An electrostatically actuated color video display is disclosed which can be illuminated by backlighting transmitted through the display and by reflected ambient light to have good visibility in both bright daylight and in subdued or dim light. To display full-color dynamically changing images from an electronic video signal the functions of creating the image and of generating color light rays for use in the image are separated. A preferred embodiment employs a pixellated color screen having rectangular cells of alternate red, green, blue and a somewhat opaque white color and a shuttering mask comprising an array of selectively actuatable light-modulating capacitors with black movable electrodes that when retracted are in registration with and present an open light path to individual color screen cells and when extended present a continuous black screen appearance.

Patent
   5638084
Priority
May 22 1992
Filed
Jul 29 1996
Issued
Jun 10 1997
Expiry
May 22 2012
Assg.orig
Entity
Small
257
9
all paid

REINSTATED
10. A multicolor video display for viewing by reflected light, having a layered structure and employing light-modulating capacitor pixels, said layered structure comprising:
i) a movable electrode shutter layer having a composite array of movable electrodes disposed toward a viewer, said movable electrodes having an open, retracted position defining a pixel aperture and providing a dear light path past said movable electrode and a second, extended position in which said light path is occluded by said movable electrode;
ii) a dielectric layer having a transparent dielectric member in capacitive contact with said movable electrodes in said extended position of said movable electrodes;
iii) a control electrode layer having an array of translucent control electrodes contacting and in electrostatic engagement with a second surface of said dielectric member to control said movable electrodes, said movable electrodes, said dielectric member and said control electrodes providing an array of light-modulating capacitors;
iv) a reflective, static color screen layer disposed behind the shutter layer with respect to the viewer, said color screen layer being fixedly composed of colored segments, each said colored segment corresponding with and being aligned with said one of said pixel apertures to intercept said pixel aperture light path, adjacent said segments having different colors to provide multicolor display capabilities;
whereby said color screen layer can be selectively masked by actuation of said movable electrode shutter layer to permit reflection to the viewer of an image composed of selected color screen segments.
13. A reflective, thin-panel, multicolor video display having a layered structure and employing light-modulating capacitive pixels, said layered structure comprising:
I) a movable electrode shutter layer formed from a continuous film of flexible material and having a composite array of movable electrodes, said movable electrodes each having:
a) a pigmentable reflective surface disposable toward the viewer;
b) an open, retracted position providing a clear light path past the movable electrode; and
c) a second, extended position in which said light path is occluded by the movable electrode and the movable electrode's reflective surface is disposed toward the viewer;
ii) a dielectric layer formed from a continuous film of dielectric material and comprising a transparent, sheet-like dielectric member in capacitive contact with the movable electrodes in said extended position of each said movable electrode;
iii) a light-transmissive control electrode layer disposed in electrostatic engagement with a second surface of said dielectric member to control said movable electrodes;
wherein said movable electrodes, said dielectric member and said control electrodes provide an array of light-modulating capacitors;
iv) drive circuitry to apply drive voltages selectively between said fixed electrodes and said movable electrodes to effect movement of selected movable electrodes; and
v) a reflective color screen layer disposed adjacent to said shutter layer and behind said shutter layer with respect to said viewer, said color screen layer being composed of a mosaic of reflective colored screen segments individually configured and dimensioned to correspond with said capacitive pixels, adjacent said segments having different colors to provide multi-color display capabilities;
whereby multicolored images can be selectively displayed by electronic manipulation of said movable electrodes.
18. A method of manufacturing a reflective, thin-panel, multicolor video display having a layered structure and employing light-modulating capacitive pixels, comprising:
I) forming a movable electrode shutter layer from a continuous film of flexible material to have a composite array of movable electrodes, said movable electrodes each having:
a) a pigmentable reflective surface disposable toward the viewer;
b) an open, retracted position providing a clear light path past the movable electrode; and
c) a second, extended position in which said light path is occluded by the movable electrode and the movable electrode's reflective surface is disposed toward the viewer;
ii) forming a dielectric layer from a continuous film of dielectric material to comprise a transparent, sheet-like dielectric member in capacitive contact with the movable electrodes in said extended position of each said movable electrode;
iii) forming a light-transmissive control electrode layer disposed in electrostatic engagement with a second surface of said dielectric member to control said movable electrodes;
whereby said movable electrodes, said dielectric member and said control electrodes provide an array of light-modulating capacitors;
iv) providing drive circuitry to apply drive voltages selectively between said fixed electrodes and said movable electrodes to effect movement of selected movable electrodes; and
v) providing a reflective color screen layer disposed adjacent to said shutter layer and behind said shutter layer with respect to said viewer, said color screen layer being composed of a mosaic of reflective colored screen segments individually configured and dimensioned to correspond with said capacitive pixels, adjacent said segments having different colors to provide multi-color display capabilities;
whereby multicolored images can be selectively displayed by electronic manipulation of said movable electrodes.
1. A flat panel video display viewable by either transmitted or reflected light, depending upon an ambient illumination level, having a layered matrix structure and employing light-modulating capacitor pixels, said layered matrix structure comprising:
i) a movable electrode shutter layer having a composite array of movable electrodes disposed toward a viewer, said movable electrodes having an open, retracted position providing a clear light path past said movable electrode and a second, extended position in which said light path is occluded by said movable electrode;
ii) a dielectric layer having a transparent sheet-like dielectric member in capacitive contact with said movable electrodes in said extended position of said movable electrodes;
iii) a control electrode layer having an array of translucent control electrodes contacting and in electrostatic engagement with a second surface of said dielectric member to control said movable electrodes, said dielectric member and said control electrodes providing an array of light-modulating capacitors;
iv) drive circuitry to apply drive voltages selectively between said fixed electrodes and said movable electrodes to effect movement of selected movable electrodes; and
v) a color screen layer disposed adjacent to said shutter layer and behind said shutter layer with respect to said viewer said color screen layer being composed of colored screen segments and being capable of displaying a similar colorant-modulated appearance by either transmitted or reflected light depending upon the ambient illumination level; whereby movement of an individual movable electrode into a retracted, open position displays a segment of such colored screens to a viewer, multiple said movable electrodes can be actuated to display a composed image area of said colored screen segments to said viewer and whereby said composed image area is viewable by reflected light or transmitted light depending on the illumination level.
2. A flat panel video display according to claim 1, wherein each said movable electrode comprises a plastic lamina prestressed into a coiled configuration.
3. A flat panel video display according to claim 1, wherein each said movable electrode has a conductive electrode surface to contact said dielectric member.
4. A flat panel multicolor video display according to claim 3 wherein adjacent colored segments have different primary color appearances and are aligned with said movable electrodes whereby adjacent electrodes can be operated to present said different primary color appearances of said colored segments in a selective manner.
5. A flat panel video display according to claim 4 wherein said cells are arranged in adjacent groups of four cells having the appearance of three primary colors and white.
6. A flat panel video display according to claim 4 wherein said colored screen is composed of multiple layers of red, green or blue colorant-loaded transparent material arranged in patterns to give said individual cells desired visual characteristics.
7. A flat panel video display according to claim 4 wherein said cells and said movable electrodes have corresponding and similar geometrical sizes and shapes and said colored cells are arranged in repeating groups of four, each said group of four cells comprising a red cell, a green cell, a blue cell and a white cell.
8. A flat panel video display according to claim 1 wherein said movable electrodes are electrically connected in rows and said fixed control electrodes are electrically connected in columns and wherein said drive circuitry includes row-and-column diode decoding means to provide selective actuation of groups of individual movable electrodes.
9. A flat panel multi-color video display according to claim 1 comprising polychromatic colored screen segments wherein said movable electrodes present a black appearance to said viewer in said extended position and are configured and disposed for said composite array of movable electrodes to provide the appearance of a substantially continuous black screen at an intended viewing distance when said electrodes are all in said extended positions.
11. A multicolor video display according to claim 10 wherein said different colors comprise three primary colors and white.
12. A multicolor video display according to claim 10 wherein said color screen segments are light-transmissive and comprising a source of illumination behind said color screen with respect to a viewer to provide a display viewable by both reflected and transmitted light.
14. A video display according to claim 13 wherein said continuous film of dielectric material comprises a polymer film having opposed surfaces and being metallized on one surface and presenting a black appearance at the other surface, whereby, when the electrode is extended, the metallized surface is in capacitive contact with the dielectric layer and said other surface presents a black appearance to the viewer; wherein said colored screen segments are arranged in adjacent groups of four segments per group, having the appearance of three primary colors and white.
15. A video display according to claim 14 wherein said color screen segments are light-transmissive and are colored to have a similar hue by either transmitted or reflected light, whereby said display is viewable by reflected ambient light or transmitted applied light, depending upon ambient illumination levels.
16. A video display according to claim 15 wherein said colored screen is formed from continuous film material.
17. A flat-panel, multi-color, video display manufactured by a method according to claim 16.

This application is a Continuation of application Ser. No. 08/228,111, filed 15 April 1994, now abandoned, which was a continuation-in-part of U.S. patent application Ser. No. 08/066,949 of Kalt and Slater, filed May 24, 1993 now U.S. Pat. No. 5,519,565 which, in turn, is a continuation-in-part of U.S. patent application Ser. No. 07/887,714 of Kalt and Slater, filed May 22, 1992, now U.S. Pat. No. 5,231,559 dated Jul. 27, 1993. The disclosures of our applications Ser. Nos. 08/066,949 and 07/887,714 are hereby incorporated herein by reference thereto.

The present invention relates to electronically driven, colored video displays that can translate electrical or electronic signals into video information. Such displays, or display screens, typically comprise a pixellated screen formed by individual, light-modulating picture elements that can be controlled to provide text or graphic images. More particularly, the invention relates to displays which employ capacitive pixels having light-modulating, movable electrodes that can adopt a number of positions, at least one of which is a position extending across the path of a light beam travelling through the pixel. By selective actuation to change the appearance individual pixels, arrays of such pixels can be composed into meaningful images.

Video displays can be classified as either reflective or transmissive. Both types of displays are quite sensitive to lighting conditions. Liquid crystal displays used in portable computers and other electronic devices, such as paging devices, telephones, telefacsimile machines, watches, instruments and the like, are examples of low-power, reflective video displays which can be seen clearly in bright lighting conditions and depend upon reflection of ambient light, off a high contrast display surface, for their appearance. Reflective displays become difficult or impossible to view clearly in dim or low lighting conditions, for example, at night.

Transmissive displays include a light-emitting source, for example phosphors or diodes, which source can be built into the display screen. Common examples are conventional television screens and computer monitors as well as, for example, portable computer displays that employ light-emitting diodes. Another important application for light-emitting, transmissive displays is in instrumentation for aircraft, automobiles and other vehicles. Light-emitting transmissive displays can be clearly seen in low lighting conditions but lose contrast and visibility in bright light, for example, when taken outdoors. Safety problems may occur when operators view vehicle instruments or other travel guidance displays, during dramatic changes in ambient light. Thus there is a need, for example, for aircraft flight information displays which remain clearly visible as an aircraft emerges from heavy cloud into the brilliant sunlight of the stratosphere. Another desirable lighting-independent display is a computer screen, especially a portable computer screen that can be viewed outdoors.

Over a period spanning several decades, I have developed electronically driven video displays that employ, as pixels, light-modulating capacitors with movable electrodes. In a light modulating capacitor, a movable electrode is coiled, or otherwise prestressed, into a compacted, retracted position from which it can be advanced across a dielectric member by application of a drive voltage. The drive voltage is controlled by a fixed electrode on the other side of the dielectric member, the movable and fixed electrodes and the dielectric member constituting a variable capacitor.

By appropriate choice of the optical character of the movable electrode, a light beam striking the capacitor can be modulated as desired, for example by varying the hue, lightness and saturation characteristics of the light. Using tapered electrode patterns or shapes, the extent of excursion of the electrode can be made voltage dependent and thus controlled. Arrays of such pixels can be matrixed to provide large-screen displays such as highway signs and scoreboards. As disclosed in my above-cited pending applications, electrostatically driven pixels can be miniaturized and incorporated not only in conventional video-displaying equipment such as computer and television equipment but also in novel, compact low-power flat-screen displays that can, for example be small enough to be handheld and carried in a pocket.

My U.S. Pat. No. 3,989,357 shows some early examples of such light-modulating capacitors, employing a rolling electrode which is coiled in its retracted position and which is deployed in a variety of embodiments, including matrixed assemblies of multiple such elements. Several reflective display embodiments are shown, which rely upon ambient light to illuminate the display. In addition, the embodiment of FIG. 5 shows a light-transmissive pixel, in which light passes through a somewhat translucent fixed electrode of such a capacitive element. This FIG. 5 proposal depended upon a thin layer of aluminum to be both translucent and adequately conductive to act as a fixed control electrode for a movable light-modulating electrode. Since aluminum is only mildly transparent to light when thick enough to be conductive, the use of an aluminum film electrode has limited application and is not satisfactory for pictorial quality video displays.

My patent No. 4,266,339 relates to a method of manufacturing rolling-electrode-type, light-modulating capacitors, which method employs heating and cooling of a metalized tented plastic sheet to provide prestressed, coiled electrode elements or spirals.

My patent No. 5,231,559 discloses novel video displays; and their manufacture, including video displays employing light-modulating capacitors with transparent electrodes utilizing a light path to a viewer which traverses at least one transparent electrode on both an incident and a reflected course. High transmissivity electrode material, for example indium tin oxide, is used to avoid undue attenuation of the light beam as a result of its dual passage through the transparent fixed electrode. These capacitors can be assembled into more or less complex pixels, some employing two or more such movable light-modulating electrodes along a single light path. Multiple electrodes can visit the same area across a light path and can be assembled in pairs, or other groupings, on either side of a transparent substrate. Employing such matrixes of flexibly configurable pixels, full color and monochrome reflective screens can be created which have excellent definition, excellent visibility, are economical and easy to manufacture from low cost materials, yet consume very little power.

Some further developments of these subjects are disclosed and claimed in my pending application Ser. No. 08/066,949 including digitally responsive display pixels, manufacturing methods, miniaturized electrode configurations and some non-video applications of the inventive electrostatically actuated movable electrode technology. Further patents of mine describe and claim reflective display devices which employ electrostatically driven, active movable elements that have become known as "flapper" devices because they move from one side to another of a reflective channel to switch between different display states having selected, different visual characteristics. Some such patents are U.S. Pat. Nos. 4,488,784, 4,094,590, 4,336,536 and 4,468,663. These disclosures are not applicable to transmissive display pixels.

The invention, as claimed, is intended to provide a remedy. It solves the problem of how to provide a color video screen that can present a clearly visible display independently of ambient lighting conditions, that is to say a display that can be seen clearly in both subdued, or dim, light and strong daylight. A further problem solved by the invention is to provide such a display which is operative in different lighting modes, yet needs no activation to change between modes, nor needs adjustment for changes in lighting.

To solve these and other problems, the invention provides a flat-screen video display having a layered matrix structure and employing light-modulating capacitor pixels in a simple, composition screen comprised of an array of pixel-size shutters constituted by the light-modulating capacitors, operating in conjunction with a novel color screen which is preferably also pixelated to provide differently colored cells corresponding with the pixel-size shutters in the composition screen. In addition to a color screen layer, the layers can comprise an array of light-modulating capacitors formed from a movable electrode layer, a dielectric layer and a control electrode layer.

The movable electrode mask layer has a composite array of movable electrodes disposed toward a viewer, the movable electrodes having an open, retracted position providing a clear light path past the movable electrode to offer maximum light transmissivity through the mask layer. In a fully extended, unfurled position of each movable electrode, the light path is fully occluded by each movable electrode and a continuous composite monochrome, or achromatic display can be presented. By controlling the position of the electrodes between these extreme positions, pixel intensity can be infinitely varied to provide full dynamic control of visual characteristics such as tint, shade, gray scale and the like.

The dielectric layer has a transparent sheet-like dielectric member in capacitive contact with the movable electrodes in the extended position of the movable electrodes.

The control electrode layer has an array of translucent control electrodes contacting and in electrostatic engagement with a second surface of the dielectric member to control the movable electrodes. These layers are aligned, or registered, so that the movable electrodes, the dielectric member and the control electrodes provide the array of light-modulating capacitors.

The color screen layer has a translucent color screen disposed adjacent to the array of light-modulating capacitors and on an opposite side thereof with respect to the viewer.

The inventive video display also comprises drive circuitry to apply drive voltages selectively between the fixed electrodes and the movable electrodes to effect movement of selected movable electrodes.

In operation of the inventive video display, movement of an individual movable electrode into a retracted, open position displays a segment of such colored screens to a viewer and multiple movable electrodes can be actuated to display a composed image area of the colored screen segments to the viewer.

Light from a source of backlighting passes through the color screen where it is pixellated preferably by dividing and modulating the source light beam to provide discrete small rays in groups of primary colors, obtained by filtering, and white. The composite, pixellated multicolor light beam transmitted by the color screen strikes the array of movable electrodes which, acting as miniature shutters, mask out undesired light areas of the color screen to compose the desired image. Front, or ambient light, e.g. daylight, proceeds on a reflective path, through open areas between shutters constituted by closed light-modulating capacitors having extended movable electrodes, on to the color screen where a suitably modulated beam is reflected back through the open light-modulating capacitors to the viewer. The color screen is designed to have a substantial or high reflectance, of at least 30 percent and preferably at least 60 percent, referring to the intensity of the incident beam for a reflected wavelength or wavelengths, and to present a similar appearance by both transmitted and reflected light.

The invention thus provides a simple, economical, full-color video display which has excellent visibility by reflected light.

By selectively masking, or unmasking, adjacent pixel-sized color cells desired colored appearances can be obtained at the pixel level. For example, groups of four adjacent color screen cells, colored with three primaries (preferably red, green and blue) and white, can cooperate with a registered set of four shutters constituted by four light-modulating capacitors presenting a black surface to a viewer, when closed, can comprise a full-color grouped pixel presenting a full range of visual characteristics analogous to a group of red green and blue phosphors in conventional electron beam displays.

The invention can be more broadly stated to provide a multicolor video display for displaying electronically generated dynamically changing multicolor images to a viewer at a designated viewing distance, said video display comprising:

i) a passive color screen segmented into a mosaic of colored cells arranged in similar groups of adjacent colored cells said adjacent cells of a group having different visual appearances, said different visual appearances being optically mixable at said designated viewing distance;

ii) a dynamic image-composition mask positioned between said passive color screen and said viewer and having image composition means for selectively filtering and masking modulated light received from said color screen to create a desired, colored video image.

One way of carrying out the invention is described in detail below with reference to the drawings which illustrate only one specific embodiment of the invention and in which:

FIG. 1 is a schematic perspective view of one inventive embodiment of a layered structure, flat video display (from which a transparent cover has been omitted) exploded in a direction of view to show the relationship between layers and details of individual layers of the structure;

FIG. 2 is an enlarged view of a portion of a color screen employed in the video display of FIG. 1;

FIG. 3 is a partial sectional view of the video display of FIG. 1 (with the transparent cover in place);

FIG. 4 is a perspective view of a display device incorporating a video display such as that described and shown with reference to FIGS. 1-3; and

FIG. 5 is a side elevation of the video display of FIG. 4.

Referring to FIG. 1, a video display 10 is shown as observed by a viewer 12, in the presence of front lighting schematically shown at 14, which front lighting may comprise daylight or sunlight or any relatively bright artificial lighting. The embodiment shown includes built-in back lighting 16, so as to be substantially illuminant or lighting independent, as will be explained hereinafter. Directions used in this description are from the perspective of the viewer 12 with the video display 10 in an upright position in FIG. 1.

The principal layers of interest in the structure of the video display 10 comprise a matrix layer 18 of movable electrodes 20; a control electrode layer 22 of transparent fixed electrodes; and a color screen 24 which is both transparent and reflective and displays differently colored areas having comparable appearances in both transmissive and reflective modes. The term "transflective" may be used, for this screen, and may even be coined herein.

Matrix layer 18 of movable electrodes 20 will usually be protected by a transparent cover 52 (FIG. 3) of high light transmissivity. The volume in which electrodes 18 move can be evacuated, if desired, but this is not believed necessary in most embodiments.

Light may reach viewer 12 along either a transmissive or a reflective path. Light traveling on a transmissive light path 26, proceeds directly from back lighting 16 through color screen 24, through control electrode layer 22, and through matrix layer 18 to viewer 12. Light traveling along a reflective path 28 proceeds from front lighting 14, as an incident ray, which is transmitted through matrix layer 18, and through control electrode layer 22 to a front surface 30 of color screen 24 where it is reflected (and possibly modulated, for example to color the light ray 28). The reflected ray 28 is transmitted back through control layer 22, and through matrix layer 18, to the viewer 12. Thus, in traveling on reflective path 28, light passes twice through each of the matrix layers and the fixed electrode layers. Accordingly, the light intensity at the viewer is diminished to a value which relates to the square of the transmissivities of any layer traversed twice, including both the matrix and fixed electrode layers and any transparent substrate or cover layers that may be present for structural purposes. Of these materials, the one with the lowest transmissivity will probably control the intensity of the image perceived by the viewer by offering the greatest attenuation of a reflected beam, and consequent reduction of intensity of the image reaching viewer 12. This lowest transmissivity material is likely to be the control electrode layer 22 which should accordingly employ materials that are as transparent as possible, consistent with the required electrical characteristics of control electrode layer 22.

Movable electrodes 20, in matrix layer 18 are arranged so that when all electrodes are extended they form a flat open screen, for which purpose they are preferably colored or coated with a black colorant or coating material, for example, black ink to provide a uniform black display screen. Matrix layer 18 also incorporates a sheet of a transparent dielectric 32 of any suitable material, for example polypropylene. Movable electrodes 20 have a conductive, metalized electrode layer which is brought into contact with a front surface of transparent dielectric 32 when the movable electrode is in an extended position. This metalized layer serves as a variable electrode having a variable contact area with dielectric 32. Preferably movable electrodes 20 are, as disclosed in my above cited pending patent applications, plastic elements that are prestressed into coils or spirals. A metalized polyester film, for example MYLAR (trademark Dupont) film, is a preferred material and a layer of electrodes 20 can conveniently be manufactured out of a single, possibly continuous, sheet of such metalized film material by laser etching, scoring, or otherwise abrading outlines of electrode patterns partially through the film, then curing the film to cause individual electrodes 20 to form by curling, as is described more fully in parent application 08/066,949.

Such sheets are available as thin as 1 micron and even 0.5 micron. For larger display embodiments, 2.5 micron thick films are preferred. Drive circuitry (not shown) connects movable electrodes 20 in rows numbered 1, 2, 3, 4, 5 . . . etc. for selective application of control voltages thereto.

The shape and size of movable electrodes 20 determines the pixel size of display 10. The optical character of a pixel can be influenced by any of the materials and components on light path 26 or 28, but its aperture is effectively controlled by the opening provided by retraction of a movable electrode 20. The pixels, and movable electrodes 20 defining them, are accordingly, suitably proportioned in relation to the overall size of the display and the intended position of the viewer 12 to provide well-defined images in which individual pixels are not visible. These factors are taken into account by considering the resolution of the display. A rather low display resolution is obtained from a display having approximately 200 pixels along its longer side and a proportionately smaller number on its shorter side. However, this resolution might be quite adequate for some applications such as instrumentation or for cruder displays such as road signs. A much more desirable resolution is of the order of 500 to 1,000 pixels along the longer side with applications up to 2,000 or more pixels being readily envisaged for sophisticated users. A pixel density of about 1,000 along the longer side of the display, with a proportionate number on the shorter side will give a resolution comparable with what is currently described as "super VGA" in present-day computer equipment, a resolution superior to current television displays.

The movable electrodes 20 can have sizes in a range of from about 0.01 inches (about 0.25 mm) up to about 1 inch (about 25 mm), again depending upon the intended size of the display. Metalized polyester film is a suitable material for providing such electrodes in such a size range. Surprisingly, as disclosed in our copending application Ser. No. 08/066,949 miniaturized movable electrodes have unique properties, especially an unexpectedly quick mechanical cycle time, in response to modest voltage changes. Such miniaturized movable electrodes can constitute the active elements in micropixels as small as 0.004 in. (about 0.01 cm. or 100 micron) employing ultra-thin metallized polyester film materials, which are available as thin as 1 or even 0.5 micron.

Such micropixels would provide excellent definition in displays as small as 2 inches offering a new range of possible applications for handheld and pocket displays and for full-image instrumentation displays or even for novel field of view displays on cameras. The latter could release photographers, both still and video, from the constraints imposed by conventional needs to hold a viewfinder or eyepiece close to the eye in order to read or compose an image in the camera's field of view, by incorporating a small video window with a sharp reflective display on a suitable camera surface such as the back or top.

When a voltage is applied between any selected movable electrode 20 and its respective fixed electrode in control electrode layer 22, that movable electrode 20 is electrostatically attracted to its control electrode. Such an activated movable electrode 20 rapidly rolls across transparent dielectric 32, partially or completely occluding light on the light path extending therethrough and presenting an opaque, preferably pigmented, non-metalized outer surface 34 to viewer 12. Outer surface 34 is preferably black, for maximum contrast and grey scale range. However, greys or monochromes can be used with a preference for the outer surface 34 of each electrode 20 having a similar appearance to present a continuous tone display when all electrodes 20 are fully extended. Alternatively, for special effects, the surfaces 34 could be varied, for example, to display a commercial logo with the electrodes 20 fully extended. Such use of surfaces 34 for image display is preferably effected in a subtle manner, probably at low contrast so as minimally to affect the normal display of video images.

The extent of excursion of movable electrodes 20 can be controlled and rendered voltage-dependent in a number of ways, some of which are disclosed in the parent applications and one of which is to employ tapering either for the movable electrode 20 or for a respective control electrode in the direction of movement. Selective control of individual electrode excursion permits the intensity of light coming from the corresponding exposed pixel to be controlled, and provides continuously variable grey scale control of the displayed image. Control of tinting is attainable by appropriate control of relative exposures of primary color and white pixels while the degree to which each electrode is unfurled to expose a black reflective surface to the viewer controls shading. Alternative electrode excursion control can be provided electronically, for example by varying drive voltage pulse duration or frequency at constant voltage, and such electronic control can be used with non-tapered electrodes have a substantially uniform width across their direction of movement.

As described in my co-pending applications, movable electrodes 20 preferably adopt a simple geometrical shape which can be interfitted, one with another, to provide a continuous sheet or layer, and a continuous screen appearance. In a simple, economically manufactured, embodiment, the electrode shape is square or rectangular and, if desired, a thin grid-like mask can be provided to conceal boundary lines between electrodes. Another preferred shape is triangular, which can be arranged in diamond or hexagon grid patterns.

When a maximum or full drive-actuation voltage is applied to all the movable electrodes 20, then all become fully extended and the video display appearance is that of a flat black, screen. Operation of any particular group of electrodes presents an open light path to the interior of the display, from where desired and selected visual characteristics can be reflected or transmitted to the viewer 12. Metalization of a plastic movable electrode on its convexly furled surface 35 which contacts transparent dielectric 32 is preferably such as to render that surface substantially reflective so that, as a coiled retracted electrode is presented to a viewer, to whom it preferably subtends a small enough angle to be imperceptible, it takes on, by diffusion or reflection, the character of the light traveling on a light path through the respective pixel. This phenomenon helps conceal the presence of the movable electrodes 20 which should be hard or impossible to detect by the naked eye at the intended viewing distance.

Control electrode layer 22 comprises an array of fixed or stationary electrodes such as 36, each of which is configured, dimensioned and arranged to register with an individual movable electrode 20. Fixed electrodes 36 can be defined by etching insulative lines 50 between adjacent electrodes in a layer of transparent conductive ceramic electrode material. When an actuating voltage is applied between the fixed electrode 36 and its respective movable electrode 20, electrostatic attraction, working in a capacitive manner through the transparent dielectric 32, draws the movable electrode out across the front surface of transparent dielectric 32, as is described in considerable detail in my above cited co-pending applications. If digital control of electrode movement is desired then, either the edges of movable electrodes 20 or a fixed electrode 36, are not only tapered, but are also formed with serrations or steps to provide precise incremental advances in response to applied voltage changes. Such a stepped and tapered "Christmas-tree" shaped fixed control electrode is also described therein. Fixed electrodes 36 are necessarily transparent in order to permit the selected appearance of color screen 24 to be transmitted or reflected to viewer 12.

Depending upon the intended use of the display, a higher or lesser degree of transparency for fixed electrode layer 22 will be desirable or essential. Where a good appearance in the reflective mode is important, for example for outdoor applications, then control electrode layer 22 should have the best possible light transmissivity. The particular light transmissivity may also depend upon the desired resolution of the display. In relatively simple instrument or road sign applications, high transmissivity will not be critical. However, for the display of continuously changing complex images, such as color video images on television or computer screens, also intended for outdoor use, then high definition will be of great importance, making a very high light transmissivity, for control electrode layers 22, to be desirable. As also explained in my co-pending applications, and as will be apparent therefrom, reducing the thickness of the control electrode layer 22 will increase its light transmissivity but will reduce the conductivity of the electrodes therein. A preferred material for control electrode layer 22 is indium tin oxide which can be formed, in an approximately 300 Angstrom film, with a light transmissivity of about 95 percent combined with a film resistivity of only about 50 ohms per square. It will be apparent that control electrode layer 22 is secured to, or otherwise formed in intimate electrical contact with matrix layer 18 so that fixed electrodes 36 have a good capacitive relationship with transparent dielectric 32.

Drive circuitry for the movable electrodes 20 comprises vertical connectors 42 contacting each fixed electrodes 36 in columns labeled A,B,C,D and horizontal connectors 44 extending transversely of the rows 1,2,3,4,5 of movable electrodes 20, providing a half-select drive system. Connectors 44 terminate at terminator board 46 extending vertically along one side of the video display, which terminator board 46 can incorporate signal synchronization and gating circuitry if desired. Terminator board 46 leads or plugs to main video board 48, which, as indicated in FIG. 4, can be incorporated in a housing, for example, immediately beneath the video display 10. The balance of the video drive circuitry can be included on main video board 48, along with a processor, RAM and other electronic functionalities, if desired.

A satisfactory half-select drive system can be provided with only one transistor per row of movable electrodes 20 and one per column of fixed electrodes 36, which is substantially more economical than an active matrix display which requires a transistor for every pixel. A dumping capacitor and diode can be used for each pixel to avoid cross talk.

The drive circuitry also includes appropriate diode decoding circuits for row and column electrical drive and selective operation in rapidly changing desired groups and patterns of movable electrodes 20, to generate real-time moving video images, for example, in accordance with U.S. Pat. No. 4,336,536 to Kalt and Babcock.

Movable electrodes 20 can be secured to transparent dielectric 32 by lines of conductive adhesive (not shown).

Where, for example in smaller displays, movable electrodes 20, transparent dielectric 32 and the control electrode layer 22 are formed of thin film-like materials, then it may be desirable to provide a more rigid, clear substrate layer 40 (FIG. 3) to serve as a support for these layers. Substrate layer 40 is preferably incorporated between control electrode layer 22 and color screen 24, but could conceivably be incorporated behind color screen 24, as seen by viewer 12. It will be apparent that any such substrate layer 40 should be as transparent as practicable.

Preferably, dielectric 32 fixed electrodes 36 and substrate 40 have light transmissivities of at least 98% or even 99% or higher.

Color screen 24 has a visual appearance which is selectively presented to the viewer 12 by actuation of movable electrodes 20 and this appearance is either transmissively, or reflectively generated, or both, depending upon the relative strengths of illumination provided by front lighting 14 and back lighting 16. Thus, in bright daylight or sunlight, however strong back lighting 16 may be, it is probable that a reflective image will prevail. When front lighting 14 is low or dim, for example in cloud, or at night, or in a darkened room, then a transmitted image, provided by modulation of light from back lighting 16, will prevail.

Color screen 24 could be monochrome having an appearance providing good contrast with the back surface appearance (black) of movable electrodes 20, for example white, yellow or orange, but more interesting effects are provided by mosaicking color screen 24 with a plurality of, preferably primary, colors, so that the possibility of presenting full color images to viewer 12 is attained.

To this end, color screen 24 can be divided up, or segmented, into groups of small cells such as cells 38 shown in FIG. 2, in which groups adjacent cells have different visual appearances. Preferably each cell 38 corresponds in size and shape, and registers optically, with the aperture presented by retraction of a single movable electrode 24, for maximum selectivity of appearance. Alternative arrangements are possible, for example, a single cell 38 with a rectangular form, as shown, might register with a pair of triangular electrodes 20, unfurling in tandem from retracted positions aligned with a diagonal of such a square cell 38.

As shown in FIG. 2, a rectangular grid of four differently colored cells, individually colored red, green, blue, or other appropriate primary set, with white (e.g. cyan, magenta and yellow), can preferably be used for color screen 24. The primaries colors used, preferably red, green, and blue are chosen to maximize the gamut of colors obtainable by additive mixing of the primaries, subject to the color capabilities of the material of color screen 24 and limitations represented by dyes and pigments.

Noting that the size of the movable electrodes 20 is selected according to the intended viewing distance to be sufficiently small that individual electrodes are barely discernible, or detectable by the naked eye, preferred embodiments the color screen 24 are also such that, at the intended viewing distance its cellular or mosaic structure is not apparent, but merges to a continuous image so that light received from adjacent cells, or groups of cells is additively mixed by the viewer's eye.

A visually balanced pattern of squares 38 in groups of four adjacent cells, of balanced intensities and hues, can give the display an overall appearance to a viewer at the intended viewing distance, with all electrodes 24 retracted, which will be white or a light grey color.

The appearance of selected image areas, of video screen 10, can be varied with regard to hues, lightness and intensities, by selecting groups of movable electrodes 20 to display appropriate color combinations or combinations with black or white, or graduated areas of black, in relation to corresponding color screen cells 38, to present any desired colored appearance within the gamut of the display. For example, a yellow area can be depicted by displaying a group of red and green cells 38 with blue-registering movable electrodes 20 being extended to cover, or partially occlude, blue cells 38. The chroma or hue intensity of the yellow image area can be varied by selectively occluding or leaving open white cells 38.

Color screen 24 can be manufactured of any suitable materials and by any suitable method that will provide the properties described herein that contribute to the desired visual appearance of the inventive video display. In preferred embodiments, color screen 24 is formed of plastic film materials in which plastic films, suitable dyes or pigments are dispersed through the film in order to provide an appropriate light-filtering effect for transmissive displays and also to present an adequately colored reflective film for reflective displays. If desired a diffusing screen can be placed between back lighting 16 and color screen 24 in order to enhance the reflective display. In one embodiment, color screen 24 is formed with three layers selected to provide a desired group of three primary colors, for example red, green and blue, one to each layer. The layers can be appropriately patterned to display the individual primaries as shown in FIG. 2. One way of manufacturing such a multilayered color screen 24 is by laser ablation of individual, thin, colored polyester films, preferably MYLAR (trademark) film. An alternative manufacturing method involves the laying down of appropriately colored squares, side by side on a thin-film clear transparent substrate which transparent substrate can, with some pigmentation, if desired, provide white cells 38 in spaces left open by the colored squares.

A further alternative for the manufacture of color screen 24 is by conventional photographic production of color separation films. Individual separations in red, green, and blue are preferred to the more conventional subtractive primaries, cyan, magenta, and yellow, because, with their side-by-side dispositions, color cells 38 mix additively, in a manner analogous to pointillism.

In another embodiment, a desired red, green and blue pattern of cells 38 can be produced in conventional CMY separations using, for example, proofing film, such as acetate film, by simply designating the red, green and blue areas with appropriate CMY blends, for example red might be 100M 100Y, green 100Y 100C and blue might be 100C 100M, or preferably, 100C 80M. A composite color screen 24 can thus be fabricated from individual cyan, magenta and yellow layers, yet have red, green and blue cells. If desired, white could be provided in a further white-pigmented or dyed transparent film in areas registering with clear cells in the CMY separations.

A drawback of using dyed transparent films to form color screen 24, is that dyed films have a rather modest reflectivity leading to a less than desirable image intensity in bright light. Furthermore, depending upon the surface structure of the film, and the distribution of dye at the surface of reflection, surface phenomena may result in variations in the spectral composition of the reflected light beam, so that the spectral distribution of the reflected beam is either similar to the transmitted hue or complementary thereto, leading to a quite different visual effect from that obtained with transmitted light. This uncertainty is a further problem with dyed film materials.

Accordingly, to avoid these problems, preferred color screen materials, are pigmented film materials in which pigment particles are dispersed, preferably uniformly, through a transparent film with a density sufficient to enhance reflection yet low enough to permit adequate light transmission to maintain a clearly visible back-lighted image in low ambient light conditions. Since image definition is provided by pixel boundaries, sharp definition within a cell 38 is not needed. Therefore some diffusion within the film, by repeated reflection off the pigment particles, is not a problem. Alternatively, films can be imprinted with patterns in transparent inks that have desirable characteristics of both transmittance and reflectance.

FIGS. 4 and 5 show a conceptualization of a thin, flat-screen video display monitor embodying a video display according to this invention, from which some of the advantages provided by the invention are clear. Referring to FIGS. 4 and 5, the video display 10 is shown incorporated in a slim display housing 60 which, from the front (FIG. 4) has an appearance akin to that of a conventional video monitor but, from the side, a remarkably slim, generally rectangular profile is apparent.

The housing 60 is carried by a swivel base 62, on which housing 60 is supported by a universal joint 63 permitting limited freedom of movement, or swiveling in two dimensions. Because of the light weight of the display unit comprised by video display 10, housing 60 and associated circuitry, can be positioned directly under the video display or screen 10, so that the video display 10 can be easily tilted through a wide range of angular adjustments to suit the user or viewer. Controls 64 are shown conveniently located horizontally across a top plinth of housing 60 where their actuation, by light downward pressure in a direction toward the point of swivelling of base 62, should not disturb the orientation of the video display 10.

Mechanical stability is enhanced by installing heavier components, such as a power supply 66, (which could comprise batteries) in the swivel base 62. Because of the very low power needed for electrostatic actuation of movable elements 20, power supply 66 can be relatively low output and light in weight. As shown in FIG. 4, terminator board 46 is accommodated in the right-hand side of housing 60 and main video board 48 is mounted within housing 60 beneath video display 10 to create a self-contained, lightweight, low-power video unit requiring only a power supply 66 and an input signal to be operative.

If desired, a video input can also be connected through swivel base 62 and wired internally to the main video board 48, through leaving housing 60 free of external connections. It will be appreciated by those skilled in the art, that this design can be widely adapted to take advantage of the unique benefits provided by this invention. In particular, the design can readily be incorporated in a portable, notebook or notepad computer

FIG. 4 also includes a blown-up grid portion 68 showing a schematic enlargement, not to scale, of how an eye 70 of a cartoon-style "sunshine" face 72 might be pixellated. On the lefthand side of blown-up grid portion 68, a continuous zone of movable electrodes 20 is fully extended, closed, to present a continuous dark or black area of adjacent outer surfaces 34 to depict a portion of eye 70. On the righthand side, three quarters of the movable electrodes 20 are open, retracted to reveal and admit light from colored cells 38, having the colors, red, green or white, as indicated by the initial letters "R", "G", "B" and "W", and depict a shaded yellow facial area adjacent to eye 72. It will be understood that FIG. 4 shows a simplified image for ease of understanding and that the full complexity of a typical television or cinematic video image can be displayed with an acuity and resolution meeting or exceeding conventional television standards, by appropriate miniaturization of the pixels of the inventive displays described herein.

The general uses, operation and advantages of the preferred embodiments of video displays which this invention provides will be clear from the foregoing description. Thus, in a modestly illuminated office or home environment, light output from back lighting 16, traveling on a transmissive path such as 26, is filtered into a mosaic of colored cells by color screen 24, which permits passage of selected intensities of desired spectral wavelengths, then modulated by impact with a selected pattern of activated movable electrodes 20, to deliver the desired image to viewer 12 in transmitted mode.

In a similar manner, bright illumination (front lighting 14,) traveling on paths such as 28 is selectively reflected off color screen 24, then modulated by the pattern of movable electrodes 20 to deliver the desired image to viewer 12 in reflected mode, providing a clear image even when ambient light overwhelms back lighting 16. This brightly lit reflective image, because daylight is substantially non-directional, has excellent visibility over a wide angle of view, a definite advantage over conventional portable computer displays which have a very narrow angle of view.

Conventional full-color dynamic video displays rely on phenomena such as the transmission of light through frames of moving film or on selective energization of differently colored pixels to transmit, or emit, the desired image, or on the use of light-emitting diodes. Proposals also exist for full-color liquid crystal displays. In contrast thereto, the present invention employs a passive, pixellated colored matrix, color screen 24 to modulate white light rays, in combination with a dynamic masking or shuttering system for molding the modulated light rays received from the color screen 24 into a desired image for display to a viewer 12. In other words, matrix layer 18 of movable electrodes 20 together with control electrodes 22 function as a shuttering system having individually controllable shutters cooperating with discrete colored screen cells 38, of varied visual appearance to provide individually addressable pixels having a range of visual appearances which can be grouped for composition into an infinite variety of images.

While the disclosed light-modulating capacitor arrays are a particularly advantageous shuttering system, other shuttering systems providing pixel size, individually addressable light gates, may be used, for example, liquid crystal devices.

By placing the shuttering system between the viewer and the colored pixellated screen, and by employing a reflective and transmissive colored screen, it becomes possible to illuminate the image both from the front, by reflected light and from behind, by transmitted light.

A particular advantage of the invention is that the two major elements of the video display, namely the dynamic shuttering system comprised by matrix layer 18 of movable electrodes 20, and the color screen 24, can be economically manufactured with known techniques, or with the techniques disclosed in our pending patent applications. By structural separation of the functions of shuttering and coloring needed for a color video display, both systems are simplified. Matrix 18, being monochrome, preferably a uniform black, all its movable electrodes 20 can have the same structure. Matrix 18 thus has a simpler construction than equivalent matrices in the full-color displays described in the parent applications recited above, which employ colored movable electrode elements of various hues, while the video display 10 has the advantages of being a full-color display employing light-modulating capacitor pixels.

Matrix 18, controlled by control electrode layer 22 and driven by drive circuitry operative from a video input signal, as described herein, comprises a dynamic image-composition mask which selectively filter and masks light received from color screen 24, to create any desired, colored video image. The dynamic image composition mask can employ an array of individually controllable openable shutters registering optically with cells in the color screen so that an opened shutter displays a single color screen cell.

Thus, all the movable electrodes 20 in matrix 18 can be formed from a single sheet of metalized plastic. Similarly, color screen 24, provides a colored pixellated matrix which can interact with white light to provide an array of minute, color-differentiated light beams composable into an image, but has no active image composition functions: color screen 24 is passive, simply constructed with no moving or activatable parts and can readily be produced economically by mass production methods, as suggested above, including for example press or proofing press production.

Other structures of color screen 24, meeting the general requirements of the present invention, will be known to those skilled in the art, or will become available as new technologies emerge.

Careful and precise registration and alignment of movable electrodes 20 with color cells 38 of color screen 24, enables matrix 18 and color screen 24 to interact at the pixel level, so that the appearance characteristics, including hue of a pixel unit defined for example by a group of four cells, red, green, blue and white can be varied through a wide gamut by selective actuation of a corresponding group of four similar, movable electrodes 20 which accordingly act as cooperative masking or shuttering elements. For accurate registration, very close spacing between matrix 18 and color screen 24 is preferred, to which end substrate 40 can, if desired, and if needed, be positioned behind color screen 24 (from the viewer 12's perspective).

Video displays constructed with electrostatically driven pixels as described can be incorporated in a variety of display devices and equipment bringing advantages of good viewability in lighting-independent conditions, a wide angle of view and economy of manufacture from low-cost materials without high-temperature or exotic manufacturing steps. They can be miniaturized and incorporated not only in conventional video-displaying equipment such as computer and television equipment but also in novel, compact, low-power, flat-screen displays that can, for example be small enough to be handheld and carried in a pocket. Larger displays, incorporating relatively large pixel structure, have application in arenas, or sports stadia, and theaters as well as advertising billboards, road signs and the like. Moderate power-consuming intensities of back-lighting 16 will provide a clearly illuminated night time display, while daylight provides a clear, high intensity reflective display. Response times are excellent with large movable electrodes of the order of one inch square being capable of opening and closing at an equivalent of 30 frames per second, while small movable electrodes will operate with much faster response times. Also on a smaller scale, the principles of the invention described herein can be readily adapted to provide electronically driven instrumentation displays for vehicles, including aircraft, that are readily visible in both dim light, or darkness, and the brightest of daylight or sunlight.

Versatility is provided by the ability of the inventive displays to tolerate a wide range of operating conditions, with no theoretical objections to operating temperatures of -100° F., or below, down to near cryogenic and a comfortable upper limit, for polyester film movable elements of the order of 140° F. Higher operating temperatures can be tolerated by more expensive film materials such as polyimides. The very low heat output of the inventive displays is another advantage when considering higher temperature applications. Also, as compared with other mechanically movable element constructions, polymer film elements have advantages of very low inertia, fast response and low susceptibility to fatigue crystallization with repeated use, which coiled metallic elements may be expected to suffer. Lateral curling of an advancing element 20 can effectively be prevented by means such as those described in my parent patent No. 5,231,559 and the elements can be prestressed at relatively modest temperatures in economical production methods. Although the term "video" has been used herein to connote or suggest the use of the inventive display system for dynamic display of moving images in the eminently important fields of television, computing, games and the like, it will be understood that the inventive display systems and methods disclosed herein are also adaptable and useful for statically displayed, though changeable applications, such as road warning signs, train or airplane arrival and departure information, and so on.

The visual lighting independent nature of displays according or their dual lightability characteristics can perhaps be helpfully appreciated by considering a gas station sign, many of which have internal fluorescent lighting for night time viewing and are clearly viewed reflectively, by daylight, when ambient lighting is high.

While illustrative embodiments of the invention have been described above, it is, of course, understood that various modifications will be apparent to those of ordinary skill in the art. Such modifications are within the spirit and scope of the invention, which is limited and defined only by the appended claims.

Kalt, Charles G.

Patent Priority Assignee Title
10074199, Jun 27 2013 TRACTUS CORPORATION Systems and methods for tissue mapping
10794110, Jul 06 2018 GUARDIAN GLASS, LLC Electric potentially-driven shade with perforations, and/or method of making the same
10801258, Jul 06 2018 GUARDIAN GLASS, LLC Flexible dynamic shade with post-sputtering modified surface, and/or method of making the same
10803814, Apr 18 2017 Korea Advanced Institute of Science and Technology Display apparatus using blind panel
10858884, Jul 06 2018 GUARDIAN GLASS, LLC Electric potentially-driven shade with improved coil strength, and/or method of making the same
10871027, Jul 06 2018 GUARDIAN GLASS, LLC Electric potentially-driven shade with CIGS solar cell, and/or method of making the same
10876349, Jul 06 2018 GUARDIAN GLASS, LLC Electro-polymeric shade for use at elevated temperature and/or methods of making the same
10895102, Jul 06 2018 GUARDIAN GLASS, LLC Electric potentially-driven shade with improved electrical connection between internal shade and external power source, and/or method of making the same
10908408, Jan 03 2018 BOE TECHNOLOGY GROUP CO., LTD.; Chengdu BOE Optoelectronics Technology Co., Ltd. Pixel structure, method for manufacturing pixel structure array substrate, and display device
10914114, Jul 06 2018 GUARDIAN GLASS, LLC Electric potentially-driven shade including shutter supporting surface-modified conductive coating, and/or method of making the same
10927592, Jul 06 2018 GUARDIAN GLASS, LLC Electric potentially-driven shade with surface-modified polymer, and/or method of making the same
11174676, Feb 03 2020 GUARDIAN GLASS, LLC Electric potentially-driven shade with improved shade extension control, and/or associated methods
11210972, Dec 23 2020 NEW VISUAL MEDIA GROUP, L L C Optical shutter and display panel
11421470, Feb 17 2020 GUARDIAN GLASS, LLC Coil skew correction techniques for electric potentially-driven shade, and/or associated methods
11428040, Feb 03 2020 GUARDIAN GLASS, LLC Electrostatic latching stop bar for dynamic shade, and/or associated methods
11634942, Feb 03 2020 GUARDIAN GLASS, LLC Electric potentially-driven shade with electrostatic shade retraction, and/or associated methods
11707919, Jul 06 2018 GUARDIAN GLASS, LLC Electro-polymeric shade for use at elevated temperature and/or methods of making the same
11714316, Sep 20 2017 New Visual Media Group, L.L.C. Highly reflective electrostatic shutter display
5905543, Dec 04 1996 Color video system with illuminant-independent properties
5943033, Sep 06 1994 Kabushiki Kaisha Toshiba Display device
6034807, Oct 28 1998 MEMSOLUTIONS, INC Bistable paper white direct view display
6081249, Aug 11 1997 Wrap around membrane color display device
6130656, Sep 30 1996 Kabushiki Kaisha Toshiaba Actuatable film type display device
6229683, Jun 30 1999 Research Triangle Institute High voltage micromachined electrostatic switch
6239777, Jul 22 1997 Kabushiki Kaisha Toshiba Display device
6317108, May 22 1992 NEW VISUAL MEDIA GROUP, L L C Electrostatic video display drive circuitry and displays incorporating same
6557279, Jun 05 2000 3M Innovative Properties Company Variable image-displaying member
6639572, Oct 28 1998 MEMSOLUTIONS, INC Paper white direct view display
6650309, Jan 20 1999 FUJIFILM Corporation Light modulation element, array-type light modulation element, drive method thereof, and flat-panel display unit
6650455, May 05 1994 SNAPTRACK, INC Photonic mems and structures
6692646, Aug 29 2000 NEW VISUAL MEDIA GROUP, L L C Method of manufacturing a light modulating capacitor array and product
6737983, Oct 26 1999 Display board having illuminated elements and method
6765546, May 23 2000 Yazaki Corporation Display device
6771237, May 24 1993 NEW VISUAL MEDIA GROUP, L L C Variable configuration video displays and their manufacture
6897876, Jun 26 2003 Global Oled Technology LLC Method for transforming three color input signals to four or more output signals for a color display
6919681, Apr 30 2003 Global Oled Technology LLC Color OLED display with improved power efficiency
6972889, Jun 27 2002 Micross Advanced Interconnect Technology LLC Mems electrostatically actuated optical display device and associated arrays
7075242, Dec 16 2002 Global Oled Technology LLC Color OLED display system having improved performance
7091941, Apr 11 2003 Global Oled Technology LLC Color OLED display with improved power efficiency
7110158, May 05 1994 SNAPTRACK, INC Photonic MEMS and structures
7123216, May 05 1994 SNAPTRACK, INC Photonic MEMS and structures
7126738, May 01 1995 SNAPTRACK, INC Visible spectrum modulator arrays
7136213, Sep 27 2004 SNAPTRACK, INC Interferometric modulators having charge persistence
7142346, Dec 09 2003 SNAPTRACK, INC System and method for addressing a MEMS display
7161730, Sep 27 2004 SNAPTRACK, INC System and method for providing thermal compensation for an interferometric modulator display
7173599, Apr 24 2001 VISTA PEAK VENTURES, LLC Image display method in transmissive-type liquid crystal display device and transmissive-type liquid crystal display device
7184067, Mar 13 2003 Global Oled Technology LLC Color OLED display system
7193768, Aug 26 2003 SNAPTRACK, INC Interference display cell
7196837, Dec 09 2003 SNAPTRACK, INC Area array modulation and lead reduction in interferometric modulators
7198973, Apr 21 2003 SNAPTRACK, INC Method for fabricating an interference display unit
7221495, Jun 24 2003 SNAPTRACK, INC Thin film precursor stack for MEMS manufacturing
7230594, Dec 16 2002 Global Oled Technology LLC Color OLED display with improved power efficiency
7236284, Oct 05 1999 SNAPTRACK, INC Photonic MEMS and structures
7242512, Dec 09 2003 SNAPTRACK, INC System and method for addressing a MEMS display
7250315, Feb 12 2002 SNAPTRACK, INC Method for fabricating a structure for a microelectromechanical system (MEMS) device
7256922, Jul 02 2004 SNAPTRACK, INC Interferometric modulators with thin film transistors
7289259, Sep 27 2004 SNAPTRACK, INC Conductive bus structure for interferometric modulator array
7291921, Sep 30 2003 SNAPTRACK, INC Structure of a micro electro mechanical system and the manufacturing method thereof
7297471, Apr 15 2003 SNAPTRACK, INC Method for manufacturing an array of interferometric modulators
7302157, Sep 27 2004 SNAPTRACK, INC System and method for multi-level brightness in interferometric modulation
7304784, Sep 27 2004 SNAPTRACK, INC Reflective display device having viewable display on both sides
7310179, Sep 27 2004 SNAPTRACK, INC Method and device for selective adjustment of hysteresis window
7321456, Sep 27 2004 SNAPTRACK, INC Method and device for corner interferometric modulation
7321457, Jun 01 2006 SNAPTRACK, INC Process and structure for fabrication of MEMS device having isolated edge posts
7327510, Sep 27 2004 SNAPTRACK, INC Process for modifying offset voltage characteristics of an interferometric modulator
7333080, Mar 29 2004 Global Oled Technology LLC Color OLED display with improved power efficiency
7342709, Dec 25 2002 SNAPTRACK, INC Optical interference type of color display having optical diffusion layer between substrate and electrode
7345805, Sep 27 2004 SNAPTRACK, INC Interferometric modulator array with integrated MEMS electrical switches
7349136, Sep 27 2004 SNAPTRACK, INC Method and device for a display having transparent components integrated therein
7349139, Sep 27 2004 SNAPTRACK, INC System and method of illuminating interferometric modulators using backlighting
7349141, Sep 27 2004 SNAPTRACK, INC Method and post structures for interferometric modulation
7355779, Sep 02 2005 SNAPTRACK, INC Method and system for driving MEMS display elements
7355780, Sep 27 2004 SNAPTRACK, INC System and method of illuminating interferometric modulators using backlighting
7369292, May 03 2006 SNAPTRACK, INC Electrode and interconnect materials for MEMS devices
7369296, Sep 27 2004 SNAPTRACK, INC Device and method for modifying actuation voltage thresholds of a deformable membrane in an interferometric modulator
7372613, Sep 27 2004 SNAPTRACK, INC Method and device for multistate interferometric light modulation
7372619, May 05 1994 SNAPTRACK, INC Display device having a movable structure for modulating light and method thereof
7373026, Sep 27 2004 SNAPTRACK, INC MEMS device fabricated on a pre-patterned substrate
7382515, Jan 18 2006 SNAPTRACK, INC Silicon-rich silicon nitrides as etch stops in MEMS manufacture
7385744, Jun 28 2006 SNAPTRACK, INC Support structure for free-standing MEMS device and methods for forming the same
7388697, Dec 09 2003 SNAPTRACK, INC System and method for addressing a MEMS display
7388706, Oct 05 1999 SNAPTRACK, INC Photonic MEMS and structures
7397485, Dec 16 2002 Global Oled Technology LLC Color OLED display system having improved performance
7403180, Jan 29 2007 SNAPTRACK, INC Hybrid color synthesis for multistate reflective modulator displays
7405861, Sep 27 2004 SNAPTRACK, INC Method and device for protecting interferometric modulators from electrostatic discharge
7405863, Jun 01 2006 SNAPTRACK, INC Patterning of mechanical layer in MEMS to reduce stresses at supports
7417783, Sep 27 2004 SNAPTRACK, INC Mirror and mirror layer for optical modulator and method
7417784, Apr 19 2006 SNAPTRACK, INC Microelectromechanical device and method utilizing a porous surface
7420725, Sep 27 2004 SNAPTRACK, INC Device having a conductive light absorbing mask and method for fabricating same
7420728, Sep 27 2004 SNAPTRACK, INC Methods of fabricating interferometric modulators by selectively removing a material
7429334, Sep 27 2004 SNAPTRACK, INC Methods of fabricating interferometric modulators by selectively removing a material
7446927, Sep 27 2004 SNAPTRACK, INC MEMS switch with set and latch electrodes
7450295, Mar 02 2006 SNAPTRACK, INC Methods for producing MEMS with protective coatings using multi-component sacrificial layers
7471442, Jun 15 2006 SNAPTRACK, INC Method and apparatus for low range bit depth enhancements for MEMS display architectures
7471444, Dec 19 1996 SNAPTRACK, INC Interferometric modulation of radiation
7476327, May 04 2004 SNAPTRACK, INC Method of manufacture for microelectromechanical devices
7483197, Oct 05 1999 SNAPTRACK, INC Photonic MEMS and structures
7486429, Sep 27 2004 SNAPTRACK, INC Method and device for multistate interferometric light modulation
7492502, Sep 27 2004 SNAPTRACK, INC Method of fabricating a free-standing microstructure
7499208, Aug 27 2004 SNAPTRACK, INC Current mode display driver circuit realization feature
7515147, Aug 27 2004 SNAPTRACK, INC Staggered column drive circuit systems and methods
7515327, Sep 27 2004 SNAPTRACK, INC Method and device for corner interferometric modulation
7525730, Sep 27 2004 SNAPTRACK, INC Method and device for generating white in an interferometric modulator display
7527995, Sep 27 2004 SNAPTRACK, INC Method of making prestructure for MEMS systems
7527996, Apr 19 2006 SNAPTRACK, INC Non-planar surface structures and process for microelectromechanical systems
7527998, Jun 30 2006 SNAPTRACK, INC Method of manufacturing MEMS devices providing air gap control
7532194, Feb 03 2004 SNAPTRACK, INC Driver voltage adjuster
7532195, Sep 27 2004 SNAPTRACK, INC Method and system for reducing power consumption in a display
7532377, Apr 08 1998 SNAPTRACK, INC Movable micro-electromechanical device
7534640, Jul 22 2005 SNAPTRACK, INC Support structure for MEMS device and methods therefor
7537374, Aug 27 2005 3M Innovative Properties Company Edge-lit backlight having light recycling cavity with concave transflector
7545550, Sep 27 2004 SNAPTRACK, INC Systems and methods of actuating MEMS display elements
7547565, Feb 04 2005 SNAPTRACK, INC Method of manufacturing optical interference color display
7547568, Feb 22 2006 SNAPTRACK, INC Electrical conditioning of MEMS device and insulating layer thereof
7550794, Sep 20 2002 SNAPTRACK, INC Micromechanical systems device comprising a displaceable electrode and a charge-trapping layer
7550810, Feb 23 2006 SNAPTRACK, INC MEMS device having a layer movable at asymmetric rates
7551159, Aug 27 2004 SNAPTRACK, INC System and method of sensing actuation and release voltages of an interferometric modulator
7553684, Sep 27 2004 SNAPTRACK, INC Method of fabricating interferometric devices using lift-off processing techniques
7554711, Apr 08 1998 SNAPTRACK, INC MEMS devices with stiction bumps
7554714, Sep 27 2004 SNAPTRACK, INC Device and method for manipulation of thermal response in a modulator
7560299, Aug 27 2004 SNAPTRACK, INC Systems and methods of actuating MEMS display elements
7564612, Sep 27 2004 SNAPTRACK, INC Photonic MEMS and structures
7564613, Apr 19 2006 SNAPTRACK, INC Microelectromechanical device and method utilizing a porous surface
7566664, Aug 02 2006 SNAPTRACK, INC Selective etching of MEMS using gaseous halides and reactive co-etchants
7567373, Jul 29 2004 SNAPTRACK, INC System and method for micro-electromechanical operation of an interferometric modulator
7602375, Sep 27 2004 SNAPTRACK, INC Method and system for writing data to MEMS display elements
7603001, Feb 17 2006 SNAPTRACK, INC Method and apparatus for providing back-lighting in an interferometric modulator display device
7616369, Jun 24 2003 SNAPTRACK, INC Film stack for manufacturing micro-electromechanical systems (MEMS) devices
7619822, Jan 30 2007 QUALCOMM MEMS Technologies, Inc. Systems and methods of providing a light guiding layer
7623287, Apr 19 2006 SNAPTRACK, INC Non-planar surface structures and process for microelectromechanical systems
7626581, Sep 27 2004 SNAPTRACK, INC Device and method for display memory using manipulation of mechanical response
7626751, Sep 27 2004 IDC, LLC Display device having an array of spatial light modulators with integrated color filters
7630114, Oct 28 2005 SNAPTRACK, INC Diffusion barrier layer for MEMS devices
7630119, Sep 27 2004 SNAPTRACK, INC Apparatus and method for reducing slippage between structures in an interferometric modulator
7630123, Sep 27 2004 SNAPTRACK, INC Method and device for compensating for color shift as a function of angle of view
7642110, Feb 12 2002 SNAPTRACK, INC Method for fabricating a structure for a microelectromechanical systems (MEMS) device
7643203, Apr 10 2006 SNAPTRACK, INC Interferometric optical display system with broadband characteristics
7645977, Nov 17 2006 GUARDIAN GLASS, LLC Low cost dynamic insulated glazing unit
7649671, Jun 01 2006 SNAPTRACK, INC Analog interferometric modulator device with electrostatic actuation and release
7667884, Sep 27 2004 SNAPTRACK, INC Interferometric modulators having charge persistence
7675669, Sep 27 2004 SNAPTRACK, INC Method and system for driving interferometric modulators
7679627, Sep 27 2004 SNAPTRACK, INC Controller and driver features for bi-stable display
7684104, Sep 27 2004 SNAPTRACK, INC MEMS using filler material and method
7695180, Aug 27 2005 3M Innovative Properties Company Illumination assembly and system
7702192, Jun 21 2006 SNAPTRACK, INC Systems and methods for driving MEMS display
7705826, Feb 10 2003 NEW VISUAL MEDIA GROUP, L L C Flexible video displays and their manufacture
7706044, May 26 2003 SNAPTRACK, INC Optical interference display cell and method of making the same
7706050, Mar 05 2004 SNAPTRACK, INC Integrated modulator illumination
7710632, Sep 27 2004 SNAPTRACK, INC Display device having an array of spatial light modulators with integrated color filters
7710636, Sep 27 2004 SNAPTRACK, INC Systems and methods using interferometric optical modulators and diffusers
7711239, Apr 19 2006 SNAPTRACK, INC Microelectromechanical device and method utilizing nanoparticles
7719500, Sep 27 2004 SNAPTRACK, INC Reflective display pixels arranged in non-rectangular arrays
7719747, Sep 27 2004 SNAPTRACK, INC Method and post structures for interferometric modulation
7724993, Sep 27 2004 SNAPTRACK, INC MEMS switches with deforming membranes
7763546, Aug 02 2006 SNAPTRACK, INC Methods for reducing surface charges during the manufacture of microelectromechanical systems devices
7773289, Apr 21 2006 QUALCOMM MEMS Technologies, Inc. Method and apparatus for providing brightness control in an interferometric modulator (IMOD) display
7777715, Jun 29 2006 SNAPTRACK, INC Passive circuits for de-multiplexing display inputs
7777954, Jan 30 2007 SNAPTRACK, INC Systems and methods of providing a light guiding layer
7781850, Sep 20 2002 SNAPTRACK, INC Controlling electromechanical behavior of structures within a microelectromechanical systems device
7791783, Jun 25 2008 SNAPTRACK, INC Backlight displays
7791787, Apr 08 1998 SNAPTRACK, INC Moveable micro-electromechanical device
7795061, Dec 29 2005 SNAPTRACK, INC Method of creating MEMS device cavities by a non-etching process
7808694, Apr 08 1998 SNAPTRACK, INC Method and device for modulating light
7808695, Jun 15 2006 SNAPTRACK, INC Method and apparatus for low range bit depth enhancement for MEMS display architectures
7813026, Sep 27 2004 SNAPTRACK, INC System and method of reducing color shift in a display
7815355, Aug 27 2005 3M Innovative Properties Company Direct-lit backlight having light recycling cavity with concave transflector
7826120, May 05 1994 SNAPTRACK, INC Method and device for multi-color interferometric modulation
7830586, Oct 05 1999 SNAPTRACK, INC Transparent thin films
7830587, May 05 1994 SNAPTRACK, INC Method and device for modulating light with semiconductor substrate
7830588, Dec 19 1996 SNAPTRACK, INC Method of making a light modulating display device and associated transistor circuitry and structures thereof
7835061, Jun 28 2006 SNAPTRACK, INC Support structures for free-standing electromechanical devices
7839556, May 05 1994 SNAPTRACK, INC Method and device for modulating light
7843410, Sep 27 2004 SNAPTRACK, INC Method and device for electrically programmable display
7846344, May 05 1994 SNAPTRACK, INC Method and device for modulating light
7847999, Sep 14 2007 SNAPTRACK, INC Interferometric modulator display devices
7848003, Sep 17 2007 SNAPTRACK, INC Semi-transparent/transflective lighted interferometric devices
7852544, Dec 19 1996 SNAPTRACK, INC Separable modulator
7852545, Apr 08 1998 SNAPTRACK, INC Method and device for modulating light
7864395, Oct 27 2006 SNAPTRACK, INC Light guide including optical scattering elements and a method of manufacture
7872792, Apr 08 1998 SNAPTRACK, INC Method and device for modulating light with multiple electrodes
7880954, Mar 05 2004 SNAPTRACK, INC Integrated modulator illumination
7889163, Aug 27 2004 SNAPTRACK, INC Drive method for MEMS devices
7893919, Sep 27 2004 SNAPTRACK, INC Display region architectures
7898722, May 01 1995 SNAPTRACK, INC Microelectromechanical device with restoring electrode
7898725, Jun 15 2006 SNAPTRACK, INC Apparatuses with enhanced low range bit depth
7911428, Sep 27 2004 SNAPTRACK, INC Method and device for manipulating color in a display
7916378, Mar 08 2007 SNAPTRACK, INC Method and apparatus for providing a light absorbing mask in an interferometric modulator display
7916980, Jan 13 2006 SNAPTRACK, INC Interconnect structure for MEMS device
7920136, May 05 2005 SNAPTRACK, INC System and method of driving a MEMS display device
7928940, Aug 27 2004 SNAPTRACK, INC Drive method for MEMS devices
7929197, Nov 05 1996 SNAPTRACK, INC System and method for a MEMS device
7936497, Sep 27 2004 SNAPTRACK, INC MEMS device having deformable membrane characterized by mechanical persistence
7948457, Apr 14 2006 SNAPTRACK, INC Systems and methods of actuating MEMS display elements
7969638, Apr 10 2008 SNAPTRACK, INC Device having thin black mask and method of fabricating the same
8004743, Apr 21 2006 SNAPTRACK, INC Method and apparatus for providing brightness control in an interferometric modulator (IMOD) display
8008736, Sep 27 2004 SNAPTRACK, INC Analog interferometric modulator device
8014059, May 05 1994 SNAPTRACK, INC System and method for charge control in a MEMS device
8031133, Sep 27 2004 SNAPTRACK, INC Method and device for manipulating color in a display
8035075, Nov 17 2006 GUARDIAN GLASS, LLC Dynamic insulated glazing unit with multiple shutters
8035884, May 05 1994 SNAPTRACK, INC Method and device for modulating light with semiconductor substrate
8040588, Sep 27 2004 SNAPTRACK, INC System and method of illuminating interferometric modulators using backlighting
8045252, Feb 03 2004 SNAPTRACK, INC Spatial light modulator with integrated optical compensation structure
8049713, Apr 24 2006 SNAPTRACK, INC Power consumption optimized display update
8059326, May 05 1994 SNAPTRACK, INC Display devices comprising of interferometric modulator and sensor
8068710, Dec 07 2007 SNAPTRACK, INC Decoupled holographic film and diffuser
8081369, May 05 1994 SNAPTRACK, INC System and method for a MEMS device
8098431, Sep 27 2004 SNAPTRACK, INC Method and device for generating white in an interferometric modulator display
8102407, Sep 27 2004 SNAPTRACK, INC Method and device for manipulating color in a display
8105496, Apr 08 1998 SNAPTRACK, INC Method of fabricating MEMS devices (such as IMod) comprising using a gas phase etchant to remove a layer
8111445, Feb 03 2004 SNAPTRACK, INC Spatial light modulator with integrated optical compensation structure
8111446, Sep 27 2004 SNAPTRACK, INC Optical films for controlling angular characteristics of displays
8134112, Nov 17 2006 GUARDIAN GLASS, LLC Method of fabricating an insulated glazing unit having controllable radiation transmittance
8174469, May 05 2005 SNAPTRACK, INC Dynamic driver IC and display panel configuration
8194056, Feb 09 2006 SNAPTRACK, INC Method and system for writing data to MEMS display elements
8269108, May 28 2010 Shin Etsu Polymer Co., Ltd.; National University Corporation Saitama University Transparent conductive film and conductive substrate using the same
8300304, Feb 12 2008 SNAPTRACK, INC Integrated front light diffuser for reflective displays
8310441, Sep 27 2004 SNAPTRACK, INC Method and system for writing data to MEMS display elements
8362987, Sep 27 2004 SNAPTRACK, INC Method and device for manipulating color in a display
8368981, Oct 10 2006 SNAPTRACK, INC Display device with diffractive optics
8391630, Dec 22 2005 SNAPTRACK, INC System and method for power reduction when decompressing video streams for interferometric modulator displays
8394656, Dec 29 2005 SNAPTRACK, INC Method of creating MEMS device cavities by a non-etching process
8482693, Jan 04 2008 VIATIME MEDIA LTD Display method, display device and display apparatus
8599104, Nov 13 2007 RGB LIGHTS INC Modular lighting and video apparatus
8638491, Sep 27 2004 SNAPTRACK, INC Device having a conductive light absorbing mask and method for fabricating same
8693084, Mar 07 2008 SNAPTRACK, INC Interferometric modulator in transmission mode
8736590, Mar 27 2009 SNAPTRACK, INC Low voltage driver scheme for interferometric modulators
8736938, Mar 14 2013 GUARDIAN GLASS, LLC Electronically controlled insulated glazing unit providing energy savings and privacy
8791897, Sep 27 2004 SNAPTRACK, INC Method and system for writing data to MEMS display elements
8798425, Dec 07 2007 SNAPTRACK, INC Decoupled holographic film and diffuser
8817357, Apr 09 2010 SNAPTRACK, INC Mechanical layer and methods of forming the same
8827347, Apr 23 2010 Magna Mirrors of America, Inc Vehicle window with shade
8830557, May 11 2007 SNAPTRACK, INC Methods of fabricating MEMS with spacers between plates and devices formed by same
8848294, May 20 2010 SNAPTRACK, INC Method and structure capable of changing color saturation
8861071, Sep 27 2004 SNAPTRACK, INC Method and device for compensating for color shift as a function of angle of view
8872085, Oct 06 2006 SNAPTRACK, INC Display device having front illuminator with turning features
8878771, Sep 27 2004 SNAPTRACK, INC Method and system for reducing power consumption in a display
8878825, Sep 27 2004 SNAPTRACK, INC System and method for providing a variable refresh rate of an interferometric modulator display
8902484, Dec 15 2010 SNAPTRACK, INC Holographic brightness enhancement film
8928967, Apr 08 1998 SNAPTRACK, INC Method and device for modulating light
8963159, Apr 04 2011 SNAPTRACK, INC Pixel via and methods of forming the same
8964280, Jun 30 2006 SNAPTRACK, INC Method of manufacturing MEMS devices providing air gap control
8970939, Sep 27 2004 SNAPTRACK, INC Method and device for multistate interferometric light modulation
8971675, Jan 13 2006 SNAPTRACK, INC Interconnect structure for MEMS device
8982441, Mar 14 2013 GUARDIAN GLASS, LLC Insulated glazing unit and controller providing energy savings and privacy
9001412, Sep 27 2004 SNAPTRACK, INC Electromechanical device with optical function separated from mechanical and electrical function
9019183, Oct 06 2006 SNAPTRACK, INC Optical loss structure integrated in an illumination apparatus
9019590, Feb 03 2004 SNAPTRACK, INC Spatial light modulator with integrated optical compensation structure
9025105, Jan 04 2008 Viatime Media Ltd. Display method, display device and display apparatus
9025235, Dec 25 2002 SNAPTRACK, INC Optical interference type of color display having optical diffusion layer between substrate and electrode
9075093, Jul 08 2010 Device for measuring electromagnetic field intensity
9086564, Sep 27 2004 SNAPTRACK, INC Conductive bus structure for interferometric modulator array
9097885, Sep 27 2004 SNAPTRACK, INC Device having a conductive light absorbing mask and method for fabricating same
9110289, Apr 08 1998 SNAPTRACK, INC Device for modulating light with multiple electrodes
9134527, Apr 04 2011 SNAPTRACK, INC Pixel via and methods of forming the same
9539883, Apr 23 2010 MAGNA MIRRORS OF AMERICA, INC. Window with shade
9857518, Aug 27 2005 3M Innovative Properties Company Direct-lit backlight having light recycling cavity with concave transflector
RE42119, Feb 27 2002 SNAPTRACK, INC Microelectrochemical systems device and method for fabricating same
Patent Priority Assignee Title
4509854, Sep 24 1973 Means and method for color separation and reproduction
4794370, Aug 21 1984 Bos-Knox Ltd. Peristaltic electrostatic binary device
5147743, Jun 28 1990 E. I. du Pont de Nemours and Company Process for the preparation of optical color filters
5231559, May 22 1992 NEW VISUAL MEDIA GROUP, L L C Full color light modulating capacitor
5233459, Mar 06 1991 MASSACHUSETTS INSTITUTE OF TECHNOLOGY, A CORP OF MA Electric display device
5250931, May 17 1988 Seiko Epson Corporation Active matrix panel having display and driver TFT's on the same substrate
5340619, Oct 18 1993 Brewer Science, Inc. Method of manufacturing a color filter array
5401616, Sep 21 1992 Matsushita Electric Industrial Co., Ltd. Patterning method employing laser
EP455233,
/////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jul 29 1996Dielectric Systems International, Inc.(assignment on the face of the patent)
Dec 13 2000KALT, CHARLES G DISPLAY SCIENCE, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0117700439 pdf
Dec 13 2000SLATER, MARK S DISPLAY SCIENCE, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0117700439 pdf
Dec 13 2000DIELECTRIC SYSTEMS INTERNATIONAL, INC DISPLAY SCIENCE, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0117700439 pdf
Oct 14 2005DISPLAY SCIENCE, INCORPORATEDNEW VISUAL MEDIA GROUP, L L C ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0170340001 pdf
Date Maintenance Fee Events
Nov 28 2000M283: Payment of Maintenance Fee, 4th Yr, Small Entity.
Dec 29 2004REM: Maintenance Fee Reminder Mailed.
Jun 10 2005EXPX: Patent Reinstated After Maintenance Fee Payment Confirmed.
Nov 14 2005M1558: Surcharge, Petition to Accept Pymt After Exp, Unintentional.
Nov 14 2005M2552: Payment of Maintenance Fee, 8th Yr, Small Entity.
Nov 17 2005PMFP: Petition Related to Maintenance Fees Filed.
Nov 18 2005ASPN: Payor Number Assigned.
Jun 06 2006PMFG: Petition Related to Maintenance Fees Granted.
Dec 10 2008M2553: Payment of Maintenance Fee, 12th Yr, Small Entity.


Date Maintenance Schedule
Jun 10 20004 years fee payment window open
Dec 10 20006 months grace period start (w surcharge)
Jun 10 2001patent expiry (for year 4)
Jun 10 20032 years to revive unintentionally abandoned end. (for year 4)
Jun 10 20048 years fee payment window open
Dec 10 20046 months grace period start (w surcharge)
Jun 10 2005patent expiry (for year 8)
Jun 10 20072 years to revive unintentionally abandoned end. (for year 8)
Jun 10 200812 years fee payment window open
Dec 10 20086 months grace period start (w surcharge)
Jun 10 2009patent expiry (for year 12)
Jun 10 20112 years to revive unintentionally abandoned end. (for year 12)