A method of making a monolithic three dimensional NAND string includes forming a stack of alternating layers of a first material and a second material different from the first material over a substrate, etching the stack to form at least one opening in the stack, forming a buffer layer over a sidewall of the at least one opening, forming a charge storage material layer over the buffer layer, forming a tunnel dielectric layer over the charge storage material layer in the at least one opening, and forming a semiconductor channel material over the tunnel dielectric layer in the at least one opening. The method also includes selectively removing the second material layers without removing the first material layers and etching the buffer layer using the first material layers as a mask to form a plurality of separate discrete buffer segments and to expose portions of the charge storage material layer.
|
12. A method of making a monolithic three dimensional NAND string, comprising:
forming a stack of alternating layers of a first material and a second material different from the first material over a substrate;
etching the stack to form at least one opening in the stack;
selectively removing a portion of the second material layers without removing the first material layers to form first recesses between the first material layers;
forming a charge storage material layer over a sidewall of the at least one opening and over exposed surface of the layers of first material and remaining second material in the first recesses;
forming a tunnel dielectric layer over the charge storage material layer in the at least one opening and in the first recesses;
forming a semiconductor channel material over the tunnel dielectric layer in the at least one opening and in the first recesses;
selectively removing the remaining second material layers without removing the first material layers;
etching the charge storage material layer using the first material layers as a mask to form a plurality of separate discrete charge storage segments;
depositing an insulating material between the first material layers to form alternating layers of insulating material layers and the first material layers;
selectively removing the first material layers to expose a sidewall of the discrete charge storage segments;
forming a blocking dielectric over the sidewall of the discrete charge storage segments exposed between the insulating material layers; and
forming control gate electrodes over the blocking dielectric between the insulating material layers.
1. A method of making a monolithic three dimensional NAND string, comprising:
forming a stack of alternating layers of a first material and a second material different from the first material over a substrate;
etching the stack to form at least one opening in the stack;
forming a buffer layer over a sidewall of the at least one opening;
forming a charge storage material layer over the buffer layer;
forming a tunnel dielectric layer over the charge storage material layer in the at least one opening;
forming a semiconductor channel material over the tunnel dielectric layer in the at least one opening;
selectively removing the second material layers without removing the first material layers;
etching the buffer layer using the first material layers as a mask to form a plurality of separate discrete buffer segments and to expose portions of the charge storage material layer;
etching the exposed portions of the charge storage material layer using the first material layers as a mask to form a plurality of separate discrete charge storage segments;
depositing an insulating material between the first material layers to form alternating layers of insulating material layers and the first material layers;
selectively removing the first material layers to expose a sidewall of the discrete buffer segments;
etching the discrete buffer segments to expose a sidewall of the discrete charge storage segments;
forming a blocking dielectric over the sidewall of the discrete charge storage segments exposed between the insulating material layers; and
forming control gate electrodes over the blocking dielectric between the insulating material layers.
2. The method of
forming a sacrificial blocking layer over the buffer layer prior to the step of forming the charge storage material layer; and
etching the sacrificial blocking layer using the first material layers as a mask to expose portions of the charge storage material layer between the first material layers.
4. The method of
5. The method of
6. The method of
wherein:
the steps of selectively removing the second material layers, selectively removing the first material layers, forming the blocking dielectric and forming the control gate electrodes occurs through the back side trench; and
the step of depositing the insulating material between the first material layers comprises depositing the insulating material between the first material layers through the back side trench and then recessing the insulating material to remove the insulating material from the back side trench while leaving the alternating layers of insulating material layers and the first material layers.
7. The method of
the first material comprises a nitride; and
the second material comprises an oxide or polysilicon.
8. The method of
the first material comprises silicon nitride;
the second material comprises silicon oxide or polysilicon; and
the control gate electrodes comprise tungsten.
9. The method of
10. The method of
11. The method of
the substrate comprises a silicon substrate;
the monolithic three dimensional NAND string is located in an array of monolithic three dimensional NAND strings over the silicon substrate;
the control gate electrodes comprise at least a first control gate electrode located in a first device level and a second control gate electrode located in a second device level located over a major surface of the silicon substrate and below the first device level;
at least one memory cell in the first device level of the three dimensional array of NAND strings is located over another memory cell in the second device level of the three dimensional array of NAND strings; and
the silicon substrate contains an integrated circuit comprising a driver circuit for the memory device located thereon.
13. The method of
forming a buffer layer over the sidewall of the at least one opening and over the exposed surface of the layers of first material and remaining second material in the first recesses prior to the step of forming the charge storage material layer;
etching the buffer layer using the first material layers as a mask to form a plurality of discrete buffer layer segments and to expose of the charge storage material layer between the first material layers; and
etching the discrete buffer segments to expose the discrete charge storage segments after selectively removing the first material layers.
14. The method of
forming a sacrificial blocking layer over the sidewall of the at least one opening and over the exposed surface of the layers of first material and remaining second material in the first recesses prior to the step of forming the charge storage material layer; and
etching the sacrificial blocking layer using the first material layers as a mask to expose portions of the charge storage material layer between the first material layers.
15. The method of
16. The method of
17. The method of
wherein:
the steps of selectively removing the second material layers, selectively removing the first material layers, forming the blocking dielectric and forming the control gate electrodes occurs through the back side trench; and
the step of depositing the insulating material between the first material layers comprises depositing the insulating material between the first material layers through the back side trench and then recessing the insulating material to remove the insulating material from the back side trench while leaving the alternating layers of insulating material layers and the first material layers.
18. The method of
the first material comprises a nitride; and
the second material comprises an oxide or polysilicon.
19. The method of
the first material comprises silicon nitride;
the second material comprises silicon oxide or polysilicon; and
the control gate electrodes comprise tungsten.
20. The method of
21. The method of
22. The method of
the substrate comprises a silicon substrate;
the monolithic three dimensional NAND string is located in an array of monolithic three dimensional NAND strings over the silicon substrate;
the control gate electrodes comprise at least a first control gate electrode located in a first device level and a second control gate electrode located in a second device level located over a major surface of the silicon substrate and below the first device level;
at least one memory cell in the first device level of the three dimensional array of NAND strings is located over another memory cell in the second device level of the three dimensional array of NAND strings; and
the silicon substrate contains an integrated circuit comprising a driver circuit for the memory device located thereon.
|
The present invention relates generally to the field of semiconductor devices and specifically to three dimensional vertical NAND strings and other three dimensional devices and methods of making thereof.
Three dimensional vertical NAND strings are disclosed in an article by T. Endoh, et. al., titled “Novel Ultra High Density Memory With A Stacked-Surrounding Gate Transistor (S-SGT) Structured Cell”, IEDM Proc. (2001) 33-36. However, this NAND string provides only one bit per cell. Furthermore, the active regions of the NAND string is formed by a relatively difficult and time consuming process involving repeated formation of sidewall spacers and etching of a portion of the substrate, which results in a roughly conical active region shape.
An embodiment relates to a method of making a monolithic three dimensional NAND string including forming a stack of alternating layers of a first material and a second material different from the first material over a substrate, etching the stack to form at least one opening in the stack, forming a buffer layer over a sidewall of the at least one opening, forming a charge storage material layer over the buffer layer, forming a tunnel dielectric layer over the charge storage material layer in the at least one opening, and forming a semiconductor channel material over the tunnel dielectric layer in the at least one opening. The method also includes selectively removing the second material layers without removing the first material layers, etching the buffer layer using the first material layers as a mask to form a plurality of separate discrete buffer segments and to expose portions of the charge storage material layer and etching the exposed portions of the charge storage material layer using the first material layers as a mask to form a plurality of separate discrete charge storage segments. The method also includes depositing an insulating material between the first material layers to form alternating layers of insulating material layers and the first material layers, selectively removing the first material layers to expose a sidewall of the discrete buffer segments, etching the discrete buffer segments to expose a sidewall of the discrete charge storage segments, forming a blocking dielectric over the sidewall of the discrete charge storage segments exposed between the insulating material layers and forming control gate electrodes over the blocking dielectric between the insulating material layers.
Another embodiment relates to a method of making a monolithic three dimensional NAND string including forming a stack of alternating layers of a first material and a second material different from the first material over a substrate, etching the stack to form at least one opening in the stack and selectively removing a portion of the second material layers without removing the first material layers to form first recesses between the first material layers. The method also includes forming a charge storage material layer over a sidewall of the at least one opening and over exposed surface of the layers of first material and remaining second material in the first recesses, forming a tunnel dielectric layer over the charge storage material layer in the at least one opening and in the first recesses and forming a semiconductor channel material over the tunnel dielectric layer in the at least one opening and in the first recesses. The method also includes selectively removing the remaining second material layers without removing the first material layers, etching the charge storage material layer using the first material layers as a mask to form a plurality of separate discrete charge storage segments and depositing an insulating material between the first material layers to form alternating layers of insulating material layers and the first material layers. The method also includes selectively removing the first material layers to expose a sidewall of the discrete charge storage segments, forming a blocking dielectric over the sidewall of the discrete charge storage segments exposed between the insulating material layers and forming control gate electrodes over the blocking dielectric between the insulating material layers.
Many conventional three dimensional NAND memories store charge in silicon nitride charge storage dielectric layers. The conventional devices have a continuous charge trap layer inside the memory hole. Charge accumulated in the charge trap layer may migrate to adjacent memory cells. This migration results in the degradation of data retention.
The inventors have realized that the data retention can be improved by fabricating a charge trap structure that comprises discrete charge trap segments rather than a continuous layer. That is, the charge trap layer is divided into separate charge storage segments with a discrete charge storage segment in each device level.
Embodiments of the invention, described in more details below, include methods of making three dimensional NAND strings with discrete charge trapping segments. In an embodiment, the method includes forming a sacrificial blocking layer in the memory hole. The sacrificial blocking layer may comprise any suitable material such as silicon oxide or aluminum oxide. In another embodiment, the method includes the formation of a buffer layer in the memory hole. The buffer layer may comprise any suitable material such as polysilicon. In still another embodiment, the method includes the formation of a front side recess in a sacrificial layer during fabrication of the NAND string. Other embodiments include combinations of sacrificial blocking layer, buffer layer and/or the front side recess in the sacrificial layer.
A monolithic three dimensional memory array is one in which multiple memory levels are formed above a single substrate, such as a semiconductor wafer, with no intervening substrates. The term “monolithic” means that layers of each level of the array are directly deposited on the layers of each underlying level of the array. In contrast, two dimensional arrays may be formed separately and then packaged together to form a non-monolithic memory device. For example, non-monolithic stacked memories have been constructed by forming memory levels on separate substrates and adhering the memory levels atop each other, as in Leedy, U.S. Pat. No. 5,915,167, titled “Three Dimensional Structure Memory.” The substrates may be thinned or removed from the memory levels before bonding, but as the memory levels are initially formed over separate substrates, such memories are not true monolithic three dimensional memory arrays.
In some embodiments, the monolithic three dimensional NAND string 180 comprises a semiconductor channel 1 having at least one end portion extending substantially perpendicular to a major surface 100a of a substrate 100, as shown in
Alternatively, the semiconductor channel 1 may have a U-shaped pipe shape, as shown in
In some embodiments, the semiconductor channel 1 may be a filled feature, as shown in
The substrate 100 can be any semiconducting substrate known in the art, such as monocrystalline silicon, IV-IV compounds such as silicon-germanium or silicon-germanium-carbon, III-V compounds, II-VI compounds, epitaxial layers over such substrates, or any other semiconducting or non-semiconducting material, such as silicon oxide, glass, plastic, metal or ceramic substrate. The substrate 100 may include integrated circuits fabricated thereon, such as driver circuits for a memory device.
Any suitable semiconductor materials can be used for semiconductor channel 1, for example silicon, germanium, silicon germanium, or other compound semiconductor materials, such as III-V, II-VI, or conductive or semiconductive oxides, etc. The semiconductor material may be amorphous, polycrystalline or single crystal. The semiconductor channel material may be formed by any suitable deposition methods. For example, in one embodiment, the semiconductor channel material is deposited by low pressure chemical vapor deposition (LPCVD). In some other embodiments, the semiconductor channel material may be a recrystallized polycrystalline semiconductor material formed by recrystallizing an initially deposited amorphous semiconductor material.
The insulating fill material 2 may comprise any electrically insulating material, such as silicon oxide, silicon nitride, silicon oxynitride, or other high-k insulating materials.
The monolithic three dimensional NAND string further comprise a plurality of control gate electrodes 3, as shown in
A blocking dielectric 7 is located adjacent to the control gate(s) 3 and may surround the control gate 3, as shown in
The monolithic three dimensional NAND string also comprises a charge storage region 9. The charge storage region 9 may comprise one or more continuous layers which extend the entire length of the memory cell portion of the NAND string, as shown in
Alternatively, the charge storage region may comprise a plurality of discrete charge storage regions 9, as shown in
The tunnel dielectric 11 of the monolithic three dimensional NAND string is located between charge storage region 9 and the semiconductor channel 1.
The blocking dielectric 7 and the tunnel dielectric 11 may be independently selected from any one or more same or different electrically insulating materials, such as silicon oxide, silicon nitride, silicon oxynitride, or other insulating materials. The blocking dielectric 7 and/or the tunnel dielectric 11 may include multiple layers of silicon oxide, silicon nitride and/or silicon oxynitride (e.g., ONO layers).
A first embodiment of making a NAND string 180 is illustrated in
Next, a sacrificial blocking layer 44 such as silicon oxide or another suitable etch stop material, such as polysilicon, is formed over a sidewall of the at least one front side opening 81. A charge storage material layer 99 may then be formed over the sacrificial blocking layer 44. Layer 99 comprises a different material from layer 44 such that layer 44 may be selectively etched using layer 99 as an etch stop. In an embodiment, the charge storage material layer 99 comprises a charge storage dielectric material, such as silicon nitride. In another embodiment, the charge storage material layer 99 comprises a floating gate material, such as metal or polysilicon. A tunnel dielectric layer 11 is formed over the charge storage material layer 99 followed by forming a semiconductor channel 1 material over the tunnel dielectric layer 11 in the at least one front side opening 81. In an embodiment, the step of forming the semiconductor channel 1 in the front side opening 81 completely fills the front side opening 81 with a semiconductor channel material. In an alternative embodiment, the step of forming the semiconductor channel 1 in the at least one front side opening 81 forms a semiconductor channel material over the sidewall of the at least one front side opening 81 but not in a central part of the at least one front opening 81 such that the semiconductor channel material does not completely fill the at least one front side opening 81. In this embodiment, similar to the NAND string illustrated in
Next, as illustrated in
Then, as illustrated in
Next, the method includes depositing an insulating material in the back side opening 84 and between the first material layers 121 to form alternating layers of insulating material layers 123 and the first material layers 121, as illustrated in
Next, as illustrated in
Then, as illustrated in
In an embodiment, the substrate 100 comprises a silicon substrate 100. The monolithic three dimensional NAND string 180 is located in an array of monolithic three dimensional NAND strings 180 over the silicon substrate 100. The control gate electrodes 3 comprise at least a first control gate electrode 3a located in a first device level and a second control gate electrode 3b located in a second device level located over the major surface of the substrate and below the first device level. At least one memory cell in the first device level of the three dimensional array of NAND strings 180 is located over another memory cell in the second device level of the three dimensional array of NAND strings 180. The silicon substrate 100 contains an integrated circuit comprising a driver circuit for the memory device located thereon. Further, the NAND strings 180 made by any of the following methods may also be located in array of monolithic three dimensional NAND strings 180 over a silicon substrate 100 which contains an integrated circuit comprising a driver circuit for the memory device.
As illustrated in
Next, as illustrated in
In an embodiment, the step of forming the semiconductor channel 1 in the front side opening 81 completely fills the front side opening 81 with a semiconductor channel material. In an alternative embodiment, the step of forming the semiconductor channel 1 in the at least one front side opening 81 forms a semiconductor channel material over the sidewall of the at least one front side opening 81 but not in a central part of the at least one front opening 81 such that the semiconductor channel material does not completely fill the at least one front side opening 81. In this embodiment, similar to the NAND string illustrated in
Next, the method includes depositing an insulating material 123 in the back side opening 84 and between the first material layers 121 to form alternating layers of insulating material layers 123 and the first material layers 121, as illustrated in the previous embodiment in
Then, the first material layers 121 are selectively removed via the back side opening 84, thereby forming back side recesses 66 located between adjacent layers of insulating material 123, thereby exposing the remaining portions (e.g. 4a, 4b) of the sacrificial blocking layer 44 in the back side recesses 66. Next, the remaining portions 4a, 4b of the sacrificial blocking layer 44 are selectively removed, thereby exposing the plurality of separate discrete charge storage segments 9a, 9b in the back side recesses 66.
Then, as illustrated in
In contrast to the previous embodiments, in this embodiment a buffer layer 6 is formed over a sidewall of the at least one opening 81 prior to forming the sacrificial blocking layer 99. The buffer layer 6 may be made of any suitable material, such as polysilicon, which is different from the blocking layer 44, which may comprise SiO2. Next, a sacrificial blocking layer 44 (e.g. a silicon oxide layer) is formed over the buffer layer 6. A charge storage material layer 99 is then formed over the sacrificial blocking layer 44. In an embodiment, the charge storage material layer 99 comprises a charge storage dielectric material. In an alternative embodiment, the charge storage material layer 99 comprises a floating gate material. Then, a tunnel dielectric layer 11 is formed over the charge storage material layer 99 followed by forming a semiconductor channel 1 material over the tunnel dielectric layer 11 in the at least one front side opening 81.
In this embodiment, similar to the previous embodiments, the method includes selectively removing the second material layers 122 through a back side opening 84 in the stack 120 without removing the first material layers 121. This step results in the formation of back side recesses 64 located between adjacent first material layers 121. Additionally, this step results in the buffer layer 6 being exposed in the back side recesses.
Then, the buffer layer 6 is selectively etched using the first material layers 121 as a mask to form a plurality of separate discrete buffer segments and to expose portions of the sacrificial blocking dielectric 44. The exposed portions of the sacrificial blocking dielectric 44 are then selectively removed, such as by selective etching, to expose a sidewall of the discrete charge storage segments 9, as illustrated in
Next, the method includes depositing an insulating material 123 in the back side opening 84 and between the first material layers 121 to form alternating layers of insulating material layers 123 and the first material layers 121, as illustrated in
Next, as discussed above and illustrated in
Then, as illustrated in
In contrast to the previous embodiment and similar to the embodiment illustrated in
The NAND string 180 is formed following the steps illustrated in
Although the foregoing refers to particular preferred embodiments, it will be understood that the invention is not so limited. It will occur to those of ordinary skill in the art that various modifications may be made to the disclosed embodiments and that such modifications are intended to be within the scope of the invention. All of the publications, patent applications and patents cited herein are incorporated herein by reference in their entirety.
Wada, Takayuki, Fujino, Shigehiro
Patent | Priority | Assignee | Title |
10083981, | Feb 01 2017 | Micron Technology, Inc.; Micron Technology, Inc | Memory arrays, and methods of forming memory arrays |
10304853, | Feb 01 2017 | Micron Technology, Inc. | Memory arrays, and methods of forming memory arrays |
10340286, | Feb 01 2017 | Micron Technology, Inc. | Methods of forming NAND memory arrays |
10431591, | Feb 01 2017 | Micron Technology, Inc | NAND memory arrays |
10453854, | Nov 15 2017 | SanDisk Technologies LLC | Three-dimensional memory device with thickened word lines in terrace region |
10461163, | Nov 15 2017 | SanDisk Technologies LLC | Three-dimensional memory device with thickened word lines in terrace region and method of making thereof |
10516025, | Jun 15 2018 | SanDisk Technologies LLC | Three-dimensional NAND memory containing dual protrusion charge trapping regions and methods of manufacturing the same |
10541252, | Feb 01 2017 | Micron Technology, Inc. | Memory arrays, and methods of forming memory arrays |
10797060, | Dec 17 2018 | SanDisk Technologies LLC | Three-dimensional memory device having stressed vertical semiconductor channels and method of making the same |
10797061, | Dec 17 2018 | SanDisk Technologies LLC | Three-dimensional memory device having stressed vertical semiconductor channels and method of making the same |
10985172, | Jan 18 2019 | SanDisk Technologies LLC | Three-dimensional memory device with mobility-enhanced vertical channels and methods of forming the same |
11101289, | Feb 19 2020 | SanDisk Technologies LLC | Three-dimensional memory device with composite charge storage structures and methods for forming the same |
11114462, | Feb 19 2020 | SanDisk Technologies LLC | Three-dimensional memory device with composite charge storage structures and methods for forming the same |
11201164, | Feb 01 2017 | Micron Technology, Inc. | Memory devices |
11322509, | Dec 17 2018 | SanDisk Technologies LLC | Three-dimensional memory device including a silicon-germanium source contact layer and method of making the same |
11515321, | Dec 27 2017 | Micron Technology, Inc. | Memory cells, memory arrays, and methods of forming memory arrays |
11721727, | Dec 17 2018 | SanDisk Technologies LLC | Three-dimensional memory device including a silicon-germanium source contact layer and method of making the same |
9484357, | Dec 16 2014 | SanDisk Technologies LLC | Selective blocking dielectric formation in a three-dimensional memory structure |
9601508, | Apr 27 2015 | SanDisk Technologies LLC | Blocking oxide in memory opening integration scheme for three-dimensional memory structure |
9716105, | Aug 02 2016 | SanDisk Technologies LLC | Three-dimensional memory device with different thickness insulating layers and method of making thereof |
9917096, | Sep 10 2014 | TOSHIBA MEMORY CORPORATION | Semiconductor memory device and method for manufacturing same |
Patent | Priority | Assignee | Title |
5084417, | Jan 06 1989 | GLOBALFOUNDRIES Inc | Method for selective deposition of refractory metals on silicon substrates and device formed thereby |
5807788, | Nov 20 1996 | International Business Machines Corporation | Method for selective deposition of refractory metal and device formed thereby |
5915167, | Apr 04 1997 | ELM 3DS INNOVATONS, LLC | Three dimensional structure memory |
7177191, | Dec 30 2004 | SanDisk Technologies LLC | Integrated circuit including memory array incorporating multiple types of NAND string structures |
7221588, | Dec 05 2003 | SanDisk Technologies LLC | Memory array incorporating memory cells arranged in NAND strings |
7233522, | Dec 31 2002 | SanDisk Technologies LLC | NAND memory array incorporating capacitance boosting of channel regions in unselected memory cells and method for operation of same |
7378353, | Apr 07 1998 | Round Rock Research, LLC | High selectivity BPSG to TEOS etchant |
7514321, | Mar 27 2007 | SanDisk Technologies LLC | Method of making three dimensional NAND memory |
7575973, | Mar 27 2007 | SanDisk Technologies LLC | Method of making three dimensional NAND memory |
7608195, | Feb 21 2006 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | High aspect ratio contacts |
7648872, | Dec 11 2006 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods of forming DRAM arrays |
7745265, | Mar 27 2007 | FOODSERVICES BRAND GROUP, LLC F K A COHG ACQUISITION, LLC | Method of making three dimensional NAND memory |
7745312, | Jan 15 2008 | SanDisk Technologies LLC | Selective germanium deposition for pillar devices |
7808038, | Mar 27 2007 | SanDisk Technologies LLC | Method of making three dimensional NAND memory |
7848145, | Mar 27 2007 | SanDisk Technologies LLC | Three dimensional NAND memory |
7851851, | Mar 27 2007 | SanDisk Technologies LLC | Three dimensional NAND memory |
8008710, | Aug 12 2008 | Kioxia Corporation | Non-volatile semiconductor storage device |
8053829, | Dec 10 2008 | Samsung Electronics Co., Ltd. | Methods of fabricating nonvolatile memory devices |
8093725, | Feb 21 2006 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | High aspect ratio contacts |
8187936, | Jun 30 2010 | SanDisk Technologies LLC | Ultrahigh density vertical NAND memory device and method of making thereof |
8193054, | Jun 30 2010 | SanDisk Technologies LLC | Ultrahigh density vertical NAND memory device and method of making thereof |
8198672, | Jun 30 2010 | SanDisk Technologies LLC | Ultrahigh density vertical NAND memory device |
8283228, | Jun 30 2010 | SanDisk Technologies LLC | Method of making ultrahigh density vertical NAND memory device |
8349681, | Jun 30 2010 | SanDisk Technologies LLC | Ultrahigh density monolithic, three dimensional vertical NAND memory device |
8415742, | Dec 31 2008 | Samsung Electronics Co., Ltd. | Semiconductor memory device and method of forming the same |
20060102586, | |||
20070210338, | |||
20070252201, | |||
20100044778, | |||
20100112769, | |||
20100120214, | |||
20100155810, | |||
20100155818, | |||
20100181610, | |||
20100207195, | |||
20100320528, | |||
20110076819, | |||
20110133606, | |||
20110266606, | |||
20120001247, | |||
20120001249, | |||
20120256247, | |||
20130122712, | |||
20130224960, | |||
20130248974, | |||
20130264631, | |||
20130313627, | |||
20140008714, | |||
WO215277, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 30 2014 | WADA, TAKAYUKI | SANDISK TECHNOLOGIES, INC , | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 033520 | /0737 | |
Jul 30 2014 | FUJINO, SHIGEHIRO | SANDISK TECHNOLOGIES, INC , | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 033520 | /0737 | |
Aug 11 2014 | SanDisk Technologies Inc. | (assignment on the face of the patent) | / | |||
May 16 2016 | SanDisk Technologies Inc | SanDisk Technologies LLC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 038807 | /0948 |
Date | Maintenance Fee Events |
Feb 28 2019 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
May 08 2023 | REM: Maintenance Fee Reminder Mailed. |
Jun 07 2023 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jun 07 2023 | M1555: 7.5 yr surcharge - late pmt w/in 6 mo, Large Entity. |
Date | Maintenance Schedule |
Sep 15 2018 | 4 years fee payment window open |
Mar 15 2019 | 6 months grace period start (w surcharge) |
Sep 15 2019 | patent expiry (for year 4) |
Sep 15 2021 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 15 2022 | 8 years fee payment window open |
Mar 15 2023 | 6 months grace period start (w surcharge) |
Sep 15 2023 | patent expiry (for year 8) |
Sep 15 2025 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 15 2026 | 12 years fee payment window open |
Mar 15 2027 | 6 months grace period start (w surcharge) |
Sep 15 2027 | patent expiry (for year 12) |
Sep 15 2029 | 2 years to revive unintentionally abandoned end. (for year 12) |