The present invention includes an integrated circuit switch including a membrane supported over a first conductor on a substrate, a conductive region on the membrane and connecting to the first conductor on the substrate, a pulldown electrode on the substrate and under the membrane and a pillar to support the membrane after the pulldown threshold has been reached. A voltage greater than a pulldown threshold is applied between the membrane and the pulldown electrode will pull the membrane down to make a capacitive coupling to the first conductor. The addition of the pillars increases the upward restoring force when the activation voltage is removed.
|
1. An integrated circuit switch, comprising:
a membrane supported over a first conductor on a substrate; a conductive region on said membrane and connecting to said first conductor on said substrate; a pulldown electrode on said substrate and under said membrane; and a pillar to support said membrane only after a pulldown threshold has been reached, wherein a voltage greater than said pulldown threshold and applied between said membrane and said pulldown electrode will pull said membrane down to make a capacitive coupling to said first conductor, wherein said integrated circuit switch included a dielectric and, said pillar has a height less than ⅔ the distance between the said membrane and said dielectric.
2. An integrated circuit switch as in
3. An integrated circuit switch as in
4. An integrated circuit switch as in
|
The present invention relates generally to the field of micro-electromechanical switches, and, more particularly, to an apparatus and method for increasing the restoring force of a membrane particularly in the up direction.
Developments in micro-electromechanical systems (MEMS) have facilitated exciting advancements in the field of sensors (accelerometers and pressure sensors), micro-machines (microsized pumps and motors) and control components (high-definition TV displays and spatial light modulators). In addition, the micro-mechanical switches have advantages prominent semiconductor and over switch technologies for the routing of microwave and millimeter-wave signals. The routing of microwaves and millimeter wave signals is typically accomplished with gallium arsenide field-effect-transistors (FET) or p-i-n diode switches. These solid state devices can integrate comfortably with other high frequency electronics with low power loss. A disadvantage is the slow switching speed. However, there are a number of applications that do not need the high switching speeds and are more sensitive either to the losses in the switches or the power consumed by the switches. For these applications, micromechanical switches may be an attractive alternative to solid state switches. Electrostatically activated micromechanical switches can provide switching with low insertion loss, high isolation, very low power consumption, and unmatched linearity.
Recent developments in MEMS technology have made possible the design and fabrication of control devices suitable for switching microwave signals. Electrostatically actuated cantilever switches have been used to switch low-frequency electrical signals. Since these switches have demonstrated useful performance at microwave frequencies using cantilever, rotary and membrane topologies, these switches have shown that moving metal contacts possess low parasitics at microwave frequencies due to their small size and are amendable to achieving low on-resistance (resistive switching) or high on-capacitance (capacitive switching). This results in switches with very low loss, electrostatic actuation (no DC current required) and a potential for ultra-linear small-signal operation.
Micromechanical switches may have an active element in a thin metallic membrane movable through the application of a DC electrostatic field. A cross-sectional view of a membrane switch element in the unactuated state is illustrated in FIG. 1. The upper contact of the switch includes a 0.3-μm or similarly sized aluminum membrane, suspended across polymer posts. Surface micromachining undercuts the post material from beneath the membrane, releasing it to be actuate. The suspended membrane typically resides 1-μm or similarly sized above the substrate surface. On the substrate surface, a bottom contact includes a 0.7-μm or similarly sized gold or aluminum first metal layer. On top of this first metal layer is positioned a thin dielectric layer, typically 1,000 Å or similarly sized layer of silicon nitride.
In the unactuated state, the membrane switch exhibits a high impedance due to the air gap between the bottom and top metal plates. Application of a DC potential between the upper and lower metal plates causes the thin upper membrane to deflect downwards due to the electrostatic attraction between the plates. When the applied potential exceeds the pull-in voltage of the switch, the membrane deflects into an actuated position. In this state, the top membrane rests directly on the dielectric layer and is capacitively coupled to the bottom plate. This capacitive coupling causes the switch to exhibit a low impedance between the two switch contacts. The ratio of the off- to on-impedances of the switch is determined by the on- and off-capacitances of the switch in the two switching states.
However, one of the problems with the device illustrated in
The present invention provides a MEMS switch that minimizes the problems associated with sticking of the membrane with the dielectric, and, more particularly, the present invention provides pillars or supports that effectively reduce the radius of the membrane when the membrane has been collapsed as in the actuated state while in the dielectric layer is capacitively coupled to the bottom plate. In contrast, when the switch is off and the membrane is separated from the bottom plate, the radius is not reduced but enlarged since there is no effect of these pillars in the unactivated state. This maintains the requirement for a low pull down.
FIGS. 5(a-g) illustrates a method for producing the present invention.
The following invention is described with reference to figures in which similar or the same numbers present the same or similar elements. While the invention is described in terms for achieving the invention's objectives, it can be appreciated by those skilled in the art that variations may be accomplished in view of these teachings without deviation from the spirit or scope of the invention.
A lumped-element, one-dimensional model can be used to approximate the electromechanical motion of the switch of the present invention. This model approximates the switch as a single, rigid, parallel-plate capacitor suspended above the fixed ground plate by an ideal linear spring. It has a single degree of freedom, which is the gap between the top movable membrane and the bottom fixed plate. An important feature of this model is its ability to correctly predict the pull-in of the membrane as a function of applied voltage. The motion of this switch can be described by the pressure balance equation
where P is the total pressure on the mechanical body of the switch, g is the height of the switch body above the bottom plate, g0 is the initial height of g with no applied field, and V is the applied electrostatic potential. The spring constant of the switch body, KS, is determined by the Young's modulus and Poisson ratio of the membrane metal and the residual stress within the switch body. As the electrostatic field is applied to the switch, the top movable membrane having a conductive region starts to deflect downward, decreasing the gap g and increasing the electrostatic pressure on the membrane. At a critical gap height of approximately ⅔ g0 this mechanical system goes unstable, causing the movable membrane to suddenly snap down or collapse onto the bottom plate.
The pulldown voltage VP for this device can be solved as
When the electrostatic pressure is removed from the switch, the tension in the metal top membrane pulls it back into the unactuated state.
The restoring force of the membrane is determined by the modulus (E), thickness (t), Poisson ratio (ν), area (πα2) and stress (σ) in the membrane as shown in Equation 1 for the circular membrane.
These parameters effect the response of the device when going from the on state (membrane down) to off state (membrane up). Thus, the restoring force can be improved by using films with a high modulus or one that is relatively thick; however, this increases the pulldown voltage, which is proportional to K1/2, since the restoring force acts as a resistive force which pulls the membrane down. This present invention seeks to somewhat decouple the restoring forces and therefore make the Kdown<<Kup.
As illustrated in
Thus, the advantages of the present invention are achieved. The pillars 216 effectively reduce the radius of the membrane in the on state and, corresponding, as seen by the above equation, with a reduced membrane the restoring force is greater. The pillars 216 provide a focal point for flexing of the membrane 202 and reduces the membrane area that engages the bottom electrode. Thus, as clearly seen, the restoring force is related to the area of the membrane 202. However, it is important to remember that the insulating spacers 206 cannot be moved closer. The reason that the insulating spacers 206 cannot be moved closer is that it is necessary to remove all spacers on top of the dielectric 212. U.S. Pat. No. 5,619,061 is incorporated by reference in its entirety.
Melendez, Jose L., Crenshaw, Darius L., Ng, Laurinda W., Williams, Bryon L.
Patent | Priority | Assignee | Title |
6943448, | Jan 23 2003 | Akustica, Inc. | Multi-metal layer MEMS structure and process for making the same |
6969996, | Feb 21 2002 | Altera Corporation | Methods for affirming switched status of MEMS-based devices |
7012726, | Nov 03 2003 | SNAPTRACK, INC | MEMS devices with unreleased thin film components |
7161730, | Sep 27 2004 | SNAPTRACK, INC | System and method for providing thermal compensation for an interferometric modulator display |
7172915, | Jan 29 2003 | SNAPTRACK, INC | Optical-interference type display panel and method for making the same |
7193768, | Aug 26 2003 | SNAPTRACK, INC | Interference display cell |
7198973, | Apr 21 2003 | SNAPTRACK, INC | Method for fabricating an interference display unit |
7202101, | Jan 23 2003 | Akustica, Inc. | Multi-metal layer MEMS structure and process for making the same |
7202763, | Sep 25 2002 | NXP B V | Micro-electromechanical switching device |
7221495, | Jun 24 2003 | SNAPTRACK, INC | Thin film precursor stack for MEMS manufacturing |
7236284, | Oct 05 1999 | SNAPTRACK, INC | Photonic MEMS and structures |
7250315, | Feb 12 2002 | SNAPTRACK, INC | Method for fabricating a structure for a microelectromechanical system (MEMS) device |
7265477, | Jan 05 2004 | Stepping actuator and method of manufacture therefore | |
7289259, | Sep 27 2004 | SNAPTRACK, INC | Conductive bus structure for interferometric modulator array |
7291921, | Sep 30 2003 | SNAPTRACK, INC | Structure of a micro electro mechanical system and the manufacturing method thereof |
7297471, | Apr 15 2003 | SNAPTRACK, INC | Method for manufacturing an array of interferometric modulators |
7302157, | Sep 27 2004 | SNAPTRACK, INC | System and method for multi-level brightness in interferometric modulation |
7304784, | Sep 27 2004 | SNAPTRACK, INC | Reflective display device having viewable display on both sides |
7321456, | Sep 27 2004 | SNAPTRACK, INC | Method and device for corner interferometric modulation |
7321457, | Jun 01 2006 | SNAPTRACK, INC | Process and structure for fabrication of MEMS device having isolated edge posts |
7327510, | Sep 27 2004 | SNAPTRACK, INC | Process for modifying offset voltage characteristics of an interferometric modulator |
7349136, | Sep 27 2004 | SNAPTRACK, INC | Method and device for a display having transparent components integrated therein |
7369292, | May 03 2006 | SNAPTRACK, INC | Electrode and interconnect materials for MEMS devices |
7369296, | Sep 27 2004 | SNAPTRACK, INC | Device and method for modifying actuation voltage thresholds of a deformable membrane in an interferometric modulator |
7372613, | Sep 27 2004 | SNAPTRACK, INC | Method and device for multistate interferometric light modulation |
7372619, | May 05 1994 | SNAPTRACK, INC | Display device having a movable structure for modulating light and method thereof |
7373026, | Sep 27 2004 | SNAPTRACK, INC | MEMS device fabricated on a pre-patterned substrate |
7382515, | Jan 18 2006 | SNAPTRACK, INC | Silicon-rich silicon nitrides as etch stops in MEMS manufacture |
7385744, | Jun 28 2006 | SNAPTRACK, INC | Support structure for free-standing MEMS device and methods for forming the same |
7385762, | Sep 27 2004 | SNAPTRACK, INC | Methods and devices for inhibiting tilting of a mirror in an interferometric modulator |
7405861, | Sep 27 2004 | SNAPTRACK, INC | Method and device for protecting interferometric modulators from electrostatic discharge |
7405863, | Jun 01 2006 | SNAPTRACK, INC | Patterning of mechanical layer in MEMS to reduce stresses at supports |
7417783, | Sep 27 2004 | SNAPTRACK, INC | Mirror and mirror layer for optical modulator and method |
7417784, | Apr 19 2006 | SNAPTRACK, INC | Microelectromechanical device and method utilizing a porous surface |
7420725, | Sep 27 2004 | SNAPTRACK, INC | Device having a conductive light absorbing mask and method for fabricating same |
7420728, | Sep 27 2004 | SNAPTRACK, INC | Methods of fabricating interferometric modulators by selectively removing a material |
7429334, | Sep 27 2004 | SNAPTRACK, INC | Methods of fabricating interferometric modulators by selectively removing a material |
7450295, | Mar 02 2006 | SNAPTRACK, INC | Methods for producing MEMS with protective coatings using multi-component sacrificial layers |
7471442, | Jun 15 2006 | SNAPTRACK, INC | Method and apparatus for low range bit depth enhancements for MEMS display architectures |
7476327, | May 04 2004 | SNAPTRACK, INC | Method of manufacture for microelectromechanical devices |
7486867, | Aug 19 2005 | SNAPTRACK, INC | Methods for forming layers within a MEMS device using liftoff processes to achieve a tapered edge |
7492502, | Sep 27 2004 | SNAPTRACK, INC | Method of fabricating a free-standing microstructure |
7492503, | Sep 27 2004 | SNAPTRACK, INC | System and method for multi-level brightness in interferometric modulation |
7515327, | Sep 27 2004 | SNAPTRACK, INC | Method and device for corner interferometric modulation |
7527995, | Sep 27 2004 | SNAPTRACK, INC | Method of making prestructure for MEMS systems |
7527996, | Apr 19 2006 | SNAPTRACK, INC | Non-planar surface structures and process for microelectromechanical systems |
7527998, | Jun 30 2006 | SNAPTRACK, INC | Method of manufacturing MEMS devices providing air gap control |
7532377, | Apr 08 1998 | SNAPTRACK, INC | Movable micro-electromechanical device |
7534640, | Jul 22 2005 | SNAPTRACK, INC | Support structure for MEMS device and methods therefor |
7542198, | Sep 27 2004 | SNAPTRACK, INC | Device having a conductive light absorbing mask and method for fabricating same |
7545552, | Oct 19 2006 | SNAPTRACK, INC | Sacrificial spacer process and resultant structure for MEMS support structure |
7547565, | Feb 04 2005 | SNAPTRACK, INC | Method of manufacturing optical interference color display |
7547568, | Feb 22 2006 | SNAPTRACK, INC | Electrical conditioning of MEMS device and insulating layer thereof |
7550794, | Sep 20 2002 | SNAPTRACK, INC | Micromechanical systems device comprising a displaceable electrode and a charge-trapping layer |
7550810, | Feb 23 2006 | SNAPTRACK, INC | MEMS device having a layer movable at asymmetric rates |
7553684, | Sep 27 2004 | SNAPTRACK, INC | Method of fabricating interferometric devices using lift-off processing techniques |
7554711, | Apr 08 1998 | SNAPTRACK, INC | MEMS devices with stiction bumps |
7554714, | Sep 27 2004 | SNAPTRACK, INC | Device and method for manipulation of thermal response in a modulator |
7556917, | Apr 15 2003 | SNAPTRACK, INC | Method for manufacturing an array of interferometric modulators |
7564612, | Sep 27 2004 | SNAPTRACK, INC | Photonic MEMS and structures |
7564613, | Apr 19 2006 | SNAPTRACK, INC | Microelectromechanical device and method utilizing a porous surface |
7566664, | Aug 02 2006 | SNAPTRACK, INC | Selective etching of MEMS using gaseous halides and reactive co-etchants |
7566940, | Jul 22 2005 | SNAPTRACK, INC | Electromechanical devices having overlying support structures |
7567373, | Jul 29 2004 | SNAPTRACK, INC | System and method for micro-electromechanical operation of an interferometric modulator |
7585113, | Dec 08 2005 | Electronics and Telecommunications Research Institute | Micro-electro mechanical systems switch and method of fabricating the same |
7609136, | Dec 20 2007 | General Electric Company | MEMS microswitch having a conductive mechanical stop |
7612932, | Sep 27 2004 | SNAPTRACK, INC | Microelectromechanical device with optical function separated from mechanical and electrical function |
7612933, | Mar 27 2008 | SNAPTRACK, INC | Microelectromechanical device with spacing layer |
7616369, | Jun 24 2003 | SNAPTRACK, INC | Film stack for manufacturing micro-electromechanical systems (MEMS) devices |
7623287, | Apr 19 2006 | SNAPTRACK, INC | Non-planar surface structures and process for microelectromechanical systems |
7629197, | Oct 18 2006 | SNAPTRACK, INC | Spatial light modulator |
7630114, | Oct 28 2005 | SNAPTRACK, INC | Diffusion barrier layer for MEMS devices |
7630119, | Sep 27 2004 | SNAPTRACK, INC | Apparatus and method for reducing slippage between structures in an interferometric modulator |
7630121, | Jul 02 2007 | SNAPTRACK, INC | Electromechanical device with optical function separated from mechanical and electrical function |
7642110, | Feb 12 2002 | SNAPTRACK, INC | Method for fabricating a structure for a microelectromechanical systems (MEMS) device |
7643199, | Jun 19 2007 | SNAPTRACK, INC | High aperture-ratio top-reflective AM-iMod displays |
7643202, | May 09 2007 | SNAPTRACK, INC | Microelectromechanical system having a dielectric movable membrane and a mirror |
7643203, | Apr 10 2006 | SNAPTRACK, INC | Interferometric optical display system with broadband characteristics |
7649671, | Jun 01 2006 | SNAPTRACK, INC | Analog interferometric modulator device with electrostatic actuation and release |
7663794, | Sep 27 2004 | SNAPTRACK, INC | Methods and devices for inhibiting tilting of a movable element in a MEMS device |
7667884, | Sep 27 2004 | SNAPTRACK, INC | Interferometric modulators having charge persistence |
7679812, | Jul 22 2005 | SNAPTRACK, INC | Support structure for MEMS device and methods therefor |
7684104, | Sep 27 2004 | SNAPTRACK, INC | MEMS using filler material and method |
7684106, | Nov 02 2006 | SNAPTRACK, INC | Compatible MEMS switch architecture |
7704772, | May 04 2004 | SNAPTRACK, INC | Method of manufacture for microelectromechanical devices |
7704773, | Aug 19 2005 | SNAPTRACK, INC | MEMS devices having support structures with substantially vertical sidewalls and methods for fabricating the same |
7706044, | May 26 2003 | SNAPTRACK, INC | Optical interference display cell and method of making the same |
7709964, | Sep 30 2003 | SNAPTRACK, INC | Structure of a micro electro mechanical system and the manufacturing method thereof |
7711239, | Apr 19 2006 | SNAPTRACK, INC | Microelectromechanical device and method utilizing nanoparticles |
7715079, | Dec 07 2007 | SNAPTRACK, INC | MEMS devices requiring no mechanical support |
7715085, | May 09 2007 | SNAPTRACK, INC | Electromechanical system having a dielectric movable membrane and a mirror |
7719500, | Sep 27 2004 | SNAPTRACK, INC | Reflective display pixels arranged in non-rectangular arrays |
7719752, | May 11 2007 | SNAPTRACK, INC | MEMS structures, methods of fabricating MEMS components on separate substrates and assembly of same |
7723015, | Apr 15 2003 | SNAPTRACK, INC | Method for manufacturing an array of interferometeric modulators |
7729036, | Nov 12 2007 | SNAPTRACK, INC | Capacitive MEMS device with programmable offset voltage control |
7742220, | Mar 28 2007 | SNAPTRACK, INC | Microelectromechanical device and method utilizing conducting layers separated by stops |
7746539, | Jun 25 2008 | SNAPTRACK, INC | Method for packing a display device and the device obtained thereof |
7747109, | Aug 19 2005 | SNAPTRACK, INC | MEMS device having support structures configured to minimize stress-related deformation and methods for fabricating same |
7763546, | Aug 02 2006 | SNAPTRACK, INC | Methods for reducing surface charges during the manufacture of microelectromechanical systems devices |
7768690, | Jun 25 2008 | SNAPTRACK, INC | Backlight displays |
7773286, | Sep 14 2007 | SNAPTRACK, INC | Periodic dimple array |
7781850, | Sep 20 2002 | SNAPTRACK, INC | Controlling electromechanical behavior of structures within a microelectromechanical systems device |
7782517, | Jun 21 2007 | SNAPTRACK, INC | Infrared and dual mode displays |
7787173, | Sep 27 2004 | SNAPTRACK, INC | System and method for multi-level brightness in interferometric modulation |
7795056, | Jun 03 2008 | United Microelectronics Corp. | Semiconductor device and method of fabricating the same |
7795061, | Dec 29 2005 | SNAPTRACK, INC | Method of creating MEMS device cavities by a non-etching process |
7830586, | Oct 05 1999 | SNAPTRACK, INC | Transparent thin films |
7830589, | Sep 27 2004 | SNAPTRACK, INC | Device and method for modifying actuation voltage thresholds of a deformable membrane in an interferometric modulator |
7835061, | Jun 28 2006 | SNAPTRACK, INC | Support structures for free-standing electromechanical devices |
7839557, | Sep 27 2004 | SNAPTRACK, INC | Method and device for multistate interferometric light modulation |
7847999, | Sep 14 2007 | SNAPTRACK, INC | Interferometric modulator display devices |
7855826, | Aug 12 2008 | SNAPTRACK, INC | Method and apparatus to reduce or eliminate stiction and image retention in interferometric modulator devices |
7859740, | Jul 11 2008 | SNAPTRACK, INC | Stiction mitigation with integrated mech micro-cantilevers through vertical stress gradient control |
7875485, | Jul 22 2005 | SNAPTRACK, INC | Methods of fabricating MEMS devices having overlying support structures |
7884989, | May 27 2005 | SNAPTRACK, INC | White interferometric modulators and methods for forming the same |
7889415, | Sep 27 2004 | SNAPTRACK, INC | Device having a conductive light absorbing mask and method for fabricating same |
7889417, | May 09 2007 | SNAPTRACK, INC | Electromechanical system having a dielectric movable membrane |
7893919, | Sep 27 2004 | SNAPTRACK, INC | Display region architectures |
7898723, | Apr 02 2008 | SNAPTRACK, INC | Microelectromechanical systems display element with photovoltaic structure |
7916980, | Jan 13 2006 | SNAPTRACK, INC | Interconnect structure for MEMS device |
7920319, | Jul 02 2007 | SNAPTRACK, INC | Electromechanical device with optical function separated from mechanical and electrical function |
7924494, | Sep 27 2004 | SNAPTRACK, INC | Apparatus and method for reducing slippage between structures in an interferometric modulator |
7936031, | Jul 22 2005 | SNAPTRACK, INC | MEMS devices having support structures |
7936497, | Sep 27 2004 | SNAPTRACK, INC | MEMS device having deformable membrane characterized by mechanical persistence |
7944599, | Sep 27 2004 | SNAPTRACK, INC | Electromechanical device with optical function separated from mechanical and electrical function |
7944604, | Mar 07 2008 | SNAPTRACK, INC | Interferometric modulator in transmission mode |
7948671, | Sep 27 2004 | SNAPTRACK, INC | Apparatus and method for reducing slippage between structures in an interferometric modulator |
7952787, | Jun 30 2006 | SNAPTRACK, INC | Method of manufacturing MEMS devices providing air gap control |
7960662, | May 31 2006 | Thales | Radiofrequency or hyperfrequency micro-switch structure and method for producing one such structure |
7969638, | Apr 10 2008 | SNAPTRACK, INC | Device having thin black mask and method of fabricating the same |
7978395, | Nov 12 2007 | SNAPTRACK, INC | Capacitive MEMS device with programmable offset voltage control |
7982700, | Sep 27 2004 | SNAPTRACK, INC | Conductive bus structure for interferometric modulator array |
7995265, | Sep 27 2004 | SNAPTRACK, INC | Interferometric modulators having charge persistence |
7999993, | Sep 27 2004 | SNAPTRACK, INC | Reflective display device having viewable display on both sides |
8008736, | Sep 27 2004 | SNAPTRACK, INC | Analog interferometric modulator device |
8023167, | Jun 25 2008 | SNAPTRACK, INC | Backlight displays |
8035883, | Sep 27 2004 | SNAPTRACK, INC | Device having a conductive light absorbing mask and method for fabricating same |
8053850, | Jun 30 2005 | Semiconductor Energy Laboratory Co., Ltd. | Minute structure, micromachine, organic transistor, electric appliance, and manufacturing method thereof |
8054527, | Oct 23 2007 | SNAPTRACK, INC | Adjustably transmissive MEMS-based devices |
8058549, | Oct 19 2007 | SNAPTRACK, INC | Photovoltaic devices with integrated color interferometric film stacks |
8068268, | Jul 03 2007 | SNAPTRACK, INC | MEMS devices having improved uniformity and methods for making them |
8068269, | Mar 27 2008 | SNAPTRACK, INC | Microelectromechanical device with spacing layer |
8072402, | Aug 29 2007 | SNAPTRACK, INC | Interferometric optical modulator with broadband reflection characteristics |
8081370, | Sep 27 2004 | SNAPTRACK, INC | Support structures for electromechanical systems and methods of fabricating the same |
8081373, | Jul 31 2007 | SNAPTRACK, INC | Devices and methods for enhancing color shift of interferometric modulators |
8085458, | Oct 28 2005 | SNAPTRACK, INC | Diffusion barrier layer for MEMS devices |
8098416, | Jun 01 2006 | SNAPTRACK, INC | Analog interferometric modulator device with electrostatic actuation and release |
8098417, | May 09 2007 | SNAPTRACK, INC | Electromechanical system having a dielectric movable membrane |
8101987, | Jun 03 2008 | United Microelectronics Corp. | Semiconductor device and method of fabricating the same |
8102590, | Jun 30 2006 | SNAPTRACK, INC | Method of manufacturing MEMS devices providing air gap control |
8115987, | Feb 01 2007 | SNAPTRACK, INC | Modulating the intensity of light from an interferometric reflector |
8149497, | Jul 22 2005 | SNAPTRACK, INC | Support structure for MEMS device and methods therefor |
8164821, | Feb 22 2008 | SNAPTRACK, INC | Microelectromechanical device with thermal expansion balancing layer or stiffening layer |
8174752, | Mar 07 2008 | SNAPTRACK, INC | Interferometric modulator in transmission mode |
8179215, | Nov 29 2000 | MicroAssembly Technologies, Inc. | MEMS device with integral packaging |
8213075, | Sep 27 2004 | SNAPTRACK, INC | Method and device for multistate interferometric light modulation |
8218229, | Jul 22 2005 | SNAPTRACK, INC | Support structure for MEMS device and methods therefor |
8243360, | Sep 27 2004 | SNAPTRACK, INC | Device having a conductive light absorbing mask and method for fabricating same |
8248358, | Mar 27 2009 | SNAPTRACK, INC | Altering frame rates in a MEMS display by selective line skipping |
8270056, | Mar 23 2009 | SNAPTRACK, INC | Display device with openings between sub-pixels and method of making same |
8270062, | Sep 17 2009 | SNAPTRACK, INC | Display device with at least one movable stop element |
8278726, | Sep 20 2002 | SNAPTRACK, INC | Controlling electromechanical behavior of structures within a microelectromechanical systems device |
8284475, | May 11 2007 | SNAPTRACK, INC | Methods of fabricating MEMS with spacers between plates and devices formed by same |
8289613, | Sep 27 2004 | SNAPTRACK, INC | Electromechanical device with optical function separated from mechanical and electrical function |
8298847, | Aug 19 2005 | SNAPTRACK, INC | MEMS devices having support structures with substantially vertical sidewalls and methods for fabricating the same |
8358266, | Sep 02 2008 | SNAPTRACK, INC | Light turning device with prismatic light turning features |
8368124, | Sep 20 2002 | SNAPTRACK, INC | Electromechanical devices having etch barrier layers |
8368153, | Apr 08 2010 | United Microelectronics Corp. | Wafer level package of MEMS microphone and manufacturing method thereof |
8368997, | Jul 02 2007 | SNAPTRACK, INC | Electromechanical device with optical function separated from mechanical and electrical function |
8390547, | Sep 27 2004 | SNAPTRACK, INC | Conductive bus structure for interferometric modulator array |
8394656, | Dec 29 2005 | SNAPTRACK, INC | Method of creating MEMS device cavities by a non-etching process |
8405899, | Sep 27 2004 | SNAPTRACK, INC | Photonic MEMS and structures |
8488228, | Sep 28 2009 | SNAPTRACK, INC | Interferometric display with interferometric reflector |
8638491, | Sep 27 2004 | SNAPTRACK, INC | Device having a conductive light absorbing mask and method for fabricating same |
8659816, | Apr 25 2011 | SNAPTRACK, INC | Mechanical layer and methods of making the same |
8681079, | Aug 29 2007 | QUALCOMM MEMS Technologies, Inc. | Interferometric optical modulator with broadband reflection characteristics |
8686405, | Jun 30 2005 | Semiconductor Energy Laboratory Co., Ltd. | Minute structure, micromachine, organic transistor, electric appliance, and manufacturing method thereof |
8693084, | Mar 07 2008 | SNAPTRACK, INC | Interferometric modulator in transmission mode |
8736939, | Nov 04 2011 | SNAPTRACK, INC | Matching layer thin-films for an electromechanical systems reflective display device |
8736949, | Jul 31 2007 | SNAPTRACK, INC | Devices and methods for enhancing color shift of interferometric modulators |
8797628, | Oct 19 2007 | SNAPTRACK, INC | Display with integrated photovoltaic device |
8797632, | Aug 17 2010 | SNAPTRACK, INC | Actuation and calibration of charge neutral electrode of a display device |
8817357, | Apr 09 2010 | SNAPTRACK, INC | Mechanical layer and methods of forming the same |
8830557, | May 11 2007 | SNAPTRACK, INC | Methods of fabricating MEMS with spacers between plates and devices formed by same |
8885244, | Sep 27 2004 | SNAPTRACK, INC | Display device |
8928967, | Apr 08 1998 | SNAPTRACK, INC | Method and device for modulating light |
8941631, | Nov 16 2007 | SNAPTRACK, INC | Simultaneous light collection and illumination on an active display |
8963159, | Apr 04 2011 | SNAPTRACK, INC | Pixel via and methods of forming the same |
8964280, | Jun 30 2006 | SNAPTRACK, INC | Method of manufacturing MEMS devices providing air gap control |
8970939, | Sep 27 2004 | SNAPTRACK, INC | Method and device for multistate interferometric light modulation |
8971675, | Jan 13 2006 | SNAPTRACK, INC | Interconnect structure for MEMS device |
8979349, | May 29 2009 | SNAPTRACK, INC | Illumination devices and methods of fabrication thereof |
9001412, | Sep 27 2004 | SNAPTRACK, INC | Electromechanical device with optical function separated from mechanical and electrical function |
9019190, | Mar 27 2009 | SNAPTRACK, INC | Altering frame rates in a MEMS display by selective line skipping |
9057872, | Aug 31 2010 | SNAPTRACK, INC | Dielectric enhanced mirror for IMOD display |
9081188, | Nov 04 2011 | SNAPTRACK, INC | Matching layer thin-films for an electromechanical systems reflective display device |
9086564, | Sep 27 2004 | SNAPTRACK, INC | Conductive bus structure for interferometric modulator array |
9097885, | Sep 27 2004 | SNAPTRACK, INC | Device having a conductive light absorbing mask and method for fabricating same |
9110289, | Apr 08 1998 | SNAPTRACK, INC | Device for modulating light with multiple electrodes |
9121979, | May 29 2005 | SNAPTRACK, INC | Illumination devices and methods of fabrication thereof |
9134527, | Apr 04 2011 | SNAPTRACK, INC | Pixel via and methods of forming the same |
RE42119, | Feb 27 2002 | SNAPTRACK, INC | Microelectrochemical systems device and method for fabricating same |
Patent | Priority | Assignee | Title |
5619061, | Jul 27 1993 | HOEL, CARLTON H | Micromechanical microwave switching |
6307452, | Sep 16 1999 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Folded spring based micro electromechanical (MEM) RF switch |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 26 2001 | Texas Instruments Incorporated | (assignment on the face of the patent) | / | |||
May 04 2001 | NG, LAURINDA W | Texas Instruments Incorporated | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012082 | /0913 | |
May 08 2001 | CRENSHAW, DARIUS L | Texas Instruments Incorporated | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012082 | /0913 | |
May 11 2001 | MELENDEZ, JOSE L | Texas Instruments Incorporated | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012082 | /0913 | |
Jun 22 2001 | WILLIAMS, BRYON L | Texas Instruments Incorporated | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012082 | /0913 |
Date | Maintenance Fee Events |
May 17 2007 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
May 23 2011 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
May 26 2015 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Dec 02 2006 | 4 years fee payment window open |
Jun 02 2007 | 6 months grace period start (w surcharge) |
Dec 02 2007 | patent expiry (for year 4) |
Dec 02 2009 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 02 2010 | 8 years fee payment window open |
Jun 02 2011 | 6 months grace period start (w surcharge) |
Dec 02 2011 | patent expiry (for year 8) |
Dec 02 2013 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 02 2014 | 12 years fee payment window open |
Jun 02 2015 | 6 months grace period start (w surcharge) |
Dec 02 2015 | patent expiry (for year 12) |
Dec 02 2017 | 2 years to revive unintentionally abandoned end. (for year 12) |