A ferroelectric phase shifter, especially for the X-band, may be made from n elongated slab of ferroelectric material, which has a high dielectric constant that can be varied by applying an electric field. A narrow signal conductor is formed extending across a first surface of the slab, and a ground plane conductor is formed an opposite surface, forming a microstripline. An overall rf phase shifting circuit can be made by forming input and output circuits corresponding to the above-described signal conductor and interposing and connecting the signal conductor between the input and output circuits. The input and output circuits can be formed on respective, discrete substrates, with the ferroelectric slab being interposed between the substrates, or the input and output circuits can be formed on a common substrate, with the ferroelectric material inserted into a slot formed in the common substrate.
|
1. A ferroelectric phase shifter comprising:
an elongated slab of ferroelectric material having a high dielectric constant which can be varied by applying an electric field to such material, said slab having a length, a width, and a thickness, and first and second major surfaces which are opposed to each other through said thickness of the slab; a signal conductor formed extending across said major surface in said width direction and formed by a metallized portion of said ferroelectric material on said first major surface; a ground plane conductor formed on a portion of said second major surface of said slab and opposite said signal conductor; said signal conductor being narrow in said length direction and narrower than said length of said elongated slab, such that said conductor, said ground plane, and the interposed ferroelectric material form a microstripline; and input and output circuit means, said ferroelectric phase shifter being interposed between said input and output circuit means and thereby forming an rf phase shifting circuit of which the ferroelectric phase shifter forms an active element, wherein said input and output circuit means are formed on a common substrate, and said elongated ferroelectric material slab is inserted into a slot formed in said common substrate with said signal conductor on said ferroelectric slab being conductively connected to said input and output circuit means.
7. A method of fabricating an rf phase shifter circuit comprising a ferroelectric phase shifter, said method comprising the steps of:
forming a ferroelectric phase shifter comprising an elongated slab of ferroelectric material having a high dielectric constant which can be varied by applying an electric field to such material, said slab having a length, a width, and a thickness, and first and second major surfaces which are opposed to each other through said thickness of the slab; signal conductor formed extending across said major surface in said width direction and formed by a metallized portion of said ferroelectric material on said first major surface; a ground plane conductor formed on a portion of said second major surface of said slab and opposite said signal conductor; said signal conductor being narrow in said length direction and narrower than said length of said elongated slab, such that said conductor, said ground plane, and the interposed ferroelectric material form a microstripline; forming input and output circuits corresponding to said ferroelectric phase shifter; and interposing said ferroelectric phase shifter between said input and output circuits with said input and output circuits being connected to said ferroelectric phase shifter, thereby forming an rf phase shifting circuit of which the ferroelectric phase shifter forms an active element; forming said input and output circuits on a common substrate; and inserting said elongated ferroelectric material slab into a slot formed in said common substrate, with said signal conductor on said ferroelectric slab being conductively connected to said input and output circuits.
11. A method of fabricating an rf phase shifter circuit comprising a ferroelectric phase shifter comprising the steps of:
forming a plurality of ferroelectric phase shifters each comprising an elongated slab of ferroelectric material having a high dielectric constant which can be varied by applying an electric field to such material, said slab having a length, a width, and a thickness, and first and second major surfaces which are opposed to each other through said thickness of the slab; signal conductor formed extending across said major surface in said width direction and formed by a metallized portion of said ferroelectric material on said first major surface; a ground plane conductor formed on a portion of said second major surface of said slab and opposite said signal conductor; said signal conductor being narrow in said length direction and narrower than said length of said elongated slab, such that said conductor, said ground plane, and the interposed ferroelectric material form a microstripline; forming a plurality of input and output circuits corresponding to the ferroelectric phase shifters in said plurality of ferroelectric phase shifters, and interposing said plurality of ferroelectric phase shifters between said plurality of input and output circuits and thereby forming a respective plurality of rf phase shifting circuits of which the ferroelectric phase shifters of said plurality of ferroelectric phase shifters form active elements; forming said input and output circuits on an common substrate; and inserting said plurality of ferroelectric phase shifters into a slot formed in said common substrate, with each of said signal conductors being conductively connected to a respective pair of said input and output circuits.
2. A device as in
3. A device as in
5. In combination, the device of
6. The circuit of
8. A method as in
9. A method as in
|
The invention described herein may be manufactured, used, and licensed by or for the Government for governmental purposes without the payment to the inventors of any royalty thereon.
1. Field of the Invention
This invention relates to structures and fabricating methods for microwave ferroelectric phase shifters.
One aspect of the invention relates to a fabrication technique wherein a ferroelectric phase shifter element is formed on an easy-to-handle slab of ferroelectric material, and the product thus obtained. A further aspect of the invention relates to an assembly comprising a plurality of ferroelectric phase shifter elements all formed on a common slab of ferroelectric material, which can thereby be commonly inserted into a plurality of phase shifter circuits.
The invention reduces fabrication costs, eases the assembly process, and produces a more uniform microwave ferroelectric phase shifter. This invention will find applications at all microwave frequencies, but is expected to have an impact especially at frequencies above 10 GHz, where current assembly methods are expensive and uniform phase shifter performance is difficult to achieve.
More particularly, the invention will reduce the difficulty in handling, metallizing, and positioning small, fragile pieces of ferroelectric material. By fabricating several phase shifters on a single piece of ferroelectric material, the multiple phase shifters thus obtained can be expected to find applications in electronic scanning antennas, where from several tens to several thousands of phase shifters are required in each antenna. This invention solves the problem of individually fabricating and assembling phase shifters, for microwave systems which require many phase shifters. This invention will reduce the cost when several phase shifters are required, and produce more uniform performance by eliminating assembly variations.
2. Background Art
Ferroelectric phase shifters are used to control the amount of phase shift of a microwave signal, by varying the permittivity of the ferroelectric material. The permittivity can be controlled by an applied electric field. A phase shifter of background interest is disclosed in U.S. Pat. No. 5,032,805. Because of the high dielectric constant of ferroelectric materials, these phase shifters are very small devices, and become increasingly smaller at higher frequencies. Ferroelectric phase shifter dimensions above 10 GHz are of the order of a few mils, one mil being equal to about 0.0254 mm, which makes them difficult to handle. Breakage is common when positioning the ferroelectric into the phase shifter circuit.
Previous microstrip ferroelectric phase shifters have used a ferroelectric rod as the active phase shifting element. FIG. 1 shows a known ferroelectric phase shifter circuit 12, which uses a rod 10 made of barium strontium titanate ferroelectric material having a dielectric constant of, for example, between 100 and 6000. The rod 10 is arranged in a hole 14 which is cut in the dielectric substrate 16 to enable the rod 10 to be positioned in the circuit 12. If the material has a nominal dielectric constant of 800, for example, the size of the rod required to produce 360 degrees of phase shift at 10 GHz is 0.008"×0.010"×0.45". It is difficult to position such a small rod consistently in the phase shifter circuit. Experience has shown that breakage is a common occurrence during the positioning process. For higher frequency applications, the task of handling the ferroelectric rods will be even more difficult; at 30 GHz the dimensions of the rod become 0.003"×0.0035"×0.15".
Other phase shifting circuits of interest are shown in U.S. Ser. No. 07/916,741 filed Jul. 22, 1992 (U.S. Pat. No. 5,212,463) and U.S. Pat. No. 4,105,959. The disclosures of these and all other prior art information mentioned herein is expressly incorporated by reference.
A known type of electronic scanning antenna, shown in FIG. 2, uses an individual ferroelectric phase shifter circuit 22a, 22b, etc., for each of a plurality of series radiating arrays 20a, 20b, etc. Each phase shifter circuit may have a DC voltage block 24, a pair of transition elements 26, and a bias voltage circuit 27, constructed and arranged in a known manner. Each phase shifter element such as a ferroelectric rod 28a, 28b, etc., must be individually positioned into the array. It would be significantly more cost-effective, and enhance performance if a multiple phase shifter element were used.
Current ferrite phase shifters cost several thousand dollars each, and require individual tuning to achieve uniform performance. Today's electronic scanning antennas use several hundreds or thousands of phase shifters, and even with lower-cost ferroelectric phase shifters now being developed, the individual handling and packaging of these will contribute to a higher cost than is desirable for many applications. The cost of ferroelectric phase shifters will be reduced by the proposed multiple phase shifters.
The techniques disclosed herein for fabricating high frequency microstrip ferroelectric phase shifters are improvements upon the known techniques for fabrication of ferroelectric phase shifter rods designed to operate below 5 GHz. It has been found to be very difficult to handle and position the small ferroelectric rods required for frequencies above 10 GHz. Using a ferroelectric with a dielectric constant of 800, the size of the ferroelectric rod that would be needed to produce 360 degrees of phase shift at 10 GHz is 0.008"×0.010"×0.45".
The present inventors have realized that a 10 GHz phase shifter would be difficult to fabricate with any consistency. Because of that problem, the inventors saw that at much higher frequencies, ferroelectric phase shifters using dielectric rods would be economically impractical to fabricate. The disclosed fabrication technique overcomes the difficulty of handling and positioning small fragile pieces or rods of ferroelectric, by using instead a larger metallized slab of ferroelectric material, upon which, before or after positioning the slab in a microstrip circuit, a patterned active ferroelectric phase shifter section is formed, for example by being etched from a metallized surface of the ferroelectric slab. This proposed fabrication procedure allows the very small dimensions to be controlled by the width of the patterned conductor circuit. Further, the thin ferroelectric slabs are more easily handled than small individual ferroelectric rods.
Also disclosed is a multiple phase shifter in which a plurality of phase shifters are formed as a single unit, using a fabrication process compatible with current planar technology. Since this multiple phase shifter is fabricated on a single piece of material, it is easier to maintain uniform performance than with prior art apparatus.
Other features and advantages of the present invention will become apparent from the following description of embodiments of the invention, with reference to the accompanying drawings.
FIG. 1 shows a conventional ferroelectric phase shifter using a ferroelectric rod as an active element.
FIG. 2 discloses an electronic scanning antenna including a plurality of antenna arrays, each having a respective ferroelectric phase shifter.
FIG. 3 shows a conventional ferroelectric rod, next to a ferroelectric slab which can be used in a fabrication method according to an aspect of this invention.
FIG. 4 shows the ferroelectric slab, after an active phase shifting region has been formed by forming a patterned conductor on a top major surface of the ferroelectric slab, and a ground plane on a bottom major surface.
FIG. 5 shows a step of assembling the ferroelectric slab of FIG. 4 into a phase shifting circuit.
FIG. 6 shows a bar of ferroelectric material that can be used in a fabrication method according to another aspect of the invention.
FIG. 7 shows the ferroelectric bar of FIG. 6, after formation thereon of a multiple ferroelectric phase shifter, formed by forming several microstrip conductors on one major surface, and a ground plane on the other major surface.
FIG. 8 shows an electronic scanning antenna having a plurality of antenna arrays, each having a respective phase shifting circuit, the active elements of all of the phase shifting circuits being provided by a multiple phase shifter according to FIG. 7.
FIG. 9 shows one method of assembling the antenna array of FIG. 8.
FIG. 10 shows another method of assembling the antenna array of FIG. 8.
A method of assembling ferroelectric phase shifters according to a first aspect of the present invention overcomes many of the size problems of prior art ferroelectric rods. As shown in FIGS. 3-5, the fabrication method replaces the ferroelectric rod with a metallized ferroelectric slab. The slab 30 is employed in the disclosed method. A prior art ferroelectric rod 10 is shown at the right side of FIG. 3. The thickness (t) of the slab 30 and the rod 10 are identical. The width (w) of the slab 30 is equal to the length of the rod, and the length of the slab (l) can be any convenient size which is easy to handle and is compatible with the phase shifter circuit.
The active phase shifting section within the ferroelectric slab is determined by the width of a patterned conductor 32 which in this non-limiting example may be etched from the top metallized surface of the slab, as shown in FIG. 4, leaving exposed ferroelectric surfaces 34. An opposite side of the slab 30 remains metallized so as to create a ground plane 36.
This method makes it possible to produce small (high frequency) ferroelectric phase shifter sections, limited only by photolithography processes (typically less than 0.001"), while providing a relatively large, sturdy piece of ferroelectric to handle and position in the phase shifter circuit. As seen in FIG. 5, positioning of the ferroelectric can easily be accomplished by butting two substrates 38, which bear respective sections of phase shifter circuit, against each side of the ferroelectric slab 30.
A second aspect of the invention relates to a multiple ferroelectric phase shifter which comprises a plurality of phase shifters formed on a single slab which can be incorporated simultaneously into a plurality of arrays in a scanning antenna, for example. The multiple ferroelectric phase shifter proposed for this purpose is formed from a rectangular slab 50 of ferroelectric material, as seen in FIG. 6, which has a width (w) equal to the length of the individual phase shifters shown in FIG. 2; a length (l) which is long enough to span all the feed lines 29 of the array, and a thickness (t) which is the same as the thickness of the individual phase shifters in FIG. 2.
The ferroelectric material slab 50 in FIG. 6 is metallized, top and bottom, after which microstrip lines 52 having the proper width (as determined by known calculations) are patterned onto the top surface, as shown in FIG. 7, forming the multiple ferroelectric phase shifter element. The striplines 52 are separated by exposed ferroelectric material 54, and a ground plane 56 is formed on the opposite side of the slab 50.
The high dielectric constant of the ferroelectric material (generally greater than 100) keeps the microwave signal within the immediate area of the patterned circuit, eliminating any interaction between adjacent phase shifter circuits.
The multiple ferroelectric phase shifter 62 of FIG. 7, when positioned in the antenna array circuit, forms an electronic scanning antenna of the type shown in FIG. 2. This multiple ferroelectric phase shifter circuit and assembly is seen in FIG. 8. Although not shown, each RF phase shifter circuit is associated with a known arrangement for applying an electric field to the ferroelectric rod so as to adjust its permittivity and thereby adjust the phase of a signal which the circuit 22, 32 receives from the feed network 29, 69 and passes through to the antenna array 20, 60. The disclosed arrangment results in a simpler, more cost-effective version of the electronic scanning antenna of the type shown in FIG. 2.
The circuit of FIG. 8 can be assembled, either by cutting a slot into the antenna/circuit substrate, as shown in FIG. 9, for receiving and positioning the multiple phase shifter element, or by using two separate antenna/circuit substrates, FIG. 10, which are butted up against each side of the ferroelectric phase shifter element 62. A solder connection or other metallized connection is applied between the phase shifters and antenna/circuit substrates as a final assembly step.
Although the present invention has been described in relation to particular embodiments thereof, many other variations and modifications and other uses will become apparent to those skilled in the art. It is preferred, therefore, that the present invention be limited not by the specific disclosure herein, but only by the appended claims.
Koscica, Thomas E., Babbitt, Richard W., Drach, William C.
Patent | Priority | Assignee | Title |
10003393, | Dec 16 2014 | NXP USA, INC | Method and apparatus for antenna selection |
10020828, | Nov 08 2006 | NXP USA, INC | Adaptive impedance matching apparatus, system and method with improved dynamic range |
10050598, | Nov 08 2006 | NXP USA, INC | Method and apparatus for adaptive impedance matching |
10163574, | Nov 14 2005 | VELOCITY COMMUNICATION TECHNOLOGIES, LLC | Thin films capacitors |
10177731, | Jan 14 2006 | NXP USA, INC | Adaptive matching network |
10218070, | May 16 2011 | NXP USA, INC | Method and apparatus for tuning a communication device |
10263595, | Mar 22 2010 | NXP USA, INC | Method and apparatus for adapting a variable impedance network |
10404295, | Dec 21 2012 | NXP USA, INC | Method and apparatus for adjusting the timing of radio antenna tuning |
10615769, | Mar 22 2010 | NXP USA, INC | Method and apparatus for adapting a variable impedance network |
10624091, | Aug 05 2011 | NXP USA, INC | Method and apparatus for band tuning in a communication device |
10651918, | Dec 16 2014 | VELOCITY COMMUNICATION TECHNOLOGIES LLC | Method and apparatus for antenna selection |
10659088, | Oct 10 2009 | NXP USA, INC | Method and apparatus for managing operations of a communication device |
10700719, | Dec 21 2012 | NXP USA, INC | Method and apparatus for adjusting the timing of radio antenna tuning |
10979095, | Feb 18 2011 | NXP USA, INC | Method and apparatus for radio antenna frequency tuning |
5557286, | Jun 15 1994 | PENN STATE RESEARCH FOUNDATION, THE | Voltage tunable dielectric ceramics which exhibit low dielectric constants and applications thereof to antenna structure |
5561407, | Jan 31 1995 | The United States of America as represented by the Secretary of the Army | Single substrate planar digital ferroelectric phase shifter |
5617103, | Jul 19 1995 | The United States of America as represented by the Secretary of the Army | Ferroelectric phase shifting antenna array |
5936484, | Feb 24 1995 | Thomson-CSF | UHF phase shifter and application to an array antenna |
6014575, | Oct 27 1994 | NEC Corporation | Superconducting transmission line phase shifter having a V3 Si superconductive signal line |
6018282, | Nov 19 1996 | Sharp Kabushiki Kaisha | Voltage-controlled variable-passband filter and high-frequency circuit module incorporating same |
6067047, | Nov 28 1997 | CDC PROPRIETE INTELLECTUELLE | Electrically-controllable back-fed antenna and method for using same |
6078223, | Aug 14 1998 | The United States of America as represented by the Administrator of the | Discriminator stabilized superconductor/ferroelectric thin film local oscillator |
6081235, | Apr 30 1998 | The United States of America as represented by the Administrator of the | High resolution scanning reflectarray antenna |
6263220, | Mar 11 1997 | Com Dev Ltd. | Non-etched high power HTS circuits and method of construction thereof |
6377217, | Sep 14 1999 | NXP USA, INC | Serially-fed phased array antennas with dielectric phase shifters |
6456236, | Apr 24 2001 | Rockwell Collins, Inc.; Rockwell Collins, Inc | Ferroelectric/paraelectric/composite material loaded phased array network |
6518850, | Feb 24 1999 | Telefonaktiebolaget LM Ericsson | Ferroelectric modulator |
6538603, | Jul 21 2000 | NXP USA, INC | Phased array antennas incorporating voltage-tunable phase shifters |
6556102, | Nov 18 1999 | NXP USA, INC | RF/microwave tunable delay line |
6590468, | Jul 20 2000 | NXP USA, INC | Tunable microwave devices with auto-adjusting matching circuit |
6611230, | Dec 11 2000 | NETGEAR, Inc | Phased array antenna having phase shifters with laterally spaced phase shift bodies |
6756939, | Jul 21 2000 | NXP USA, INC | Phased array antennas incorporating voltage-tunable phase shifters |
6759918, | Jul 20 2000 | NXP USA, INC | Tunable microwave devices with auto-adjusting matching circuit |
6759980, | Jul 21 2000 | NXP USA, INC | Phased array antennas incorporating voltage-tunable phase shifters |
6864757, | Jul 20 2000 | NXP USA, INC | Tunable microwave devices with auto-adjusting matching circuit |
7683734, | Mar 15 2007 | RAYTHEON CANADA LIMITED | RF re-entrant combiner |
7711337, | Jan 14 2006 | NXP USA, INC | Adaptive impedance matching module (AIMM) control architectures |
7714676, | Nov 08 2006 | NXP USA, INC | Adaptive impedance matching apparatus, system and method |
7714678, | Jul 20 2000 | NXP USA, INC | Tunable microwave devices with auto-adjusting matching circuit |
7728693, | Jul 20 2000 | NXP USA, INC | Tunable microwave devices with auto-adjusting matching circuit |
7795990, | Jul 20 2000 | NXP USA, INC | Tunable microwave devices with auto-adjusting matching circuit |
7852170, | Nov 08 2006 | NXP USA, INC | Adaptive impedance matching apparatus, system and method with improved dynamic range |
7865154, | Jul 20 2000 | NXP USA, INC | Tunable microwave devices with auto-adjusting matching circuit |
7969257, | Jul 20 2000 | NXP USA, INC | Tunable microwave devices with auto-adjusting matching circuit |
7991363, | Nov 14 2007 | NXP USA, INC | Tuning matching circuits for transmitter and receiver bands as a function of transmitter metrics |
8008982, | Nov 08 2006 | NXP USA, INC | Method and apparatus for adaptive impedance matching |
8067858, | Oct 14 2008 | NXP USA, INC | Low-distortion voltage variable capacitor assemblies |
8125399, | Jan 14 2006 | NXP USA, INC | Adaptively tunable antennas incorporating an external probe to monitor radiated power |
8213886, | May 07 2007 | NXP USA, INC | Hybrid techniques for antenna retuning utilizing transmit and receive power information |
8217731, | Nov 08 2006 | NXP USA, INC | Method and apparatus for adaptive impedance matching |
8217732, | Nov 08 2006 | NXP USA, INC | Method and apparatus for adaptive impedance matching |
8269683, | Jan 14 2006 | NXP USA, INC | Adaptively tunable antennas and method of operation therefore |
8299867, | Nov 08 2006 | NXP USA, INC | Adaptive impedance matching module |
8325097, | Jan 14 2006 | NXP USA, INC | Adaptively tunable antennas and method of operation therefore |
8405563, | Jan 14 2006 | NXP USA, INC | Adaptively tunable antennas incorporating an external probe to monitor radiated power |
8421548, | Sep 24 2008 | NXP USA, INC | Methods for tuning an adaptive impedance matching network with a look-up table |
8428523, | Nov 14 2007 | NXP USA, INC | Tuning matching circuits for transmitter and receiver bands as a function of transmitter metrics |
8432234, | Nov 08 2010 | NXP USA, INC | Method and apparatus for tuning antennas in a communication device |
8457569, | May 07 2007 | NXP USA, INC | Hybrid techniques for antenna retuning utilizing transmit and receive power information |
8463218, | Jan 14 2006 | NXP USA, INC | Adaptive matching network |
8472888, | Aug 25 2009 | NXP USA, INC | Method and apparatus for calibrating a communication device |
8558633, | Nov 08 2006 | NXP USA, INC | Method and apparatus for adaptive impedance matching |
8564381, | Nov 08 2006 | NXP USA, INC | Method and apparatus for adaptive impedance matching |
8594584, | May 16 2011 | NXP USA, INC | Method and apparatus for tuning a communication device |
8620236, | Apr 23 2007 | NXP USA, INC | Techniques for improved adaptive impedance matching |
8620246, | Jan 16 2007 | NXP USA, INC | Adaptive impedance matching module (AIMM) control architectures |
8620247, | Jan 14 2006 | NXP USA, INC | Adaptive impedance matching module (AIMM) control architectures |
8626083, | May 16 2011 | NXP USA, INC | Method and apparatus for tuning a communication device |
8655286, | Feb 25 2011 | NXP USA, INC | Method and apparatus for tuning a communication device |
8674783, | Sep 24 2008 | NXP USA, INC | Methods for tuning an adaptive impedance matching network with a look-up table |
8680934, | Nov 08 2006 | NXP USA, INC | System for establishing communication with a mobile device server |
8693963, | Jul 20 2000 | NXP USA, INC | Tunable microwave devices with auto-adjusting matching circuit |
8712340, | Feb 18 2011 | NXP USA, INC | Method and apparatus for radio antenna frequency tuning |
8744384, | Jul 20 2000 | NXP USA, INC | Tunable microwave devices with auto-adjusting matching circuit |
8781417, | May 07 2007 | NXP USA, INC | Hybrid techniques for antenna retuning utilizing transmit and receive power information |
8787845, | Aug 25 2009 | NXP USA, INC | Method and apparatus for calibrating a communication device |
8798555, | Nov 14 2007 | NXP USA, INC | Tuning matching circuits for transmitter and receiver bands as a function of the transmitter metrics |
8803631, | Mar 22 2010 | NXP USA, INC | Method and apparatus for adapting a variable impedance network |
8860525, | Apr 20 2010 | NXP USA, INC | Method and apparatus for managing interference in a communication device |
8860526, | Apr 20 2010 | NXP USA, INC | Method and apparatus for managing interference in a communication device |
8896391, | Jul 20 2000 | NXP USA, INC | Tunable microwave devices with auto-adjusting matching circuit |
8942657, | Jan 14 2006 | NXP USA, INC | Adaptive matching network |
8948889, | Jun 01 2012 | NXP USA, INC | Methods and apparatus for tuning circuit components of a communication device |
8957742, | Sep 24 2008 | NXP USA, INC | Methods for tuning an adaptive impedance matching network with a look-up table |
9020446, | Aug 25 2009 | NXP USA, INC | Method and apparatus for calibrating a communication device |
9026062, | Oct 10 2009 | NXP USA, INC | Method and apparatus for managing operations of a communication device |
9119152, | May 07 2007 | NXP USA, INC | Hybrid techniques for antenna retuning utilizing transmit and receive power information |
9130543, | Nov 08 2006 | NXP USA, INC | Method and apparatus for adaptive impedance matching |
9231643, | Feb 18 2011 | NXP USA, INC | Method and apparatus for radio antenna frequency tuning |
9246223, | Jul 17 2012 | NXP USA, INC | Antenna tuning for multiband operation |
9263806, | Nov 08 2010 | NXP USA, INC | Method and apparatus for tuning antennas in a communication device |
9350405, | Jul 19 2012 | NXP USA, INC | Method and apparatus for antenna tuning and power consumption management in a communication device |
9362891, | Jul 26 2012 | NXP USA, INC | Methods and apparatus for tuning a communication device |
9374113, | Dec 21 2012 | NXP USA, INC | Method and apparatus for adjusting the timing of radio antenna tuning |
9379454, | Nov 08 2010 | NXP USA, INC | Method and apparatus for tuning antennas in a communication device |
9406444, | Nov 14 2005 | VELOCITY COMMUNICATION TECHNOLOGIES, LLC | Thin film capacitors |
9413066, | Jul 19 2012 | VELOCITY COMMUNICATION TECHNOLOGIES, LLC | Method and apparatus for beam forming and antenna tuning in a communication device |
9419581, | Nov 08 2006 | NXP USA, INC | Adaptive impedance matching apparatus, system and method with improved dynamic range |
9431990, | Jul 20 2000 | NXP USA, INC | Tunable microwave devices with auto-adjusting matching circuit |
9450637, | Apr 20 2010 | NXP USA, INC | Method and apparatus for managing interference in a communication device |
9473216, | Feb 25 2011 | NXP USA, INC | Method and apparatus for tuning a communication device |
9548716, | Mar 22 2010 | NXP USA, INC | Method and apparatus for adapting a variable impedance network |
9564944, | Apr 20 2010 | NXP USA, INC | Method and apparatus for managing interference in a communication device |
9608591, | Mar 22 2010 | NXP USA, INC | Method and apparatus for adapting a variable impedance network |
9671765, | Jun 01 2012 | NXP USA, INC | Methods and apparatus for tuning circuit components of a communication device |
9698748, | Apr 23 2007 | NXP USA, INC | Adaptive impedance matching |
9698758, | Sep 24 2008 | NXP USA, INC | Methods for tuning an adaptive impedance matching network with a look-up table |
9698858, | Feb 18 2011 | NXP USA, INC | Method and apparatus for radio antenna frequency tuning |
9716311, | May 16 2011 | NXP USA, INC | Method and apparatus for tuning a communication device |
9722577, | Nov 08 2006 | NXP USA, INC | Method and apparatus for adaptive impedance matching |
9742375, | Mar 22 2010 | NXP USA, INC | Method and apparatus for adapting a variable impedance network |
9768752, | Jul 20 2000 | NXP USA, INC | Tunable microwave devices with auto-adjusting matching circuit |
9768810, | Dec 21 2012 | NXP USA, INC | Method and apparatus for adjusting the timing of radio antenna tuning |
9769826, | Aug 05 2011 | NXP USA, INC | Method and apparatus for band tuning in a communication device |
9853363, | Jul 06 2012 | NXP USA, INC | Methods and apparatus to control mutual coupling between antennas |
9853622, | Jan 14 2006 | NXP USA, INC | Adaptive matching network |
9853663, | Oct 10 2009 | NXP USA, INC | Method and apparatus for managing operations of a communication device |
9935674, | Feb 18 2011 | NXP USA, INC | Method and apparatus for radio antenna frequency tuning |
9941910, | Jul 19 2012 | NXP USA, INC | Method and apparatus for antenna tuning and power consumption management in a communication device |
9941922, | Apr 20 2010 | NXP USA, INC | Method and apparatus for managing interference in a communication device |
9948270, | Jul 20 2000 | NXP USA, INC | Tunable microwave devices with auto-adjusting matching circuit |
RE44998, | Nov 20 2006 | NXP USA, INC | Optimized thin film capacitors |
RE47412, | Nov 14 2007 | NXP USA, INC | Tuning matching circuits for transmitter and receiver bands as a function of the transmitter metrics |
RE48435, | Nov 14 2007 | NXP USA, INC | Tuning matching circuits for transmitter and receiver bands as a function of the transmitter metrics |
Patent | Priority | Assignee | Title |
4105959, | Jun 29 1977 | Lockheed Martin Corporation | Amplitude balanced diode phase shifter |
5032805, | Oct 23 1989 | GOVERNMENT OF THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF THE ARMY, THE | RF phase shifter |
5162803, | May 20 1991 | Northrop Grumman Corporation | Beamforming structure for modular phased array antennas |
5223808, | Feb 25 1992 | HE HOLDINGS, INC , A DELAWARE CORP ; Raytheon Company | Planar ferrite phase shifter |
SU778606, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 22 1993 | BABBITT, RICHARD W | UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE ARMY | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 006969 | /0919 | |
Jun 23 1993 | KOSCICA, THOMAS E | UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE ARMY | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 006969 | /0919 | |
Jun 23 1993 | DRACH, WILLIAM C | UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE ARMY | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 006969 | /0919 | |
Jul 06 1993 | The United States of America as represented by the Secretary of the Army | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jul 29 1998 | ASPN: Payor Number Assigned. |
Jul 29 1998 | M183: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jul 29 1998 | M186: Surcharge for Late Payment, Large Entity. |
Feb 26 2002 | REM: Maintenance Fee Reminder Mailed. |
Aug 02 2002 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Aug 02 1997 | 4 years fee payment window open |
Feb 02 1998 | 6 months grace period start (w surcharge) |
Aug 02 1998 | patent expiry (for year 4) |
Aug 02 2000 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 02 2001 | 8 years fee payment window open |
Feb 02 2002 | 6 months grace period start (w surcharge) |
Aug 02 2002 | patent expiry (for year 8) |
Aug 02 2004 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 02 2005 | 12 years fee payment window open |
Feb 02 2006 | 6 months grace period start (w surcharge) |
Aug 02 2006 | patent expiry (for year 12) |
Aug 02 2008 | 2 years to revive unintentionally abandoned end. (for year 12) |