Generally, the method of the present invention has the steps of (a) flash evaporating a liquid monomer forming an evaporate; (b) passing the evaporate to a glow discharge electrode creating a glow discharge monomer plasma from the evaporate; and (c) cryocondensing the glow discharge monomer plasma on a fixture and crosslinking the glow discharge plasma thereon, wherein the crosslinking results from radicals created in the glow discharge plasma and achieves self curing.

Patent
   6217947
Priority
Dec 16 1998
Filed
Dec 16 1998
Issued
Apr 17 2001
Expiry
Dec 16 2018
Assg.orig
Entity
Large
23
72
all paid
11. A method for conformally coating a fixture in a vacuum chamber, comprising:
(a) flash evaporating a coating material monomer forming an evaporate;
(b) passing said evaporate to a glow discharge electrode creating a glow discharge monomer plasma from said evaporate; and
(c) cryocondensing said glow discharge monomer plasma as a condensate on said fixture and crosslinking said glow discharge monomer plasma thereon, said crosslinking resulting from radicals created in said glow discharge monomer plasma.
1. A method for plasma enhanced chemical vapor deposition of low vapor pressure monomeric materials onto a fixture in a vacuum environment, comprising the steps of:
(a) making an evaporate by receiving a plurality of monomer particles of the low vapor pressure monomeric materials as a spray into a flash evaporating housing, evaporating said spray on an evaporation surface, and discharging said evaporate through an evaporate outlet;
(b) making a monomer plasma from said evaporate by passing said evaporate proximate a glow discharge electrode for making said plasma from said evaporate; and
(c) cryocondensing said monomer plasma onto said fixture.
2. The method as recited in claim 1, wherein said fixture is proximate the glow discharge electrode, is electrically biased with an impressed voltage, and receives said monomer plasma cryocondensing thereon.
3. The method as recited in claim 1, wherein said glow discharge electrode is positioned within a glow discharge housing having an evaporate inlet proximate the evaporate outlet, said glow discharge housing and said glow discharge electrode maintained at a temperature above a dew point of said evaporate, said fixture is downstream of said monomer plasma, is electrically floating, and receives said monomer plasma cryocondensing thereon.
4. The method as recited in claim 1, wherein said fixture is proximate the glow discharge electrode, is electrically grounded, and receives said monomer plasma cryocondensing thereon.
5. The method as recited in claim 1, wherein said monomer is selected from the group consisting of acrylate monomer, methacrylate monomer and combinations thereof.
6. The method as recited in claim 5, wherein said acrylate monomer is selected from the group consisting of tripropyleneglycol diacrylate, tetraethylene glycol diacrylate, tripropylene glycol monoacrylate, caprolactone acrylate, and combinations thereof.
7. The method as recited in claim 1, wherein said fixture is cooled.
8. The method as recited in claim 1, further comprising adding an additional gas.
9. The method as recited in claim 8, wherein said additional gas is a ballast gas.
10. The method as recited in claim 8, wherein said additional gas is a reaction gas.
12. The method as recited in claim 11, wherein said fixture is proximate the glow discharge electrode, is electrically biased with an impressed voltage, and receives said glow discharge monomer plasma cryocondensing thereon.
13. The method as recited in claim 11, wherein said glow discharge electrode is positioned within a glow discharge housing having an evaporate inlet proximate the evaporate outlet, said glow discharge housing and said glow discharge electrode maintained at a temperature above a dew point of said evaporate, said fixture is downstream of said glow discharge monomer plasma, is electrically floating, and receives said glow discharge monomer plasma cryocondensing thereon.
14. The method as recited in claim 11, wherein said fixture is proximate said glow discharge electrode, is electrically grounded, and receives said glow discharge monomer plasma cryocondensing thereon.
15. The method as recited in claim 11, wherein said monomer is selected from the group consisting of acrylate monomer, methacrylate monomer, and combinations thereof.
16. The method as recited in claim 15, wherein said acrylate monomer is selected from the group consisting of tripropyleneglycol diacrylate, tetraethylene glycol diacrylate, tripropylene glycol monoacrylate, caprolactone acrylate, and combinations thereof.
17. The method as recited in claim 11, wherein said fixture is cooled.
18. The method as recited in claim 11, further comprising an additional gas.
19. The method as recited in claim 18, wherein said additional gas is a ballast gas.
20. The method as recited in claim 18, wherein said additional gas is a reaction gas.

The present invention relates generally to a method of making plasma polymerized films on a fixture.

As used herein, a fixture is a discrete item. Examples include but are not limited to plumbing fixtures, cabinetry fixtures, tools, optical fixtures including reflectors, light covers, solar collectors and combinatiions thereof which are clearly distinct from a continuous item for example a sheet, wire, or rope.

As used herein, the term "(meth)acrylic" is defined as "acrylic or methacrylic". Also, "(meth)acrylate" is defined as "acrylate or methacrylate".

As used herein, the term "cryocondense" and forms thereof refers to the physical phenomenon of a phase change from a gas phase to a liquid phase upon the gas contacting a surface having a temperature lower than a dew point of the gas.

The basic process of flash evaporation is described in U.S. Pat. No. 4,954,371 herein incorporated by reference. This basic process may also be referred to as polymer multi-layer (PML) flash evaporation. Briefly, a radiation polymerizable and/or cross linkable material is supplied at a temperature below a decomposition temperature and polymerization temperature of the material. The material is atomized to droplets having a droplet size ranging from about 1 to about 50 microns. An ultrasonic atomizer is generally used. The droplets are then flash vaporized, under vacuum, by contact with a heated surface above the boiling point of the material, but below the temperature which would cause pyrolysis. The vapor is cryocondensed on a substrate then radiation polymerized or cross linked as a very thin polymer layer. The material may include a base monomer or mixture thereof, cross-linking agents and/or initiating agents. A disadvantage of the flash evaporation method with radiation cross linking is that it requires two sequential steps, cryocondensation followed by curing or cross linking, that are both spatially and temporally separate. A disadvantage of this radiation crosslinking method is the time between cryocondensation and curing permitting the cryocondensed monomer to flow or run, especially on fixtures having irregular non-flat geometry, leading to non-uniformity of coating (FIG. 1a) so that the coating surface 150 is geometrically different from the substrate surface 160. Reducing surface temperature can reduce the flow somewhat, but should the monomer freeze, then cross linking is adversely affected. Using higher viscosity monomers is unattractive because of the increased difficulty of degassing, stirring, and dispensing of the monomer

The basic process of plasma enhanced chemical vapor deposition (PECVD) is described in THIN FILM PROCESSES, J. L. Vossen, W. Kern, editors, Academic Press, 1978, Part IV, Chapter IV-1 Plasma Deposition of Inorganic Compounds, Chapter IV-2 Glow Discharge Polymerization, herein incorporated by reference. Briefly, a glow discharge plasma is generated on an electrode that may be smooth or have pointed projections. Traditionally, a gas inlet introduces high vapor pressure monomeric gases into the plasma region wherein radicals are formed so that upon subsequent collisions with the substrate, some of the radicals in the monomers chemically bond or cross link (cure) on the substrate. The high vapor pressure monomeric gases include gases of CH4, SiH4, C2 H2, C2 H2, or gases generated from high vapor pressure liquid, for example styrene (10 torr at 87.4° F. (30.8°C)), hexane (100 torr at 60.4° F. (15.8°C)), tetramethyldisiloxane (10 torr at 82.9° F. (28.3°C) 1,3,-dichlorotetra-methyldisiloxane) and combinations thereof that may be evaporated with mild controlled heating. Because these high vapor pressure monomeric gases do not readily cryocondense at ambient or elevated temperatures, deposition rates are low (a few tenths of micrometer/min maximum) relying on radicals chemically bonding to the surface of interest instead of cryocondensation. The low deposition rate is not useable in a high rate industrial application. Remission due to etching of the surface of interest by the plasma competes with deposition of the radicals. Lower vapor pressure species have not been used in PECVD because heating the higher molecular weight monomers to a temperature sufficient to vaporize them generally causes a reaction prior to vaporization, or metering of the gas becomes difficult to control, either of which is inoperative.

According to the state of the art of making plasma polymerized films, PECVD and flash evaporation or glow discharge plasma deposition and flash evaporation have not been used in combination. However, plasma treatment of a substrate using glow discharge plasma generator with inorganic compounds has been used in combination with flash evaporation under a low pressure (vacuum) atmosphere as reported in J. D. Affinito, M. E. Gross, C. A. Coronado, and P. M. Martin, A Vacuum Deposition Of Polymer Electrolytes On Flexible Substrates. "Paper for Plenary talk in A Proceedings of the Ninth International Conference on Vacuum Web Coating", November 1995 ed R. Bakish, Bakish Press 1995, pg 20-36., and as shown in FIG. 1b. In that system, the plasma generator 100 is used to etch the surface 102 of a moving substrate 104 in preparation to receive the monomeric gaseous output from the flash evaporation 106 that cryocondenses on the etched surface 102 and is then passed by a first curing station (not shown), for example electron beam or ultra-violet radiation, to initiate cross linking and curing. The plasma generator 100 has a housing 108 with a gas inlet 110. The gas may be oxygen, nitrogen, water or an inert gas, for example argon, or combinations thereof. Internally, an electrode 112 that is smooth or having one or more pointed projections 114 produces a glow discharge and makes a plasma with the gas which etches the surface 102. The flash evaporator 106 has a housing 116, with a monomer inlet 118 and an atomizing nozzle 120, for example an ultrasonic atomizer. Flow through the nozzle 120 is atomized into particles or droplets 122 which strike the heated surface 124 whereupon the particles or droplets 122 are flash evaporated into a gas that flows past a series of baffles 126 (optional) to an outlet 128 and cryocondenses on the surface 102. Although other gas flow distribution arrangements have been used, it has been found that the baffles 126 provide adequate gas flow distribution or uniformity while permitting ease of scaling up to large surfaces 102. In the method of radiation curing, a curing station (not shown) is located downstream of the flash evaporator 106. The monomer may be an acrylate (FIG. 1b). This system was for planar layer coatings. With radiation curing, the time between deposition and curing permits flow of thicker coating layers leading to non-uniformity of coating on non-uniform surfaces or tilted planar surfaces.

Therefore, there is a need for an apparatus and method for coating fixtures with polymerized layers at a fast rate while avoiding flow of the coating.

The present invention is a method of making a plasma polymerized film on a fixture. More specifically, the method is for making a self-curing polymer layer, especially self-curing PML polymer layer on a fixture. The method relies upon a combination of flash evaporation with plasma enhanced chemical vapor deposition (PECVD) that provides the unexpected improvements of permitting use of low vapor pressure monomer materials in a PECVD process and provides a self curing from a flash evaporation process at a rate surprisingly faster (2 orders of magnitude or more) than standard PECVD deposition rates. Another advantage of the present invention is the ability to make a conformal coating on a fixture. Because of rapid self curing, the monomer has less time to flow and is therefore more uniformly thick.

The method of the present invention has the steps of (a) flash evaporating a liquid monomer forming an evaporate; (b) passing the evaporate to a glow discharge electrode creating a glow discharge monomer plasma from the evaporate; and (c) cryocondensing the glow discharge monomer plasma on a substrate and crosslinking the glow discharge plasma thereon, wherein the crosslinking results from radicals created in the glow discharge plasma and achieves self curing.

It is an object of the present invention to provide a method combining flash evaporation with glow discharge plasma deposition for polymer coating a fixture.

An advantage of the present invention is that multiple layers of materials may be combined. For example, as recited in U.S. Pat. Nos. 5,547,508 and 5,395,644, 5,260,095, hereby incorporated by reference, multiple polymer layers, alternating layers of polymer and metal, and other layers may be made with the present invention in the vacuum environment.

The subject matter of the present invention is particularly pointed out and distinctly claimed in the concluding portion of this specification. However, both the organization and method of operation, together with further advantages and objects thereof, may best be understood by reference to the following detailed description in combination with the drawings wherein like reference characters refer to like elements.

FIG. 1a is a cross section of a prior art combination of a glow discharge plasma generator with inorganic compounds with flash evaporation.

FIG. 1b is a chemical diagram of an acrylate.

FIG. 2a is an illustration of non-conformal coating.

FIG. 2b is an illustration of a conformal coating.

FIG. 3 is a cross section of the apparatus of the present invention of combined flash evaporation and glow discharge plasma deposition.

FIG. 3a is a cross section end view of the apparatus of the present invention.

FIG. 4 is a cross section of the present invention wherein the substrate or fixture is the electrode.

FIG. 5 is a cross section of the present invention wherein a plurality of electrodes surrounds the substrate or fixture.

The present invention is a method of conformally coating a fixture. Fixture is a discrete item including but not limited to plumbing fixtures for example, faucets, spouts and/or valve handles or knobs, cabinetry fixtures, for example pulls or knobs, hinges, tools (especially hand tools), optical fixtures including reflectors, light covers, solar collectors and combinations thereof. A fixture is clearly distinct from and excludes a continuous item for example a sheet, wire, or rope. A conformal coating on a portion of a fixture is illustrated in FIG. 2b wherein a coating surface 150 is geometrically similar to the fixture surface 160.

The method of the present invention is done with the apparatus of FIG. 3, FIG. 4 or FIG. 5, preferably within a low pressure (vacuum) environment or chamber. Pressures preferably range from about 10-1 torr to 10-6 torr. The flash evaporator 106 has a housing 116, with a monomer inlet 118 and an atomizing nozzle 120. Flow through the nozzle 120 is atomized into particles or droplets 122 which strike the heated surface 124 whereupon the particles or droplets 122 are flash evaporated into a gas or evaporate that flows past a series of baffles 126 to an evaporate outlet 128 and cryocondenses on the surface 102. Cryocondensation on the baffles 126 and other internal surfaces is prevented by heating the baffles 126 and other surfaces to a temperature in excess of a cryocondensation temperature or dew point of the evaporate. Although other gas flow distribution arrangements have been used, it has been found that the baffles 126 provide adequate gas flow distribution or uniformity while permitting ease of scaling up to large surfaces 102. The evaporate outlet 128 directs gas toward a glow discharge electrode 204 creating a glow discharge plasma from the evaporate. In the embodiment shown in FIG. 3, the glow discharge electrode 204 is placed in a glow discharge housing 200 having an evaporate inlet 202 proximate the evaporate outlet 128. In this embodiment, the glow discharge housing 200 and the glow discharge electrode 204 are maintained at a temperature above a dew point of the evaporate. The glow discharge plasma exits the glow discharge housing 200 and cryocondenses on the surface 102 of the substrate (fixture) 104. It is preferred that the substrate 104 is kept at a temperature below a dew point of the evaporate, preferably ambient temperature or cooled below ambient temperature to enhance the cryocondensation rate. In this embodiment, the substrate 104 may be electrically grounded, electrically floating, or electrically biased with an impressed voltage to draw charged species from the glow discharge plasma. If the substrate 104 is electrically biased, it may even replace the electrode 204 and be, itself, the electrode which creates the glow discharge plasma from the monomer gas. Substantially not electrically biased means that there is no impressed voltage although a charge may build up due to static electricity or due to interaction with the plasma.

A preferred shape of the glow discharge electrode 204, is shown in FIG. 2a. In this preferred embodiment, the glow discharge electrode 204 is separate from the substrate 104 and shaped so that evaporate flow from the evaporate inlet 202 substantially flows through an electrode opening 206. Any electrode shape can be used to create the glow discharge, however, the preferred shape of the electrode 204 does not shadow the plasma from the evaporate issuing from the outlet 202 and its symmetry, relative to the monomer exit slit 202 and substrate 104, provides uniformity of the evaporate vapor flow to the plasma across the width of the substrate while uniformity transverse to the width. The spacing of the electrode 204 from the substrate 104 is a gap or distance that permits the plasma to impinge upon the substrate. This distance that the plasma extends from the electrode will depend on the evaporate species, electrode 204/substrate 104 geometry, electrical voltage and frequency, and pressure in the standard way as described in detail in ELECTRICAL DISCHARGES IN GASSES, F. M. Penning, Gordon and Breach Science Publishers, 1965, and summarized in THIN FILM PROCESSES, J. L. Vossen, W. Kern, editors, Academic Press, 1978, Part II, Chapter II-1, Glow Discharge Sputter Deposition, both hereby incorporated by reference. Alternatively, the electrode 204 may be a plurality of electrodes distributed throughout the volume of the vacuum chamber defined by the housing 116.

An alternative apparatus also suitable for batch operation is shown in FIG. 4. In this embodiment, the glow discharge electrode 204 is sufficiently proximate a part 300 (substrate) that the part 300 is an extension of or part of the electrode 204. Moreover, the part is below a dew point to allow cryocondensation of the glow discharge plasma on the part 300 and thereby coat the part 300 with the monomer condensate and self cure into a polymer layer. Sufficiently proximate may be connected to, resting upon, in direct contact with, or separated by a gap or distance that permits the plasma to impinge upon the substrate. This distance that the plasma extends from the electrode will depend on the evaporate species, electrode 204/substrate 104 geometry, electrical voltage and frequency, and pressure in the standard way as described in ELECTRICAL DISCHARGES IN GASSES, F. M. Penning, Gordon and Breach Science Publishers, 1965, hereby incorporated by reference. The substrate 104, 300 may be stationary or moving during cryocondensation. Moving includes rotation and translation and may be employed for controlling the thickness and uniformity of the monomer layer cryocondensed thereon. Because the cryocondensation occurs rapidly, within milli-seconds to seconds, the part may be removed after coating and before it exceeds a coating temperature limit.

Another embodiment for non or marginally electrically conductive fixtures is shown in FIG. 5 wherein electrode elements 204 surround the fixture 300.

In operation, the method of the invention has the steps of (a) flash evaporating a liquid monomer forming an evaporate; (b) passing the evaporate to a glow discharge electrode creating a glow discharge monomer plasma from the evaporate; and (c) cryocondensing the glow discharge monomer plasma on a fixture 104, 300 and crosslinking the glow discharge plasma thereon. The crosslinking results from radicals created in the glow discharge plasma thereby permitting self curing.

The flash evaporating has the steps of flowing a monomer liquid to an inlet, atomizing the monomer liquid through a nozzle and creating a plurality of monomer particles of the monomer liquid as a spray. The spray is directed onto a heated evaporation surface whereupon it is evaporated and discharged through an evaporate outlet. By using flash evaporation, the monomer is vaporized so quickly that reactions that generally occur from heating a liquid monomer to an evaporation temperature simply do not occur. Further, control of the rate of evaporate delivery is strictly controlled by the rate of liquid monomer delivery to the inlet 118 of the flash evaporator 106.

The liquid monomer may be any liquid monomer. However, it is preferred that the monomer material or liquid have a low vapor pressure at ambient temperatures so that it will readily cryocondense. Preferably, the vapor pressure of the monomer material is less than about 10 torr at 83° F. (28.3°C), more preferably less than about 1 torr at 83° F. (28.3°C), and most preferably less than about 10 millitorr at 83° F. (28.3°C). For monomers of the same chemical family, monomers with low vapor pressures usually also have higher molecular weight and are more readily cryocondensible than higher vapor pressure, lower molecular weight monomers. Liquid monomer includes but is not limited to (meth)acrylate monomers, for example tripropyleneglycol diacrylate, tetraethylene glycol diacrylate, tripropylene glycol monoacrylate, caprolactone acrylate, and combinations thereof.

In addition to the evaporate from the liquid monomer, additional gases may be added within the flash evaporator 106 through a gas inlet 130 upstream of the evaporate outlet 128, preferably between the heated surface 124 and the first baffle 126 nearest the heated surface 124. Additional gases may be organic or inorganic for purposes included but not limited to ballast, reaction and combinations thereof. Ballast refers to providing sufficient molecules to keep the plasma lit in circumstances of low evaporate flow rate. Reaction refers to chemical reaction to form a compound different from the evaporate. Additional gases include but are not limited to group VIII of the periodic table, hydrogen, oxygen, nitrogen, chlorine, bromine, polyatomic gases including for example carbon dioxide, carbon monoxide, water vapor, and combinations thereof. An exemplary reaction is by addition of oxygen gas to the monomer evaporate hexamethylydisiloxane to obtain silicon dioxide.

An advantage of the present invention is the ability to make conformal coatings. Because of rapid plasma polymerization, the monomer has less time to flow and is therefore more uniformly thick even under conditions of substrate temperature and deposition rate that would produce non-conformal coatings using conventional deposition with significantly more time between condensation and polymerization.

While a preferred embodiment of the present invention has been shown and described, it will be apparent to those skilled in the art that many changes is and modifications may be made without departing from the invention in its broader aspects. The appended claims are therefore intended to cover all such changes and modifications as fall within the true spirit and scope of the invention.

Affinito, John D.

Patent Priority Assignee Title
10950821, Jan 26 2007 Samsung Display Co., Ltd. Method of encapsulating an environmentally sensitive device
6811829, Dec 16 1998 SAMSUNG DISPLAY CO , LTD Method of making a coating of a microtextured surface
6858259, Dec 16 1998 SAMSUNG DISPLAY CO , LTD Plasma enhanced chemical deposition for high and/or low index of refraction polymers
6866901, Oct 25 1999 SAMSUNG DISPLAY CO , LTD Method for edge sealing barrier films
6909230, Dec 16 1998 SAMSUNG DISPLAY CO , LTD Method of making molecularly doped composite polymer material
6962671, Oct 25 1999 SAMSUNG DISPLAY CO , LTD Multilayer plastic substrates
7005199, Apr 17 2002 INTELLECTUAL DISCOVERY CO LTD Organic electroluminescent devices having encapsulation thin film formed by wet processing and methods for manufacturing the same
7198832, Oct 25 1999 SAMSUNG DISPLAY CO , LTD Method for edge sealing barrier films
7510913, Apr 11 2003 SAMSUNG DISPLAY CO , LTD Method of making an encapsulated plasma sensitive device
7648925, Apr 11 2003 SAMSUNG DISPLAY CO , LTD Multilayer barrier stacks and methods of making multilayer barrier stacks
7727601, Oct 25 1999 SAMSUNG DISPLAY CO , LTD Method for edge sealing barrier films
7767498, Aug 25 2005 SAMSUNG DISPLAY CO , LTD Encapsulated devices and method of making
8088502, Sep 20 2006 Battelle Memorial Institute Nanostructured thin film optical coatings
8590338, Dec 31 2009 SAMSUNG DISPLAY CO , LTD Evaporator with internal restriction
8900366, Apr 15 2002 SAMSUNG DISPLAY CO , LTD Apparatus for depositing a multilayer coating on discrete sheets
8904819, Dec 31 2009 Samsung Display Co., Ltd. Evaporator with internal restriction
8955217, Oct 25 1999 SAMSUNG DISPLAY CO , LTD Method for edge sealing barrier films
9184410, Dec 22 2008 SAMSUNG DISPLAY CO , LTD Encapsulated white OLEDs having enhanced optical output
9337446, Dec 22 2008 SAMSUNG DISPLAY CO , LTD Encapsulated RGB OLEDs having enhanced optical output
9362530, Dec 22 2008 Samsung Display Co., Ltd. Encapsulated white OLEDs having enhanced optical output
9839940, Apr 11 2003 Samsung Display Co., Ltd. Apparatus for depositing a multilayer coating on discrete sheets
RE40531, Oct 25 1999 SAMSUNG DISPLAY CO , LTD Ultrabarrier substrates
RE40787, Oct 25 1999 SAMSUNG DISPLAY CO , LTD Multilayer plastic substrates
Patent Priority Assignee Title
3475307,
3607365,
4098965, Jan 24 1977 Polaroid Corporation Flat batteries and method of making the same
4283482, Mar 29 1979 Nihon Shinku Gijutsu Kabushiki Kaisha Dry Lithographic Process
4581337, Jul 07 1983 DADE BEHRING INC ; BADE BEHRING INC Polyether polyamines as linking agents for particle reagents useful in immunoassays
4624867, Mar 21 1984 NIHON SHINKU GIJUTSU KABUSHIKI KAISHA, ALSO TRADING AS ULVAC CORPORATION Process for forming a synthetic resin film on a substrate and apparatus therefor
4695618, May 23 1986 AMERON INTERNATIONAL CORPORATION, A CORPORATION OF DELAWARE Solventless polyurethane spray compositions and method for applying them
5032461, Dec 19 1983 3M Innovative Properties Company Method of making a multi-layered article
5237439, Sep 30 1991 Sharp Kabushiki Kaisha Plastic-substrate liquid crystal display device with a hard coat containing boron or a buffer layer made of titanium oxide
5354497, Apr 20 1992 Sharp Kabushiki Kaisha Liquid crystal display
5395644, Aug 21 1992 Battelle Memorial Institute; Battelle Memorial Institute K1-53 Vacuum deposition and curing of liquid monomers
5427638, Jun 04 1992 AlliedSignal Inc. Low temperature reaction bonding
5440446, Oct 04 1993 3M Innovative Properties Company Acrylate coating material
5536323, Jul 06 1990 Entegris, Inc Apparatus for flash vaporization delivery of reagents
5547508, Aug 21 1992 Battelle Memorial Institute Vacuum deposition and curing of liquid monomers apparatus
5554220, May 19 1995 PORTAL CONNECT, INC Method and apparatus using organic vapor phase deposition for the growth of organic thin films with large optical non-linearities
5576101, Dec 18 1992 Bridgestone Corporation Gas barrier rubber laminate for minimizing refrigerant leakage
5607789, Jan 23 1995 GILLETTE COMPANY, THE Light transparent multilayer moisture barrier for electrochemical cell tester and cell employing same
5620524, Feb 27 1995 IPPRIME INC Apparatus for fluid delivery in chemical vapor deposition systems
5629389, Jun 06 1995 Innolux Corporation Polymer-based electroluminescent device with improved stability
5654084, Jul 22 1994 Martin Marietta Energy Systems, Inc. Protective coatings for sensitive materials
5681615, Jul 27 1995 Battelle Memorial Institute Vacuum flash evaporated polymer composites
5681666, Jan 23 1995 GILLETTE COMPANY, THE Light transparent multilayer moisture barrier for electrochemical celltester and cell employing same
5686360, Nov 30 1995 UNIVERSAL DISPLAY CORPORATION Passivation of organic devices
5693956, Jul 29 1996 UNIVERSAL DISPLAY CORPORATION Inverted oleds on hard plastic substrate
5711816, Jul 06 1990 Entegris, Inc Source reagent liquid delivery apparatus, and chemical vapor deposition system comprising same
5725909, Oct 04 1993 3M Innovative Properties Company Acrylate composite barrier coating process
5731661, Jul 15 1996 UNIVERSAL DISPLAY CORPORATION Passivation of electroluminescent organic devices
5747182, Jul 27 1992 Cambridge Display Technology Limited Manufacture of electroluminescent devices
5757126, Nov 30 1995 UNIVERSAL DISPLAY CORPORATION Passivated organic device having alternating layers of polymer and dielectric
5759329, Jan 06 1992 MARTINREA INDUSTRIES INC Fluoropolymer composite tube and method of preparation
5792550, Oct 24 1989 JDS Uniphase Corporation Barrier film having high colorless transparency and method
5811177, Nov 30 1995 UNIVERSAL DISPLAY CORPORATION Passivation of electroluminescent organic devices
5811183, Apr 06 1995 3M Innovative Properties Company Acrylate polymer release coated sheet materials and method of production thereof
5821692, Nov 26 1996 UNIVERSAL DISPLAY CORPORATION Organic electroluminescent device hermetic encapsulation package
5844363, Jan 23 1997 TRUSTEES OF PRINCETON UNIVERSITY, THE Vacuum deposited, non-polymeric flexible organic light emitting devices
5872355, Apr 09 1997 Innolux Corporation Electroluminescent device and fabrication method for a light detection system
5902641, Sep 29 1997 SAMSUNG DISPLAY CO , LTD Flash evaporation of liquid monomer particle mixture
5902688, Jul 16 1996 AVAGO TECHNOLOGIES ECBU IP SINGAPORE PTE LTD Electroluminescent display device
5904958, Mar 20 1998 REXAM IMAGE PRODUCTS INC Adjustable nozzle for evaporation or organic monomers
5912069, Dec 19 1996 Sigma Laboratories of Arizona, LLC Metal nanolaminate composite
5922161, Jun 30 1995 Commonwealth Scientific and Industrial Research Organisation Surface treatment of polymers
5945174, Apr 06 1995 3M Innovative Properties Company Acrylate polymer release coated sheet materials and method of production thereof
5948552, Aug 27 1996 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Heat-resistant organic electroluminescent device
5965907, Sep 29 1997 UNIVERSAL DISPLAY CORPORATION Full color organic light emitting backlight device for liquid crystal display applications
5996498, Mar 12 1998 MARK ANDY, INC Method of lithographic imaging with reduced debris-generated performance degradation and related constructions
6045864, Dec 01 1997 3M Innovative Properties Company Vapor coating method
BE704297,
DE19603746,
EP299753,
EP340935,
EP390540,
EP547550,
EP590467,
EP722787,
EP787826,
EP916394,
EP931850,
EP977469,
JP2183230,
JP63136316,
JP6418441,
JP8325713,
JP9059763,
WO8707848,
WO9510117,
WO9704885,
WO9722631,
WO9810116,
WO9818852,
WO9916557,
WO9916931,
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Dec 10 1998AFFINITO, JOHN D Battelle Memorial InstituteASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0096610414 pdf
Dec 16 1998Battelle Memorial Institute(assignment on the face of the patent)
Jan 13 2011Battelle Memorial InstituteSAMSUNG MOBILE DISPLAY CO , LTD ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0256570390 pdf
Jul 02 2012SAMSUNG MOBILE DISPLAY CO , LTD SAMSUNG DISPLAY CO , LTD MERGER SEE DOCUMENT FOR DETAILS 0289120083 pdf
Date Maintenance Fee Events
Nov 18 2004M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Nov 18 2004M1554: Surcharge for Late Payment, Large Entity.
Nov 19 2004R2551: Refund - Payment of Maintenance Fee, 4th Yr, Small Entity.
Nov 19 2004STOL: Pat Hldr no Longer Claims Small Ent Stat
Sep 18 2008M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Sep 24 2012M1553: Payment of Maintenance Fee, 12th Year, Large Entity.
Oct 01 2012ASPN: Payor Number Assigned.


Date Maintenance Schedule
Apr 17 20044 years fee payment window open
Oct 17 20046 months grace period start (w surcharge)
Apr 17 2005patent expiry (for year 4)
Apr 17 20072 years to revive unintentionally abandoned end. (for year 4)
Apr 17 20088 years fee payment window open
Oct 17 20086 months grace period start (w surcharge)
Apr 17 2009patent expiry (for year 8)
Apr 17 20112 years to revive unintentionally abandoned end. (for year 8)
Apr 17 201212 years fee payment window open
Oct 17 20126 months grace period start (w surcharge)
Apr 17 2013patent expiry (for year 12)
Apr 17 20152 years to revive unintentionally abandoned end. (for year 12)