Problematic open areas are identified in a semiconductor wafer layout. The problematic open areas have a size variation relative to one or more neighboring open areas of the layout sufficient to cause adverse microloading variation. In one embodiment, the adverse microloading variation is controlled by shifting a number of layout features to interdict the problematic open areas. In another embodiment, the adverse microloading variation is controlled by defining and placing a number of dummy layout features to shield actual layout features that neighbor the problematic open areas. In another embodiment, the adverse microloading variation is controlled by utilizing sacrificial layout features which are actually fabricated on the wafer temporarily to eliminate microloading variation, and which are subsequently removed from the wafer to leave behind the desired permanent structures.

Patent
   9122832
Priority
Aug 01 2008
Filed
Jul 30 2009
Issued
Sep 01 2015
Expiry
Mar 17 2031
Extension
595 days
Assg.orig
Entity
Large
8
852
EXPIRED<2yrs
14. A semiconductor device, comprising:
a first set of linear-shaped conductive structures, each of the first set of linear-shaped conductive structures oriented to extend lengthwise in a first direction, wherein end-by-end positioned ones of the first set of linear-shaped conductive structures are separated by a first distance as measured in the first direction, wherein side-by-side positioned ones of the first set of linear-shaped conductive structures are separated by a second distance as measured in a second direction perpendicular to the first direction;
a second set of linear-shaped conductive structures, each of the second set of linear-shaped conductive structures oriented to extend lengthwise in the first direction, the second set of linear-shaped conductive structures separated from the first set of linear-shaped conductive structures by a first area that does not include functional conductive structures;
dummy structures positioned within the first area, wherein each dummy structure has a linear-shape extending lengthwise in the first direction, wherein each dummy structure is not connected within an electrical circuit, wherein each dummy structure that is positioned end-by-end with any given structure of the first set of linear-shaped conductive structures is separated from the given structure by the first distance as measured in the first direction, and wherein each dummy structure that is positioned side-by-side with any given structure of the first set of linear-shaped conductive structures is separated from the given structure by the second distance as measured in the second direction;
wherein the dummy structure are positioned around the first area on each of four perpendicularly related sides of the first area; and
wherein multiple dummy structures are positioned along each of the four perpendicularly related sides of the first area.
1. A method for controlling microloading variation in a semiconductor wafer layout, comprising:
identifying, by using a computer, a first open area in a layout having a size variation relative to one or more neighboring open areas of the layout sufficient to cause adverse microloading variation, the first open area located between layout features of a first set of linear-shaped conductive structures and layout features of a second set of linear-shaped conductive structures, each layout feature of the first and second sets of linear-shaped conductive structures oriented to extend lengthwise in a first direction, end-by-end positioned layout features of the first set of linear-shaped conductive structures separated by a first distance as measured in the first direction, side-by-side positioned layout features of the first set of linear-shaped conductive structures separated by a second distance as measured in a second direction perpendicular to the first direction; and
defining and placing dummy layout features, by using the computer, within the first open area so as to shield layout features of the first set of linear-shaped conductive structures from adverse microloading variation, wherein each dummy layout feature is defined to form a corresponding physical structure having a linear-shape extending lengthwise in the first direction, and wherein each physical structure corresponding to a given dummy layout feature is not connected within an electrical circuit, and wherein each dummy layout feature that is positioned end-by-end with a given layout feature of any of the first set of linear-shaped conductive structures is separated from the given layout feature by the first distance as measured in the first direction, and wherein each dummy layout feature that is positioned side-by-side with a given layout feature of any of the first set of linear-shaped conductive structures is separated from the given layout feature by the second distance as measured in the second direction,
wherein the dummy layout features are defined and placed around the first open area on each of four perpendicularly related sides of the first open area to provide for shielding of the layout features of the first set of linear-shaped conductive structures neighboring the first open area, wherein multiple dummy layout features are placed along each of the four perpendicularly related sides of the first open area; and
recording the layout in a digital format on a computer readable medium for fabrication.
2. The method of claim 1, wherein microloading variation is a variation in size and location of material areas to be etched from a semiconductor wafer.
3. The method of claim 2, wherein the adverse microloading variation is an unacceptable variation in etch rate between different locations on the semiconductor wafer.
4. The method of claim 1, wherein an open area in a layout is a space between layout shapes to be lithographically resolved during fabrication.
5. The method of claim 1, wherein the digital format is a data file format for storing and communicating one or more semiconductor device layouts.
6. The method of claim 1, wherein the computer readable medium includes program instructions for accessing and retrieving the layout in the digital format from the computer readable medium.
7. The method of claim 6, wherein the program instructions for accessing and retrieving include program instructions for selecting a library, a cell, or both library and cell including the layout in the digital format.
8. The method of claim 1, wherein end-by-end positioned layout features of the second set of linear-shaped conductive structures are separated by a third distance as measured in the first direction.
9. The method of claim 8, wherein side-by-side positioned layout features of the second set of linear-shaped conductive structures separated by a fourth distance as measured in the second direction perpendicular to the first direction.
10. The method of claim 9, wherein each dummy layout feature that is positioned end-by-end with a given layout feature of any of the second set of linear-shaped conductive structures is separated from the given layout feature by the third distance as measured in the first direction.
11. The method of claim 10, wherein each dummy layout feature that is positioned side-by-side with a given layout feature of any of the second set of linear-shaped conductive structures is separated from the given layout feature by the fourth distance as measured in the second direction.
12. The method of claim 11, wherein the layout features of the first set of linear-shaped conductive structures are positioned inside of an isolation guard ring, and the layout features of the second set of linear-shaped conductive structures are positioned outside of the isolation guard ring.
13. The method of claim 1, wherein the layout features of the first set of linear-shaped conductive structures are positioned inside of an isolation guard ring, and the layout features of the second set of linear-shaped conductive structures are positioned outside of the isolation guard ring.
15. The semiconductor device of claim 14, wherein end-by-end positioned ones of the second set of linear-shaped conductive structures are separated by a third distance as measured in the first direction.
16. The semiconductor device of claim 15, wherein side-by-side positioned ones of the second set of linear-shaped conductive structures are separated by a fourth distance as measured in the second direction perpendicular to the first direction.
17. The semiconductor device of claim 16, wherein each dummy structure that is positioned end-by-end with any given structure of the second set of linear-shaped conductive structures is separated from the given structure by the third distance as measured in the first direction.
18. The semiconductor device of claim 17, wherein each dummy structure that is positioned side-by-side with any given structure of the second set of linear-shaped conductive structures is separated from the given structure by the fourth distance as measured in the second direction.
19. The semiconductor device of claim 18, wherein the first set of linear-shaped conductive structures are positioned inside of an isolation guard ring, and the second set of linear-shaped conductive structures are positioned outside of the isolation guard ring.
20. The semiconductor device of claim 14, wherein the first set of linear-shaped conductive structures are positioned inside of an isolation guard ring, and the second set of linear-shaped conductive structures are positioned outside of the isolation guard ring.

This application claims priority under 35 U.S.C. 119(e) to U.S. Provisional Patent Application No. 61/085,800, filed Aug. 1, 2008, entitled “Methods for Controlling Microloading Variation in Semiconductor Wafer Layout and Fabrication,” the disclosure of which is incorporated herein by reference in its entirety.

In the fabrication of semiconductor devices such as integrated circuits, memory cells, and the like, a series of manufacturing operations are performed to define features within a chip on a semiconductor wafer (“wafer” hereafter). The chip on the wafer includes integrated circuit devices in the form of multi-level structures defined on a silicon substrate. At a substrate level of the chip, transistor devices with diffusion regions are formed. In subsequent levels of the chip, interconnect metallization lines are patterned and electrically connected to the transistor devices to define a desired integrated circuit device. Also, patterned conductive layers are insulated from other conductive layers by dielectric materials.

The series of manufacturing operations for defining features within the chip on the wafer can include an etching process in which particular portions of a material layer are etched away from the surface of the wafer, such that remaining portions of the material layer form structures to be used in the integrated circuit device. In the etching process, variations in the size and location of areas to be etched away from the surface of the wafer can cause differences in the rate at which material is etched away from one area relative to another area. The variations in the size and location of areas to be etched away from the surface of the wafer is referred to as microloading variation. Therefore, microloading variation across the wafer can cause differences in etch rate across the wafer.

The etching process should continue until each area is etched to completion. Therefore, if a given area is etched to completion faster than other areas, due to differences in etch rate across the wafer caused by microloading variation, the given area will be subjected to a localized overetch period. During the localized overetch period, etching by-products from the etching environment may settle within the given area causing a variation in dimension of the given area, which may correspond to an adverse change in critical dimension of a structure to be defined on the wafer in relation to the given area. Therefore, microloading variation in a given layout to be utilized in an etching process on a wafer may adversely effect dimensional characteristics of correspondingly fabricated structures on the wafer.

In one embodiment, a method is disclosed for controlling microloading variation in a semiconductor wafer layout. The method includes an operation for defining a first layout that includes both permanent layout features and a number of sacrificial layout features. The method also includes an operation for fabricating structures corresponding to both the permanent layout features and the number of sacrificial layout features of the first layout in a target material layer on a wafer. The method further includes an operation for defining a second layout to remove structures corresponding to the sacrificial layout features. The method also includes an operation for utilizing the second layout to remove the structures corresponding to the sacrificial layout features from the target material layer on the wafer.

In another embodiment, a method is disclosed for controlling microloading variation in a semiconductor wafer layout. The method includes an operation for identifying a first open area in a layout having a size variation relative to one or more neighboring open areas of the layout sufficient to cause adverse microloading variation. The method also includes an operation for repositioning a number of layout features within the layout so as to interdict the first open area such that the size variation of the first open area relative to the one or more neighboring open areas is reduced.

In another embodiment, a method is disclosed for controlling microloading variation in a semiconductor wafer layout. The method includes an operation for identifying a first open area in a layout having a size variation relative to one or more neighboring open areas of the layout sufficient to cause adverse microloading variation. The method also includes an operation for defining and placing dummy layout features within the first open area so as to shield actual layout features in the layout neighboring the first open area from adverse microloading variation.

Other aspects and advantages of the invention will become more apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrating by way of example the present invention.

FIG. 1A shows an exemplary wafer having been prepared for a subtractive etch process;

FIG. 1B shows the exemplary wafer of FIG. 1A following patterning and development of the photoresist layer;

FIG. 1C shows the exemplary wafer of FIG. 1B following an etching process to remove portions of the hard mask layer that are exposed;

FIG. 1D shows the exemplary wafer of FIG. 1C following a stripping of the remaining photoresist;

FIG. 1E shows microloading defined by the wafer surface areas to be etched;

FIG. 1F shows the exemplary wafer of FIG. 1E following a continuation of the etching process;

FIG. 2A is an illustration showing a flowchart of a method for controlling microloading variation in a layout, in accordance with one embodiment of the present invention;

FIG. 2B shows a layout that includes a number of linear shaped features placed in pairs in an array-like manner, in accordance with one embodiment of the present invention;

FIG. 2C shows the layout of FIG. 2B with the linear shaped features in particular rows shifted to interdict the problematic open area, in accordance with one embodiment of the present invention;

FIG. 3A is an illustration showing a flowchart of a method for utilizing dummy layout features to control microloading variation in a layout, in accordance with another embodiment of the present invention;

FIG. 3B shows a gate level layout that includes a pair of linear gate electrode features placed within an isolation guard ring, in accordance with one embodiment of the present invention;

FIG. 3C shows the gate level layout of FIG. 3B with a number of dummy layout features defined and placed within the identified problematic open area of the layout, so as to shield actual layout features which neighbor the problematic open area of the layout from the effects of adverse microloading variation, in accordance with one embodiment of the present invention;

FIG. 4A shows a flowchart of a method for utilizing sacrificial layout features to control microloading variation in a layout, in accordance with another embodiment of the present invention;

FIG. 4B is an illustration showing a flowchart of a method for fabricating structures corresponding to the first layout in the target material layer on the wafer, in accordance with operation 403, in accordance with one embodiment of the present invention;

FIG. 4C is an illustration showing a flowchart of a method for utilizing the second layout, in accordance with operation 407, in accordance with one embodiment of the present invention;

FIG. 5A shows an exemplary final layout to be defined within a target material layer, in accordance with one embodiment of the present invention;

FIG. 5B shows an exemplary first layout pattern that can be used in conjunction with the method of FIG. 4A to fabricate the final layout pattern of FIG. 5A, in accordance with one embodiment of the present invention;

FIG. 5C shows an exemplary second layout pattern that can be used in conjunction with the method of FIG. 4A to fabricate the final layout pattern of FIG. 5A, in accordance with one embodiment of the present invention;

FIG. 6A shows the cross-sectional view A-A following operation 425, in accordance with one embodiment of the present invention;

FIG. 6B shows the cross-sectional view A-A following operation 427, in accordance with one embodiment of the present invention;

FIG. 6C shows the cross-sectional view A-A following operation 429, in accordance with one embodiment of the present invention;

FIG. 6D shows the cross-sectional view A-A following operation 431, in accordance with one embodiment of the present invention;

FIG. 6E shows the cross-sectional view A-A following operation 433, in accordance with one embodiment of the present invention;

FIG. 6F shows the cross-sectional view A-A following operation 441, in accordance with one embodiment of the present invention;

FIG. 6G shows the cross-sectional view A-A following operation 443, in accordance with one embodiment of the present invention;

FIG. 6H shows the cross-sectional view A-A following operation 445, in accordance with one embodiment of the present invention;

FIG. 6I shows the cross-sectional view A-A following operation 447, in accordance with one embodiment of the present invention;

FIG. 7A shows an exemplary final layout to be defined within a target material layer, in accordance with one embodiment of the present invention;

FIG. 7B shows an exemplary first layout pattern that can be used in conjunction with the method of FIG. 4A to fabricate the final layout pattern of FIG. 7A, in accordance with one embodiment of the present invention;

FIG. 7C shows an exemplary second layout pattern that can be used in conjunction with the method of FIG. 4A to fabricate the final layout pattern of FIG. 7A, in accordance with one embodiment of the present invention;

FIG. 8A shows an exemplary final layout to be defined within a target material layer, in accordance with one embodiment of the present invention;

FIG. 8B shows an exemplary first layout pattern that can be used in conjunction with the method of FIG. 4A to fabricate the final layout pattern of FIG. 8A, in accordance with one embodiment of the present invention; and

FIG. 8C shows an exemplary second layout pattern that can be used in conjunction with the method of FIG. 4A to fabricate the final layout pattern of FIG. 8A, in accordance with one embodiment of the present invention.

In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention may be practiced without some or all of these specific details. In other instances, well known process operations have not been described in detail in order not to unnecessarily obscure the present invention.

A semiconductor fabrication process may include a subtractive etch process in which portions of a given material layer are etched away from the semiconductor wafer (“wafer” hereafter) to leave selected features defined by the given material layer on the wafer. A layout associated with the selected features to be formed through the subtractive etch process may influence the performance of the subtractive etch process. For example, a layout defined to form polygon shapes through a subtractive etch process may cause an etch rate to vary sufficiently over an area of the wafer such that suboptimal polygon shapes are formed. It should be understood that the etch rate as referenced herein refers to a rate at which material is removed from the exposed surface of the wafer.

A variation in shape density or pattern within a mask to be used in a subtractive etch process may cause the etch rate to vary across the mask. More specifically, shape density or pattern variation across the mask corresponds to a spatial variation in the size of wafer surface areas to be etched, which in turn may cause some wafer surface areas to etch at a different rate than other wafer surface areas. Therefore, some wafer surface areas may be etched through before others. Because the etching process needs to continue until the wafer surface area of slowest etch rate is etched to completion, the wafer surface areas of faster etch rate will be exposed to the etching process and associated environment for a longer duration than necessary. If a given wafer surface area is etched through but continues to be exposed to the etching process and associated environment, etching byproducts from the processing environment may deposit within the etched cavity of the given wafer surface area, thereby forming undesirable sidewall deposition within the etched cavity of the given wafer surface area.

Sidewall deposition can cause a variation in critical dimension of features to be defined on the wafer through the subtractive etch process. Such variation in feature critical dimension may cause adverse electrical performance of fabricated devices or even device failure. Therefore, it is of interest to maintain the etch rate as uniform as possible across portions of the wafer where functional features are to be defined.

In view of the foregoing, it should be understood that spatial variation in the size and relative location of wafer surface areas to be etched may cause a corresponding variation in etch rate. The spatial variation in the sizes and relative locations of wafer surface areas to be etched is referred to herein as microloading. Therefore, variation in microloading across the wafer surface may cause corresponding variation in etch rate across the wafer surface, which may in turn cause undesirable artifacts to be formed across the wafer surface, such as sidewall deposition.

FIGS. 1A-1F illustrate the above-described situation in which variation in microloading across the wafer surface causes variation in etch rate and corresponding undesirable artifacts. FIG. 1A shows an exemplary wafer having been prepared for a subtractive etch process. The wafer includes a substrate 101, a gate electrode material layer 103 disposed over the substrate 101, a hard mask layer 105 disposed over the gate electrode material layer 103, and a photoresist layer 107 disposed over the hard mask layer 105. FIG. 1B shows the exemplary wafer of FIG. 1A following patterning and development of the photoresist layer 107. In one embodiment, the photoresist layer 107 is lithographically patterned using a mask defined for a given feature layout to be formed on the wafer. Development of the photoresist layer 107 leaves a pattern of photoresist on the hard mask layer 105 corresponding to the mask pattern.

FIG. 1C shows the exemplary wafer of FIG. 1B following an etching process to remove portions of the hard mask layer 105 that are exposed, i.e., that are not protected by the remaining pattern of photoresist 107. Therefore, the remaining hard mask 105 generally corresponds to the mask pattern formed within the photoresist layer 107. FIG. 1D shows the exemplary wafer of FIG. 1C following a stripping of the remaining photoresist 107. The remaining hard mask 105 serves to protect underlying wafer areas from another etching process defined to remove the exposed gate electrode material 103. Therefore, the pattern defined by the remaining hard mask 105 features will be also be formed within the gate electrode material layer 103.

In the exemplary embodiment, effects of variation in microloading become apparent in the etching of the gate electrode material 103. As shown in FIG. 1E, the microloading is defined by the wafer surface areas to be etched, which respectively correspond to areas of widths w1, w2, and w3. The exposed (i.e., etchable) wafer surface areas of larger size (i.e., width w3 relative to widths w2 and w1, and width w2 relative to width w1) will generally experience a faster etch rate than the areas of smaller size. Therefore, when the gate electrode material 103 within the area of width w3 is completely etched through a full depth d3, the gate electrode material 103 within the areas of widths w1 and w2 are only etched to depths of d1 and d2, respectively, which is not sufficient to terminate the etching process, as each of the surfaces areas of widths w1, w2, and w3 need to be etched through to the full depth d3. Therefore, the etching process continues until the wafer surface area of smallest size/slowest etch rate (e.g., the area of width w1) is etched through the full depth d3.

FIG. 1F shows the exemplary wafer of FIG. 1E following a continuation of the etching process until the wafer surface areas of widths w1 and w2 are etched through the full depth d3. Once a wafer surface area is fully etched to form a trench-like structure, continued exposure of the trench-like structure to the etching environment may cause byproducts of the etching process to settle on surfaces within the trench-like structure, thereby forming sidewall deposition. For example, because the trench-like structures associated with the wafer surface areas of widths w3 and w2 continue to be exposed to the etching process after they are fully etched, sidewall deposition 109 and 111, respectively, may occur therein. Consequently, due to the sidewall deposition 109/111, critical dimensions CD2 and CD1 of resulting gate electrode features may be unsatisfactory.

The present invention provides layout and wafer fabrication methodology embodiments that recognize and prevent undesirable effects resulting from variation in microloading across a given layout to be fabricated on a wafer. For example, in one embodiment, a method is disclosed herein for microloading variation control to limit critical dimension variance in a subtractive etch wafer fabrication process. This particular method involves control of sizing and placement of exposed and etchable wafer surface areas around features to be defined on the wafer, i.e., around features to be left on the wafer through subtractive etching of material present within the exposed and etchable wafer surface areas.

FIG. 2A is an illustration showing a flowchart of a method for controlling microloading variation in a layout, in accordance with one embodiment of the present invention. The method includes an operation 220 for identifying problematic open areas in a layout that are sized sufficiently different from neighboring open areas in the layout so as to cause adverse microloading variation. For example, FIG. 2B shows a layout that includes a number of linear shaped features 201 placed in pairs in an array-like manner. Specifically, each pair of closely spaced adjacent linear shaped features 201 are separated from each other by a distance 205. Also, each pair of closely spaced adjacent linear shaped features 201 are separated from neighboring pairs of closely spaced adjacent linear shaped features 201 by distances 207 and 203. The separation distance 207 extends perpendicularly between linear shaped features 201 within a given row of linear shaped features 201, where the exemplary layout of FIG. 2B includes rows 240, 241, 242, 243 of linear shaped features 201. The separation distance 203 extends between ends of linear shaped features 201 in adjacent rows 240, 241, 242, 243.

Because the linear shaped features 201 in adjacent rows 240, 241, 242, 243 are placed in an end-to-end manner, the separation distance 207 forms a problematic open area 209 that extends parallel to the linear shaped features 201 and that is sized sufficiently different from the separation distance 205 of neighboring open areas so as to cause adverse microloading variation within the layout. It should be appreciated that separation distance 207 may already be set at a minimum allowable size given layout rules associated with electrostatic discharge. Therefore, it may not be possible to simply reduce the separation distance 207 in an attempt to reduce the microloading variation within the layout. However, the method includes another operation 222 for repositioning a number of layout features to interdict the identified problematic open areas as identified in operation 220. It should be understood that interdiction of the identified problematic open areas with repositioned layout features will serve to reduce a variance in open area size within the layout, and thereby serve to reduce the variation in microloading within the layout.

FIG. 2C shows the layout of FIG. 2B with the linear shaped features 201 in each of rows 241 and 243 shifted to interdict the problematic open area 209. As a result, the problematic open area 209 is eliminated in exchange for an open area 211 having a size smaller than the problematic open area 209. Therefore, with the linear shaped features 201 in each of rows 241 and 243 shifted to interdict the problematic open area 209, the microloading variation within the layout is reduced, thereby providing a corresponding reduction in the potential for adverse effects on critical dimension.

FIG. 3A is an illustration showing a flowchart of a method for utilizing dummy layout features to control microloading variation in a layout, in accordance with another embodiment of the present invention. The method includes an operation 301 for identifying problematic open areas in a layout that are sized sufficiently different from neighboring open areas in the layout so as to cause adverse microloading variation. For example, FIG. 3B shows a gate level layout that includes a pair of linear gate electrode features 321A placed within an isolation guard ring 323, wherein the isolation guard ring 323 is defined within the substrate. A number of additional linear gate electrode features 321B are defined outside of the isolation guard ring 323.

Within the gate level layout of FIG. 3B, the linear gate electrodes 321A within the isolation guard ring 323 are separated from the linear gate electrodes 321B outside the isolation guard ring 323 by an open area defined by distances 325, 327, 329, and 331. Due to sizing differences between this open area and the spacings between adjacently placed linear gate electrode features 321A/321B, there is a potential for adverse microloading variation within the gate level layout. To address this potential for adverse microloading variation, the method of FIG. 3A includes another operation 303 for defining and placing dummy layout features within identified problematic open areas of the layout, so as to shield actual layout features which neighbor the problematic open areas of the layout from the effects of adverse microloading variation. The dummy layout features referred to herein correspond to physical structures defined on the semiconductor wafer that are not connected within an electrical circuit.

For example, FIG. 3C shows the gate level layout of FIG. 3B with a number of dummy layout features 333 defined and placed within the identified problematic open area of the layout, so as to shield actual layout features 321A/321B which neighbor the problematic open area of the layout from the effects of adverse microloading variation. Specifically, dummy layout features 333 are placed next to the gate electrode features 321A/321B and within the problematic open area, such that a spacing between the gate electrode features 321A/321B and their proximally placed dummy layout features 333 are substantially similar to a regular spacing that exists between neighboring gate electrode features 321A and 321B, respectively. Therefore, the problematic open area within the layout of FIG. 3B is reduced in size. Specifically, the open area distances 325, 327, 329, 331 are reduced to distances 325A, 327A, 329A, 331A, respectively.

It should be appreciated that the method of FIG. 3A can be utilized with essentially any layout portion of essentially any chip level in which the layout portion includes a problematic open area large enough to cause adverse microloading variation. Therefore, it should be understood that the particular gate level layout example of FIGS. 3B-3C is provided by way of example for discussion purposes, and is not intended to convey a limitation of the method of FIG. 3A. Generally speaking, the method of FIG. 3A provides for bounding of a problematic open layout area by dummy layout features, such that actual layout features that surround the problematic open layout area are shielded from the effects of adverse microloading variation by the dummy layout features.

FIG. 4A shows a flowchart of a method for utilizing sacrificial layout features to control microloading variation in a layout, in accordance with another embodiment of the present invention. In the method of FIG. 4A, sacrificial layout features correspond to structures that are temporarily defined on the wafer to reduce microloading variation. Thus, sacrificial structures are temporarily fabricated on the wafer to support fabrication of permanent structures corresponding to actual layout features. Following fabrication of the sacrificial structures and permanent structures in a given chip level, the sacrificial structures are removed from the wafer while leaving the permanent structures on the wafer.

The method of FIG. 4A includes an operation 401 for defining a first layout that includes sacrificial layout features. Specifically, the first layout includes layout shapes that correspond to permanent structures to be defined on the wafer, and also includes layout shapes that correspond to sacrificial structures to be defined on the wafer. The layout shapes that correspond to sacrificial structures are defined and placed in the layout so as to reduce or eliminate adverse microloading variation effects and thereby support fabrication of the permanent structures. For example, the sacrificial structures can be defined and placed to limit the variation in size and relative location of open areas in the layout between actual layout features that correspond to permanent structures to be defined on the wafer.

FIG. 5A shows an exemplary final layout to be defined within a target material layer, in accordance with one embodiment of the present invention. The final layout pattern includes linear layout features 540-551. FIG. 5B shows an exemplary first layout pattern that can be used in conjunction with the method of FIG. 4A to fabricate the final layout pattern of FIG. 5A. The first layout pattern of FIG. 5B includes a number of linear layout features 501-506. The linear layout features 501-506 actually include portions that will eventually define permanent structures corresponding to layout features 540-551 of the final layout pattern, and sacrificial layout features 530-538 that will define sacrificial structures to assist in fabrication of layout features 540-551 by reducing microloading variation.

With reference back to FIG. 4A, the method proceeds with an operation 403 for fabricating structures corresponding to the first layout in a target material layer on the wafer. It should be understood that the target material layer can correspond to essentially any type of material used in semiconductor fabrication. It should be further understood that the target material layer can correspond to essentially level of a chip defined on the wafer. In one embodiment, the target material layer is formed of an electrically conductive material, such as polysilicon or metal. For example, in one embodiment, the target material layer is formed of polysilicon, such that permanent structures formed on the wafer from the target material define gate electrodes of transistor devices. In another embodiment, the target material layer is formed of an electrically insulating material, i.e., dielectric material.

FIG. 4B is an illustration showing a flowchart of a method for fabricating structures corresponding to the first layout in the target material layer on the wafer, in accordance with operation 403, and in accordance with one embodiment of the present invention. Also, FIGS. 6A-6E show a series of illustrations depicting results of various operations performed in the method of FIG. 4B. Each of FIGS. 6A-6E depicts a vertical cross-section of an exemplary wafer portion 601 corresponding to a view A-A as identified in each of FIGS. 5A-5C.

In the method of FIG. 4B, an operation 421 is performed to deposit a layer of target material on a wafer. In an operation 423, a hardmask material layer is deposited over the target material layer. In an operation 425, a photoresist material layer is deposited over the hardmask material layer. In one embodiment, each of the target material layer, the hardmask material layer, and the photoresist material layer can be deposited on the wafer through a chemical vapor deposition (CVD) process. However, it should be understood that in other embodiments, each of the target material layer, the hardmask material layer, and the photoresist material layer can be respectively deposited through essentially any type of suitable material deposition process. FIG. 6A shows the cross-sectional view A-A following operation 425. Specifically, FIG. 6A shows a target material layer 603 deposited on a wafer 601, a hardmask layer 605 deposited over the target material layer 603, and a photoresist layer 607 deposited over the hardmask layer 605.

The method continues with an operation 427 for defining the first layout pattern within the photoresist material layer, such that the first layout pattern as defined within the patterned photoresist material layer can be transferred to the hardmask material layer. For example, in one embodiment the photoresist material layer is exposed to a light pattern corresponding to the first layout pattern. Then the photoresist material layer is developed such that the remaining photoresist material includes exposed areas that correspond to the first layout pattern. FIG. 6B shows the cross-sectional view A-A following operation 427.

An operation 429 is then performed to etch through the hardmask material layer within the exposed areas of the patterned photoresist material. FIG. 6C shows the cross-sectional view A-A following operation 429. Then, in an operation 431, the remaining photoresist material is removed. In this manner the first layout pattern is etched within the hardmask material layer. FIG. 6D shows the cross-sectional view A-A following operation 431. An operation 433 is then performed to etch through the conductive material layer within areas exposed through the patterned hardmask material, thereby defining the first layout pattern within the conductive material layer, including the sacrificial layout features. FIG. 6E shows the cross-sectional view A-A following operation 433.

With reference back to the method of FIG. 4A, following the operation 403, the method proceeds with an operation 405 for defining a second layout to remove the sacrificial structures from the target material layer. Also, if required, the second layout is further defined to cut structures within the target material layer, thereby leaving the desired permanent structures. Therefore, the second layout includes openings defined to uncover the sacrificial structures fabricated in the target material layer and, if required, to cut otherwise permanent structures fabricated in the target material layer.

FIG. 5C shows an exemplary second layout pattern that can be used in conjunction with the method of FIG. 4A to fabricate the final layout pattern of FIG. 5A. The second layout pattern of FIG. 5C includes a number of openings 513-518. It should be understood that the linear layout shapes 501-506 are shown in FIG. 5C for contextual purposes and are not actually part of the second layout pattern. Specifically, the second layout pattern in the example of FIG. 5C is defined by the cross-hatched opening shapes 513-518. The openings 513 and 518 in the second layout are defined to enable cutting of structures within the target material layer. The openings 514, 515, 516, 517 are defined to expose the sacrificial structures 531, 532, 534, 536, respectively, so that they can be removed from the target material layer.

With reference back to FIG. 4A, the method proceeds with an operation 407 for utilizing the second layout to remove the sacrificial structures from the target material layer, and if so defined, to cut other permanent structures within the target material layer. FIG. 4C is an illustration showing a flowchart of a method for utilizing the second layout, in accordance with operation 407, and in accordance with one embodiment of the present invention. An operation 441 is performed to deposit a photoresist material layer over the wafer so as to cover the remaining hardmask material, the remaining target material, and the exposed wafer material underlying the target material. FIG. 6F shows the cross-sectional view A-A following operation 441. As shown, a photoresist material 609 is deposited over the wafer so as to cover the remaining hardmask material 605, the remaining target material 603, and the exposed wafer 601 underlying the target material.

An operation 443 is then performed to define the second layout within the photoresist material layer, wherein the second layout includes openings to expose the sacrificial structures in the target material layer, and if so defined, to expose cut portions of other permanent structures within the target material layer. FIG. 6G shows the cross-sectional view A-A following operation 443. As shown, the photoresist material 609 is patterned to create open areas which expose sacrificial features 532 and 534.

An operation 445 is then performed to subtractively etch the hardmask material portions and target material portions within the openings in the patterned photoresist material corresponding to the second layout. FIG. 6H shows the cross-sectional view A-A following operation 445. As shown, the hardmask material 605 and target material 603 within the openings in the patterned photoresist material 609 are removed through subtractive etching. An operation 447 is then performed to remove the remaining photoresist material and the remaining hardmask material from the wafer. FIG. 6I shows the cross-sectional view A-A following operation 447. As shown, the remaining photoresist material 609 and the remaining hardmask material 605 are removed through subtractive etching, thereby leaving the target material 603 corresponding to permanent structures 546, 547, 549, and 550. As previously mentioned, the final layout pattern of FIG. 5A represents the permanent structures formed on the wafer from the target material.

In one embodiment, the first layout referenced in operations 401 and 403 of the method of FIG. 4A includes all layout features corresponding to the permanent structures to be defined on the wafer, in addition to a number of layout features corresponding to appropriate sacrificial structures. In another embodiment, a multiple patterning technique is utilized in which the permanent structures to be defined in the target material layer are split among a plurality of layouts. In this embodiment, defining the first layout in operation 401 includes defining each of the plurality of layouts among which the permanent structures to be defined in the target material layer are split. Also in this embodiment, defining the first layout within the photoresist material layer, as recited in operation 427 of FIG. 4B, includes successively defining within the photoresist material layer each of the plurality of layouts among which the permanent structures to be defined in the target material layer are split. Therefore, it should be understood that the method for utilizing sacrificial layout features to control microloading variation in a layout, as described with regard to FIGS. 4A-4C, can be equally implemented in conjunction with a multiple patterning technique.

FIGS. 7A-7C illustrate another exemplary application of the method for utilizing sacrificial layout features to control microloading variation in a layout, as described with regard to FIGS. 4A-4C, in accordance with one embodiment of the present invention. FIG. 7A shows an exemplary final layout to be defined within a target material layer. The final layout pattern includes linear layout features 731 and 733. In one embodiment, the linear layout features 731 and 733 correspond to linear gate electrode features defined within the gate level of a chip. The linear layout features 733 are defined and placed inside of an isolation ring 741, whereas the linear layout features 731 are defined outside of the isolation ring 741. The open area of the layout between the linear layout features 731 and the linear layout features 733 may represent a substantial variation in microloading. The microloading variation in the layout of FIG. 7A can avoided by utilizing sacrificial layout features as provided in the methods of FIGS. 4A-4C.

Specifically, FIG. 7B shows an exemplary first layout pattern that can be used in conjunction with the method of FIG. 4A to fabricate the final layout pattern of FIG. 7A. The first layout pattern of FIG. 7B includes a number of linear layout features 701-716. Portions of the linear layout features 701-716 will define permanent structures corresponding to layout features 731 and 733 of the final layout pattern of FIG. 7A, and other portions of the linear layout features 701-716 will define sacrificial layout features to assist in fabrication of layout features 731 and 733 by reducing microloading variation.

FIG. 7C shows an exemplary second layout pattern that can be used in conjunction with the method of FIG. 4A to fabricate the final layout pattern of FIG. 7A. The second layout pattern of FIG. 7C includes a number of openings 721, 723, 725, 727, and 729. It should be understood that the linear layout shapes 701-716 are shown in FIG. 7C for contextual purposes and are not actually part of the second layout pattern. Specifically, the second layout pattern in the example of FIG. 7C is defined by the cross-hatched opening shapes 721, 723, 725, 727, and 729. Each of the openings 721, 723, 725, 727, and 729 in the second layout are defined to enable cutting of structures formed within the target material layer using the first layout pattern of FIG. 7B. Specifically, the openings 721, 723, 725, 727, and 729 are defined to expose sacrificial portions of the linear layout features 701-716 so that they can be removed from the target material layer through the subtractive etching process of operation 407 of the method of FIG. 4A.

FIGS. 8A-8C illustrate another exemplary application of the method for utilizing sacrificial layout features to control microloading variation in a layout, as described with regard to FIGS. 4A-4C, in accordance with one embodiment of the present invention. FIG. 8A shows an exemplary final layout to be defined within a target material layer. The final layout pattern includes linear layout features 831-838. In one embodiment, the linear layout features 831-838 correspond to linear gate electrode features defined within the gate level of a chip. The open area 841 of the layout between the linear layout features 831-838 may represent a substantial variation in microloading. The microloading variation in the layout of FIG. 8A can avoided by utilizing sacrificial layout features as provided in the methods of FIGS. 4A-4C.

Specifically, FIG. 8B shows an exemplary first layout pattern that can be used in conjunction with the method of FIG. 4A to fabricate the final layout pattern of FIG. 8A. The first layout pattern of FIG. 8B includes a number of linear layout features 801-815. Portions of the linear layout features 803, 805, 811, and 813 will define permanent structures corresponding to layout features 831-838 of the final layout pattern of FIG. 8A, and the linear layout features 801-802, 804, 806-810, 812, and 814-815 define sacrificial layout features to assist in fabrication of layout features 831-838 by reducing microloading variation.

FIG. 8C shows an exemplary second layout pattern that can be used in conjunction with the method of FIG. 4A to fabricate the final layout pattern of FIG. 8A. The second layout pattern of FIG. 8C includes an opening 821. It should be understood that the linear layout shapes 801-815 are shown in FIG. 8C for contextual purposes and are not actually part of the second layout pattern. Specifically, the second layout pattern in the example of FIG. 8C is defined by the cross-hatched opening shape 821. The opening 821 in the second layout is defined to enable cutting of structures formed within the target material layer using the first layout pattern of FIG. 8B, and to remove sacrificial layout structures formed within the target material layer using the first layout pattern of FIG. 8B. Specifically, portions of structures 803, 805, 811, and 813 are exposed within the opening 821 so that they can be removed from the target material layer through the subtractive etching process of operation 407 of the method of FIG. 4A, thereby cutting structures 803, 805, 811, and 813 to form structures 831-838. Also, sacrificial structures 801-802, 804, 806-810, 812, and 814-815 are fully exposed within the opening 821 so that they can be fully removed from the target material layer through the subtractive etching process of operation 407 of the method of FIG. 4A.

It should be understood that the methods described herein can be utilized to control microloading variation in essentially any subtractive etch semiconductor fabrication process. Moreover, it should be appreciated and understood that the methods described herein can also be utilized in conjunction with essentially any type of damascene semiconductor fabrication process. Additionally, the methods disclosed herein for reducing microloading variation in a layout can be implemented to enable adjustment of an etch process to focus more on across-wafer uniformity. Specifically, wafer fabrication etch recipes and chamber hardware are designed to allow a trade-off between across-wafer uniformity versus microloading. With the methods disclosed herein for reducing microloading, the etch process can be modified to improve across-wafer uniformity. For example, using the methods disclosed herein to handle reduction of microloading it is possible to modify the etch process to reduce across-wafer non-uniformity by about one-half, e.g., from about 2% non-uniformity to about 1% non-uniformity.

It should be understood that the layouts associated with the methods disclosed herein can be stored in a tangible form, such as in a digital format on a computer readable medium. For example, the layouts defined in accordance with the methods disclosed herein can be stored in a layout data file as part of one or more cells, selectable from one or more libraries of cells. The layout data file can be formatted as a GDS II (Graphic Data System) database file, an OASIS (Open Artwork System Interchange Standard) database file, or any other type of data file format suitable for storing and communicating semiconductor device layouts. Also, the layouts can be included within a multi-level layout of a larger semiconductor device. The multi-level layout of the larger semiconductor device can also be stored in the form of a layout data file, such as those identified above.

Also, the methods disclosed herein can be embodied as computer readable code, i.e., program instructions, on a computer readable medium. Also, the computer readable code can include the layout data file within which layouts are stored. The computer readable code can further include program instructions for selecting one or more layout libraries and/or cells that include the layouts. The layout libraries and/or cells can also be stored in a digital format on a computer readable medium.

The computer readable medium mentioned herein is any data storage device that can store data which can thereafter be read by a computer system. Examples of the computer readable medium include hard drives, network attached storage (NAS), read-only memory, random-access memory, CD-ROMs, CD-Rs, CD-RWs, magnetic tapes, and other optical and non-optical data storage devices. The computer readable medium can also be distributed over a network of coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.

Any of the operations described herein that form part of the invention are useful machine operations. The invention also relates to a device or an apparatus for performing these operations. The apparatus may be specially constructed for the required purpose, such as a special purpose computer. When defined as a special purpose computer, the computer can also perform other processing, program execution or routines that are not part of the special purpose, while still being capable of operating for the special purpose. Alternatively, the operations may be processed by a general purpose computer selectively activated or configured by one or more computer programs stored in the computer memory, cache, or obtained over a network. When data is obtained over a network the data maybe processed by other computers on the network, e.g., a cloud of computing resources.

The embodiments of the present invention can also be defined as a machine that transforms data from one state to another state. The data may represent an article, that can be represented as an electronic signal and electronically manipulate data. The transformed data can, in some cases, be visually depicted on a display, representing the physical object that results from the transformation of data. The transformed data can be saved to storage generally, or in particular formats that enable the construction or depiction of a physical and tangible object. In some embodiments, the manipulation can be performed by a processor. In such an example, the processor thus transforms the data from one thing to another. Still further, the methods can be processed by one or more machines or processors that can be connected over a network. Each machine can transform data from one state or thing to another, and can also process data, save data to storage, transmit data over a network, display the result, or communicate the result to another machine.

It should be further understood that the layouts defined in accordance with the methods disclosed herein can be manufactured as part of a semiconductor device or chip. In the fabrication of semiconductor devices such as integrated circuits, memory cells, and the like, a series of manufacturing operations are performed to define features on a semiconductor wafer. The wafer includes integrated circuit devices in the form of multi-level structures defined on a silicon substrate. At a substrate level, transistor devices with diffusion regions are formed. In subsequent levels, interconnect metallization lines are patterned and electrically connected to the transistor devices to define a desired integrated circuit device. Also, patterned conductive layers are insulated from other conductive layers by dielectric materials.

While this invention has been described in terms of several embodiments, it will be appreciated that those skilled in the art upon reading the preceding specifications and studying the drawings will realize various alterations, additions, permutations and equivalents thereof. Therefore, it is intended that the present invention includes all such alterations, additions, permutations, and equivalents as fall within the true spirit and scope of the invention.

Smayling, Michael C., Reed, Brian, Becker, Scott T.

Patent Priority Assignee Title
10216890, Apr 21 2004 IYM Technologies LLC Integrated circuits having in-situ constraints
10592627, Sep 25 2017 International Business Machines Corporation Optimizing integrated circuit designs based on interactions between multiple integration design rules
10628544, Sep 25 2017 International Business Machines Corporation Optimizing integrated circuit designs based on interactions between multiple integration design rules
10797059, Dec 27 2018 United Microelectronics Corp. Method of designing a layout of a static random access memory pattern
10846454, Apr 21 2004 IYM Technologies LLC Integrated circuits having in-situ constraints
10860773, Apr 21 2004 IYM Technologies LLC Integrated circuits having in-situ constraints
D776664, May 20 2015 Smart card
D791772, May 20 2015 Smart card with a fingerprint sensor
Patent Priority Assignee Title
4197555, Dec 29 1975 Fujitsu Limited Semiconductor device
4417161, Sep 04 1980 Matsushita Electric Industrial Co., Ltd. Complementary channel type MOS transistor exclusive OR/NOR logic gate circuit
4424460, Jul 14 1981 Rockwell International Corporation Apparatus and method for providing a logical exclusive OR/exclusive NOR function
4613940, Nov 09 1982 International Microelectronic Products Method and structure for use in designing and building electronic systems in integrated circuits
4657628, May 01 1985 Texas Instruments Incorporated Process for patterning local interconnects
4682202, Jul 29 1983 Fujitsu Limited Master slice IC device
4745084, Nov 12 1986 VLSI Technology, Inc. Method of making a customized semiconductor integrated device
4780753, Mar 03 1982 Mitsubishi Denki Kabushiki Kaisha Semiconductor integrated circuit device
4801986, Apr 03 1987 Fairchild Semiconductor Corporation Vertical double diffused metal oxide semiconductor VDMOS device with increased safe operating area and method
4804636, May 01 1985 Texas Instruments Incorporated Process for making integrated circuits having titanium nitride triple interconnect
4812688, Dec 30 1987 International Business Machines Corporation Transistor delay circuits
4884115, Feb 27 1987 Siemens Aktiengesellschaft Basic cell for a gate array arrangement in CMOS Technology
4928160, Jan 17 1989 TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD Gate isolated base cell structure with off-grid gate polysilicon pattern
4975756, May 01 1985 Texas Instruments Incorporated SRAM with local interconnect
5068603, Oct 07 1987 XILINX, Inc.; XILINX, INC , 2069 E HAMILTON AVE , SAN JOSE, CALIFORNIA 95125, A CA CORP Structure and method for producing mask-programmed integrated circuits which are pin compatible substitutes for memory-configured logic arrays
5079614, Sep 26 1990 SEIKO EPSON CORPORATION, A CORP OF JAPAN Gate array architecture with basic cell interleaved gate electrodes
5097422, Oct 10 1986 Cascade Design Automation Corporation Method and apparatus for designing integrated circuits
5117277, Jan 27 1989 Hitachi, Ltd. Semiconductor integrated circuit device with improved connection pattern of signal wirings
5121186, Jun 15 1984 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD ; AVAGO TECHNOLOGIES GENERAL IP PTE LTD Integrated circuit device having improved junction connections
5208765, Jul 20 1990 Advanced Micro Devices, Inc.; Advanced Micro Devices, INC Computer-based method and system for product development
5224057, Feb 28 1989 Kabushiki Kaisha Toshiba Arrangement method for logic cells in semiconductor IC device
5242770, Jan 16 1992 ASML NETHERLANDS B V Mask for photolithography
5268319, Jun 08 1988 SanDisk Technologies LLC Highly compact EPROM and flash EEPROM devices
5298774, Jan 11 1990 Mitsubishi Denki Kabushiki Kaisha Gate array system semiconductor integrated circuit device
5313426, Dec 09 1991 OKI SEMICONDUCTOR CO , LTD Semiconductor memory device
5351197, Apr 13 1989 Cascade Design Automation Corporation Method and apparatus for designing the layout of a subcircuit in an integrated circuit
5359226, Feb 02 1993 Paradigm Technology, Inc.; PARADIGM TECHNOLOGY, INC Static memory with self aligned contacts and split word lines
5365454, Oct 18 1990 Mitsubishi Denki Kabushiki Kaisha Layout designing method for a semiconductor integrated circuit device
5367187, Dec 22 1992 Integrated Device Technology, inc Master slice gate array integrated circuits with basic cells adaptable for both input/output and logic functions
5378649, Apr 08 1994 United Microelectronics Corporation Process for producing non-volatile memory devices having closely spaced buried bit lines and non-overlapping code implant areas
5396128, Sep 13 1993 NXP, B V F K A FREESCALE SEMICONDUCTOR, INC Output circuit for interfacing integrated circuits having different power supply potentials
5420447, Jan 29 1993 SGS-Thomson Microelectronics, Inc.; SGS-Thomson Microelectronics, Inc Double buffer base gate array cell
5461577, Aug 04 1987 Texas Instruments Incorporated Comprehensive logic circuit layout system
5471403, Mar 08 1991 Mitsubishi Denki Kabushiki Kaisha Method for predicting the three-dimensional topography of surfaces of semiconductor devices after reflow processing
5497334, Feb 19 1993 International Business Machines Corporation; INTERNATIONAL BUSINESS MACHINES, INC Application generator for use in verifying a hierarchical circuit design
5497337, Oct 21 1994 International Business Machines Corporation Method for designing high-Q inductors in silicon technology without expensive metalization
5526307, Jan 22 1992 Macronix International Co., Ltd. Flash EPROM integrated circuit architecture
5536955, Mar 29 1993 Fast Custom Semiconductors Electronic devices for use in generating integrated circuit structures and method therefor
5545904, Jan 17 1986 Quick Technologies Ltd. Personalizable gate array devices
5581098, May 05 1995 CIRCUIT INTEGRATION TECHNOLOGY, INC Circuit routing structure using fewer variable masks
5581202, Nov 08 1993 Renesas Electronics Corporation Semiconductor integrated circuit device and production method thereof
5612893, Dec 22 1993 VLSI Technology, Inc. Method and apparatus for compacting integrataed circuits with transistor sizing
5636002, Apr 29 1994 Bell Semiconductor, LLC Auxiliary mask features for enhancing the resolution of photolithography
5656861, Jan 12 1990 Paradigm Technology, Inc. Self-aligning contact and interconnect structure
5682323, Mar 06 1995 Bell Semiconductor, LLC System and method for performing optical proximity correction on macrocell libraries
5684311, May 10 1994 Texas Instruments Incorporated Base cell for BiCMOS and CMOS gate arrays
5684733, Sep 30 1996 United Microelectronics Corp Fixed resistance high density parallel ROM device
5698873, Mar 08 1996 Bell Semiconductor, LLC High density gate array base cell architecture
5705301, Feb 27 1996 Bell Semiconductor, LLC Performing optical proximity correction with the aid of design rule checkers
5723883, Nov 14 1995 Synopsys, Inc Gate array cell architecture and routing scheme
5723908, Mar 11 1993 Kabushiki Kaisha Toshiba Multilayer wiring structure
5740068, May 30 1996 GLOBALFOUNDRIES Inc Fidelity enhancement of lithographic and reactive-ion-etched images by optical proximity correction
5745374, Jul 22 1994 Kabushiki Kaisha Toshiba Layout method for semiconductor integrated circuit and layout apparatus for semiconductor integrated circuit
5764533, Aug 01 1995 Oracle America, Inc Apparatus and methods for generating cell layouts
5774367, Jul 24 1995 Freescale Semiconductor, Inc Method of selecting device threshold voltages for high speed and low power
5780909, Feb 28 1995 NEC Electronics Corporation Semiconductor memory device with a two-layer top gate
5789776, Sep 18 1996 MORGAN STANLEY SENIOR FUNDING, INC Single poly memory cell and array
5790417, Sep 25 1996 TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD. Method of automatic dummy layout generation
5796128, Jul 25 1996 TransLogic Technology, Inc. Gate array with fully wired multiplexer circuits
5796624, Sep 16 1994 Research Foundation of State University of New York Method and apparatus for designing circuits for wave pipelining
5798298, Feb 09 1996 United Microelectronics Corporation Method of automatically generating dummy metals for multilevel interconnection
5814844, Sep 28 1995 Nippondenso Co., Ltd. Gate array having highly flexible interconnection structure
5825203, Nov 28 1995 Hitachi, Ltd. Variable logic integrated circuit device having connections through switch matrix and top layers for inter-cell connections
5834851, Feb 09 1990 Renesas Electronics Corporation SRAM having load transistor formed above driver transistor
5838594, Feb 24 1995 Fujitsu Limited Method and apparatus for generating finite element meshes, and analyzing method and apparatus
5841663, Sep 14 1995 VLSI Technology, Inc Apparatus and method for synthesizing integrated circuits using parameterized HDL modules
5847421, Jul 15 1996 Kabushiki Kaisha Toshiba Logic cell having efficient optical proximity effect correction
5850362, Dec 09 1991 OKI SEMICONDUCTOR CO , LTD Semiconductor memory device employing an improved layout of sense amplifiers
5852562, Dec 13 1994 Matsushita Electric Industrial Co., Ltd. Method and apparatus for designing an LSI layout utilizing cells having a predetermined wiring height in order to reduce wiring zones
5858580, Sep 17 1997 SYNOPSYS MERGER HOLDINGS LLC Phase shifting circuit manufacture method and apparatus
5898194, Nov 13 1996 Synopsys, Inc Integrated circuit cell architecture and routing scheme
5900340, Mar 03 1997 SHENZHEN XINGUODU TECHNOLOGY CO , LTD One dimensional lithographic proximity correction using DRC shape functions
5908827, Dec 22 1992 Laboratoires Serono SA Protein from urine named component B
5915199, Jun 04 1998 Sharp Laboratories of America, Inc Method for manufacturing a CMOS self-aligned strapped interconnection
5917207, Jul 01 1993 LSI Logic Corporation Programmable polysilicon gate array base cell architecture
5920486, Aug 16 1996 GOOGLE LLC Parameterized cells for generating dense layouts of VLSI circuits
5923059, Nov 14 1995 Synopsys, Inc Integrated circuit cell architecture and routing scheme
5923060, Sep 27 1996 Synopsys, Inc Reduced area gate array cell design based on shifted placement of alternate rows of cells
5929469, Dec 25 1996 Kabushiki Kaisha Toshiba Contact holes of a different pitch in an application specific integrated circuit
5930163, Dec 19 1996 Kabushiki Kaisha Toshiba Semiconductor memory device having two P-well layout structure
5935763, Jun 11 1996 International Business Machines Corporation Self-aligned pattern over a reflective layer
5949101, Aug 31 1994 Kabushiki Kaisha Toshiba Semiconductor memory device comprising multi-level logic value of the threshold voltage
5973507, Jun 13 1995 Fujitsu Limited Exclusive-or gate for use in delay using transmission gate circuitry
5977305, Apr 20 1990 Cold Spring Harbor Laboratories Cloning by complementation and related processes
5977574, Mar 28 1997 Bell Semiconductor, LLC High density gate array cell architecture with sharing of well taps between cells
5998879, Feb 03 1997 Renesas Electronics Corporation Semiconductor memory device
6009251, Sep 30 1997 Synopsys, Inc Method and system for layout verification of an integrated circuit design with reusable subdesigns
6026223, Jun 28 1996 Bell Semiconductor, LLC Advanced modular cell placement system with overlap remover with minimal noise
6037613, Feb 24 1997 Sharp Kabushiki Kaisha Bidirectional thyristor device
6037617, Feb 03 1997 NEC Electronics Corporation SOI IGFETs having raised integration level
6044007, Mar 24 1999 Advanced Micro Devices, Inc. Modification of mask layout data to improve writeability of OPC
6054872, Dec 27 1996 Kabushiki Kaisha Toshiba Semiconductor integrated circuit with mixed gate array and standard cell
6063132, Jun 26 1998 GOOGLE LLC Method for verifying design rule checking software
6077310, Dec 22 1995 Kabushiki Kaisha Toshiba Optical proximity correction system
6080206, Dec 27 1996 OKI SEMICONDUCTOR CO , LTD Method of laying out interconnections
6084437, Sep 22 1995 KAWASAKI MICROELECTRONICS, INC Logic circuit utilizing pass transistors and logic gate
6091845, Feb 24 1998 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Inspection technique of photomask
6099584, Dec 06 1996 NXP B V System to fix post-layout timing and design rules violations
6100025, Apr 20 1990 Cold Spring Harbor Laboratory Cloning by complementation and related processes
6114071, Nov 24 1997 ASML NETHERLANDS B V Method of fine feature edge tuning with optically-halftoned mask
6144227, Apr 18 1997 Sharp Kabushiki Kaisha MOS logic circuit and semiconductor apparatus including the same
6159839, Feb 11 1999 Vanguard International Semiconductor Corporation Method for fabricating borderless and self-aligned polysilicon and metal contact landing plugs for multilevel interconnections
6166415, Nov 02 1998 Renesas Electronics Corporation Semiconductor device with improved noise resistivity
6166560, Sep 09 1996 DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT Basic cell structure having a plurality of transistors for master slice type semiconductor integrated circuit device
6174742, Oct 30 1998 Bell Semiconductor, LLC Off-grid metal layer utilization
6182272, Jul 16 1998 Bell Semiconductor, LLC Metal layer assignment
6194104, Oct 12 1999 Taiwan Semiconductor Manufacturing Company Optical proximity correction (OPC) method for improving lithography process window
6194252, Jul 15 1996 Kabushiki Kaisha Toshiba Semiconductor device and manufacturing method for the same, basic cell library and manufacturing method for the same, and mask
6194912, Mar 11 1999 Intel Corporation Integrated circuit device
6209123, Nov 01 1996 Freescale Semiconductor, Inc Methods of placing transistors in a circuit layout and semiconductor device with automatically placed transistors
6230299, Mar 31 1998 Mentor Graphics Corporation Method and apparatus for extracting and storing connectivity and geometrical data for a deep sub-micron integrated circuit design
6232173, Apr 14 1997 GLOBALFOUNDRIES Inc Process for forming a memory structure that includes NVRAM, DRAM, and/or SRAM memory structures on one substrate and process for forming a new NVRAM cell structure
6240542, Jul 14 1998 Bell Semiconductor, LLC Poly routing for chip interconnects with minimal impact on chip performance
6249902, Jan 09 1998 Cadence Design Systems, INC Design hierarchy-based placement
6255600, Feb 28 1995 The Board of Trustees of the University of Arkansas Electronic interconnection medium having offset electrical mesh plane
6255845, Nov 16 1999 Advanced Micro Devices, Inc. Efficient use of spare gates for post-silicon debug and enhancements
6262487, Jun 23 1998 Kabushiki Kaisha Toshiba Semiconductor integrated circuit device, semiconductor integrated circuit wiring method, and cell arranging method
6269472, Feb 27 1996 Bell Semiconductor, LLC Optical proximity correction method and apparatus
6275973, Oct 30 1998 Bell Semiconductor, LLC Integrated circuit design with delayed cell selection
6282696, Aug 15 1997 Bell Semiconductor, LLC Performing optical proximity correction with the aid of design rule checkers
6291276, Nov 20 1995 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Cross coupled thin film transistors and static random access memory cell
6297668, Nov 23 1999 INNURVATION IP, LLC Serial device compaction for improving integrated circuit layouts
6297674, Nov 10 1998 Hitachi, LTD Semiconductor integrated circuit for low power and high speed operation
6303252, Dec 27 1999 United Microelectronics Corp. Reticle having assist feature between semi-dense lines
6331733, Aug 10 1999 Intel Corporation Semiconductor device
6331791, Oct 06 1999 Industrial Technology Research Institute Charge-redistribution low-swing differential logic circuit
6335250, Oct 05 1998 Kabushiki Kaisha Toshiba Semiconductor device and method for the manufacture thereof
6338972, Oct 30 1998 Bell Semiconductor, LLC Off-grid metal layer utilization
6347062, May 16 2000 Renesas Electronics Corporation Semiconductor memory device
6356112, Mar 28 2000 TRANSLOGIC TECHNOLOGY, INC Exclusive or/nor circuit
6359804, Apr 16 1998 Renesas Electronics Corporation Static semiconductor memory cell formed in an n-well and p-well
6370679, Sep 17 1997 SYNOPSYS MERGER HOLDINGS LLC Data hierarchy layout correction and verification method and apparatus
6378110, Mar 31 1998 Synopsys, Inc Layer-based rule checking for an integrated circuit layout
6380592, Nov 28 1997 STMICROELECTRONICS S R L Low power RAM memory cell using a precharge line pulse during write operation
6388296, Jun 04 1998 Sharp Laboratories of America, Inc CMOS self-aligned strapped interconnection
6393601, Apr 14 1997 SOCIONEXT INC Layout designing apparatus for integrated circuit, transistor size determining apparatus, circuit characteristic evaluating method, and transistor size determining method
6399972, Mar 13 2000 LAPIS SEMICONDUCTOR CO , LTD Cell based integrated circuit and unit cell architecture therefor
6400183, Nov 28 1997 Renesas Electronics Corporation Logic circuit and its forming method
6415421, Jun 13 2000 Siemens Industry Software Inc Integrated verification and manufacturability tool
6416907, Apr 27 2000 Round Rock Research, LLC Method for designing photolithographic reticle layout, reticle, and photolithographic process
6417549, Jan 12 2000 Samsung Electronics Co., Ltd. Static random access memory device and method for manufacturing the same
6421820, Dec 13 1999 Qimonda AG Semiconductor device fabrication using a photomask with assist features
6425112, Jun 17 1999 International Business Machines Corporation Auto correction of error checked simulated printed images
6425117, Mar 06 1995 Bell Semiconductor, LLC System and method for performing optical proximity correction on the interface between optical proximity corrected cells
6426269, Oct 21 1999 Qimonda AG Dummy feature reduction using optical proximity effect correction
6436805, Sep 01 1999 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Local interconnect structures and methods for making the same
6445049, Jun 30 1997 ARM, INC Cell based array comprising logic, transfer and drive cells
6445065, Jun 06 2000 Synopsys, Inc Routing driven, metal programmable integrated circuit architecture with multiple types of core cells
6467072, Nov 20 1998 VIA Technologies, Inc. Method of placement and routing for an array device
6469328, Oct 27 1998 Fujitsu Semiconductor Limited Semiconductor memory device
6470489, Sep 17 1997 SYNOPSYS MERGER HOLDINGS LLC Design rule checking system and method
6476493, Aug 10 1999 Intel Corporation Semiconductor device
6477695, Dec 09 1998 ARM, INC Methods for designing standard cell transistor structures
6480032, Mar 04 1999 Intel Corporation Gate array architecture
6480989, Jun 29 1998 Bell Semiconductor, LLC Integrated circuit design incorporating a power mesh
6492066, May 28 1999 GLOBALFOUNDRIES Inc Characterization and synthesis of OPC structures by fourier space analysis and/or wavelet transform expansion
6496965, Sep 20 1999 Synopsys, Inc Automated design of parallel drive standard cells
6504186, Dec 24 1997 Renesas Electronics Corporation Semiconductor device having a library of standard cells and method of designing the same
6505327, Apr 13 2001 SYNOPSYS MERGER HOLDINGS, LLC Generating an instance-based representation of a design hierarchy
6505328, Apr 27 1999 MAGMA DESIGN AUTOMATION, INC Method for storing multiple levels of design data in a common database
6507941, Apr 28 1999 Synopsys, Inc Subgrid detailed routing
6509952, May 23 2000 ASML US, INC; ASML HOLDING N V Method and system for selective linewidth optimization during a lithographic process
6514849, Apr 02 2001 GLOBALFOUNDRIES U S INC Method of forming smaller contact size using a spacer hard mask
6516459, Jul 10 2000 Siemens Industry Software Inc Integrated circuit design correction using fragment correspondence
6523156, Jun 08 2001 Library Technologies, Inc. Apparatus and methods for wire load independent logic synthesis and timing closure with constant replacement delay cell libraries
6525350, Jul 11 2000 KAWASAKI MICROELECTRONICS, INC Semiconductor integrated circuit basic cell semiconductor integrated circuit using the same
6536028, Mar 14 2000 Ammocore Technologies, Inc. Standard block architecture for integrated circuit design
6543039, Sep 29 1998 Kabushiki Kaisha Toshiba Method of designing integrated circuit and apparatus for designing integrated circuit
6553544, Apr 04 2000 Matsushita Electric Industrial Co., Ltd. Method for design of partial circuit
6553559, Jan 05 2001 GLOBALFOUNDRIES U S INC Method to determine optical proximity correction and assist feature rules which account for variations in mask dimensions
6553562, May 04 2001 ASML NETHERLANDS B V Method and apparatus for generating masks utilized in conjunction with dipole illumination techniques
6566720, Oct 05 2000 Invensas Corporation Base cell layout permitting rapid layout with minimum clock line capacitance on CMOS standard-cell and gate-array integrated circuits
6570234, Nov 19 1999 AEROFLEX COLORADO SPRINGS, INC Radiation resistant integrated circuit design
6571140, Jan 15 1998 EUTECH CYBERNETICS PTE LTD Service-oriented community agent
6571379, Jun 26 2000 NEC Electronics Corporation Semiconductor integrated circuit and semiconductor integrated circuit wiring layout method
6574786, Jul 21 2000 AEROFLEX COLORADO SPRINGS, INC Gate array cell generator using cadence relative object design
6578190, Jan 11 2001 GLOBALFOUNDRIES U S INC Process window based optical proximity correction of lithographic images
6583041, May 01 2000 Advanced Micro Devices, Inc. Microdevice fabrication method using regular arrays of lines and spaces
6588005, Dec 11 1998 Renesas Electronics Corporation Method of manufacturing semiconductor integrated circuit device
6590289, May 17 2001 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Hexadecagonal routing
6591207, Feb 23 2001 Hitachi, Ltd. Semiconductor production system
6609235, Jun 22 2001 MIND FUSION, LLC Method for providing a fill pattern for an integrated circuit design
6610607, May 25 2000 GLOBALFOUNDRIES Inc Method to define and tailor process limited lithographic features using a modified hard mask process
6617621, Jun 06 2000 Synopsys, Inc Gate array architecture using elevated metal levels for customization
6620561, Apr 27 2000 Round Rock Research, LLC Method for designing photolithographic reticle layout, reticle, and photolithographic process
6621132, Sep 05 2000 FUJI ELECTRIC CO , LTD Semiconductor device
6632741, Jul 19 2000 SNAP INC Self-trimming method on looped patterns
6633182, Sep 05 2001 Carnegie Mellon University Programmable gate array based on configurable metal interconnect vias
6635935, Jul 10 2000 Renesas Electronics Corporation Semiconductor device cell having regularly sized and arranged features
6642744, Mar 10 2000 Intel Corporation Customizable and programmable cell array
6643831, Jul 09 1999 ANSYS, Inc Method and system for extraction of parasitic interconnect impedance including inductance
6650014, Jun 19 2001 Renesas Electronics Corporation Semiconductor device
6661041, Jan 26 1996 Round Rock Research, LLC Digitline architecture for dynamic memory
6662350, Jan 28 2002 GOOGLE LLC FinFET layout generation
6664587, Feb 28 1996 SanDisk Technologies LLC EEPROM cell array structure with specific floating gate shape
6673638, Nov 14 2001 KLA-Tencor Corporation Method and apparatus for the production of process sensitive lithographic features
6677649, May 12 1999 Renesas Electronics Corporation SRAM cells with two P-well structure
6687895, Jul 03 2002 SYNOPSYS MERGER HOLDINGS, LLC Method and apparatus for reducing optical proximity correction output file size
6690206, Apr 16 1999 Renesas Electronics Corporation Semiconductor integrated circuit device
6691297, Mar 04 1999 Panasonic Corporation Method for planning layout for LSI pattern, method for forming LSI pattern and method for generating mask data for LSI
6700405, Dec 03 1999 Sony Corporation Logic circuit and full adder using the same
6703170, Dec 13 2000 TOPPAN PHOTOMASKS, INC Method and apparatus for reducing loading effects on a semiconductor manufacturing component during an etch process
6709880, Sep 18 2001 Hitachi, Ltd.; Hitachi ULSI Systems, Co., Ltd. Semiconductor device and a manufacturing method of the same
6714903, Jul 10 1998 Bell Semiconductor, LLC Placement and routing of circuits using a combined processing/buffer cell
6732334, Apr 02 2001 Panasonic Corporation Analog MOS semiconductor device, manufacturing method therefor, manufacturing program therefor, and program device therefor
6732338, Mar 20 2002 International Business Machines Corporation Method for comprehensively verifying design rule checking runsets
6732344, Oct 29 2001 Kabushiki Kaisha Toshiba Semiconductor integrated circuit device and standard cell placement design method
6734506, Oct 11 2001 Kabushiki Kaisha Toshiba Semiconductor device including a plurality of kinds of MOS transistors having different gate widths and method of manufacturing the same
6737199, Jan 31 2000 Taiwan Semiconductor Manufacturing Company Using new pattern fracturing rules for optical proximity correction mask-making to improve critical dimension uniformity
6737318, Sep 19 1987 Hitachi, Ltd. Semiconductor integrated circuit device having switching misfet and capacitor element and method of producing the same, including wiring therefor and method of producing such wiring
6737347, Oct 20 1999 Texas Instruments Incorporated Semiconductor device with fully self-aligned local interconnects, and method for fabricating the device
6745372, Apr 05 2002 SYNOPSYS MERGER HOLDINGS, LLC Method and apparatus for facilitating process-compliant layout optimization
6745380, Aug 31 2001 Polaris Innovations Limited Method for optimizing and method for producing a layout for a mask, preferably for use in semiconductor production, and computer program therefor
6749972, Jan 15 2002 Taiwan Semiconductor Manufacturing Co., Ltd. Optical proximity correction common process window maximization over varying feature pitch
6750555, Oct 05 2001 SOCIONEXT INC Semiconductor SRAM having linear diffusion regions
6760269, Jun 17 2002 Renesas Technology Corp. Semiconductor memory device capable of generating internal data read timing precisely
6765245, Mar 25 2002 Gula Consulting Limited Liability Company Gate array core cell for VLSI ASIC devices
6777138, Sep 29 2000 SYNOPSYS MERGER HOLDINGS LLC Mask product made by selection of evaluation point locations based on proximity effects model amplitudes for correcting proximity effects in a fabricat layout
6777146, Feb 21 2003 GLOBALFOUNDRIES Inc Method of optical proximity correction with sub-resolution assists
6787823, Jul 19 2002 Renesas Electronics Corporation; NEC Electronics Corporation Semiconductor device having cell-based basic element aggregate having protruding part in active region
6789244, Aug 08 2002 XILINX, Inc. Placement of clock objects under constraints
6789246, Apr 07 2002 Synopsys, Inc Method and apparatus for automatic layout of circuit structures
6792591, Feb 28 2001 ASML NETHERLANDS B V Method of identifying an extreme interaction pitch region, methods of designing mask patterns and manufacturing masks, device manufacturing methods and computer programs
6792593, Apr 26 2001 Kabushiki Kaisha Toshiba Pattern correction method, apparatus, and program
6794677, Oct 02 2000 Godo Kaisha IP Bridge 1 Semiconductor integrated circuit device and method for fabricating the same
6794914, May 24 2002 Qualcomm Incorporated Non-volatile multi-threshold CMOS latch with leakage control
6795332, Jun 12 2001 Renesas Electronics Corporation; NEC Electronics Corporation Semiconductor memory device with memory cells operated by boosted voltage
6795358, Jun 24 2002 Hitachi, Ltd. Semiconductor integrated circuit device
6795952, Nov 18 1999 PDF Solutions, Inc. System and method for product yield prediction using device and process neighborhood characterization vehicle
6795953, Jun 11 2002 Synopsys, Inc Method for avoiding false failures attributable to dummy interconnects during defect analysis of an integrated circuit design
6800883, Sep 21 2000 SOCIONEXT INC CMOS basic cell and method for fabricating semiconductor integrated circuit using the same
6807663, Sep 23 2002 SYNOPSYS MERGER HOLDINGS LLC Accelerated layout processing using OPC pre-processing
6809399, May 27 1994 Renesas Electronics Corporation Semiconductor integrated circuit device and process for manufacturing the same
6812574, Jan 10 2002 Renesas Electronics Corporation Semiconductor storage device and method of fabricating the same
6818389, Sep 13 2000 Massachusetts Institute of Technology Method of design and fabrication of integrated circuits using regular arrays and gratings
6818929, Jun 18 2002 Matsushita Electric Industrial Co., Ltd. Standard cell for plural power supplies and related technologies
6819136, Mar 10 2000 Intel Corporation Customizable and programmable cell array
6820248, Feb 14 2002 XILINX, Inc. Method and apparatus for routing interconnects to devices with dissimilar pitches
6826738, May 10 2002 PDF Solutions, Inc Optimization of die placement on wafers
6834375, Nov 18 1999 Lankenau Institute for Medical Research System and method for product yield prediction using a logic characterization vehicle
6841880, Jan 29 2003 Renesas Electronics Corporation Semiconductor device and method of fabricating semiconductor device with high CMP uniformity and resistance to loss that occurs in dicing
6850854, Feb 23 2001 Hitachi, Ltd. Semiconductor production system
6854096, Aug 15 2002 Intel Corporation Optimization of cell subtypes in a hierarchical design flow
6854100, Aug 27 2002 Taiwan Semiconductor Manufacturing Company Methodology to characterize metal sheet resistance of copper damascene process
6867073, Oct 21 2003 INVENSAS BONDING TECHNOLOGIES, INC Single mask via method and device
6871338, Nov 05 2001 Matsushita Electric Industrial Co., Ltd. Semiconductor integrated circuit device and method for designing the same
6872990, Dec 31 1998 Samsung Electronics Co., Ltd. Layout method of semiconductor device
6877144, Feb 28 2002 CELERICS TECHNOLOGIES CORPORATION System and method for generating a mask layout file to reduce power supply voltage fluctuations in an integrated circuit
6881523, Mar 14 2001 ASML NETHERLANDS B V Optical proximity correction method utilizing ruled ladder bars as sub-resolution assist features
6884712, Feb 07 2003 Chartered Semiconductor Manufacturing, Ltd. Method of manufacturing semiconductor local interconnect and contact
6885045, Feb 27 2003 Renesas Electronics Corporation Layout structure of multiplexer cells
6889370, Jun 20 2000 Unisys Corporation Method and apparatus for selecting and aligning cells using a placement tool
6897517, Jun 24 2002 IMEC; Infineon Technologies AG Multibit non-volatile memory and method
6897536, Jun 11 2002 Fujitsu Semiconductor Limited ESD protection circuit
6898770, Jan 09 2003 Bell Semiconductor, LLC Split and merge design flow concept for fast turnaround time of circuit layout design
6904582, Feb 28 2002 CELERICS TECHNOLOGIES CORPORATION Photomask for reducing power supply voltage fluctuations in an integrated circuit and integrated circuit manufactured with the same
6918104, Sep 29 2000 SYNOPSYS MERGER HOLDINGS LLC Dissection of printed edges from a fabrication layout for correcting proximity effects
6920079, Aug 08 2003 PANASONIC SEMICONDUCTOR SOLUTIONS CO , LTD Semiconductor device and semiconductor memory device
6921982, Jul 21 2003 Microsoft Technology Licensing, LLC FET channel having a strained lattice structure along multiple surfaces
6922354, Apr 04 2003 SOCIONEXT INC Semiconductor memory device
6924560, Aug 08 2003 Taiwan Semiconductor Manufacturing Co., Ltd. Compact SRAM cell with FinFET
6928635, Sep 25 2002 SYNOPSYS MERGER HOLDINGS, LLC Selectively applying resolution enhancement techniques to improve performance and manufacturing cost of integrated circuits
6931617, Apr 21 2003 SYNOPSYS MERGER HOLDINGS LLC Mask cost driven logic optimization and synthesis
6953956, Dec 18 2002 Intel Corporation Semiconductor device having borderless logic array and flexible I/O
6954918, Aug 30 2002 Texas Instruments Incorporated Integrated circuit cells
6957402, Sep 24 2003 ARM, INC Yield maximization in the manufacture of integrated circuits
6968527, Sep 29 2000 SYNOPSYS MERGER HOLDINGS LLC High yield reticle with proximity effect halos
6974978, Mar 04 1999 Intel Corporation Gate array architecture
6977856, Jun 24 2002 Hitachi, Ltd. Semiconductor integrated circuit device operating at high speed and low power consumption
6978436, Jul 05 2000 SYNOPSYS MERGER HOLDINGS LLC Design data format and hierarchy management for phase processing
6978437, Oct 10 2000 CELERICS TECHNOLOGIES CORPORATION Photomask for eliminating antenna effects in an integrated circuit and integrated circuit manufacture with same
6980211, Jun 04 2002 Synopsys, Inc Automatic schematic diagram generation using topology information
6992394, Dec 28 2000 Polaris Innovations Limited Multi-level conductive lines with reduced pitch
6992925, Apr 26 2002 Synopsys, Inc High density semiconductor memory cell and memory array using a single transistor and having counter-doped poly and buried diffusion wordline
6993741, Jul 15 2003 GLOBALFOUNDRIES Inc Generating mask patterns for alternating phase-shift mask lithography
6994939, Oct 29 2002 Cypress Semiconductor Corporation Semiconductor manufacturing resolution enhancement system and method for simultaneously patterning different feature types
7003068, Jun 21 2004 KENET, INC Device for subtracting or adding a constant amount of charge in a charge-coupled device at high operating frequencies
7009862, Jan 05 2004 Hitachi, Ltd. Semiconductor device
7016214, Oct 06 2003 Hitachi, Ltd. Semiconductor integrated circuit device
7022559, Sep 30 1998 Intel Corporation MOSFET gate electrodes having performance tuned work functions and methods of making same
7028285, Jul 05 2000 SYNOPSYS MERGER HOLDINGS LLC Standard cell design incorporating phase information
7041568, Jul 18 2002 Qimonda AG Method for the production of a self-adjusted structure on a semiconductor wafer
7052972, Dec 19 2003 Round Rock Research, LLC Method for forming sublithographic features during the manufacture of a semiconductor device and a resulting in-process apparatus
7053424, Oct 31 2002 Yamaha Corporation Semiconductor integrated circuit device and its manufacture using automatic layout
7063920, May 16 2003 ASML HOLDING N V Method for the generation of variable pitch nested lines and/or contact holes using fixed size pixels for direct-write lithographic systems
7064068, Jan 23 2004 Taiwan Semiconductor Manufacturing Company, Ltd. Method to improve planarity of electroplated copper
7065731, May 07 2003 Cadence Design Systems, INC Removal of acute angles in a design layout
7079413, Mar 31 2003 Renesas Electronics Corporation Semiconductor memory device with back gate potential control circuit for transistor in memory cell
7079989, Jun 29 2001 Intel Corporation Arrangements for automatic re-legging of transistors
7093208, May 12 2003 GLOBALFOUNDRIES Inc Method for tuning a digital design for synthesized random logic circuit macros in a continuous design space with optional insertion of multiple threshold voltage devices
7093228, Dec 20 2002 Bell Semiconductor, LLC Method and system for classifying an integrated circuit for optical proximity correction
7103870, Mar 04 1999 Matsushita Electric Industrial Co., Ltd. Method for planning layout for LSI pattern, method for forming LSI pattern and method for generating mask data for LSI
7105871, Dec 18 2002 Intel Corporation Semiconductor device
7107551, May 30 2003 ARM INC Optimization of circuit designs using a continuous spectrum of library cells
7115343, Mar 10 2004 GLOBALFOUNDRIES Inc Pliant SRAF for improved performance and manufacturability
7115920, Apr 12 2004 GLOBALFOUNDRIES U S INC FinFET transistor and circuit
7120882, Mar 12 2002 Kioxia Corporation Method of setting process parameter and method of setting process parameter and/or design rule
7124386, Jun 07 2002 Cadence Design Systems, INC Dummy fill for integrated circuits
7126837, Mar 26 2004 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Interlocking memory/logic cell layout and method of manufacture
7132203, Jul 05 2000 SYNOPSYS MERGER HOLDINGS LLC Phase shift masking for complex patterns with proximity adjustments
7137092, Aug 21 2003 Kawasaki Microelectronics, Inc. Layout method of semiconductor integrated circuit, layout structure thereof, and photomask for forming the layout structure
7141853, Jun 12 2001 GLOBALFOUNDRIES Inc Method and structure for buried circuits and devices
7143380, Aug 08 2002 Xilinx, Inc Method for application of network flow techniques under constraints
7149999, Feb 25 2003 TELA INNOVATIONS, INC Method for correcting a mask design layout
7152215, Jun 07 2002 Cadence Design Systems, INC Dummy fill for integrated circuits
7155685, Dec 27 2002 ABLIC INC Optimizing designing apparatus of integrated circuit, optimizing designing method of integrated circuit, and storing medium in which program for carrying out optimizing designing method of integrated circuit is stored
7155689, Oct 07 2003 Synopsys, Inc Design-manufacturing interface via a unified model
7159197, Dec 31 2001 SYNOPSYS MERGER HOLDINGS LLC Shape-based geometry engine to perform smoothing and other layout beautification operations
7174520, Jun 07 2002 Cadence Design Systems, INC Characterization and verification for integrated circuit designs
7175940, Oct 09 2001 ASML NETHERLANDS B V Method of two dimensional feature model calibration and optimization
7176508, Jul 27 2004 GLOBALFOUNDRIES U S INC Temperature sensor for high power very large scale integration circuits
7177215, Jun 24 2002 Hitachi, Ltd. Semiconductor memory device operating at high speed and low power consumption
7185294, Sep 23 2004 VERISILICON HOLDINGSCO , LTD Standard cell library having globally scalable transistor channel length
7188322, Feb 25 2005 International Business Machines Corporation Circuit layout methodology using a shape processing application
7194712, May 12 2004 Synopsys, Inc. Method and apparatus for identifying line-end features for lithography verification
7200835, Feb 24 2005 Texas Instruments Incorporated Method of locating sub-resolution assist feature(s)
7202517, Jul 18 2003 INTERUNIVERSITAIR MICROELEKTRONICA CENTRUM IMEC VZW A BELGIUM CORPORATION Multiple gate semiconductor device and method for forming same
7205191, May 14 2003 Kabushiki Kaisha Toshiba Semiconductor integrated circuit and method of designing the same
7208794, Sep 05 2002 Qimonda AG High-density NROM-FINFET
7214579, Aug 18 2002 SK HYNIX INC Self-aligned 2-bit “double poly CMP” flash memory cell
7219326, Dec 16 2002 Apple Inc Physical realization of dynamic logic using parameterized tile partitioning
7221031, Jul 15 2003 SAMSUNG ELECTRONICS CO , LTD Semiconductor device having sufficient process margin and method of forming same
7225423, Jun 30 2000 OPEN-SILICON, INC ; ZENASIS ASSIGNMENT FOR THE BENEFIT OF CREDITORS , LLC Method for automated design of integrated circuits with targeted quality objectives using dynamically generated building blocks
7227183, Sep 17 2004 International Business Machines Corporation Polysilicon conductor width measurement for 3-dimensional FETs
7228510, Oct 31 2002 Yamaha Corporation Semiconductor integrated circuit device and its manufacture using automatic layout
7231628, Jul 12 2002 Cadence Design Systems, INC Method and system for context-specific mask inspection
7235424, Jul 14 2005 Taiwan Semiconductor Manufacturing Co., Ltd. Method and apparatus for enhanced CMP planarization using surrounded dummy design
7243316, Jun 07 2002 Cadence Design Systems, INC Test masks for lithographic and etch processes
7252909, Apr 18 2002 Taiwan Semiconductor Manufacturing Co., Ltd. Method to reduce CD non-uniformity in IC manufacturing
7264990, Jul 25 2001 Zeon Corporation Methods of nanotubes films and articles
7266787, Feb 24 2005 ICERA INC Method for optimising transistor performance in integrated circuits
7269803, Dec 18 2003 Bell Semiconductor, LLC System and method for mapping logical components to physical locations in an integrated circuit design environment
7278118, Nov 04 2004 PDF Solutions, Inc Method and process for design of integrated circuits using regular geometry patterns to obtain geometrically consistent component features
7279727, Jul 22 2004 Godo Kaisha IP Bridge 1 Semiconductor device
7287320, Sep 17 2003 Faraday Technology Corp. Method for programming a routing layout design through one via layer
7294534, Oct 19 2004 Renesas Electronics Corporation Interconnect layout method
7302651, Oct 29 2004 GLOBALFOUNDRIES Inc Technology migration for integrated circuits with radical design restrictions
7308669, May 18 2005 GLOBALFOUNDRIES U S INC Use of redundant routes to increase the yield and reliability of a VLSI layout
7312003, Jul 05 2000 SYNOPSYS MERGER HOLDINGS LLC Design and layout of phase shifting photolithographic masks
7315994, Dec 22 2003 International Business Machines Corporation Method and device for automated layer generation for double-gate FinFET designs
7327591, Jun 17 2004 Texas Instruments Incorporated Staggered memory cell array
7329938, Jan 13 2004 Kabushiki Kaisha Toshiba Semiconductor integrated circuit
7335966, Feb 26 2004 TRIAD SEMICONDUCTOR, INC Configurable integrated circuit capacitor array using via mask layers
7337421, Sep 30 2004 Cadence Design Systems, INC Method and system for managing design corrections for optical and process effects based on feature tolerances
7338896, Dec 17 2004 INTERUNIVERSITAIR MICROELEKTRONICA CENTRUM IMEC Formation of deep via airgaps for three dimensional wafer to wafer interconnect
7345909, Sep 24 2003 NATIONAL TAIWAN UNIVERSITY; NORTHERN TAIWAN UNIVERSITY Low-power SRAM memory cell
7346885, Sep 24 2004 Polaris Innovations Limited Method for producing a mask layout avoiding imaging errors for a mask
7350183, Nov 05 2004 GLOBALFOUNDRIES U S INC Method for improving optical proximity correction
7353492, Feb 26 2004 GOOGLE LLC Method of IC fabrication, IC mask fabrication and program product therefor
7360179, Jun 07 2002 Cadence Design Systems, Inc. Use of models in integrated circuit fabrication
7360198, Jun 17 2002 Technology dependent transformations for CMOS in digital design synthesis
7366997, Jan 11 2005 SYNOPSYS, INC , A DELAWARE CORPORATION Methods and apparatuses for thermal analysis based circuit design
7367008, Jun 07 2002 Cadence Design Systems, INC Adjustment of masks for integrated circuit fabrication
7376931, Dec 22 2003 Renesas Electronics Corporation Method for providing layout design and photo mask
7383521, Jun 07 2002 Cadence Design Systems, INC Characterization and reduction of variation for integrated circuits
7397260, Nov 04 2005 GLOBALFOUNDRIES U S INC Structure and method for monitoring stress-induced degradation of conductive interconnects
7400627, Jun 05 2003 Ikanos Communications, Inc ATM header compression using hash tables
7402848, Dec 03 2004 International Business Machines Corporation Integrated circuit having gates and active regions forming a regular grating
7404154, Jul 25 2005 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Basic cell architecture for structured application-specific integrated circuits
7404173, Apr 07 2004 RPX Corporation Intermediate layout for resolution enhancement in semiconductor fabrication
7411252, Jun 21 2005 GLOBALFOUNDRIES U S INC Substrate backgate for trigate FET
7421678, Feb 13 2006 Synopsys, Inc. Assist feature placement using a process-sensitivity model
7423298, Mar 17 2004 Sharp Kabushiki Kaisha Bidirectional photothyristor chip, optical lighting coupler, and solid state relay
7424694, Dec 26 2005 Fujitsu Limited Integrated circuit layout device, method thereof and program thereof
7424695, Feb 17 2005 Kabushiki Kaisha Toshiba Method of manufacturing a semiconductor integrated circuit, a program for a computer automated design system, and a semiconductor integrated circuit
7426710, May 27 2004 VERISILICON HOLDINGSCO , LTD Standard cell library having cell drive strengths selected according to delay
7432562, Jun 03 2003 Micron Technology, Inc. SRAM devices, and electronic systems comprising SRAM devices
7434185, Sep 27 2006 GLOBALFOUNDRIES Inc Method and apparatus for parallel data preparation and processing of integrated circuit graphical design data
7441211, May 06 2005 RPX Corporation Gate-length biasing for digital circuit optimization
7442630, May 03 2001 Littelfuse, Inc Method for fabricating forward and reverse blocking devices
7444609, Jun 29 2006 GLOBALFOUNDRIES U S INC Method of optimizing customizable filler cells in an integrated circuit physical design process
7446352, Mar 09 2006 RPX Corporation Dynamic array architecture
7449371, Apr 02 2004 TRIAD SEMICONDUCTOR, INC VIA configurable architecture for customization of analog circuitry in a semiconductor device
7458045, Oct 29 2004 Synopsys, Inc Silicon tolerance specification using shapes as design intent markers
7459792, Jun 19 2006 Taiwan Semiconductor Manufacturing Co., Ltd. Via layout with via groups placed in interlocked arrangement
7465973, Dec 03 2004 International Business Machines Corporation Integrated circuit having gates and active regions forming a regular grating
7466607, Sep 30 2004 Analog Devices, Inc. Memory access system and method using de-coupled read and write circuits
7469396, Jun 11 2004 SOCIONEXT INC Semiconductor device and layout design method therefor
7480880, Feb 21 2006 GLOBALFOUNDRIES Inc Method, system, and program product for computing a yield gradient from statistical timing
7480891, Apr 29 2005 Cadence Design Systems, INC Method and apparatus of model-based photomask synthesis
7484197, Apr 14 2006 GLOBALFOUNDRIES Inc Minimum layout perturbation-based artwork legalization with grid constraints for hierarchical designs
7485934, Oct 25 2005 Taiwan Semiconductor Manufacturing Co., Ltd. Integrated semiconductor structure for SRAM cells
7487475, Oct 15 2004 Cadence Design Systems, Inc. Systems, methods, and apparatus to perform statistical static timing analysis
7492013, Jun 27 2005 International Business Machines Corporation Systems and arrangements to interconnect components of a semiconductor device
7500211, Mar 31 2006 SOCIONEXT INC Unit cell of semiconductor integrated circuit and wiring method and wiring program using unit cell
7502275, May 23 2005 Renesas Electronics Corporation Semiconductor memory device
7503026, Dec 20 2004 SOCIONEXT INC Cell, standard cell, standard cell library, a placement method using standard cell, and a semiconductor integrated circuit
7504184, Apr 20 2005 Nanya Technology Corp. Phase-shifting mask for equal line/space dense line patterns
7506300, Apr 29 2005 Cadence Design Systems, INC Apparatus and method for breaking up and merging polygons
7508238, Aug 09 2004 Longitude Licensing Limited Semiconductor integrated circuit device
7509621, Jan 03 2005 Synopsys, Inc. Method and apparatus for placing assist features by identifying locations of constructive and destructive interference
7509622, Apr 17 2006 Synopsys, Inc Dummy filling technique for improved planarization of chip surface topography
7512017, Dec 21 2005 Intel Corporation Integration of planar and tri-gate devices on the same substrate
7512921, Oct 10 2002 Fujitsu Limited Method and apparatus for designing integrated circuit enabling the yield of integrated circuit to be improved by considering random errors
7514959, Jul 27 2004 TAHOE RESEARCH, LTD Structured integrated circuit device
7523429, Feb 20 2004 Applied Materials, Inc System for designing integrated circuits with enhanced manufacturability
7527900, Nov 10 2005 Marlin Semiconductor Limited Reticle and optical proximity correction method
7538368, Jun 16 2004 SOCIONEXT INC Standard cell, standard cell library, and semiconductor integrated circuit with suppressed variation in characteristics
7543262, Dec 06 2005 Cadence Design Systems, Inc. Analog layout module generator and method
7563701, Mar 31 2005 Daedalus Prime LLC Self-aligned contacts for transistors
7564134, Nov 05 2004 Samsung Electronics Co., Ltd. Circuit wiring layout in semiconductor memory device and layout method
7568174, Aug 19 2005 Cadence Design Systems, INC Method for checking printability of a lithography target
7569309, Nov 09 2005 Texas Instruments Incorporated Gate critical dimension variation by use of ghost features
7569310, Dec 07 2005 Intel Corporation Sub-resolution assist features for photolithography with trim ends
7569894, May 17 2005 Renesas Electronics Corporation Semiconductor device with NMOS transistors arranged continuously
7575973, Mar 27 2007 SanDisk Technologies LLC Method of making three dimensional NAND memory
7598541, Feb 26 2004 SOCIONEXT INC Semiconductor device comprising transistor pair isolated by trench isolation
7598558, Jul 18 1995 Acacia Research Group LLC Method of manufacturing semiconductor integrated circuit device having capacitor element
7614030, Jan 17 2006 Taiwan Semiconductor Manufacturing Co., Ltd. Scattering bar OPC application method for mask ESD prevention
7625790, Jul 26 2007 International Business Machines Corporation FinFET with sublithographic fin width
7632610, Sep 02 2004 Intel Corporation Sub-resolution assist features
7640522, Jan 14 2006 RPX Corporation Method and system for placing layout objects in a standard-cell layout
7646651, Mar 13 2007 Hynix Semiconductor Inc. Latch structure and bit line sense amplifier structure including the same
7653884, Jun 29 2005 CALLAHAN CELLULAR L L C Methods and systems for placement
7665051, Aug 01 2006 Polaris Innovations Limited Method and device for classifying cells in a layout into a same environment and their use for checking the layout of an electronic circuit
7700466, Jul 26 2007 TWITTER, INC Tunneling effect transistor with self-aligned gate
7712056, Jun 07 2002 Cadence Design Systems, Inc. Characterization and verification for integrated circuit designs
7739627, Jul 05 2006 System and method of maximizing integrated circuit manufacturing yield with context-dependent yield cells
7749662, Oct 07 2005 GLOBALFOUNDRIES U S INC Process margin using discrete assist features
7755110, Mar 24 2004 Infineon Technologies AG Architecture of function blocks and wirings in a structured ASIC and configurable driver cell of a logic cell zone
7770144, May 28 2003 CALLAHAN CELLULAR L L C Modular array defined by standard cell logic
7791109, Mar 29 2007 GLOBALFOUNDRIES Inc Metal silicide alloy local interconnect
7802219, Nov 30 2006 Cadence Design Systems, INC Flat placement of cells on non-integer multiple height rows in a digital integrated circuit layout
7825437, Dec 28 2007 Intel Corporation Unity beta ratio tri-gate transistor static random access memory (SRAM)
7842975, Mar 09 2006 RPX Corporation Dynamic array architecture
7873929, Aug 14 2006 The Regents of the University of California Method, apparatus and system for designing an integrated circuit including generating at least one auxiliary pattern for cell-based optical proximity correction
7882456, Apr 09 2005 Cadence Design Systems, INC Optical lithography correction process
7888705, Aug 02 2007 RPX Corporation Methods for defining dynamic array section with manufacturing assurance halo and apparatus implementing the same
7898040, Jun 18 2007 Infineon Technologies AG Dual gate FinFET
7906801, Mar 09 2006 RPX Corporation Semiconductor device and associated layouts having transistors formed from six linear conductive segments with intervening diffusion contact restrictions
7908578, Aug 02 2007 RPX Corporation Methods for designing semiconductor device with dynamic array section
7910958, Mar 09 2006 RPX Corporation Semiconductor device and associated layouts having transistors formed from linear conductive segment with non-active neighboring linear conductive segment
7910959, Mar 09 2006 RPX Corporation Semiconductor device and associated layouts having transistors formed from six linear conductive segments with gate electrode connection through single interconnect level
7917877, May 09 2008 Cadence Design Systems, Inc. System and method for circuit schematic generation
7917879, Aug 02 2007 RPX Corporation Semiconductor device with dynamic array section
7923266, May 09 2008 INTERUNIVERSITAIR MICROELEKTRONICA CENTRUM IMEC Design methodology for MuGFET ESD protection devices
7923337, Jun 20 2007 GLOBALFOUNDRIES U S INC Fin field effect transistor devices with self-aligned source and drain regions
7923757, Mar 09 2006 RPX Corporation Semiconductor device and associated layouts having linear shaped gate electrodes defined along at least five adjacent gate electrode tracks of equal pitch with gate electrode connection through single interconnect level
7932544, Mar 09 2006 RPX Corporation Semiconductor device and associated layouts including linear conductive segments having non-gate extension portions
7932545, Mar 09 2006 RPX Corporation Semiconductor device and associated layouts including gate electrode level region having arrangement of six linear conductive segments with side-to-side spacing less than 360 nanometers
7934184, Nov 14 2005 Applied Materials, Inc Integrated circuit design using modified cells
7943966, Mar 09 2006 RPX Corporation Integrated circuit and associated layout with gate electrode level portion including at least two complimentary transistor forming linear conductive segments and at least one non-gate linear conductive segment
7943967, Mar 09 2006 RPX Corporation Semiconductor device and associated layouts including diffusion contact placement restriction based on relation to linear conductive segments
7948012, Mar 09 2006 RPX Corporation Semiconductor device having 1965 nm gate electrode level region including at least four active linear conductive segments and at least one non-gate linear conductive segment
7948013, Mar 09 2006 RPX Corporation Semiconductor device and associated layouts having linear shaped gate electrodes defined along at least five adjacent gate electrode tracks of equal pitch
7952119, Mar 09 2006 RPX Corporation Semiconductor device and associated layout having three or more linear-shaped gate electrode level conductive segments of both equal length and equal pitch
7956421, Mar 13 2008 RPX Corporation Cross-coupled transistor layouts in restricted gate level layout architecture
7958465, May 08 2008 Taiwan Semiconductor Manufacturing Company, Ltd. Dummy pattern design for reducing device performance drift
7962867, Jun 07 2002 Cadence Design Systems, Inc. Electronic design for integrated circuits based on process related variations
7962879, Apr 11 2006 GLOBALFOUNDRIES Inc VLSI artwork legalization for hierarchical designs with multiple grid constraints
7964267, Apr 13 2007 DUPONT SAFETY & CONSTRUCTION, INC Ballistic-resistant panel including high modulus ultra high molecular weight polyethylene tape
7971160, Jul 22 2005 Fujitsu Semiconductor Limited Creating method of photomask pattern data, photomask created by using the photomask pattern data, and manufacturing method of semiconductor apparatus using the photomask
7989847, Mar 09 2006 RPX Corporation Semiconductor device having linear-shaped gate electrodes of different transistor types with uniformity extending portions of different lengths
7989848, Mar 09 2006 RPX Corporation Semiconductor device having at least four side-by-side electrodes of equal length and equal pitch with at least two transistor connections to power or ground
7992122, Mar 25 2005 GG TECHNOLOGY, INC Method of placing and routing for power optimization and timing closure
7994583, May 15 2007 Kabushiki Kaisha Toshiba Semiconductor device including n-type and p-type FinFET's constituting an inverter structure
8004042, Mar 20 2009 Taiwan Semiconductor Manufacturing Company, Ltd. Static random access memory (SRAM) cell and method for forming same
8022441, Mar 09 2006 RPX Corporation Semiconductor device and associated layouts having transistors formed from six linear conductive segments with gate electrode-to-gate electrode connection through single interconnect level and common node connection through different interconnect level
8030689, Mar 09 2006 RPX Corporation Integrated circuit device and associated layout including separated diffusion regions of different type each having four gate electrodes with each of two complementary gate electrode pairs formed from respective linear conductive segment
8035133, Mar 09 2006 RPX Corporation Semiconductor device having two pairs of transistors of different types formed from shared linear-shaped conductive features with intervening transistors of common type on equal pitch
8044437, May 16 2005 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Integrated circuit cell architecture configurable for memory or logic elements
8058671, Mar 09 2006 RPX Corporation Semiconductor device having at least three linear-shaped electrode level conductive features of equal length positioned side-by-side at equal pitch
8058690, Dec 21 2005 Intel Corporation Integration of planar and tri-gate devices on the same substrate
8072003, Mar 09 2006 RPX Corporation Integrated circuit device and associated layout including two pairs of co-aligned complementary gate electrodes with offset gate contact structures
8072053, Mar 06 2009 KAIXIN INC Leadless integrated circuit package having electrically routed contacts
8088679, Mar 09 2006 RPX Corporation Method for fabricating integrated circuit with gate electrode level portion including at least two complementary transistor forming linear conductive segments and at least one non-gate linear conductive segment
8088680, Mar 09 2006 RPX Corporation Method for fabricating integrated circuit having at least three linear-shaped gate electrode level conductive features of equal length positioned side-by-side at equal pitch
8088681, Mar 09 2006 RPX Corporation Method for fabricating integrated circuit including separated diffusion regions of different type each having four gate electrodes with each of two complementary gate electrode pairs formed from respective linear condcutive segment
8088682, Mar 09 2006 RPX Corporation Method for fabricating integrated circuit with gate electrode level region including two side-by-side ones of at least three linear-shaped conductive structures electrically connected to each other through non-gate level
8089098, Mar 09 2006 RPX Corporation Integrated circuit device and associated layout including linear gate electrodes of different transistor types next to linear-shaped non-gate conductive segment
8089099, Mar 09 2006 RPX Corporation Integrated circuit device and associated layout including gate electrode level region of 965 NM radius with linear-shaped conductive segments on fixed pitch
8089100, Mar 09 2006 RPX Corporation Integrated circuit with gate electrode level region including at least four linear-shaped conductive structures forming gate electrodes of transistors and including extending portions of at least two different sizes
8089101, Mar 09 2006 RPX Corporation Integrated circuit device with gate electrode level region including two side-by-side ones of at least three linear-shaped conductive structures electrically connected to each other through non-gate level
8089102, Mar 09 2006 RPX Corporation Method for fabricating integrated circuit having three or more linear-shaped gate electrode level conductive segments of both equal length and equal pitch
8089103, Mar 09 2006 RPX Corporation Integrated circuit device with gate level region including at least three linear-shaped conductive segments having offset line ends and forming three transistors of first type and one transistor of second type
8089104, Mar 09 2006 RPX Corporation Integrated circuit with gate electrode level region including multiple linear-shaped conductive structures forming gate electrodes of transistors and including uniformity extending portions of different size
8101975, Mar 09 2006 RPX Corporation Integrated circuit device with gate level region including non-gate linear conductive segment positioned within 965 nanometers of four transistors of first type and four transistors of second type
8110854, Mar 09 2006 RPX Corporation Integrated circuit device with linearly defined gate electrode level region and shared diffusion region of first type connected to shared diffusion region of second type through at least two interconnect levels
8129750, Mar 09 2006 RPX Corporation Integrated circuit including at least six linear-shaped conductive structures forming gate electrodes of transistors with at least two linear-shaped conductive structures of different length
8129751, Mar 09 2006 RPX Corporation Integrated circuit including at least six linear-shaped conductive structures forming gate electrodes and including four conductive contacting structures having at least two different connection distances
8129752, Mar 09 2006 RPX Corporation Integrated circuit including a linear-shaped conductive structure forming one gate electrode and having length greater than or equal to one-half the length of linear-shaped conductive structure forming two gate electrodes
8129754, Mar 09 2006 RPX Corporation Integrated circuit with gate electrode level including at least six linear-shaped conductive structures forming gate electrodes of transisters with at least one pair of linear-shaped conductive structures having offset ends
8129755, Mar 09 2006 RPX Corporation Integrated circuit with gate electrode level including at least four linear-shaped conductive structures of equal length and equal pitch with linear-shaped conductive structure forming one transistor
8129756, Mar 09 2006 RPX Corporation Integrated circuit including at least six linear-shaped conductive structures forming gate electrodes of transistors with at least two different extension distances beyond conductive contacting structures
8129757, Mar 09 2006 RPX Corporation Integrated circuit including at least six linear-shaped conductive structive structures at equal pitch including at least two linear-shaped conductive structures having non-gate portions of different length
8129819, Mar 09 2006 RPX Corporation Method of fabricating integrated circuit including at least six linear-shaped conductive structures at equal pitch including at least two linear-shaped conductive structures having non-gate portions of different length
8130529, Nov 27 2007 Fujitsu Semiconductor Limited Semiconductor device
8134183, Mar 09 2006 RPX Corporation Integrated circuit including linear-shaped conductive structures that have gate portions and extending portions of different size
8134184, Mar 09 2006 RPX Corporation Integrated circuit having gate electrode level region including at least four linear-shaped conductive structures with some outer-contacted linear-shaped conductive structures having larger outer extending portion than inner extending portion
8134185, Mar 09 2006 RPX Corporation Integrated circuit having gate electrode level region including at least seven linear-shaped conductive structures at equal pitch including linear-shaped conductive structure forming transistors of two different types and at least three linear-shaped conductive structures having aligned ends
8134186, Mar 09 2006 RPX Corporation Integrated circuit including at least three linear-shaped conductive structures at equal pitch including linear-shaped conductive structure having non-gate portion length greater than gate portion length
8138525, Mar 09 2006 RPX Corporation Integrated circuit including at least three linear-shaped conductive structures of different length each forming gate of different transistor
8161427, Aug 29 2002 Technion Research & Development Foundation Ltd. Logic circuit and method of logic circuit design
8178905, Jan 12 2007 SOCIONEXT INC Layout structure of semiconductor device
8178909, May 16 2005 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Integrated circuit cell architecture configurable for memory or logic elements
8198656, Mar 09 2006 RPX Corporation Integrated circuit including gate electrode level region including at least four linear-shaped conductive structures of equal length having aligned ends and positioned at equal pitch and forming multiple gate electrodes of transistors of different type
8207053, Mar 09 2006 RPX Corporation Electrodes of transistors with at least two linear-shaped conductive structures of different length
8214778, Aug 02 2007 RPX Corporation Methods for cell phasing and placement in dynamic array architecture and implementation of the same
8217428, Mar 09 2006 RPX Corporation Integrated circuit including gate electrode level region including at least three linear-shaped conductive structures of equal length having aligned ends and positioned at equal pitch and forming multiple gate electrodes of transistors of different type
8225239, Mar 09 2006 RPX Corporation Methods for defining and utilizing sub-resolution features in linear topology
8225261, Mar 09 2006 RPX Corporation Methods for defining contact grid in dynamic array architecture
8245180, Mar 09 2006 RPX Corporation Methods for defining and using co-optimized nanopatterns for integrated circuit design and apparatus implementing same
8247846, Mar 09 2006 RPX Corporation Oversized contacts and vias in semiconductor chip defined by linearly constrained topology
8253172, Mar 09 2006 RPX Corporation Semiconductor device with linearly restricted gate level region including four serially connected transistors of first type and four serially connected transistors of second type separated by non-diffusion region
8253173, Mar 09 2006 RPX Corporation Semiconductor device with gate level including four transistors of first type and four transistors of second type separated by non-diffusion region and having at least two gate contacts positioned outside separating non-diffusion region
8258547, Mar 09 2006 RPX Corporation Semiconductor device with linearly restricted gate level region including two transistors of first type and two transistors of second type with offset gate contacts
8258548, Mar 09 2006 RPX Corporation Semiconductor device with gate level including four transistors of first type and four transistors of second type separated by non-diffusion region with restricted gate contact placement over separating non-diffusion region
8258549, Mar 09 2006 RPX Corporation Semiconductor device including two transistors of first type having gates formed by conductors of different length respectively aligned with two transistors of second type having gates formed by conductors of different length
8258550, Mar 09 2006 RPX Corporation Semiconductor device including at least six transistor forming linear shapes including at least two transistor forming linear shapes having different extension distances beyond gate contact
8258551, Mar 09 2006 RPX Corporation Semiconductor device with gate level including transistors of first type and transistors of second type with corresponding gate contact placement restriction
8258552, Mar 09 2006 RPX Corporation Semiconductor device including at least six transistor forming linear shapes with at least two transistor forming linear shapes having offset ends
8264007, Mar 09 2006 RPX Corporation Semiconductor device including at least six transistor forming linear shapes including at least two different gate contact connection distances
8264008, Mar 09 2006 RPX Corporation Semiconductor device including transistor forming linear shapes including gate portions and extending portions of different size
8264009, Mar 09 2006 RPX Corporation Semiconductor device with linearly restricted gate level region including four transistors of first type and four transistors of second type with gate defining shapes of different length
8283701, Aug 02 2007 RPX Corporation Semiconductor device with dynamic array sections defined and placed according to manufacturing assurance halos
8316327, Aug 04 2006 Infineon Technologies AG Methods of optical proximity correction
8356268, Aug 02 2007 RPX Corporation Integrated circuit device including dynamic array section with gate level having linear conductive features on at least three side-by-side lines and uniform line end spacings
8378407, Dec 07 2006 Tower Semiconductor, Ltd.; Tower Semiconductor LTD Floating gate inverter type memory cell and array
8395224, Mar 13 2008 RPX Corporation Linear gate level cross-coupled transistor device with non-overlapping PMOS transistors and non-overlapping NMOS transistors relative to directions of gate electrodes
8402397, Jul 26 2011 Siemens Industry Software Inc Hotspot detection based on machine learning
8405163, Mar 13 2008 RPX Corporation Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with shared diffusion regions on opposite sides of two-transistor-forming gate level feature
8422274, Jan 10 2002 Renesas Electronics Corporation Semiconductor storage device and method of fabricating the same
8436400, Mar 09 2006 RPX Corporation Semiconductor device with gate level including gate electrode conductors for transistors of first type and transistors of second type with some gate electrode conductors of different length
8453094, Jan 31 2008 RPX Corporation Enforcement of semiconductor structure regularity for localized transistors and interconnect
8575706, Mar 13 2008 RPX Corporation Integrated circuit including cross-coupled transistors having gate electrodes formed within gate level feature layout channels with at least two different gate level features inner extensions beyond gate electrode
8667443, Mar 05 2007 RPX Corporation Integrated circuit cell library for multiple patterning
8701071, Jan 31 2008 RPX Corporation Enforcement of semiconductor structure regularity for localized transistors and interconnect
8735995, Mar 13 2008 RPX Corporation Cross-coupled transistor circuit defined on three gate electrode tracks with diffusion regions of common node on opposing sides of same gate electrode track
8756551, Aug 02 2007 RPX Corporation Methods for designing semiconductor device with dynamic array section
8836045, Mar 13 2008 RPX Corporation Cross-coupled transistor circuit having diffusion regions of common node on opposing sides of same gate electrode track
8839162, Jul 14 2010 GLOBALFOUNDRIES Inc Specifying circuit level connectivity during circuit design synthesis
8839175, Mar 09 2006 RPX Corporation Scalable meta-data objects
8847329, Mar 13 2008 RPX Corporation Cross-coupled transistor circuit defined having diffusion regions of common node on opposing sides of same gate electrode track with at least two non-inner positioned gate contacts
8863063, May 06 2009 RPX Corporation Finfet transistor circuit
20020003270,
20020015899,
20020030510,
20020068423,
20020079927,
20020149392,
20020166107,
20020194575,
20030042930,
20030046653,
20030061592,
20030088839,
20030088842,
20030103176,
20030106037,
20030117168,
20030124847,
20030125917,
20030126569,
20030145288,
20030145299,
20030177465,
20030185076,
20030203287,
20030229868,
20030229875,
20040029372,
20040049754,
20040063038,
20040115539,
20040139412,
20040145028,
20040153979,
20040161878,
20040169201,
20040194050,
20040196705,
20040229135,
20040232444,
20040243966,
20040262640,
20050009312,
20050009344,
20050012157,
20050055828,
20050076320,
20050087806,
20050093147,
20050101112,
20050110130,
20050135134,
20050136340,
20050138598,
20050156200,
20050185325,
20050189604,
20050189614,
20050196685,
20050205894,
20050212018,
20050224982,
20050229130,
20050251771,
20050264320,
20050264324,
20050266621,
20050268256,
20050278673,
20050280031,
20060038234,
20060063334,
20060070018,
20060084261,
20060091550,
20060095872,
20060101370,
20060112355,
20060113567,
20060120143,
20060121715,
20060123376,
20060125024,
20060131609,
20060136848,
20060146638,
20060151810,
20060158270,
20060177744,
20060181310,
20060195809,
20060197557,
20060206854,
20060223302,
20060248495,
20070001304,
20070002617,
20070007574,
20070038973,
20070074145,
20070094634,
20070101305,
20070105023,
20070106971,
20070113216,
20070172770,
20070186196,
20070196958,
20070209029,
20070210391,
20070234252,
20070234262,
20070256039,
20070257277,
20070274140,
20070277129,
20070288882,
20070290361,
20070294652,
20070297249,
20080005712,
20080021689,
20080022247,
20080046846,
20080081472,
20080082952,
20080086712,
20080097641,
20080098334,
20080098341,
20080099795,
20080127000,
20080127029,
20080134128,
20080144361,
20080148216,
20080163141,
20080168406,
20080211028,
20080216207,
20080244494,
20080251779,
20080265290,
20080276105,
20080283910,
20080285331,
20080308848,
20080315258,
20090014811,
20090024974,
20090031261,
20090032898,
20090032967,
20090037864,
20090057780,
20090075485,
20090077524,
20090085067,
20090087991,
20090101940,
20090106714,
20090155990,
20090181314,
20090187871,
20090206443,
20090224408,
20090228853,
20090228857,
20090273100,
20090280582,
20090302372,
20090319977,
20100001321,
20100006897,
20100006898,
20100006899,
20100006900,
20100006901,
20100006902,
20100006903,
20100006947,
20100006948,
20100006950,
20100006951,
20100006986,
20100011327,
20100011328,
20100011329,
20100011330,
20100011331,
20100011332,
20100011333,
20100012981,
20100012982,
20100012983,
20100012984,
20100012985,
20100012986,
20100017766,
20100017767,
20100017768,
20100017769,
20100017770,
20100017771,
20100017772,
20100019280,
20100019281,
20100019282,
20100019283,
20100019284,
20100019285,
20100019286,
20100019287,
20100019288,
20100019308,
20100023906,
20100023907,
20100023908,
20100023911,
20100025731,
20100025732,
20100025733,
20100025734,
20100025735,
20100025736,
20100032722,
20100032723,
20100032724,
20100032726,
20100037194,
20100037195,
20100096671,
20100203689,
20100224943,
20100229140,
20100232212,
20100252865,
20100264468,
20100270681,
20100287518,
20110016909,
20110108890,
20110108891,
20110154281,
20110207298,
20110260253,
20110298025,
20120012932,
20120273841,
20130097574,
20130200465,
20130200469,
20130207198,
20130207199,
20130254732,
20140197543,
EP102644,
EP788166,
EP1394858,
EP1670062,
EP1730777,
EP1833091,
EP2251901,
FR2860920,
JP10116911,
JP1284115,
JP1995302706,
JP199709289251,
JP1999045948,
JP2001056463,
JP2001068558,
JP2001168707,
JP2001272228,
JP2002026125,
JP2002026296,
JP2002184870,
JP2002258463,
JP2002289703,
JP2003264231,
JP2003359375,
JP2004013920,
JP2004200300,
JP2004241529,
JP2004342757,
JP2005020008,
JP2005114752,
JP2005135971,
JP2005149265,
JP2005183793,
JP2005203447,
JP2005268610,
JP2006303022,
JP2007013060,
JP2007043049,
JP2684980,
JP3165061,
JP5211437,
JP5218362,
JP58182242,
JP61182244,
JP63310136,
JP7153927,
KR100417093,
KR101998087485,
KR1019990057943,
KR1020000028830,
KR1020020034313,
KR1020020070777,
KR1020050030347,
KR19980084215,
KR20030022006,
KR20050037965,
KR20060108233,
TW386288,
WO2005104356,
WO2006014849,
WO2006052738,
WO2007014053,
WO2007103587,
//////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jul 30 2009Tela Innovations, Inc.(assignment on the face of the patent)
Jul 30 2009REED, BRIANTELA INNOVATIONS, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0230330584 pdf
Jul 30 2009SMAYLING, MICHAEL C TELA INNOVATIONS, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0230330584 pdf
Nov 12 2010BECKER, SCOTT T TELA INNOVATIONS, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0254710601 pdf
Jun 04 2021TELA INNOVATIONS, INC RPX CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0566020001 pdf
Jul 06 2021RPX CorporationBARINGS FINANCE LLC, AS COLLATERAL AGENTPATENT SECURITY AGREEMENT0634240569 pdf
Date Maintenance Fee Events
Feb 06 2019M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Apr 24 2023REM: Maintenance Fee Reminder Mailed.
Oct 09 2023EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Sep 01 20184 years fee payment window open
Mar 01 20196 months grace period start (w surcharge)
Sep 01 2019patent expiry (for year 4)
Sep 01 20212 years to revive unintentionally abandoned end. (for year 4)
Sep 01 20228 years fee payment window open
Mar 01 20236 months grace period start (w surcharge)
Sep 01 2023patent expiry (for year 8)
Sep 01 20252 years to revive unintentionally abandoned end. (for year 8)
Sep 01 202612 years fee payment window open
Mar 01 20276 months grace period start (w surcharge)
Sep 01 2027patent expiry (for year 12)
Sep 01 20292 years to revive unintentionally abandoned end. (for year 12)