A see-through free-form head-mounted display including a wedge-shaped prism-lens having free-form surfaces and low F-number is provided.
|
1. A free-form prism-lens for use in an optical see-through head-mounted display, comprising:
a first free-form surface configured to receive light from a micro-display and configured to transmit the received light into the body of the prism-lens;
a second free-form surface configured to receive the light transmitted into the body of the prism-lens from the first free-form surface and configured to totally internally reflect the received light at the second surface; and
a third free-form surface configured to receive the light reflected by the second free-form surface and configured to reflect the light out of the prism-lens,
wherein the prism-lens has an f-number less than 3.5 and an effective focal length of 21 mm or less, wherein the exit pupil diameter is at least 6 mm.
2. The free-form prism-lens according to
where the z is the sag of the first free-form surface measured along the z-axis of a local x, y, z coordinate system, c is the vertex curvature (CUY), k is the conic constant, and Cj is the coefficient for xmyn.
3. The free-form prism-lens according to
where the z is the sag of the second free-form surface measured along the z-axis of a local x, y, z coordinate system, c is the vertex curvature (CUY), k is the conic constant, and Cj is the coefficient for xmyn.
4. The free-form prism-lens according to
where the z is the sag of the third free-form surface measured along the z-axis of a local x, y, z coordinate system, c is the vertex curvature (CUY), k is the conic constant, and Cj is the coefficient for xmyn.
5. The free-form prism-lens according to
where the z is the sag of the at least one surface measured along the z-axis of a local x, y, z coordinate system, cx is the radius of curvature of the at least one surface in the sagittal direction, cy is the radius of curvature of at least one surface in the tangential direction, and Cj is the coefficient for x2myn.
6. The free-form prism-lens according to
7. The free-form prism-lens according to
8. The free-form prism-lens according to
9. The free-form prism-lens according to
10. The free-form prism-lens according to
11. The free-form prism-lens according to
12. The free-form prism-lens according to
13. The free-form prism-lens according to
14. The free-form prism-lens according to
where the z is the sag of the at least one free-form surface measured along the z-axis of a local x, y, z coordinate system, c is the vertex curvature (CUY), k is the conic constant, and Cj is the coefficient for xmyn.
15. The free-form prism-lens according to
16. The free-form prism-lens according to
where the z is the sag of the at least one surface measured along the z-axis of a local x, y, z coordinate system, cx is the radius of curvature of the at least one surface in the sagittal direction, cy is the radius of curvature of at least one surface in the tangential direction, and Cj is the coefficient for x2myn.
17. The free-form prism-lens according to
18. The free-form prism-lens according to
|
This is a continuation application of U.S. application Ser. No. 13/318, 864, filed Nov. 4, 2011, which is a National Stage application under 35 U.S.C. 371(c) of PCT/US10/31799, filed Apr. 20, 2010, which in turn claims the benefit of priority of U.S. Provisional Application No. 61/214,117, filed on Apr. 20, 2009, the entire contents of which applications are incorporated herein by reference.
This invention was made with government supports under contract numbers 0644446 awarded by the U.S. National Science Foundation, 60827003 awarded by the National Natural Science Foundation of China, and 2009AA01Z308 awarded by the Hi-Tech Research and Development Program of China. The U.S. and Chinese governments have certain rights in the invention.
The present invention relates generally to a see-through free-form head-mounted display, and more particularly, but not exclusively to a wedge-shaped prism-lens having free-form surfaces configured to provide a low F-number heretofore unachieved.
Optical see-through head-mounted displays (OST-HMD) find myriads of applications from scientific visualization to defense applications, from medical visualization to engineering processes, and from training to entertainment. In mixed or augmented reality systems, OST-HMDs have been one of the basic vehicles for combining computer-generated virtual scene with the views of a real-world scene. Typically through an optical combiner, an OST-HMD maintains a direct view of the physical world and optically superimposes computer-generated images onto the real scene. Compared with a video see-though approach where the real-world views are captured through cameras, it has the advantage of introducing minimal degradation to the real world scene. Therefore an OST-HMD is preferred for applications where a non-blocked real-world view is critical.
On the other hand, designing a wide field of view (FOV), low F-number, compact, and nonintrusive OST-HMD has been a great challenge, especially difficult for a non-pupil forming system. The typical eyepiece structure using rotationally symmetric components has limitations in achieving low F-number, large eye relief, and wide FOV. Many methods have been explored to achieve an HMD optical system which fulfils the above mentioned requirements. These methods include applying catadioptric techniques, introducing new elements such as aspherical surfaces, holographic and diffractive optical components, exploring new design principles such as using projection optics to replace an eyepiece or microscope type lens system in a conventional HMD design, and introducing tilt and decenter or even free-form surfaces. (H. Hoshi, et. al, “Off-axial HMD optical system consisting of aspherical surfaces without rotational symmetry,” SPIE Vol. 2653, 234 (1996). S. Yamazaki, et al., “Thin wide-field-of-view HMD with free-form-surface prism and applications,” Proc. SPIE, Vol. 3639, 453 (1999).)
Among the different methods mentioned above, free-form surfaces demonstrate great promise in designing compact HMD systems, In particular, a wedge-shaped free-form prism, introduced by Morishima et al. (Morishima et al., “The design of off-axial optical system consisting of aspherical mirrors without rotational symmetry,” 20th Optical Symposium, Extended Abstracts, 21, pp. 53-56 (1995)), takes the advantage of total internal reflection (TIR), which helps minimize light loss and improve the brightness and contrast of the displayed images when compared with designs using half mirrors. It is challenging, however, to design a free-form prism based OST-HMD offering a wide FOV, low F-number, and sufficient eye relief.
The concept of free-form HMD designs with a wedge-shaped prism was first presented by Morishima et al. in 1995, and the fabrication and evaluation method were explored by Inoguchi et al. (“Fabrication and evaluation of HMD optical system consisting of aspherical mirrors without rotation symmetry,” Japan Optics'95, Extended Abstracts, 20pB06, pp. 19-20, 1995). Following these pioneering efforts, many attempts have been made to design HMDs using free-form surfaces, particularly designs based on a wedge-shaped prism (U.S. Pat. Nos. 5,699,194, 5,701,202, 5,706,136. D. Cheng, et al., “Design of a lightweight and wide field-of-view HMD system with free form surface prism,” Infrared and Laser Engineering, Vol. 36, 3 (2007).). For instance, Hoshi et al. presented an FFS prism offering an FOV of 34° and a thickness of 15 mm; Yamazaki et al. described a 51° OST-HMD design consisting of a FFS prism and an auxiliary lens attached to the FFS prism; and more recently Cakmakci et al. designed a 20° HMD system with one free-form reflecting surface which was based on rational radial basis function and a diffractive lens. (“Optimal local shape description for rotationally non-symmetric optical surface design and analysis,” Opt. Express 16, 1583-1589 (2008)). There are also several commercially available HMD products based on the FFS prism concept. For instance, Olympus released their Eye-Trek series of HMDs based on free-form prisms. Emagin carried Z800 with the optical module WFO5, Daeyang carried i-Visor FX series (GEOMC module, A3 prism) products; Rockwell Collins announced the ProView SL40 using the prism technology of OEM display optics.
Existing FFS-based designs have an exit pupil diameter that is typically from 4 to 8 mm with a FOV typically around 40 degrees or less. In most of the existing designs, the size of the microdisplays is in the range of 1 to 1.3 inches, which affords a focal length of 35˜45mm for a typical 40-degree FOV. Even with an exit pupil up to 8 mm, the F/# remains fairly high (greater than 4) and eases the optical design challenge. A large size microdisplay, however, offsets the advantage of compactness using a free-form prism. In the more recent designs, smaller microdisplays, typically around 0.6″, were adopted, which requires a focal length of ˜21 mm to achieve a 40-degree FOV. The reduced focal length makes it very challenging to design a system with a large exit pupil. As a result, most of the designs compromise the exit pupil diameter. Thus, commercially available products on average reduce the pupil diameter to about 3˜5 mm to maintain an F/# greater than 4. There are a few designs that achieve a larger pupil by introducing additional free-form elements or diffractive optical elements. For instance, Droessler and Fritz described the design of a high brightness see-through head-mounted system with an F/# as low as 1.7 by using two extra decentered lenses and applying one diffractive surface. (U.S. Pat. No. 6,147,807). The existing work shows that it is extremely difficult to achieve a very fast (low F/#) and wide field of view HMD design with a single wedge-shaped free-form surface prism.
Accordingly, it would be an advance in the field of optical see-through head-mounted displays to provide a head-mounted display which has a wide field of view and low F/#, while also providing a compact, light-weight, and nonintrusive form factor.
In one of its aspects, the present invention provides a free-form prism-lens for use in an optical see-through head-mounted display. The prism-lens may include a first free-form surface configured to receive light from a micro-display and configured to transmit the received light into the body of the prism-lens, and a second free-form surface configured to receive the light transmitted into the body of the prism-lens from the first free-form surface and configured to totally internally reflect the received light at the second surface. In addition, prism-lens may also include a third free-form surface configured to receive the light reflected by the second free-form surface and configured to reflect the light out of the prism-lens and may have an f-number less than 3.5. The prism-lens may optionally include an auxiliary lens disposed proximate the third free-form surface. The auxiliary lens may be configured to minimize the shift and distortion of rays from a real-world scene by the second and third surfaces of the prism-lens.
The foregoing summary and the following detailed description of the preferred embodiments of the present invention will be best understood when read in conjunction with the appended drawings, in which:
The desire to achieve an optical see-through head-mounted display having a compact, light-weight, and nonintrusive form factor argues for a design having as few optical elements as possible. Accordingly, exemplary designs of the present invention provide a single-element prism-lens 110, 710 which has sufficient optical power on its own to deliver light from a micro-display 130 to a user,
Display System Specifications
Turning first to the design of the wedge-shaped free-form prism-lens 110, design began with development of the display system specifications. An optical see-through HMD 100 typically consists of an optical path for viewing a displayed virtual image and a path for viewing a real-world scene directly. As shown in
As shown in
The overall system was set to be symmetric about the YOZ plane, but not the XOZ plane. A ray emitted from a point on the microdisplay 130 is first refracted by the surface 3 next to the microdisplay 130. After two consecutive reflections by the surfaces 1′ and 2, the ray is transmitted through the surface 1 and reaches the exit pupil of the system 100. The first surface (i.e., 1 and 1′) of the prism-lens 110 is required to satisfy the condition of total internal reflection for rays reflected by this surface V. The rear surface 2 of the prism-lens 110 is coated as a half mirror in order to facilitate the optical see-through capability. The rays from the microdisplay 130 will be reflected by the rear surface 2 while the rays from a real-world scene will be transmitted. An auxiliary lens 120 may be cemented to the wedge-shaped prism-lens 110 in order to counteract the ray shift and distortion caused by the prism-lens 110. The front surface of the auxiliary free-form lens 120 may match the shape of the rear surface 2 of the prism-lens 110. The back surface 4 of the auxiliary free-form lens 120 may be optimized to minimize the shift and distortion introduced to the rays from a real-world scene when the auxiliary free-form lens 120 is combined with the prism-lens 110.
TABLE 1
Specifications of FFS Prism-lens HMD System
Parameter
Specification
LCD
Size
0.61 in (15.5 mm) diagonally
Active display area
12.7 mm × 9.0 mm
Resolution
800 × 600 pixels
Virtual imaging system
Type
folded FFS prism-lens
Effective focal length
15 mm
Exit pupil diameter
8 mm
Eye relief
>17 (18.25) mm
F/#
1.875
Number of free-form surfaces
3
Augmented viewing system
Type
Free-form lens
Number of free-form surfaces
2
Other parameters
Wavelength
656.3-486.1 nm
Field of view
45° H × 32° V
Vignetting
0.15 for top and bottom fields
Distortion
<12% at the maximum field
Image quality
MTF > 10% at 30 lps/mm
The overall specifications of the system are summarized in Table 1. Our goal was to achieve a very compact, lightweight, and wide FOV design using a wedge-shaped free-form prism-lens 110. A small size microdisplay 130 with high resolution was thus preferred. Based on the size, resolution, availability and cost, a pair of 0.61-inch Emagin OLED displays were selected, with a resolution of 800×600 pixels and a 15 μm pixel size. We further targeted an HMD system 100 with a diagonal full FOV of at least 50°, which corresponds to a focal length no more than 16.6 mm. A 15 mm focal length was selected, which offers a reasonable balance between FOV (53.5° diagonally) and angular resolution (3.2 arc minutes per pixel). In the design of visual instruments, especially binocular HMDs, a large exit pupil is typically preferred to account for the swiveling of the eyes in their sockets without causing vignetting or loss of image. A large pupil offers better tolerance of the interpupilary distances (IPD) among different users without the need to mechanically adjust the IPD of the binocular optics. A large pupil, however, often not only compromises the compactness and weight of the optical system 100, but also imposes limitations on the FOV due to the dramatically increased challenge of designing low F/# systems. Taking into account these factors, we set the exit pupil diameter to be 8 mm, which leads to a system 100 with a F/# of 1.875. In designing HMD systems, a large eye relief is desired to accommodate users wearing eyeglasses, but it affects the compactness of the viewing optics. A minimum of a 18 mm eye relief was set to accommodate users wearing low-profile eyeglasses. Balancing between image uniformity and system compactness, we set the limit of the vignetting to be less than 15% at the top and bottom of the visual fields.
Among the aberrations of an optical system, distortion causes the warping of the displayed image without reducing image sharpness, which allows computational or electronic correction. In designing conventional HMDs it is common to optimize the system 100 to minimize the optical aberrations that reduce image quality and cannot be compensated electronically or computationally. In a free-form optical system 100, however, the distortion can be very large and irregular if it is left without any constraints. We thus set a distortion limit of 12% at the maximum field angle and planned to correct the residual distortion using computational methods. In terms of other types of aberrations, the modulation transfer function (MTF) was selected to evaluate the overall image sharpness and was set to be no less than 10% across the entire visual field at a spatial frequency of 30 lps/mm. With the specifications established, development continued with design of the free-form elements 110, 120.
Design of Free-form Elements
Free-form optical surfaces offer more degrees of freedom to optical designers than conventional rotationally symmetric optical surfaces, such as a spherical or aspherical surface, and achieve usually lower wavefront errors and distortion than that achievable with the same number of rotationally symmetric surfaces. A significant benefit in our OST-HMD design lies in its ability to yield display optics with an eyeglass-like form factor. An optical design using free-form surfaces, however, may cause a dramatic increase in the complexity of the design and optimization process. An inadequate method of representing and optimizing a free-form surface may lead to discouraging and unpredictable results. Key issues in the process of designing a FFS HMD include 1) a free-form surface representation and design strategy; 2) total internal reflection condition; and 3) structure constraints to form a valid prism-lens 110.
Free Form Surface Representation and Design Strategy
Selecting a suitable method for a free-form surface representation is very important. Different representation methods not only have different impacts on the ray tracing speed and the convergence of optimization, but also offer different degrees of design freedom. A suitable representation method shall 1) provide adequate degrees of freedom; 2) require a reasonable amount of ray tracing time; and 3) offer reliable convergence in the optimization process. Ray tracing speed is a particular concern in designing a free-form prism-lens 110, as a larger number of fields need to be sampled when optimizing a free-form optical system than need to be sampled in a rotationally symmetrical optical system. Speed becomes a more serious problem when a global optimization is necessary. Although most of the commercially available optical design software, such as CODE V® (Optical Research Associates, Pasadena, Calif.), offers the ability to model free-form surfaces in user-defined methods, the ray tracing speed of user-defined representations typically is much slower than the standard methods available in the software packages.
By taking into account the speed and convergence factors, the following design strategy was adopted in our design process. In the case when we lacked a starting point for an FFS surface, we started to optimize the surface with a spherical type to obtain the correct first-order parameters. The spherical surface was then converted to an aspheric type by adding a conic constant and a 4th order or higher aspheric coefficients. Following an intermediate state of optimization, the ASP-type surface was then converted to an AAS-type surface for better correction by directly adding asymmetric coefficients up to the 10th order. To avoid loss of information, use of aspheric terms higher than the 10th order was not pursued, because the AAS surface has only up to the 10th order of rotationally symmetric coefficients in CODE V®. Optimization with the AAS type surface helped to create a good starting point. The AAS surface was then converted to the XYP-type through a fitting algorithm (e.g., a least square fitting method) for final stage of optimization. High precision was required for the fitting algorithm to avoid a significant deviation from the starting design produced by the AAS surface type.
Total Internal Reflection Constraint
As mentioned above, all the rays striking the first surface 1′ of the prism-lens 110 from inside should be totally reflected off. The first surface 1′ cannot be coated with a reflective film, because it is shared by both a refractive and reflective path of the same rays. Therefore, the incident angles of all the rays striking the first surface 1′ from the microdisplay 130 should be larger than the critical angle, θc, set by the TIR condition
θc=arcsin(1/n) (1)
where n is the refractive index of the material for the FFS prism-lens 110. For example, if the index of the material is equal to 1.5, all the incident angles should be larger than 41.82°. Rays incident on the first surface 1′ of the prism-lens 110 at a smaller angle may be transmitted through the prism-lens 110 without the benefit of reflection off the rear surface 2 (and subsequent refraction at the first surface 1) and may directly enter the eye, which leads to stray light and a reduction in the image contrast observed by the user. If the TIR condition is met, however, after two consecutive reflections by the front and rear surfaces 1′ and 2, respectively, the same ray is returned back and to be transmitted through the front surface 1. To ensure transmission of the ray after the two consecutive reflections, the incident angle of the ray should be smaller than the critical angle set by Eqn. (1) to avoid the TIR effect.
It was impractical to constrain the incident angle of every ray incident on the surface of interest during the optimization process. An adequate and practical control method was required. Without loss of generality, we made two assumptions: (1) the local departure of the surface 1′ from a spherical surface was sufficiently small compared to the primary radius of curvature of the surface so that the surface normal of every point on surface 1′ could be adequately approximated by a line passing through to the center of the primary curvature of the surface (as shown in
θ1b1′>arcsin(1/n) (2)
where θ1b1′ is the incident angle of the top marginal ray, R1u, on surface 1′ from the maximum object field in tangential plane of the microdisplay 130.
We could further prove that after the two consecutive reflections the top marginal ray, R2u, of the maximum object field in the negative Y-direction (i.e. P2) had the largest incident angle on the surface 1 when the surface 1 was tilted counterclockwise about the X-axis (i.e., the tilt angle, θ1>0); otherwise the bottom marginal ray R1b, of the maximum object field in the positive Y-direction (P1) has the largest incident angle when the surface 1 was tilted clockwise. Therefore, the constraint used to avoid TIR condition on surface 1 was written as:
where θ1b1 is the incident angle of the bottom marginal ray, R1b, striking the surface 1; and θ2u1 is the incident angle of the top marginal ray, R2u, on surface 1, and θ1 is the tilt angle of surface 1 about the X-axis.
The simplified constraints in Eqns. (2) and (3) were important in making the optimization practical in designing the FFS prism-lens 110. Increasing the refractive index of the material could help to relax the ray angle constraints and ease the design task. However, high refractive index materials can increase the color aberrations (due to lower Abbe number) and fabrication cost. Furthermore, our goal in this design was to achieve light weight by using plastic materials, which usually have a moderately low range of refractive indices.
Structure Constraints
Designing the wedge-shaped free-form prism-lens 110 required optimizing the shapes of individual surfaces to minimize wavefront errors under the ray angle constraints set by Eqns. 2 and 3. It further required additional structure constraints in order to ensure that the three surfaces together formed a valid prism-lens shape, that all the rays across the fields could be traced without obstruction or early escaping from a surface, and that the prism-lens 110 maintained desirable center and edge thickness.
where all the Y, Z coordinates in the equations are referenced to the global coordinate system with the origin located at the center of the exit pupil.
Here by constraining the Y coordinates of the points Pa, Pa′, and Pa″, Eqn. (4) ensured that the surfaces 1 and 2 intersected properly so that the bottom marginal ray could be traced through the prism-lens 110 without obstruction. Equation 4 further set the upper and lower limits (e.g. 2 and 0.5 mm, respectively) on the edge thickness of the prism-lens 110 by constraining the Z coordinates of the points Pa and Pa′. By constraining the Y and Z coordinates of the points Pb and Pb′, Eqn. (5) avoided the escape of the top marginal ray after reflection by the surface 1 and helped to control the thickness of the prism-lens 110. By controlling the Y and Z coordinates of the points Pc and Pc′, Eqn. (6) ensured that the surfaces 1 and 3 intersected properly so that the top marginal ray could be traced through the prism-lens 110 without obstruction or escaping from the prism-lens 110. It further helped control the height of the prism-lens 110. Eqns. 4 through 6 together ensured the three surfaces formed a valid prism-lens shape. These relationships further set limits on the tilt angles of the surfaces 1 and 2, which helped to limit the off axis aberrations. By limiting the Z coordinates of the points Pa and Pc, Eqn. (7) set the minimal value for the eye clearance distance.
Optimization of the Free-form Prism
We selected a patented design by Takahashi (U.S. Pat. No. 5,959,780) as a starting point. The original prism design of Takahashi included two free-form surfaces 501, 502 and one planar surface 503. Based on a 1.3 inch microdisplay 530, the Takahashi design offered a full FOV of the system 500 of 57.8°×34.6°, with an exit pupil diameter of 4 mm and effective focal length of about 27.4 mm. The F/# of the system 500 was only 6.85. To meet our specifications, we scaled the effective focal length to 15 mm, reduced the horizontal FOV to 45°, and increased the exit pupil diameter from 4 mm to 8 mm, yielding a system 500 with an F/# of 1.875. In the scaled system 500, the eye relief was reduced to 15.5 mm. The significantly reduced F/# imposed a critical challenge on system performance and invalidated several critical conditions of the prism-lens structure.
For instance, the incident angles of the rays on the TIR surface 501 were far smaller than the critical angle and a part of the rays from the top and bottom fields escaped from the prism 510 before completing their paths. We thus had to set considerably large vignetting for the top and bottom fields to obtain a valid starting design.
The system of
Due to its single-plane symmetry, the free-form prism-lens design had to be optimized over half of the full FOV sampled in a rectangular grid, as opposed to a linear sample in the radial direction in a rotationally symmetric system. It was difficult, however, to start the optimization across the entire FOV in a densely-sampled grid given the low performance of the starting point. Instead, we adopted a progressive optimization strategy by gradually increasing field samples as the system performance improved during the optimization process. The weighting factors of the sampled fields were inversely proportional to their distance from the center of the field. The decenter and tilt parameters were set as variables during the entire optimization process.
Following the design strategy above, we optimized the free-form surfaces using aspherical-type representations during the above steps for obtaining a good starting point. We then furthered the optimization by converting the ASP-type surfaces to AAS-type of surfaces and adding asymmetric coefficients up to the 10th order as variables. To further optimize the system 600, we converted the AAS-type surfaces to XYP representations through a least-square fitting algorithm and carried out a global optimization. We found that this step of optimization was very effective in optimizing the FFS prism-lens system 700. The layout of the final FFS prism-lens design 700 is shown in
where z is the sag of the surface along the local z-axis, x and y are the coordinates in the local coordinate system, c is the vertex curvature (CUY), k is the conic constant, and Cj is the coefficient for xmyn.
TABLE 2
Definition of the local surface references
in the global coordinate system
Orientation of the
Origin of surface reference
surface Rotation
X (mm)
Y (mm)
Z (mm)
about X-axis θ (°)
Surface 1
0
0.305
18.25
1.7942
Origin: O1(x1, y1, z1)
Orientation: θ1
Surface 2
0
0
24.34
−23.08
Origin: O2 (x2, y2, z2)
Orientation: θ2
Surface 3
0
15.534
19.403
53.4547
Origin: O3 (x3, y3, z3)
Orientation: θ3
Microdisplay
0
17.101
24.272
54.1888
Origin: OIm
(xIm, yIm, zIm)
Orientation: θIm
TABLE 3
Effective area of each surface
(mm)
surface 1
X
−13
13
Y
−8.3
15.9
surface 2
X
−13
13
Y
−9.25
12.25
surface 3
X
−10
10
Y
−8.55
2.75
The optical performance of the optimized system 700 was assessed at the following representative field angles for the four design wavelengths: (0°, 0°), (0°, ±8°, (7°, 0°), (14°, 0°), (0°±16°), (22.5°, 0°), (22.5°, ±16°).
To demonstrate the effectiveness of the TIR constraints,
Design of the Auxiliary Free-form Lens
The free-form prism-lens 710 with curved surfaces produced optical power in the optical see-through path, causing a significant viewing axis deviation and undesirable distortion as well as other off-axis aberrations to the view of the real world scene.
We chose to trace rays from the real-world scene to the eye space, as shown in
The final design of the auxiliary lens 720 combined with the FFS prism-lens 710 is shown in
TABLE 4
Definition of the local surface references
in the global coordinate system OXYZ.
Orientation of the
Origin of surface reference
surface Rotation
X (mm)
Y (mm)
Z (mm)
about X-axis θ (°)
Surface 1
0
0.305
18.25
1.7942
Origin: O1(x1, y1, z1)
Orientation: θ1
Surface 2
0
0
24.34
−23.08
Origin: O2 (x2, y2, z2)
Orientation: θ2
Surface 3
0
15.534
19.403
53.4547
Origin: O3 (x3, y3, z3)
Orientation: θ3
Surface 4
0
0
29
0
Origin: O4 (x4, y4, z4)
Orientation: θ4
Microdisplay
0
17.101
24.272
54.1888
Origin: OIm
(xIm, yIm, zIm)
Orientation: θIm
TABLE 5
Effective area of each surface
(mm)
Surface 1
X
−13
13
Y
−8.3
15.9
Surface 2
X
−13
13
Y
−9.25
12.25
Surface 3
X
−10
10
Y
−8.55
2.75
Surface 4
X
−13
13
Y
−10
12
Prototype and Experimental Results
The FFS prism-lens 710 was fabricated through a molding approach.
Further Design Example
The techniques described above where employed to provide a second exemplary design. Again, the optical material of the prism-lens was PMMA having a refractive index of 1.492 and Abbe number of 57.2. The locations, and effective areas, of the surfaces relative to the global coordinate system having its origin at the exit pupil are give in Tables 6 and 7, respectively, below. The FFS polynomial coefficients are provided in Table 9 below.
TABLE 6
the local surface references in the global coordinate system OXYZ.
Orientation of the
Origin of surface reference
surface Rotation
X (mm)
Y (mm)
Z (mm)
about X-axis θ (°)
Surface 1
0
−4
19.18
6.04937
Origin: O1(x1, y1, z1)
Orientation: θ1
Surface 2
0
−3.2
23.65
−26.4722
Origin: O2 (x2, y2, z2)
Orientation: θ2
Surface 3
0
16.044
23.35
53.2281
Origin: O3 (x3, y3, z3)
Orientation: θ3
Surface 4
0
0.514
29.968
6
Origin: O4 (x4, y4, z4)
Orientation: θ4
Microdisplay
0
17.978
25.011
49.247
Origin: OIm
(xIm, yIm, zIm)
Orientation: θIm
TABLE 7
Effective area of each surface
(mm)
Surface 1
X
−15
15
Y
−6
22
Surface 2
X
−15
15
Y
−8
16
Surface 3
X
−10
10
Y
−6.5
6.5
Surface 4
X
−15
15
Y
−11.5
12.5
These and other advantages of the present invention will be apparent to those skilled in the art from the foregoing specification. Accordingly, it will be recognized by those skilled in the art that changes or modifications may be made to the above-described embodiments without departing from the broad inventive concepts of the invention. For instance, other shapes of free-form surfaces may be utilized in the designs of the present invention. By way of example, if one wanted to vary the surface curvature independently in the x and y directions, the surface could be represented by
where z is the sag along the local z-axis, x and y are the coordinates in the local coordinate system, k is the conic constant, cx is radius of curvature of surface in sagittal direction, cy is radius of curvature of surface in tangential direction, and Cjis the coefficient for x2myn. It should therefore be understood that this invention is not limited to the particular embodiments described herein, but is intended to include all changes and modifications that are within the scope and spirit of the invention as set forth in the claims.
TABLE 8
Coeffi-
com-
cients
ment
Surface 1
Surface 2
cuy
c
−0.000285105
−0.039092523
c67
normal-
1
1
ized
radius
c1
k
0
0
c2
x
0
0
c3
y
−4.554727019060E−02
0.000000000000E+00
c4
x2
−9.529768572360E−03
3.799883836350E−03
c5
xy
0.000000000000E+00
0.000000000000E+00
c6
y2
8.880680850880E−04
8.811637430275E−03
c7
x3
0.000000000000E+00
0.000000000000E+00
c8
x2y
−2.274693243620E−04
−4.120156490413E−05
c9
xy2
0.000000000000E+00
0.000000000000E+00
c10
y3
−2.250128361500E−05
−1.162523138271E−04
c11
x4
1.363374558440E−05
8.274939784188E−06
c12
x3y
0.000000000000E+00
0.000000000000E+00
c13
x2y2
−3.835587301810E−05
1.217474597638E−05
c14
xy3
0.000000000000E+00
0.000000000000E+00
c15
y4
−8.630487450540E−06
1.240101301250E−05
c16
x5
0.000000000000E+00
0.000000000000E+00
c17
x4y
−1.985502857350E−07
−3.848552333625E−08
c18
x3y2
0.000000000000E+00
0.000000000000E+00
c19
x2y3
1.202547290150E−06
4.252351660938E−07
c20
xy4
0.000000000000E+00
0.000000000000E+00
c21
y5
−2.259740420160E−07
−1.854520775606E−08
c22
x6
−2.190859953400E−08
−7.328932049703E−10
c23
x5y
0.000000000000E+00
0.000000000000E+00
c24
x4y2
−1.532516744660E−09
3.774337431125E−08
c25
x3y3
0.000000000000E+00
0.000000000000E+00
c26
x2y4
2.361733529370E−08
−9.746364392781E−08
c27
xy5
0.000000000000E+00
0.000000000000E+00
c28
y6
1.116521684700E−08
−2.777925130281E−08
c29
x7
0.000000000000E+00
0.000000000000E+00
c30
x6y
6.000609985730E−20
−9.790340156094E−10
c31
x5y2
0.000000000000E+00
0.000000000000E+00
c32
x4y3
−5.043712711540E−20
1.456155907344E−10
c33
x3y4
0.000000000000E+00
0.000000000000E+00
c34
x2y5
−5.117716418980E−20
6.072571241477E−09
c35
xy6
0.000000000000E+00
0.000000000000E+00
c36
y7
−8.492659970480E−18
9.635155206406E−10
c37
x8
7.666995972280E−11
1.071711944156E−10
c38
x7y
0.000000000000E+00
0.000000000000E+00
c39
x6y2
−7.767376892480E−11
0.000000000000E+00
c40
x5y3
0.000000000000E+00
0.000000000000E+00
c41
x4y4
2.950846077350E−11
0.000000000000E+00
c42
x3y5
0.000000000000E+00
0.000000000000E+00
c43
x2y6
−4.982363079300E−12
0.000000000000E+00
c44
xy7
0.000000000000E+00
0.000000000000E+00
c45
y8
3.154691021580E−13
0.000000000000E+00
c46
x9
0.000000000000E+00
0.000000000000E+00
c47
x8y
−1.654239598390E−22
0.000000000000E+00
c48
x7y2
0.000000000000E+00
0.000000000000E+00
c49
x6y3
1.373514352470E−22
0.000000000000E+00
c50
x5y4
0.000000000000E+00
0.000000000000E+00
c51
x4y5
3.089957605530E−22
0.000000000000E+00
c52
x3y6
0.000000000000E+00
0.000000000000E+00
c53
x2y7
7.625247748780E−22
0.000000000000E+00
c54
xy8
0.000000000000E+00
0.000000000000E+00
c55
y9
−3.658104101010E−20
0.000000000000E+00
c56
x10
−5.304042934200E−14
0.000000000000E+00
c57
x9y
0.000000000000E+00
0.000000000000E+00
c58
x8y2
−2.253404112780E−13
0.000000000000E+00
c59
x7y3
0.000000000000E+00
0.000000000000E+00
c60
x6y4
−3.829417935900E−13
0.000000000000E+00
c61
x5y5
0.000000000000E+00
0.000000000000E+00
c62
x4y6
−3.253841807830E−13
0.000000000000E+00
c63
x3y7
0.000000000000E+00
0.000000000000E+00
c64
x2y8
−1.382388481590E−13
0.000000000000E+00
c65
xy9
0.000000000000E+00
0.000000000000E+00
c66
y10
−2.349220379980E−14
0.000000000000E+00
Coeffi-
com-
cients
ment
Surface 3
Surface 4
cuy
c
−0.047502239
4.62503916636415E−03
c67
normal-
1
1
ized
radius
c1
k
0
0
c2
x
0
0
c3
y
−3.713820097050E−01
−7.889190949566E−02
c4
x2
−7.602734138830E−03
9.061467713679E−03
c5
xy
0.000000000000E+00
0.000000000000E+00
c6
y2
−1.328060538820E−02
−7.440925962039E−04
c7
x3
0.000000000000E+00
0.000000000000E+00
c8
x2y
−6.162600900670E−04
−1.334980089604E−04
c9
xy2
0.000000000000E+00
0.000000000000E+00
c10
y3
2.698297276700E−03
−1.082388324657E−05
c11
x4
−1.036808360720E−05
−6.869154882657E−06
c12
x3y
0.000000000000E+00
0.000000000000E+00
c13
x2y2
6.395534320820E−04
2.537076127696E−05
c14
xy3
0.000000000000E+00
0.000000000000E+00
c15
y4
5.348289994560E−04
2.872950078172E−06
c16
x5
0.000000000000E+00
0.000000000000E+00
c17
x4y
−7.243323994940E−06
3.579225277335E−07
c18
x3y2
0.000000000000E+00
0.000000000000E+00
c19
x2y3
−2.631914617550E−05
7.674060114164E−07
c20
xy4
0.000000000000E+00
0.000000000000E+00
c21
y5
−1.207571795570E−04
2.343303575169E−07
c22
x6
6.925182707110E−08
3.531736575015E−08
c23
x5y
0.000000000000E+00
0.000000000000E+00
c24
x4y2
−4.354972387950E−06
−1.047604139930E−07
c25
x3y3
0.000000000000E+00
0.000000000000E+00
c26
x2y4
−5.469927852330E−06
−7.816094559917E−08
c27
xy5
0.000000000000E+00
0.000000000000E+00
c28
y6
−1.348379393160E−05
5.437264126834E−08
c29
x7
0.000000000000E+00
0.000000000000E+00
c30
x6y
0.000000000000E+00
−2.345712968586E−09
c31
x5y2
0.000000000000E+00
0.000000000000E+00
c32
x4y3
0.000000000000E+00
−9.776159457326E−10
c33
x3y4
0.000000000000E+00
0.000000000000E+00
c34
x2y5
0.000000000000E+00
−3.747602576420E−09
c35
xy6
0.000000000000E+00
0.000000000000E+00
c36
y7
0.000000000000E+00
−3.134464841907E−09
c37
x8
0.000000000000E+00
−1.684012356810E−10
c38
x7y
0.000000000000E+00
0.000000000000E+00
c39
x6y2
0.000000000000E+00
4.535953132119E−10
c40
x5y3
0.000000000000E+00
0.000000000000E+00
c41
x4y4
0.000000000000E+00
7.837817283276E−10
c42
x3y5
0.000000000000E+00
0.000000000000E+00
c43
x2y6
0.000000000000E+00
2.755761921660E−10
c44
xy7
0.000000000000E+00
0.000000000000E+00
c45
y8
0.000000000000E+00
−5.916877897125E−10
c46
x9
0.000000000000E+00
0.000000000000E+00
c47
x8y
0.000000000000E+00
4.770943033528E−12
c48
x7y2
0.000000000000E+00
0.000000000000E+00
c49
x6y3
0.000000000000E+00
−2.951188218903E−13
c50
x5y4
0.000000000000E+00
0.000000000000E+00
c51
x4y5
0.000000000000E+00
3.371749455954E−12
c52
x3y6
0.000000000000E+00
0.000000000000E+00
c53
x2y7
0.000000000000E+00
1.747159621915E−11
c54
xy8
0.000000000000E+00
0.000000000000E+00
c55
y9
0.000000000000E+00
8.129325561197E−12
c56
x10
0.000000000000E+00
2.312868445063E−13
c57
x9y
0.000000000000E+00
0.000000000000E+00
c58
x8y2
0.000000000000E+00
−7.302980007283E−13
c59
x7y3
0.000000000000E+00
0.000000000000E+00
c60
x6y4
0.000000000000E+00
−8.710198057552E−13
c61
x5y5
0.000000000000E+00
0.000000000000E+00
c62
x4y6
0.000000000000E+00
−2.578655721303E−12
c63
x3y7
0.000000000000E+00
0.000000000000E+00
c64
x2y8
0.000000000000E+00
1.049427758427E−13
c65
xy9
0.000000000000E+00
0.000000000000E+00
c66
y10
0.000000000000E+00
1.997616885026E−12
TABLE 9
Coeffi-
com-
cients
ment
Surface 1
Surface 2
cuy
c
5.05744188235277E−03
1.01290420358428E−02
c67
normal-
1
1
ized
radius
c1
k
−1.00000000000000E+00
−1.00000000000000E+00
c2
x
0.00000000000000E+00
0.00000000000000E+00
c3
y
0.00000000000000E+00
0.00000000000000E+00
c4
x2
−1.06569604270328E−02
−1.98880360585134E−02
c5
xy
0.00000000000000E+00
0.00000000000000E+00
c6
y2
−1.68658939805653E−03
−1.19385116890299E−02
c7
x3
0.00000000000000E+00
0.00000000000000E+00
c8
x2y
6.91090618400814E−05
9.33625592200568E−06
c9
xy2
0.00000000000000E+00
0.00000000000000E+00
c10
y3
2.20768710346282E−04
−2.29081872204714E−04
c11
x4
−6.83962391749639E−06
−2.78401802376246E−06
c12
x3y
0.00000000000000E+00
0.00000000000000E+00
c13
x2y2
−3.05668325239866E−05
−1.72926734056902E−05
c14
xy3
0.00000000000000E+00
0.00000000000000E+00
c15
y4
−1.36336411152319E−05
−1.96766859030307E−05
c16
x5
0.00000000000000E+00
0.00000000000000E+00
c17
x4y
8.58870602989718E−07
−3.48208722714691E−07
c18
x3y2
0.00000000000000E+00
0.00000000000000E+00
c19
x2y3
2.59849465399784E−07
2.19795381577235E−06
c20
xy4
0.00000000000000E+00
0.00000000000000E+00
c21
y5
1.30586738289348E−06
2.43633240996974E−06
c22
x6
2.43871462953907E−07
3.17005397026433E−08
c23
x5y
0.00000000000000E+00
0.00000000000000E+00
c24
x4y2
−2.17171575262769E−07
−8.43008544990865E−09
c25
x3y3
0.00000000000000E+00
0.00000000000000E+00
c26
x2y4
−1.09469718343971E−07
−3.80934245038872E−08
c27
xy5
0.00000000000000E+00
0.00000000000000E+00
c28
y6
−1.27848463353098E−07
6.91418873061873E−08
c29
x7
0.00000000000000E+00
0.00000000000000E+00
c30
x6y
−2.17215958916219E−10
−5.29841934213626E−09
c31
x5y2
0.00000000000000E+00
0.00000000000000E+00
c32
x4y3
1.17052458860851E−08
8.21084328918049E−09
c33
x3y4
0.00000000000000E+00
0.00000000000000E+00
c34
x2y5
9.68888754082781E−09
−7.97369765852189E−09
c35
xy6
0.00000000000000E+00
0.00000000000000E+00
c36
y7
3.27432053769373E−09
−1.04667540576694E−08
c37
x8
−7.15087135594710E−10
1.58107927123443E−10
c38
x7y
0.00000000000000E+00
0.00000000000000E+00
c39
x6y2
8.37241810688380E−11
2.50870549731047E−10
c40
x5y3
0.00000000000000E+00
0.00000000000000E+00
c41
x4y4
3.08448109642484E−10
−7.25055775891319E−10
c42
x3y5
0.00000000000000E+00
0.00000000000000E+00
c43
x2y6
4.69822713757874E−10
−3.40656761505412E−10
c44
xy7
0.00000000000000E+00
0.00000000000000E+00
c45
y8
3.74205140407221E−11
−9.66678413418157E−10
c46
x9
0.00000000000000E+00
0.00000000000000E+00
c47
x8y
−6.76193659551364E−11
1.12952194048511E−11
c48
x7y2
0.00000000000000E+00
0.00000000000000E+00
c49
x6y3
2.52161603900163E−11
−7.04825907294106E−11
c50
x5y4
0.00000000000000E+00
0.00000000000000E+00
c51
x4y5
−1.74613643937042E−10
6.33946672763876E−11
c52
x3y6
0.00000000000000E+00
0.00000000000000E+00
c53
x2y7
−4.02373533060283E−11
6.52431095363973E−11
c54
xy8
0.00000000000000E+00
0.00000000000000E+00
c55
y9
−1.51494734534747E−12
1.16444692674563E−10
c56
x10
−2.04692546379699E−13
−9.55272275007493E−13
c57
x9y
0.00000000000000E+00
0.00000000000000E+00
c58
x8y2
1.27850873405047E−12
1.26785440782157E−12
c59
x7y3
0.00000000000000E+00
0.00000000000000E+00
c60
x6y4
3.62506934749027E−12
2.65220449427970E−12
c61
x5y5
0.00000000000000E+00
0.00000000000000E+00
c62
x4y6
6.19013257835136E−12
−2.60617377673244E−12
c63
x3y7
0.00000000000000E+00
0.00000000000000E+00
c64
x2y8
5.47840265443679E−13
−1.51560477272646E−12
c65
xy9
0.00000000000000E+00
0.00000000000000E+00
c66
y10
−8.21677804323237E−15
−3.02669599955700E−12
Coeffi-
com-
cients
ment
Surface 3
Surface 4
cuy
c
−1.36040070302022E−01
−3.57225273631067E−03
c67
normal-
1
1
ized
radius
c1
k
−1.00000000000000E+00
−3.05442384082650E+02
c2
x
0.00000000000000E+00
0.00000000000000E+00
c3
y
0.00000000000000E+00
1.50268084206787E−02
c4
x2
4.02243465863783E−02
−6.19425352271504E−03
c5
xy
0.00000000000000E+00
0.00000000000000E+00
c6
y2
−2.13980634999507E−02
4.47303500982809E−03
c7
x3
0.00000000000000E+00
0.00000000000000E+00
c8
x2y
−3.01138835536447E−03
−1.20873088719341E−04
c9
xy2
0.00000000000000E+00
0.00000000000000E+00
c10
y3
−2.02440549644019E−02
4.88846955792256E−05
c11
x4
−4.47796835910435E−04
−3.55281378009418E−07
c12
x3y
0.00000000000000E+00
0.00000000000000E+00
c13
x2y2
3.77675855322595E−03
−1.85583369659820E−05
c14
xy3
0.00000000000000E+00
0.00000000000000E+00
c15
y4
4.80144970995529E−03
−9.25174463073967E−06
c16
x5
0.00000000000000E+00
0.00000000000000E+00
c17
x4y
4.02927533244600E−05
−3.50332571416944E−07
c18
x3y2
0.00000000000000E+00
0.00000000000000E+00
c19
x2y3
5.39169467243012E−05
2.04967612461798E−07
c20
xy4
0.00000000000000E+00
0.00000000000000E+00
c21
y5
5.53544127253446E−04
−4.65892543560338E−08
c22
x6
1.11280354729252E−05
−5.29354102911361E−09
c23
x5y
0.00000000000000E+00
0.00000000000000E+00
c24
x4y2
−4.80012193062278E−05
4.02601860330999E−09
c25
x3y3
0.00000000000000E+00
0.00000000000000E+00
c26
x2y4
−1.26051539656191E−04
2.49939246096273E−08
c27
xy5
0.00000000000000E+00
0.00000000000000E+00
c28
y6
−1.73588932255855E−04
3.61819538534118E−08
c29
x7
0.00000000000000E+00
0.00000000000000E+00
c30
x6y
−8.79779758365947E−07
2.01195864259020E−09
c31
x5y2
0.00000000000000E+00
0.00000000000000E+00
c32
x4y3
3.02147026981469E−06
−4.57346927308613E−10
c33
x3y4
0.00000000000000E+00
0.00000000000000E+00
c34
x2y5
−3.77643718632961E−06
1.24553105773878E−09
c35
xy6
0.00000000000000E+00
0.00000000000000E+00
c36
y7
−3.76456044984959E−06
−1.79376358056304E−09
c37
x8
−1.15675211759524E−07
2.21527691875407E−10
c38
x7y
0.00000000000000E+00
0.00000000000000E+00
c39
x6y2
2.78655613640253E−07
−2.53421606734412E−10
c40
x5y3
0.00000000000000E+00
0.00000000000000E+00
c41
x4y4
9.84349649743337E−07
−5.74780760494471E−11
c42
x3y5
0.00000000000000E+00
0.00000000000000E+00
c43
x2y6
2.49702108607953E−06
−1.17433001848088E−11
c44
xy7
0.00000000000000E+00
0.00000000000000E+00
c45
y8
2.58861741885522E−06
−3.74142357461756E−10
c46
x9
0.00000000000000E+00
0.00000000000000E+00
c47
x8y
6.03461822581042E−09
−9.50023944707191E−12
c48
x7y2
0.00000000000000E+00
0.00000000000000E+00
c49
x6y3
−1.70606513975964E−08
7.11512617425205E−12
c50
x5y4
0.00000000000000E+00
0.00000000000000E+00
c51
x4y5
−1.33127271883197E−08
−1.18995002675616E−12
c52
x3y6
0.00000000000000E+00
0.00000000000000E+00
c53
x2y7
4.80199259903842E−08
−3.34840697581670E−13
c54
xy8
0.00000000000000E+00
0.00000000000000E+00
c55
y9
−2.98879732404454E−08
1.00015126063979E−11
c56
x10
4.69852812284116E−10
−6.12912070190102E−13
c57
x9y
0.00000000000000E+00
0.00000000000000E+00
c58
x8y2
−5.85068948593321E−10
1.03108702382589E−12
c59
x7y3
0.00000000000000E+00
0.00000000000000E+00
c60
x6y4
−3.00944950467783E−09
−2.49697011108537E−13
c61
x5y5
0.00000000000000E+00
0.00000000000000E+00
c62
x4y6
−5.78412894302924E−09
−5.08864307560358E−14
c63
x3y7
0.00000000000000E+00
0.00000000000000E+00
c64
x2y8
−2.34559082177138E−08
2.18880110409132E−13
c65
xy9
0.00000000000000E+00
0.00000000000000E+00
c66
y10
−1.17892981297852E−08
9.10176395465433E−13
Hua, Hong, Cheng, Dewen, Wang, Yongtian
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
3992084, | May 11 1973 | Nippon Kogaku K.K. | Zoom lens system also capable of ultra-closeup photography |
4669810, | Feb 03 1984 | Flight Dynamics | Head up display system |
4753522, | Jun 03 1985 | Ricoh Company, Ltd. | Plastic lens assembly for use in copying machines |
4863251, | Mar 13 1987 | Xerox Corporation | Double gauss lens for a raster input scanner |
5172272, | Dec 25 1989 | Olympus Optical Co., Ltd. | Imaging lens system |
5172275, | Dec 14 1990 | Eastman Kodak Company | Apochromatic relay lens systems suitable for use in a high definition telecine apparatus |
5526183, | Nov 29 1993 | OL SECURITY LIMITED LIABILITY COMPANY | Helmet visor display employing reflective, refractive and diffractive optical elements |
5572229, | Apr 22 1991 | Rockwell Collins Simulation And Training Solutions LLC | Head-mounted projection display system featuring beam splitter and method of making same |
5621572, | Aug 24 1994 | Fergason Patent Properties LLC | Optical system for a head mounted display using a retro-reflector and method of displaying an image |
5625495, | Dec 07 1994 | 3M Innovative Properties Company | Telecentric lens systems for forming an image of an object composed of pixels |
5699194, | Feb 13 1996 | OLYMPUS OPTICAL CO LTD | Image display apparatus comprising an internally reflecting ocular optical system |
5701202, | May 18 1995 | OLYMPUS OPTICAL CO , LTD | Head or face mounted image display apparatus |
5706136, | Feb 28 1995 | Canon Kabushiki Kaisha | Optical system, and image observing apparatus and image pickup apparatus using it |
5818632, | Apr 13 1995 | Melles Griot, Inc | Multi-element lens system |
5917656, | Nov 05 1996 | OLYMPUS OPTICAL CO , LTD | Decentered optical system |
5959780, | Apr 15 1996 | OLYMPUS OPTICAL CO , LTD | Head-mounted display apparatus comprising a rotationally asymmetric surface |
6028606, | Aug 02 1996 | BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY, THE | Camera simulation system |
6034823, | Feb 07 1997 | OLYMPUS OPTICAL CO , LTD | Decentered prism optical system |
6198577, | Mar 10 1998 | SmithKline Beecham Corporation | Doubly telecentric lens and imaging system for multiwell plates |
6201646, | Oct 26 1998 | Olympus Corporation | Image-forming optical system and viewing optical system |
6236521, | Feb 09 1998 | Canon Kabushiki Kaisha | Objective lens and image pickup device using the same |
6243199, | Sep 07 1999 | Moxtek | Broad band wire grid polarizing beam splitter for use in the visible wavelength region |
6271972, | Mar 10 1998 | Glaxo Wellcome Inc | Doubly telecentric lens and imaging system for multiwell plates |
6384983, | Nov 19 1999 | Canon Kabushiki Kaisha | Image display apparatus |
6404561, | Oct 29 1999 | Minolta Co., Ltd. | Taking lens apparatus |
6404562, | May 20 1999 | Konica Corporation | Zoom lens |
6433376, | Dec 08 1999 | DONGBUANAM SEMICONDUCTOR INC | Ferroelectric memory integrated circuit |
6433760, | Jan 14 1999 | University of Central Florida Research Foundation, Inc | Head mounted display with eyetracking capability |
6493146, | Aug 09 2000 | Canon Kabushiki Kaisha | Image display apparatus |
6510006, | Dec 07 1998 | Olympus Corporation | Image-forming optical system |
6563648, | Oct 20 2000 | Compound Photonics Limited | Compact wide field of view imaging system |
6671099, | Dec 25 2000 | Olympus Corporation | Image-forming optical system |
6731434, | May 23 2001 | University of Central Florida Research Foundation, Inc | Compact lens assembly for the teleportal augmented reality system |
6829113, | Feb 12 1999 | Olympus Corporation | Image-forming optical system |
6963454, | Mar 01 2002 | UNIVERSITY OF CENTRAL FLORIDA RESEARCH FOUNDTION, INC ; University of Central Florida Research Foundation, Inc | Head-mounted display by integration of phase-conjugate material |
6999239, | May 23 2001 | Research Foundation of the University of Central Florida, Inc | Head-mounted display by integration of phase-conjugate material |
7152977, | Apr 24 2003 | Qubic Light Corporation | Solid state light engine optical system |
7177083, | Feb 17 2003 | Carl Zeiss AG | Display device with electrooptical focussing |
7230583, | Nov 09 1998 | University of Washington | Scanned beam display with focal length adjustment |
7249853, | Apr 13 2005 | Eastman Kodak Company | Unpolished optical element with periodic surface roughness |
7414791, | Oct 08 2004 | Canon Kabushiki Kaisha | Eye detection apparatus and image display apparatus |
7522344, | Dec 14 2005 | University of Central Florida Research Foundation, Inc. | Projection-based head-mounted display with eye-tracking capabilities |
8467133, | Feb 28 2010 | Microsoft Technology Licensing, LLC | See-through display with an optical assembly including a wedge-shaped illumination system |
8503087, | Nov 02 2010 | GOOGLE LLC | Structured optical surface |
8511827, | Jan 22 2008 | THE ARIZONIA BOARD OF REGENTS ON BEHALF OF THE UNIVERSITY OF ARIZONIA; The Arizona Board of Regents on behalf of the University of Arizona | Head-mounted projection display using reflective microdisplays |
20010009478, | |||
20020015116, | |||
20030076591, | |||
20030090753, | |||
20040196213, | |||
20050036119, | |||
20050248849, | |||
20060119951, | |||
20080094720, | |||
20080291531, | |||
20090115842, | |||
20090168010, | |||
20100109977, | |||
20110037951, | |||
20110043644, | |||
20110075257, | |||
20110090389, | |||
20120019557, | |||
20120057129, | |||
20120081800, | |||
20120113092, | |||
20120162549, | |||
20130112705, | |||
20130187836, | |||
20130258461, | |||
20130286053, | |||
20130300634, | |||
20130329304, | |||
20140009845, | |||
20140361957, | |||
CN101359089, | |||
CN101424788, | |||
CN1252133, | |||
JP11326820, | |||
JP2001066543, | |||
JP2006276884, | |||
JP9218375, | |||
WO2004079431, | |||
WO2007002694, | |||
WO2007085682, | |||
WO2007140273, | |||
WO2008089417, | |||
WO2011134169, | |||
WO2013112705, | |||
WO2014062912, | |||
WO9923647, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 27 2013 | Beijing Institute of Technology | (assignment on the face of the patent) | / | |||
Aug 27 2013 | The Arizona Board of Regents on behalf of the University of Arizona | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Dec 08 2018 | 4 years fee payment window open |
Jun 08 2019 | 6 months grace period start (w surcharge) |
Dec 08 2019 | patent expiry (for year 4) |
Dec 08 2021 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 08 2022 | 8 years fee payment window open |
Jun 08 2023 | 6 months grace period start (w surcharge) |
Dec 08 2023 | patent expiry (for year 8) |
Dec 08 2025 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 08 2026 | 12 years fee payment window open |
Jun 08 2027 | 6 months grace period start (w surcharge) |
Dec 08 2027 | patent expiry (for year 12) |
Dec 08 2029 | 2 years to revive unintentionally abandoned end. (for year 12) |