or exhibit impaired operation. TE devices are uniquely suited to provide both heating and cooling functions with minimum complications for system architecture.
There are a variety of ways in which TE devices can be used for electrical conductor cooling and/or heating tasks. As described herein, TE devices can include one or more TE elements, TE assemblies and/or TE modules. In some embodiments, a TE system can include a TE device, which comprises a first side and a second side opposite the first side. In some embodiments, the first side and second side can be a main surface and waste surface or heating surface and cooling surface. A TE device can be operably coupled with a power source. The power source can be configured to apply a voltage to the TE device. When voltage is applied in one direction, one side (e.g., the first side) creates heat while the other side (e.g., the second side) absorbs heat. Switching polarity of the circuit creates the opposite effect. In a typical arrangement, a TE device comprises a closed circuit that includes dissimilar materials. As a DC voltage is applied to the closed circuit, a temperature difference is produced at the junction of the dissimilar materials. Depending on the direction of the electric current, heat is either emitted or absorbed at a particular junction. In some embodiments, the TE device includes several solid state P- and N-type semi-conductor elements connected in series. In certain embodiments, the junctions are sandwiched between two electrical isolation members (e.g., ceramic plates), which can form the cold side and the hot side of the TE device. The cold side can be thermally coupled to an object (e.g., electrical conductor, electrical device under thermal management, etc.) to be cooled and the hot side can be thermally coupled to a heat sink which dissipates heat to the environment. In some embodiments, the hot side can be coupled to an object (e.g., electrical conductor, electrical device under thermal management, etc.) to be heated. Certain non-limiting embodiments are described below.
In some embodiments, at least one TE device can be connected to an electrical device under thermal management. In some embodiments, at least one TE device can be in substantial thermal communication with (e.g., contact, attached to, etc.) an electrical component, part, portion or device under thermal management. In such instances, the electrical conductors can conduct both electrical energy and thermal energy between temperature-sensitive regions of the electrical device and one or more external devices. When operated in a cooling mode, the heat Q is pumped from the electrical conductors 4a, 4b (and from the electrical device 2) as shown by arrows 8a, 8b in
As shown in
In some embodiments, a fluid connection can be configured between, around and/or through the TE device 6, 6a, 6b and at least one electrical conductor 4a, 4b that is used to facilitate the transfer of electric power to or out of the electrical device 2. In some embodiments, a working fluid can be used to facilitate the transfer of thermal energy between an electrical device 2 and a TE device 6, 6a, 6b.
A controller can be provided to control the TE device to perform either a heating or cooling function and/or adjust the electric power delivered to the TE device. The TE device can be powered inline with the device under thermal management or via an external power supply or source. In some embodiments, TE devices are electrically powered and controlled to perform their heat pumping function to and/or from a device under thermal management. The power and control function can be performed by a separate electronic control unit, ECU 40. The ECU 40 can adjust the electric power delivered to the TE device 44 associated with the TE management of the device 46. In some embodiments, the ECU 40 takes inputs from one or more temperature sensors 42 that sense the thermal condition of the device 46 directly or via electrical conductors (not shown), compares them to algorithms and issues a controlling signal for the TE device 44 to perform either a heating or cooling function, as illustrated in the
The steps an example thermal management system can undergo in some embodiments to actively thermally manage an electrical device are illustrated in
In some embodiments, to facilitate such temperature control, it can be helpful to determine the ambient temperature, the temperature of at least one of the sides of a TE device and/or a temperature within the TE device. Thus, some embodiments of a TE system can include one or more, a combination, or none of the following: an ambient temperature sensor, a TE device temperature sensor (such as a thermistor) located inside, adjacent to, near, or otherwise in close proximity to the TE device and/or the like.
However, some embodiments including one or more TE device temperature sensors can be less desirable due to, for example, the cost of the sensor, the additional manufacturing steps and complexity associated with positioning the sensor in the system, the possibility of sensor failure, thermal lag and/or one or more other reasons or considerations. In some embodiments, a thermal management system can include a power source operably coupled with a TE device having first and second sides and does not include a temperature sensor to determine the temperature of one of the sides of the TE device and/or the device under thermal management. Rather, the thermal management system is configured to determine the temperature of one of the first and second sides (or a temperature differential across the TE device) by the potential induced by the Seebeck effect.
In certain embodiments, the power source can be turned off (e.g., supply zero volts to the TE device). In such instances, a temperature difference between the first and second sides can induce a potential between the first and second sides. The inducement of this potential is known as the Seebeck effect. The potential produced is generally proportional to the temperature difference between the first and second sides and can be expressed by the following equation:
V=α(Th−Tc)=αΔT
Where V is the potential between the first and second sides, α is the Seebeck coefficient, and (Th−Tc) or ΔT is the temperature difference between the first and second sides. As such, the Seebeck coefficient for a given TE device can be described as the ratio of the potential to the temperature difference between the first and second sides.
In some cases, the Seebeck coefficient α can be determined experimentally. In certain configurations, for a TE system with a known Seebeck coefficient α, the temperature difference between the first and second sides can be determined based on the voltage potential. Such a configuration can, for example, provide for monitoring of the temperature difference of the TE device without the need for a separate temperature sensor. As noted above, the elimination of such a temperature sensor can facilitate manufacturing (e.g., reduce process steps), decrease manufacturing time, reduce costs, increase device longevity, and/or provide one or more other advantages or benefits. Further, not including of such a sensor can simplify the design of the TE device, for example, by eliminating channels through the TE device for the passage of wires for the sensor. Furthermore, not including such a sensor can improve reliability of the system by reducing the total number of components that could fail.
In some embodiments, the thermal management system is configured to determine an absolute temperature of at least one of the sides of the TE device. In some embodiments, an ECU is in communication with an ambient temperature sensor and is configured to determine the potential. For example, an analog input of the ECU can be in communication with a negative temperature coefficient device or other device, from which a signal can be used to determine (e.g., by a calculation) an ambient temperature. Such a configuration can, for example, allow for the determination of an absolute temperature of at least one of the first and second sides of the TE device. For example, the absolute temperature can be determined with a calculation or by correlating the potential with a known (e.g., by empirical measurements) absolute temperature for at least one of the first and second sides.
In some embodiments, the temperature difference and/or the absolute temperature of at least one of the sides is used in a feedback control scheme, which can, for example, provide for a faster response time and/or reduced thermal lag for temperature feedback compared to systems employing a separate temperature sensor.
In some embodiments, the temperature difference and/or the absolute temperature of at least one of the sides is used for fault monitoring. For example, the temperature difference and/or the absolute temperature of at least one of the sides can be used to detect overheating of the TE device, which could reduce the efficiency of the TE device or otherwise damage the device and/or other components of the thermal management system.
In some embodiments, each of the TE device can be powered by a power source, which can selectively provide electric power to each of the devices. In certain embodiments, the TE devices share a common power source. In other arrangements, the TE devices each has a dedicated power source.
In some embodiments as illustrated in
In some embodiments, for example a parallel connection as illustrated in
In some embodiments, the benefit of such an in-line arrangement of TE power is the simplification (and cost reduction) of control circuitry. A TE device 76 is powered and pumping heat away from (or to) the device 72 whenever the electric power is flowing through the device 72. Therefore, by sizing the heat pumping capacity of the TE device 76 appropriately and relative to the range of possible operating conditions, it is possible to use such a “built-in” control of thermal condition of the device 72 under management. No separate thermal sensing of the battery condition is needed.
The inline connection and control scheme can be used when one mode of TE operation is desired (e.g., cooling). In such arrangements, electric current flows in one direction. The inline connection and control scheme can also be used when the mode of operation (e.g., heating or cooling) is consistent with the direction of current flow. This is largely the case with power electronics or devices, but could be different in the case of batteries. In batteries, often both heating and cooling are needed depending on the ambient conditions, and also the direction of current flow depends on whether the battering is operating in a charging mode or a discharging mode.
In some embodiments, one or more diodes or other electric current control devices can be positioned along the conductor between an electrode and a TE device. Such current control devices can be configured to prevent an undesired operating mode from occurring during charging or discharging of the device under thermal management. In certain such embodiments, the thermal management system can be configured to perform only a cooling mode of operation or only a heating mode of operation, regardless of the direction of current flow (e.g., charging or discharging) to the electrical device. Such embodiments can be beneficial, for example, when environmental conductions, properties of the device, or other factors make only one mode of operation desired.
A TE device can be positioned closer to or further from the device under thermal management depending on the application. In some embodiments, from the thermal management point of view, it is beneficial to locate the heat pump (e.g., TE device) as close to the device that is being thermally managed as possible. Such localization results in the most efficient use of thermal management, avoiding unnecessary thermal and electric losses. For example, in case of power electronics it is desirable to locate a heat management system as close to the heat source (e.g., semiconductor junction) as possible.
However, in some cases, the TE device can be located further away from the device for the benefit of improved system logistics. In such cases, the TE device is still capable of cooling the power leads. An example of such trade-off is a battery 82 operating either in charging or discharging conditions and a TE device connected in an in-line fashion as described above. The direction of current is opposite between the two modes of battery operation. In this application, one or more TE devices 86 can be incorporated in the charger side 88a of the battery charger and in the load side 88b of the battery connector 84. Such connection schemes are illustrated in
A similar polarity switch function can be achieved by using a single TE device 86 and a relay or switch (not shown) that changes the polarity of the electric current flow through the TE device in response to change of the direction of current flow in a battery 82. However, in some applications, persistent cooling of the battery 82 is desired, e.g., in rapid charging. In some embodiments, the TE devices can be built into the connectors 84 on the cable side of the battery charger. The polarity of TE devices in this case should be appropriate to cool the leads during charging.
A TE device or module can be constructed into various geometries, shapes and sizes. A typical TE device is a flat or planar module with two parallel surfaces. One of the most common sizes of such modules is 40×40 mm with thickness ranging below a millimeter to multiple millimeters. The heat is removed from one surface and moved to the other. A change in device polarity changes the direction of heat flow. A myriad of other device sizes is available on the commercial market. Typically, the size of the device is application-specific and matched to electrical and thermal impedances of the system.
Such flat modules can be either directly applied to electrodes that need to be cooled, provided that the electrodes have appropriately sized flat sections.
Alternatively, at least one intermediate heat spreader 98a or heat concentrator 98b made of materials with high thermal conductivity (e.g., copper, aluminum, etc.) may be positioned between TE device 92 and the electrode 94 to match the geometrical size differences, as illustrated in
In some embodiments, another option for mating TE devices and electrodes or other electrical conductors is to change the shape of a TE device 92 from flat to cylindrical, essentially concentric with or surrounding the electrode 94, as illustrated in
Such a cylindrical TE device may be implemented in a variety of ways. One solution is to implement a high power density T-shunt architecture as described in U.S. Pat. No. 6,959,555, which is incorporated by reference in its entirety. In some embodiments, individual p- and n-type thermoelectric elements 120a, 120b can be located in a ring pattern around the electrode 124, as illustrated in
An insulator can be used to thermally insulate an electrical device under thermal management and help prevent heat from passing through to the rest of a circuit via external leads. In some embodiments, the thermal management of electrical devices can suffer from a problem of parasitic losses because if the electrical conductors (e.g., terminals) are cooled, then some of the cooling does not go towards the device under thermal management but rather leaks through the wires or leads towards the rest of the circuit. In other words, the external leads act as thermal conductors that act as a thermal load parallel to the device under thermal management in relation to the TE device.
In order to minimize the parasitic effect of such leaks, a thermal insulator 130 positioned between TE device 132 and the rest of the circuit can be introduced as illustrated in
There are a number of possible physical implementations of a thermal insulator. In some embodiments, a thermally insulating material has high electrical conductivity and low thermal conductivity. One good type of material satisfying these requirements is thermoelectric material. For example, thermoelectric materials can be used as thermal insulators in an application of electrical feed through for superconductive magnets, such as described by Yu. Ivanov et al., Proceedings of International Conference on Thermoelectrics, Shanghai, 2010. However, the insulator does not have to be made of TE material, as in this application the Seebeck performance of the insulator material is not necessarily important. Other examples could be electrically conductive ceramics, conductive foams or other materials.
Cooling and heating of multiple electrical devices or components in electrical communication with each other can be provided by a thermal management system. A number of discrete electronic components that may require thermal management can be connected in series or in parallel electrically. For example, a battery pack can be built by connecting a plurality of individual cells in series electrical communication. The example described below uses a battery pack as an example of a system under thermal management. The features described, however, are not limited to thermal management of batteries only and are applicable to thermal management of other electronic components or electrical devices.
In some embodiments, a thermal management system can include a battery pack including N cells 140a-140c connected in series as depicted in
Thermal management of individual cells 140a-140c by at least one TE device 146a, 146b can be especially effective when applied to electrical leads or internal wires 148 that connect adjacent cells, as opposed to thermal management through the terminal wires that bring electric current in and out of the battery pack.
In this configuration in some embodiments, when TE devices 146a, 146b are thermally connected to internal wires 148 that connect adjacent cells 140a-140c, substantially all of the thermal energy is delivered inside and/or extracted from the cells. This is distinctly different from an arrangement when a TE device 186 is thermally connected to a terminal or external wire 180 that connects the battery 182 with other elements. In the latter case, a part of the thermal energy 184 can escape through the wire 180 away from the battery 182, and the overall system level thermal management efficiency can be diminished. Such adverse effect is depicted in
In some embodiments, a thermal management system is configured to thermally manage only the connections that are internal to the battery pack or other electrical device. For example, battery pack embodiments disclosed herein having cells connected in series can have this configuration. This thermal management approach can be applied to any arrangement of individual elements in the pack provided that only internal wires are thermally managed. The thermal management can be applied substantially only to electrical connections that originate and terminate inside the pack, and not to the connections that connect the pack to the rest of the system.
The individual elements can be connected in series, in parallel, or even belong to independent electric circuits. Additionally, in some embodiments, a single TE device can be in substantial thermal communication with a single cable connecting adjacent cells, or a plurality of such cables, therefore spreading the thermal management across several cells.
In some embodiments, all electrical conductors can be connected to at least one TE device. In some embodiments, at least one electrical conductor or component is not connected to a TE device. For example, as illustrated in
In some embodiments, a thermal management system can control or thermally manage individual cells or groups of cells. Such embodiments can permit a thermal management controller to control the temperature of electrical conductors or components independently from other conductors or components of the electrical device. In certain such embodiments, thermal control can be localized to the cell level. In some such embodiments, the thermal management system is configured to minimize or reduce cell to cell variation, avoid or reduce cell degradation, and/or allow for independent thermal management tuning.
As illustrated in
In some embodiments, a heat pipe can be provided as a waste heat transport mechanism. Waste heat from a TE device can be dissipated in a heat sink. Examples of heat sinks include heat exchangers, waste streams, other structures for dissipating heat, and combinations of structures. A heat sink can be attached to the waste side or surface of the TE device. The heat sink can be cooled by air, liquid, or, alternatively, it can be a solid member connecting the TE device with a bigger solid heat sink such as a battery case, car frame, or another structural element that dissipates heat effectively. However, in practical applications, such as, for example, a battery thermal management system, there can be packaging constraints that limit the possibility of bringing the cooling media close to the waste side of the TE device. Alternatively, a heat or thermal transport device may be used to move the heat from the waste side of the TE device to another location where heat dissipation may be implemented effectively.
In some embodiments, a heat transfer device 198 can be used to connect the waste side or surface of the TE device 196 to a heat sink 194 where the heat is ultimately dumped by, for example, air, liquid, or solid, as illustrated in
As illustrated in
In some embodiments, the ends of the thermoelectric devices 246 can be connected or mounted to the tops of the terminals 252 as illustrated in
In some embodiments, the other end of each thermoelectric device 246 can be connected, clipped, and/or clamped to a heat transfer device 254a or 254b. In some embodiments, such a thermal management system configuration can transfer heat to or from the terminals 252 and/or the sides of the battery 242.
In some embodiments, at least some thermal management systems that are described herein can include one or more of the following features:
Discussion of the various embodiments herein has generally followed the embodiments schematically illustrated in the figures. However, it is contemplated that the particular features, structures, or characteristics of any embodiments discussed herein may be combined in any suitable manner in one or more separate embodiments not expressly illustrated or described. In many cases, structures that are described or illustrated as unitary or contiguous can be separated while still performing the function(s) of the unitary structure. In many instances, structures that are described or illustrated as separate can be joined or combined while still performing the function(s) of the separated structures.
Various embodiments have been described above. Although the inventions have been described with reference to these specific embodiments, the descriptions are intended to be illustrative and are not intended to be limiting. Various modifications and applications may occur to those skilled in the art without departing from the spirit and scope of the inventions described herein.
Kossakovski, Dmitri, Barnhart, Todd Robert, Piggott, Alfred
Patent | Priority | Assignee | Title |
10106011, | May 18 2009 | Gentherm Incorporated | Temperature control system with thermoelectric device |
10170811, | Jan 14 2013 | Gentherm Incorporated | Thermoelectric-based thermal management of electrical devices |
10208990, | Oct 07 2011 | Gentherm Incorporated | Thermoelectric device controls and methods |
10236547, | Oct 29 2013 | Gentherm Incorporated | Battery thermal management systems including heat spreaders with thermoelectric devices |
10270141, | Jan 30 2013 | Gentherm Incorporated | Thermoelectric-based thermal management system |
10337770, | Jul 11 2011 | Gentherm Incorporated | Thermoelectric-based thermal management of electrical devices |
10361577, | Apr 05 2016 | Adam Gleason | Battery charging and cooling apparatus |
10464391, | May 25 2007 | Gentherm Incorporated | System and method for distributed thermoelectric heating and cooling |
10473365, | Jun 03 2008 | Gentherm Incorporated | Thermoelectric heat pump |
10603976, | Dec 19 2014 | Gentherm Incorporated | Thermal conditioning systems and methods for vehicle regions |
10625566, | Oct 14 2015 | Gentherm Incorporated | Systems and methods for controlling thermal conditioning of vehicle regions |
10686232, | Jan 14 2013 | Gentherm Incorporated | Thermoelectric-based thermal management of electrical devices |
10700393, | Sep 12 2014 | Gentherm Incorporated | Graphite thermoelectric and/or resistive thermal management systems and methods |
10714956, | Apr 05 2016 | Apparatus, system, and method for battery charging | |
10784546, | Jan 30 2013 | Gentherm Incorporated | Thermoelectric-based thermal management system |
11152557, | Feb 20 2019 | Gentherm Incorporated | Thermoelectric module with integrated printed circuit board |
11203249, | May 18 2009 | Gentherm Incorporated | Temperature control system with thermoelectric device |
11264655, | May 18 2009 | Gentherm Incorporated | Thermal management system including flapper valve to control fluid flow for thermoelectric device |
11358433, | Dec 19 2014 | Gentherm Incorporated | Thermal conditioning systems and methods for vehicle regions |
11451079, | Apr 05 2016 | Apparatus, system, and method for battery charging | |
11894537, | Oct 10 2019 | LG ENERGY SOLUTION, LTD | Battery module and battery pack including the same |
11993132, | Nov 30 2018 | Gentherm Incorporated | Thermoelectric conditioning system and methods |
9470583, | Dec 29 2015 | International Business Machines Corporation | Calibration-free temperature measurement |
9590282, | Oct 29 2013 | Gentherm Incorporated | Battery thermal management systems including heat spreaders with thermoelectric devices |
9666914, | May 18 2009 | Gentherm Incorporated | Thermoelectric-based battery thermal management system |
9671142, | Jul 11 2011 | Gentherm Incorporated | Thermoelectric-based thermal management of electrical devices |
Patent | Priority | Assignee | Title |
2363168, | |||
2499901, | |||
2944404, | |||
2949014, | |||
2984077, | |||
2997514, | |||
3085405, | |||
3125860, | |||
3137142, | |||
3138934, | |||
3196620, | |||
3212275, | |||
3213630, | |||
3236056, | |||
3252504, | |||
3391727, | |||
3527621, | |||
3561224, | |||
3599437, | |||
3635037, | |||
3681929, | |||
3779307, | |||
3817043, | |||
3885126, | |||
4038831, | Jun 27 1975 | Air Industrie | Thermoelectric installations |
4051691, | Dec 10 1973 | Air conditioning apparatus | |
4065936, | Jun 16 1976 | Borg-Warner Corporation | Counter-flow thermoelectric heat pump with discrete sections |
413136, | |||
4229687, | May 07 1979 | Utah Research & Development Corporation | Temperature maintained battery system |
4280330, | Sep 19 1977 | Verdell, Harris | Vehicle heating and cooling system |
4314008, | Aug 22 1980 | Moltech Power Systems, Inc | Thermoelectric temperature stabilized battery system |
4324845, | Jun 30 1980 | Comsat Corporation | Metal-oxide-hydrogen cell with variable conductant heat pipe |
4444851, | Jun 28 1982 | Energy Research Corporation | Fuel cell stack |
4494380, | Apr 19 1984 | Bilan, Inc. | Thermoelectric cooling device and gas analyzer |
4665707, | Aug 26 1985 | Protection system for electronic apparatus | |
4665971, | Jun 04 1984 | ZEZEL CORPORATION | Air conditioner system for automobiles |
4753682, | Sep 03 1985 | Ital Idee s.r.l. | Apparatus of thermoelectric effect for current generation in internal combustion engine vehicles and the like, with recovery of the externally dissipated heat |
4823554, | Apr 22 1987 | Vehicle thermoelectric cooling and heating food and drink appliance | |
4848090, | Jan 27 1988 | Texas Instruments Incorporated | Apparatus for controlling the temperature of an integrated circuit package |
4858069, | Aug 08 1988 | GTE TELECOM INTERNATIONAL INCORPORATED | Electronic housing for a satellite earth station |
4865929, | Oct 23 1987 | Asea Brown Boveri Aktiengesellschaft | High-temperature storage battery |
4905475, | Apr 27 1989 | Personal comfort conditioner | |
4907060, | Jun 02 1987 | MARLOW INDUSTRIES INCORPORATED | Encapsulated thermoelectric heat pump and method of manufacture |
4922721, | May 01 1989 | Marlow Industries, Inc. | Transporter unit with communication media environmental storage modules |
4922998, | Nov 05 1987 | Instatherm Company | Thermal energy storage apparatus |
4947735, | May 27 1988 | Valeo | Distribution box for a heating and/or air conditioning apparatus, especially for an automotive vehicle |
4988847, | Sep 02 1986 | Electrically heated air blower unit for defogging bathroom mirrors | |
5015545, | Jan 03 1990 | General Motors Corporation | Method and apparatus for cooling an array of rechargeable batteries |
5029446, | Aug 15 1989 | KABUSHIKI KAISHA B AND D JAPAN | Electronic compact refrigerator |
5038569, | Apr 17 1989 | NIPPONDENSO CO , LTD | Thermoelectric converter |
5042566, | May 19 1989 | Valeo Klimasysteme GmbH | Heating or air conditioning system for a motor vehicle |
5071652, | Dec 11 1990 | GOLDMAN SACHS CREDIT PARTNERS L P | Metal oxide hydrogen battery having improved heat transfer properties |
5092129, | Mar 20 1989 | United Technologies Corporation | Space suit cooling apparatus |
5097829, | Mar 19 1990 | THERMOTEK, INC | Temperature controlled cooling system |
5111664, | May 29 1989 | Samsung Electronics Co., Ltd. | Portable refrigerating/heating apparatus |
5119640, | Oct 22 1990 | Freeze-thaw air dryer | |
5121047, | Jun 01 1990 | Motorola, Inc. | Battery charging system |
5141826, | Sep 21 1990 | AABH Patent Holdings Societe Anonyme | High-energy battery with a temperature regulating medium |
5167129, | Jul 26 1990 | Calsonic Corporation | Automotive air conditioning system |
5193347, | Jun 19 1992 | Helmet-mounted air system for personal comfort | |
5197291, | Nov 13 1990 | General Electric Company | Solar powered thermoelectric cooling apparatus |
5198930, | Feb 14 1989 | Kabushiki Kaisha Topcon | Wide-band half-mirror |
5229702, | Jun 26 1991 | Power system battery temperature control | |
5232516, | Jun 04 1991 | Medtronic Cryocath LP | Thermoelectric device with recuperative heat exchangers |
5269146, | Aug 28 1990 | KERNER, JAMES M | Thermoelectric closed-loop heat exchange system |
5291960, | Nov 30 1992 | FORD GLOBAL TECHNOLOGIES, INC A MICHIGAN CORPORATION | Hybrid electric vehicle regenerative braking energy recovery system |
5300197, | Dec 12 1989 | Hitachi, Ltd. | Distillation apparatus with porous membrane and heat pump |
5303771, | Dec 18 1992 | Des Champs Laboratories Incorporated | Double cross counterflow plate type heat exchanger |
5316078, | May 21 1992 | Panel heat exchanger with integral thermoelectric device | |
5385020, | Nov 27 1992 | JOHN BEAN TECHNOLOGIES CORP | Thermoelectric air cooling method with individual control of multiple thermoelectric devices |
5386823, | Jul 01 1992 | The United States of America as represented by the Secretary of the Air; United States Air Force | Open loop cooling apparatus |
5395708, | Jan 14 1994 | Space Systems/Loral, Inc. | Bimodal electric vehicle battery system |
5407130, | Jul 20 1993 | Honda Giken Kogyo Kabushiki Kaisha | Motor vehicle heat storage device with coolant bypass |
5419980, | Jun 18 1992 | Honda Giken Kogyo Kabushiki Kaisha | Fuel cell stack and method of pressing together the same |
5431021, | Nov 27 1992 | JOHN BEAN TECHNOLOGIES CORP | Thermoelectric device with a plurality of modules individually controlled |
5448891, | Mar 10 1993 | Matsushita Electric Industrial Co., Ltd. | Dehumidifier |
5450894, | Nov 14 1991 | MEDSONIC, INC | Air conditioning apparatus for a vehicle |
5483807, | Aug 19 1993 | Daimler AG | Device for air-conditioning the passenger compartment and for cooling the drive system of electric vehicles |
5499504, | Mar 19 1991 | Scots Pine Enterprises | Desk mounted personal environment system |
5549153, | Nov 13 1992 | Behr GmbH & Co. | Device for cooling drive components and heating a passenger compartment of an electric vehicle |
5576512, | Aug 05 1994 | Marlow Industries, Inc. | Thermoelectric apparatus for use with multiple power sources and method of operation |
5592363, | Sep 30 1992 | Hitachi, Ltd. | Electronic apparatus |
5605047, | Jan 12 1994 | Owens-Corning Fiberglas Corp.; Oceaneering Space Systems | Enclosure for thermoelectric refrigerator and method |
5623195, | Jun 22 1994 | THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT | Apparatus and method for controlling a charging voltage of a battery based on battery temperature |
5653111, | Jul 07 1993 | HYCO PTY LTD ; POSEIDON SCIENTIFIC INSTRUMENTS PTY LTD | Thermoelectric refrigeration with liquid heat exchange |
5673964, | Aug 04 1995 | WILMINGTON TRUST FSB, AS ADMINISTRATIVE AGENT | Integral center-mounted airhandling system with integral instrument panel air-conditioning duct and structural beam |
5705770, | Jul 21 1994 | Seiko Instruments Inc | Thermoelectric module and method of controlling a thermoelectric module |
5722249, | Feb 27 1996 | Multi stage thermoelectric power generation | |
5725048, | Mar 19 1991 | Behr GmbH & Co. | Process for cooling drive components and heating the passenger compartment of a motor vehicle, especially an electrically driven vehicle, and arrangement for implementing the process |
5802856, | Jul 31 1996 | LELAND STANFORD JUNIOR UNIVERSITY, THE BOARD OF TRUSTEES OF THE | Multizone bake/chill thermal cycling module |
5816236, | Sep 20 1996 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Viscous fluid type heat generator with an additional chamber for storing viscous fluid |
5871859, | Sep 17 1997 | Quick charge battery with thermal management | |
5890371, | Jul 12 1996 | Thermotek, Inc.; THERMOTEK, INC | Hybrid air conditioning system and a method therefor |
5899086, | Oct 30 1997 | Calsonic Corporation | Heat pump type air conditioning system for automotive vehicle |
5901572, | Dec 07 1995 | Rocky Research | Auxiliary heating and air conditioning system for a motor vehicle |
5918930, | Oct 07 1996 | JC Associates Co., Ltd. | Vehicle seat |
5921088, | Jul 01 1994 | Komatsu Ltd. | Air conditioning apparatus |
5955772, | Dec 17 1996 | The Regents of the University of California | Heterostructure thermionic coolers |
5964092, | Dec 13 1996 | Nippon Sigmax, Co., Ltd. | Electronic cooling apparatus |
5966941, | Dec 10 1997 | GOOGLE LLC | Thermoelectric cooling with dynamic switching to isolate heat transport mechanisms |
5975856, | Oct 06 1997 | The Aerospace Corporation | Method of pumping a fluid through a micromechanical valve having N-type and P-type thermoelectric elements for heating and cooling a fluid between an inlet and an outlet |
5977785, | May 28 1996 | Advantest Corporation | Method and apparatus for rapidly varying the operating temperature of a semiconductor device in a testing environment |
5987890, | Jun 19 1998 | LENOVO SINGAPORE PTE LTD | Electronic component cooling using a heat transfer buffering capability |
6028263, | May 14 1997 | Nissan Motor Co., Ltd. | Thermoelectric power generating apparatus and method for driving same |
6050326, | May 12 1998 | International Business Machines Corporation | Method and apparatus for cooling an electronic device |
6057050, | May 09 1997 | Quick charge battery with thermal management | |
6059198, | Sep 17 1997 | Kabushiki Kaisha Toyoda Jidoshokki Seisakusho | Coolant circulation system |
6082445, | Feb 22 1995 | BASF Corporation | Plate-type heat exchangers |
6084172, | Mar 27 1997 | Seiko Instruments Inc | Thermoelectric conversion component |
6105659, | Sep 12 1996 | Jaro Technologies, Inc. | Rechargeable thermal battery for latent energy storage and transfer |
6119463, | May 12 1998 | Gentherm Incorporated | Thermoelectric heat exchanger |
6138466, | Nov 12 1998 | FCA US LLC | System for cooling electric vehicle batteries |
6138749, | Oct 13 1997 | Denso Corporation | Automotive air-conditioner with vent and air-mixing door interlocking mechanism |
6158225, | Dec 10 1997 | SEIKO INSTRUMENTS INC SEIKO INSTRUMENTS KABUSHIKI KAISHA | Automotive air-conditioning apparatus |
6205802, | Jan 05 2000 | Carrier Corporation | Travel coach air conditioning system |
6205805, | Jan 13 1998 | Denso Corporation | Motor vehicle dehumidifier with drying agent and drying agent regenerative control |
6213198, | Dec 13 1995 | Denso Corporation | Air conditioning apparatus for vehicle with thermoelectric dehumidifier in a double layer system |
6223539, | May 12 1998 | Gentherm Incorporated | Thermoelectric heat exchanger |
6293107, | Nov 08 1996 | Panasonic Corporation | Thermoelectric cooling system |
6294721, | Jun 05 1998 | Corning Cable Systems LLC | Temperature regulating enclosure for telecommunication batteries |
6324860, | Oct 24 1997 | Ebara Corporation | Dehumidifying air-conditioning system |
6334311, | Mar 05 1999 | Samsung Electronics Co., Ltd. | Thermoelectric-cooling temperature control apparatus for semiconductor device fabrication facility |
6346668, | Oct 13 1999 | Miniature, thin-film, solid state cryogenic cooler | |
6347521, | Oct 13 1999 | Komatsu Ltd | Temperature control device and method for manufacturing the same |
6366832, | Nov 24 1998 | Johnson Controls Technology Company | Computer integrated personal environment system |
6393842, | Dec 23 1999 | LG Electronics Inc. | Air conditioner for individual cooling/heating |
6401462, | Mar 16 2000 | Thermoelectric cooling system | |
6412287, | Dec 21 2000 | Delphi Technologies, Inc | Heated/cooled console storage unit and method |
6438964, | Sep 10 2001 | Thermoelectric heat pump appliance with carbon foam heat sink | |
6455186, | Mar 05 1998 | Black & Decker Inc | Battery cooling system |
6457324, | May 22 1998 | BERGSTROM, INC. | Modular low-pressure delivery vehicle air conditioning system having an in-cab cool box |
6464027, | Feb 02 2000 | Visteon Global Technologies, Inc | Method of thermal management for a hybrid vehicle |
6474073, | Mar 19 1999 | Panasonic Corporation | Thermoelectric device and thermoelectric manifold |
6474081, | Apr 20 2000 | Behr GmbH. & Co. | Device for cooling an interior of a motor vehicle |
6481213, | Oct 13 2000 | Instatherm Company | Personal thermal comfort system using thermal storage |
6510696, | Jun 15 1998 | ENTROSYS LTD | Thermoelectric air-condition apparatus |
6530920, | Apr 09 1998 | Coolanalgesia Limited | Laser treatment cooling head |
6539729, | Jan 05 2001 | Haier US Appliance Solutions, Inc | Refrigerator airflow distribution system and method |
6560968, | Dec 29 2000 | LG Electronics Inc. | Thermoelectric cooler |
6569550, | Dec 21 1999 | Valeo Klimasysteme GmbH | Vehicle cooling/heating circuit |
6570362, | Aug 22 2000 | Google Technology Holdings LLC | Portable electronic device with enhanced battery life and cooling |
6598403, | Apr 11 2002 | International Business Machines Corporation | Nanoscopic thermoelectric refrigerators |
6606877, | Nov 26 2001 | Denso Corporation | Vehicle air conditioner that operates during engine stops |
6640889, | Mar 04 2002 | HANON SYSTEMS | Dual loop heat and air conditioning system |
6645666, | Mar 05 1998 | Black & Decker Inc.; Black & Decker Inc | Battery cooling system |
6653002, | May 09 1997 | Quick charge battery with thermal management | |
6682844, | Apr 27 2001 | Plug Power Inc. | Release valve and method for venting a system |
6700052, | Nov 05 2001 | Gentherm Incorporated | Flexible thermoelectric circuit |
6722139, | Feb 07 2002 | LG Electronics Inc. | Air conditioner having thermoelectric module |
6732534, | Aug 03 2000 | Tellurex Corporation | Vehicle temperature-conditioned container with a power control circuit and a defrost circuit |
6767666, | Mar 21 2001 | NGK Insulators, Ltd. | Lithium secondary cell and lithium secondary cell connecting structure |
6807811, | Jul 20 2001 | Air conditioner with heat pipe | |
6862892, | Aug 19 2003 | HANON SYSTEMS | Heat pump and air conditioning system for a vehicle |
6883602, | May 31 2002 | MOBILE CLIMATE CONTROL YORK CORP | Dehumidifier for use in mass transit vehicle |
6886356, | Mar 28 2001 | SANYO ELECTRIC CO , LTD ; SANYO ELECTRIC AIR CONDITIONING CO , LTD ; Fuji Jukogyo Kabushiki Kaisha | Car air-conditioning system |
6896047, | Nov 23 2001 | DaimlerChrysler AG | Heating and/or air conditioning system having a decentralized air-conveying device |
6907739, | May 12 1998 | Gentherm Incorporated | Thermoelectric heat exchanger |
6949309, | Mar 05 1998 | Black & Decker Inc. | Battery cooling system |
6959555, | Feb 09 2001 | Gentherm Incorporated | High power density thermoelectric systems |
6973799, | Aug 27 2002 | Whirlpool Corporation | Distributed refrigeration system for a vehicle |
6986247, | May 09 1997 | Thermoelectric catalytic power generator with preheat | |
7007491, | Dec 22 2003 | Caterpillar Inc. | Thermal management system for a vehicle |
7014945, | Mar 05 1998 | Black & Decker Inc. | Battery cooling system |
7056616, | Mar 05 1998 | Black & Decker Inc. | Battery cooling system |
7061208, | Jun 25 2001 | Panasonic Corporation | Storage battery temperature regulator having thermoelectric transducer, and vehicle including the storage battery temperature regulator |
7089756, | Feb 19 2003 | The Boeing Company | System and method of refrigerating at least one enclosure |
7171955, | Oct 20 2003 | Flowing fluid conditioner | |
7230404, | Mar 24 2003 | Panasonic EV Energy Co., Ltd. | Battery pack apparatus with heat supply and discharge |
7246496, | Jul 19 2005 | Gentherm Incorporated | Thermoelectric based heating and cooling system for a hybrid-electric vehicle |
7252904, | Mar 05 1998 | Black & Decker Inc. | Battery cooling system |
7270910, | Oct 03 2003 | Black & Decker Inc | Thermal management systems for battery packs |
7310953, | Nov 09 2005 | Copeland Corporation | Refrigeration system including thermoelectric module |
7326490, | Mar 05 1998 | Black & Decker Inc. | Battery cooling system |
7363766, | Nov 08 2005 | NISSAN MOTOR CO , LTD | Vehicle air conditioning system |
7380586, | May 10 2004 | Gentherm Incorporated | Climate control system for hybrid vehicles using thermoelectric devices |
7384704, | Dec 18 2003 | GM Global Technology Operations LLC | Methods and apparatus for controlling the temperature of an automobile battery |
7426835, | Aug 07 2001 | Gentherm Incorporated | Thermoelectric personal environment appliance |
7743614, | Apr 08 2005 | Gentherm Incorporated | Thermoelectric-based heating and cooling system |
7779639, | Aug 02 2006 | Gentherm Incorporated | HVAC system for hybrid vehicles using thermoelectric devices |
7788933, | Aug 02 2006 | Gentherm Incorporated | Heat exchanger tube having integrated thermoelectric devices |
7863866, | Oct 23 2007 | Sony Corporation | Activating batteries based on environmental conditions |
7926293, | Feb 09 2001 | Gentherm Incorporated | Thermoelectrics utilizing convective heat flow |
8069674, | Aug 07 2001 | Gentherm Incorporated | Thermoelectric personal environment appliance |
8104294, | Jun 24 2005 | Carrier Corporation | Integrated thermo-electric heat pump system for vehicle passenger temperature control |
8359871, | Feb 11 2009 | II-VI Incorporated; MARLOW INDUSTRIES, INC ; EPIWORKS, INC ; LIGHTSMYTH TECHNOLOGIES, INC ; KAILIGHT PHOTONICS, INC ; COADNA PHOTONICS, INC ; Optium Corporation; Finisar Corporation; II-VI OPTICAL SYSTEMS, INC ; M CUBED TECHNOLOGIES, INC ; II-VI PHOTONICS US , INC ; II-VI DELAWARE, INC; II-VI OPTOELECTRONIC DEVICES, INC ; PHOTOP TECHNOLOGIES, INC | Temperature control device |
8408012, | Apr 08 2005 | Gentherm Incorporated | Thermoelectric-based heating and cooling system |
8490412, | Aug 07 2001 | Gentherm Incorporated | Thermoelectric personal environment appliance |
8495884, | Feb 09 2001 | Gentherm Incorporated | Thermoelectric power generating systems utilizing segmented thermoelectric elements |
20020092307, | |||
20020095943, | |||
20030140636, | |||
20040025516, | |||
20040050076, | |||
20040093889, | |||
20040098991, | |||
20040237541, | |||
20050000473, | |||
20050011199, | |||
20050061497, | |||
20050067862, | |||
20050133206, | |||
20050139692, | |||
20050178128, | |||
20050257531, | |||
20050268621, | |||
20050278863, | |||
20060005548, | |||
20060011152, | |||
20060028182, | |||
20060060236, | |||
20060075758, | |||
20060124165, | |||
20060130490, | |||
20060150657, | |||
20060188418, | |||
20060254284, | |||
20060254285, | |||
20070000255, | |||
20070017666, | |||
20070056295, | |||
20070214799, | |||
20070272290, | |||
20080017362, | |||
20080230618, | |||
20080239675, | |||
20080307796, | |||
20080311466, | |||
20090025770, | |||
20100031987, | |||
20100101238, | |||
20100101239, | |||
20100112419, | |||
20100155018, | |||
20100287952, | |||
20100291414, | |||
20100313576, | |||
20110079023, | |||
20110107773, | |||
20110236731, | |||
20120266608, | |||
20120285758, | |||
20130174579, | |||
20130192271, | |||
20130192272, | |||
CN1195090, | |||
DE102009003737, | |||
DE19730678, | |||
DE19829440, | |||
DE19951224, | |||
DE20105487, | |||
DE2319155, | |||
EP389407, | |||
EP545021, | |||
EP791497, | |||
EP1641067, | |||
EP1932695, | |||
FR2806666, | |||
FR2903057, | |||
GB1040485, | |||
GB2267338, | |||
GB231192, | |||
GB2333352, | |||
JP10035268, | |||
JP1131830, | |||
JP11342731, | |||
JP1200122, | |||
JP1281344, | |||
JP2000130883, | |||
JP2000161721, | |||
JP2000274788, | |||
JP2000318434, | |||
JP2002059736, | |||
JP200213758, | |||
JP2004050874, | |||
JP2005212564, | |||
JP2005302851, | |||
JP2006015965, | |||
JP2008047371, | |||
JP2008226617, | |||
JP4103925, | |||
JP4165234, | |||
JP5037521, | |||
JP5618231, | |||
JP6024235, | |||
JP7253264, | |||
JP754189, | |||
JP8316388, | |||
JP9042801, | |||
JP9254630, | |||
JP9276076, | |||
KR1020020057600, | |||
KR1020110013876, | |||
KR2001111646, | |||
LU66619, | |||
RE36242, | Mar 16 1995 | Helmet-mounted air system for personal comfort | |
RE38128, | Nov 22 1993 | Gentherm Incorporated | Variable temperature seat climate control system |
SU184886, | |||
WO2000458, | |||
WO3014634, | |||
WO2005023571, | |||
WO2005063567, | |||
WO2006037178, | |||
WO2006064432, | |||
WO2007001289, | |||
WO2008147305, | |||
WO9501500, | |||
WO9605475, | |||
WO9747930, | |||
WO9910191, | |||
WO9958907, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 10 2012 | Gentherm Incorporated | (assignment on the face of the patent) | / | |||
Jul 31 2012 | BARNHART, TODD ROBERT | Amerigon Incorporated | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 029127 | /0691 | |
Aug 06 2012 | PIGGOTT, ALFRED | Amerigon Incorporated | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 029127 | /0691 | |
Aug 20 2012 | KOSSAKOVSKI, DMITRI | Amerigon Incorporated | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 029127 | /0691 | |
Sep 05 2012 | Amerigon Incorporated | Gentherm Incorporated | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 029127 | /0872 | |
Jun 27 2019 | Gentherm Incorporated | BANK OF AMERICA, N A , AS ADMINISTRATIVE AGENT | NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS | 049627 | /0311 |
Date | Maintenance Fee Events |
Nov 10 2017 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jan 03 2022 | REM: Maintenance Fee Reminder Mailed. |
Jun 20 2022 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
May 13 2017 | 4 years fee payment window open |
Nov 13 2017 | 6 months grace period start (w surcharge) |
May 13 2018 | patent expiry (for year 4) |
May 13 2020 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 13 2021 | 8 years fee payment window open |
Nov 13 2021 | 6 months grace period start (w surcharge) |
May 13 2022 | patent expiry (for year 8) |
May 13 2024 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 13 2025 | 12 years fee payment window open |
Nov 13 2025 | 6 months grace period start (w surcharge) |
May 13 2026 | patent expiry (for year 12) |
May 13 2028 | 2 years to revive unintentionally abandoned end. (for year 12) |